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Abstract. Hydrological data are often highly inaccurate. Interval methods help to estimate inaccuracy
caused by data uncertainty, both for forward problems (in which we predict how water will flow in the
known medium), and for the inverse problems (in which we observe how water flows and determine
the properties of the medium).

1. Introduction: Interval Computations are Needed

Geohydrology and its problems. Geohydrology describes how water flows in the
subsurface. We know equations that describe this flow, but parameters of these
equations are usually known only approximately. Two types of problems are of
interest:

= forward problems, in which we know the parameters of the mediam, and want
to predict how water flows in the subsurface;

» inverse problems, in which we measure how the water flows, and attempt to
estimate the corresponding parameters of the medium.

We must take uncertainty into consideration. In both problems, we must take
uncertainty into consideration. I'he measurement result X may difter trom the actual
value X of the measured quantity:

» In some cases, we know the probabilities of different measurement errors.

» However, in most real-life cases, we only know the upper bound A on the
measurement error AX = X — X (|AX| < A). Therefore, the only information
about X that we get from the measurement result is that X belongs to the interval
X=[X—-A X+A)

Interval computations are needed for solving the inverse problem. Due to the
uncertainty in measurements, the parameters of the medium that we estimate or
reconstruct from the measurements also contains uncertainty: different possible
values X € X, generally speaking, can lead to different values of the estimated
parameters. It is therefore desirable to estimate the range of parameter values:
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ideally, to compute the interval of possible values of the parameters, or, at least, an
enclosure for this interval. Thus, interval computations [1], [17], [21] are needed
for solving the inverse problem.

Interval computations are needed for solving the forward problem. Similarly,
interval computations are needed for the forward problem as well: To solve the
forward problem, we must know the parameters of the media. Since these parameters
are only known approximately (to be more precise, with interval uncertainty), we
should only expect interval predictions for the forward problem.

Historical comment. The need for interval estimates in hydrological problems
was suggested in [5] (see also [3]).

Interval computations are needed even if we know probabilities. In the inverse
problem, if we know probabilities, we can use statistical methods to estimate the
values of the desired parameters. Many known statistical methods (e.g., maximum
likelihood method) are based on some optimization. This optimization can be
rarely donc analytically, so numerical methods are needed. Many known schemes
for numerical optimization do not guarantee that the result is indeed optimal,
i.e., the solution can be a local optimum. If we want to find the global optimum,
we need to use methods of global optimization that lead w0 guuranieed yesults.
Therefore methods of interval computations which provide guaranteed bounds are
very suitable for such problems.

There is one more reason: In some cases, we do not know the exact probabilities,
we only know the intervals of possible values of these probabilities (or of statistical
characteristics of the corresponding probability distribution). Different values of
these probabilities lead to a different optimal estimate; it is therefore desirable to
find the interval of possible estimate values.

Interval computations can be used. In this paper, we show with several simple
examples, that interval computations can be used to solve hydrologic problems,
characterized by uncertainties.

2. Case Study: Lincar 1D Hydrologic System—General Description

A brief description of the case system. Our examples will describe the simplest
possible geohydrologic system: a 1D system represented by a linear differential
equation, which describes (steady-state) flow through a confined porous medium
(Figure 1).

How to describe the case system in mathematical terms: informal derivation
of the corresponding differential equation. Let x be a coordinate in the direction
of the flow. At any point x, the current state of the flow can be characterized by two
variables:
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Figure 1. TFlow through porcus medium of hydraulic conductivity, k.

o The first variable is the hydraulic potential (head), h(x). This potential is defined
as the height to which the water would rise if an open tube was attached to the
system at point x.

» The second variable is the flux g(x) through the medium, which is defined as the
quantity of water flowing per unit time at point x.

The resistance of the medium decreases the flow energy. The larger the flux and
longer the travel distance, the more energy is expended, resulting in a larger drop
in the hydraulic potential. Thus, the decrease Ak in the potential is proportional to
the flux ¢ and the travel length Ax: Ah = —p(x) - ¢ - Ax, where the coefficient p(x)
describes the resistance of the medium.

This formula is precise if the flux is constant in x. In reality, at certain locations,
water may enter or exit (discharge) the system, thus changing the flux. Therefore, to
ensure validity of the governing equation, we will consider instead of finite intervals
Ax, infinitesimal intervals dx. Then, the change in height dh is also infinitesimal,
resulting in the differential equation dh = —p - q - dx, i.e.,

d
T = —p(x) g @.1)

As in electric circuit analysis, it is often convenient (o use instead of the resistance
p(x), the inverse quantity conductivity k(x) = 1/ p(x). In terms of conductivity,
equation (2.1) takes the form

dh '
q(x) = —k(x) - T 2.2)

Homogeneous case. The value of conductivity is usually not known precisely. In
many practical cases, we can assume that the medium is:

o either homogeneous, in which case the value of conductivity k(x) does not depend
on x at all,

= or at least consists of several homogeneous sub-domains (zones), in cach of
which the conductivity is constant.
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The simplest case: no change in flux. If no water enters or exits the system, then
the flux simply remains constant: g(x) = g.

If the flux remains constant in a homogeneous area, then, substituting g(x) =
const and k(x) = const into equation (2.2), we can conclude that the derivative dh/dx
is also constant (equal to —g/ k), and therefore, the head A(x) changes linearly with
x. In this case, the derivative dh / dx coincides with the ratio Ak / Ax, and therefore
equation (2.2) takes the form

Ah
g=—k Ar (2.3)
In other words, the original approximate difference equation, which we used to
derive the exact differential equation, is, in this particular case, exacily true.

Case of spatially varying flux. If the flux is not constant, but varies spatially, then
the following differential equation describes the change in flux:
dg

) (2.4)

where R(x) is the rate (per unit length) with which the flux changes. If we substitute
expression (2.2) for the flux into (2.4), we get a more widely used form of this
equation:

d dh
In particular, when the medium is homogeneous (k(x) = k), we get the simplified
version of this equation:

d’h
k- e = R(x). (2.6)
Comment. The equations (2.5) and (2.6) are usually solved by using finite

difference methods, see, e.g., [2], [11], [12].

Case of concentrated flux. Another possibility for a change in water is when water
enters or exits the system at a distinct point. If we denote by xp the point of this
addition or retrieval, and by Q(xg), the amount of added or retrieved fiux, then we
can conclude that the flux g(xg+) right after this point is related to the flux g(xg—)
right before this point by the relation

qxo+) = g(xo—) + Q(xo). 2.7)

In particular, if the areas immediately prior to xy (from x™ to xo) and immediately
following xo (from xp to x*) are homogeneous, we can substitute expressions (2.3)
instead of the values g(xg—) and g(xp+) and obtain the equation:

o) = RET) s
— = k" -
Xo— X X -

hx™) — h(xo)

—k” + Olxp). (2.8)
X0
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Hydraulic Conductivity: k=[40,50] m/d
Boundary Conditions: h;=hs=100m

Figure 2. Problem description for case study 1.

An even more simplified version of this equation can be obtained if we assume that
the sub-domains [x~,xp] and [xg, x*] are of equal length Ax, and that the medium
is homogeneous throughout the domain [x~,x*]. In this case, equation (2.8) takes
the form:

hlxo — Axy+ h(Z(; A - 2hxo) _ oy 2.9)

k
Comment. The left-hand side of this equation is proportional to the standard
finite-difference approximation of the second derivative. Therefore, this equation
can be viewed as a finite-difference approximation of the second-order differential
equation (2.6). (It is worth mentioning that in the abhove case, equation (2.9) is
exact, and not just approximately true.)

3. Case Study 1: Forward Problem

Formulation of the problem: what is known. Let us consider flow through a
homogeneous porous domain of length 1200 m (Figure 2). The conductivity £ is
known to be within the interval {40, 50] m/day. The head at the endpoints is constant
at 100 m (&, = hs = 100). The following additions and retrievals occur:

» atx; (300 m from x;), 1 m>3/day exits the system;
o at x3 (600 m from x;), 1 rn3/day enters the system;
¢ finally, at x4 (900 m from xy), 1 m3/day exits the system.

Formulation of the problem: what we are interested in. We are interested in
determining how the head A(x) varies with x.

What exactly do we need to compute. Since the medium is homogeneous, the head
fi(x) varies linearly in each of the intervals [x;, x;41]. A linear function k(x) in the
interval [x;, x;.1] is uniquely determined by the values k; = h(x;) and ki = h(xi31)
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at the endpoints. Thus, to determine A(x) for all x, it is sufficient o deternine
hi, by, .., hs.

Since h; = 100 and hs = 100, we are interested in three unknowns: Ay, A3,
and hy.

Equations: For the homogeneous case under consideration, we can use equation
(2.9) for xy = x3, 9 = x3, and xp = Ay, thereby obtaining the following thrce
equations:

100 + h3 — 2hy _
' 300
by + hy — 2hs _
' 300 -
(4100 —2hy
300 '

To simplify these equations, we can multiply both sides of each equation by C =
300/ k, resulting in:

k

(3.1

k

100+ k3 — 2k = C; (3.2a)

hy+hy — 2hs = —C (3.2b)

h3 +100 — 2hy = C. (3.2¢)
These equations can be explicitly solved, resulting in:

h = 100 -0.5-G; (3.3a)

g = 100, (3.3b)

hy = 100 —-0.5-C. (3.3c)

Since k e [40, 507, we conclude that C = 300/ k € [6,7.5], and therefore, we have
the following interval bounds for A;:

h; =[100, 100], hjy =[96.25,97], hj3 =[100,100],

(3.4
h4 ={96.25,97], hs =[100, 100).

Possible values of A(x) for x # x; can be obtained by linear extrapolation.

Comment 1: General piece-wise homogeneous case. In the general piece-wise
homogencous case, we have to consider the more general equation (2.8). Sincc we
only know interval values for k and probably, for Q, we get interval linear equations.
For solving such equations, we can use methods described in {7], [9], [10], [14],
[16], [18], [19], [22], |23]. However, for our problems, these methods lead to huge
overestimation, because:

» most of these methods assume that different coefficients can independently vary
within the corresponding intervals, while
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s in our case, due to the homogeneity assumption, several different coefficients
express the same value: conductivity k in a given zone.

To the author’s knowledge, only one paper [13] describes interval methods that
explicitly account for such dependencies between the coefficients.

Comment 2: Non-homogeneous case. What if we do not assume that the medium
is homogeneous? In other words, what if we allow different values of k(x) for
different x (but all within the interval [40, 50])7

In this case, on each interval [x;, x;,1], the flux is constant, and therefore, from
equation (2.1), we can conclude that di = —p(x) - g - dx, implying

Xi+]
Bl =q- f p(x) dx, (3.5)
Xi

where p(x) = 1/ k(x) € [1/50, 1/40]. Due to the bounds on p(x), and the fact that
x;41 — x; = 300, the integral is within the interval

C =[300-1/40, 300-1/50] =[6,7.5]

Thus, we can get the two-sided bounds on the difference #;,; — A; that depend on
the (unknown) value g.

Due to flow conservation (equation (2.7)), if flow in the subdomain [x,,x;] is
equal to g, then:

o Lhe fow in the next subdomain {xy,x3] isequal to g — 1;

« the flow in the subdomain [x3, x4] is again equal to g;

e the flow in the subdomain [x4, x5} is equal to ¢ — 1.
Let us assume that the flow is positive on the subdomains [x;,x;} and [x3, x4], and
negative (i.e., going in the opposite direction) in the domains [x3, x3] and [x4, x5].
Thus, ¢ > 0, ¢ — 1 < 0, and we get the following bounds on the differences
hi — Ryt

6g < 100 — hy < 7.5¢; (3.6a)
75-75¢ < la—hy < 6—6q; (3.6b)

6g < h3i—hy < 7.5q; (3.6¢)
75—75¢ < hy — 100 < 6 — 6q. (3.6d)

We thus get a system of 4 linear inequalities with 4 unknowns hs, h3, h4, and g.
Using linear programming, we can find the intervals of possible values for each of
these quantities.

Since in our formulation, we are only interested in the values ki, h3, and hy,
and not in g, we can, instead of using the general linear programming techniques,
first eliminate g from this system of inequalitics. There is a standard method for
eliminating g. Namely:
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» we represent each inequality as a two-sided inequality in terms of ¢;

« then, the existence of the value ¢4 that satisfies all these inequalities is equivalent
to the requirement that each lower bound does not exceed cach upper bound.

For our system (3.6), this method leads to the following inequalities:
100 —hp _ 100 hy

— <g< z : (3.7a)
I_Q%@ngl m”m, (3.7b)

h37;h4 <q< hy —hy - h4 (3.7¢)
- 1006— hy <g<i- 1097; h4' (3.7d)

By comparing (3.7a) and (3.7b), we conclude that:

100 — &, <1— hy Ay
75 = 7.5

and

hy — hy < ].00"“]’12’
6 — 6

i.e., we conclude that

1—

100 + Az — 21y € [6,7.5].

Similarly, we conclude that other second differences must belong to the interval
C = [6,7.5]. Then, we can solve the resulting system of linear inequalities with
three unknowns.

If we additionally assume that the flow is symmetric with respect to the point xs,
then we have h; = hq, and from the equality of the flows in the subdomains [x;, x3]
and [xs, x5], we conclude that g = |g — 1|, i.e., g = 0.5. In this case, from (3.6a) and
(3.6d), we conclude that hy = hy € 100 — [6g, 7.54], i.e., hz = hy can take arbitrary
values from the interval hy = hy = [96.25, 97.0]. From the equation (3.6¢), we can
now conclude that h3 — h; e [6q, 7.5¢], and therefore, the possible values of %3 is
equal to hy + [6g, 7.5¢g] = [96.25,97.0] + [3.0, 3.75] = [99.25, 100.75]. Thus:

h; =[100.0,100.0], hy =[96.25,97.0], hs =[99.25,100.75],
hy =[96.25,97.0], hs=[100.0, 100.0}.

Even with the additional symmetry assumption, some of the resulting intervals are
wider than the intervals (3.4) for the homogeneous case: namely, we can get values
h3 # 100.
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Figure 3. Froblem description for case study 2.

4. Case Study 2: Forward Problem

Description of the example. In this example (Figure 3), we also discretized the
domain hy five equidistant points xi, ..., x5 {(Ax = 300 m). The head at x, is constant
at 100 m. At points x; and x4 fluxes O, and Q4 are applied. We do not know the

exact values of these fluxes, however Qa = [—0.1,0.3]1 m3/day and Q4 = [~0.1,0.2]
m>/day contain these valucs. The flux at the right end is cqual to 1 m3/day.
The system is piece-wise homogeneous:

e on the first sub-domain [x;.x:]. we have conductivity k1 which is within the
interval {30, 40] m/day;

» on the second sub-domain [x3, x5], we have conductivity &» which is within the
interval [40, 50] m/day.

Our goal is to find the possible values of the heads #; through As.

How we solve the problem. When k; and Q; are known, the heads can be uniquely
determined by equations (2.8) and (2.9). In general, we, thus, have an expression
for k; in terms of the unknown values of k; and Q. It can be shown that for the case
under consideration, 1.e., a constant head at one end and a constant flux at the other
end, the resulting dependency h;(kq, ..., Q1, ...) is monotonic in each of its variables,
so, we can explicitly find the desired intervals by considering the corresponding
endpoints of the intervals Q; and k;. The resulting values are:

h, = [88.00,96.25], h; = [77.00,90.25],
hy = [68.75,85.45], hs = [61.25,79.45].

5. Case Study 3: Inverse Problem

General formula. The goal of the inverse problem is to find, based on observed
values of heads /; (and fluxes), the conductivities k; of different subdomains.
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Usually, we assume that measurement errors are normally distributed and inde-
pendent. In this case, the least squares methods leads to the following formula for
reconstructing the desired values ; from the measurements #;:

1
12 .
L= hikr,..) — h;)” — min,
Z( I( ! ) !) ki, ...
i=1
where:
¢ p is the total number of measurements,
o J; are the measured heads, and
» hi(ky, ...) are the values of heads computed by using the conductivities ;.
In many cases, in addition to the current measurement results, we have some
prior estimates kj(o) for conductivities. These are estimated from previous measure-
ments, or from knowledge of the system. In such cases, we know the covariance

matrix for such estimates, and the least squares method takes the following modified
form:

L= (htk,..) = B) + K — KOV 1K - KO) o min, (5.1)
i=1 1.

where:
* K =(kq,...) is the vector of the (unknown} parameters k;;

e KO = (kfo), ...) is the vector of the prior estimates of the conductivities; and

» the matrix V' is the inverse of the covariance matrix (which is a measure of
the correlation of the prior estimates).

How we can solve the inverse prahlem. One possibility to find the minimum is to
find all extremal points, i.e., all points K = (1, ...) in which
aL
— =0, j=1,..,
9k; /

and, if there are several such points, choose the point X for which . — min.

Example: description. We consider an example from [4], which is described in
Figure 4. A flux of 1 unit flows through a system of unit length, with a constant
head 7y = 5 at the left end. The system is discretized into four equal intervals of
length Ax = 0.25. The following observations for the heads exist:

e at point x; = x; + Ax, k, =45
s at point x3 = x; + 2Ax, k3 = 4.0; and
e at point x4 = x1 + 3Ax, fis = 3.0.

Water flows through two homogeneous domains:
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Figure 4. Problem definition for case study 3.

e [x1,x3], with the (unknown) conductivity k;, and
® [x3,x5], with the (unknown) conductivity k.

No water is added or retrieved, therefore we can use equations (2.9) and (2.8) (with
Q(x;} = 0) to calculate the heads.

For each set ot values K = (ky, k), these equations uniquely determine the actual
values 7; of the heads. A prior estimate kfo) = 0.6 and kg]) = (.35, along with an
inverse inverse covariance matrix

-1 [ 505,495
= 1495,505 |

was specified in [4].

Example: what was determined previously. By applying (heuristic) methods,
the authors of [4] found two extremal points: KV = (0.465,0.473) and K® =
(0.723,0.213), with values L(KV) = 0.2045 and L(K™®) = 0.1806 < L(KD).

Example: what we determined. We applied the Interval Newton method [1], [8],
[10], [17] to the system of equations that describes the extremal points, and found not
only the abave twa paints, bat also a third extremal point: K@) = (0.582, (0.349Y,

In can be shown, by considering the Hessian of (5.1), that K is alocal maximum
(L(KP)y = 0.2232 > LKD), Therefore, in this particular case, the heuristic method
computcd the global minimum correctly. However, the very fact that this heuristic
method missed one of the extremal points suggests that the global minimum too
could have been missed.

This example illustrates the need to consider global methods, such as the Interval
Newton method, to ensure guaranteed solutions of the optimization problem.

Future plans. The main objective of our study was to show the viability of interval
techniques. Now that the viability is established, it is desirable to look for more
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efficient ways of finding the global minimum. For example, we can use modifica-
tions of interval Newton method that enhance efficiency of the method [6], [15], or
use alternative interval techniques (see, e.g., [20]).

6. Conclusion

The primary objective of our study was to demonstrate that interval techniques
provide viable tools for solving the forward and inverse hydrological problems.

A major drawback of the existing interval techniques is the fact that they do
not take into consideration the dependency between the medium coefficients, and,
as a result, overestimate. It is, therefore, desirable to design methods that take this
dependency into consideration.
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