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Chapter 1

INTRODUCTION

1.1 AN OVERVIEW

In mathematics, there are real numbers, a real arithmetic for com-
bining them, and a real analysis for studying the properties of the
numbers and the arithmetic. Interval mathematics is a generalization
in which interval numbers replace real numbers, interval arithmetic
replaces real arithmetic, and interval analysis replaces real analysis.

Numerical analysis is the study of computing with real (and other
kinds of) numbers. Theoretical numerical analysis considers exact
numbers and exact arithmetic, while practical numerical analysis
considers �nite precision numbers in which rounding errors occur.
This book is concerned with both theoretical and practical interval
analysis for computing with interval numbers.

In this book we limit our attention almost exclusively to real in-
terval analysis. However, an analysis of complex intervals has been
de�ned and used, beginning with Boche (1966). A complex �inter-
val� can be a rectangle, a circle; or a more complicated set. Inter-
vals of magnitude and phase can also be used. Some early publi-
cations discussing complex intervals are Alefeld (1968), Alefeld and
Herzberger (1974), Gargantini (1975, 1976, 1978), Gargantini and
Henrici (1972), Glatz (1975), Henrici (1975), Krier and Spellucci
(1975), and Nickel (1969).



2 CHAPTER 1. INTRODUCTION

1.2 THE ORIGIN OF INTERVAL ANALY-
SIS

There are several types of mathematical computing errors. Data of-
ten contain measurement errors, or are otherwise uncertain because
rounding errors generally occur, and approximations are made, etc.
The purpose of interval analysis is to provide upper and lower bounds
on the e¤ect all such errors and uncertainties have on a computed
quantity.

It is desirable to make interval bounds as narrow as possible.
A major focus of interval analysis is to develop practical interval
algorithms that produce sharp1 (or nearly sharp) bounds on the
solution of numerical computing problems. However, in practical
problems with interval inputs, it is often su¢ cient to simply compute
reasonably narrow interval bounds.

Several people independently had the idea of bounding rounding
errors by computing with intervals; e.g., see Dwyer (1951), Sunaga
(1958), Warmus (1956), (1960) and Wilkinson (1980). However, in-
terval mathematics and analysis can be said to have begun with the
appearance of R. E. Moore�s book Interval Analysis in 1966. Moore�s
work transformed this simple idea into a viable tool for error analy-
sis. In addition to treating rounding errors, Moore extended the use
of interval analysis to bound the e¤ect of errors from all sources,
including approximation errors and errors in data.

1.3 THE SCOPE OF THIS BOOK

In this book we focus on a rather narrow part of interval mathe-
matics. One of our goals is to describe algorithms that use interval
analysis to solve the global (unconstrained or constrained) nonlinear
optimization problem. We show that such problems can be solved
with a guarantee that the computed bounds on the location and
value of a solution are numerically correct. If there are multiple so-

1An interval bound is said to be sharp if it is as narrow as possible.
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lutions, all will be found and correctly bounded. It is also guaranteed
that the solution(s) are global and not just local.

Our optimization algorithms use interval linear algebra and in-
terval Newton algorithms that solve systems of nonlinear equations.
Consequently, we discuss these topics in some detail. Our discus-
sion includes some historical information but is not intended to be
exhaustive in this regard.

We also describe and use an extended interval arithmetic. In
the past, it has been customary to exclude certain arithmetic opera-
tions in both real and interval arithmetic. Hanson (1968) and Kahan
(1968) each described incomplete extensions of interval arithmetic
in which endpoints of intervals are allowed to be in�nite. The foun-
dation for complete interval arithmetic extensions is described in
Chapter 4. Alefeld (1968) (See also Hansen (1978b)) described a
practical interval Newton algorithm in which division by an interval
containing zero is allowed.

The extension of interval arithmetic that we describe is a closed2

system with no exclusions of any arithmetic operations or values of
operands. It includes division by zero and indeterminate forms such
as 00 , 1�1; 0�1; and 1

1 , etc., that are normally excluded from
real and extended (i.e., including in�nities) real arithmetic systems.
It is remarkable that interval analysis allows closure of systems con-
taining such indeterminate forms and in�nite values of variables. All
the algorithms in this book can be implemented using these closed
interval systems. The resulting bene�ts are increased generality and
simpler code.

1.4 VIRTUES AND DRAWBACKS OF IN-
TERVAL MATHEMATICS

The history of �oating-point computing and resulting rounding er-
rors are described in Section 4.11 of Hennessy and Patterson (1994).

2A closed system is one in which there are no unde�ned arithmetic operand-
operator combinations.
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Interval analysis began as a tool for bounding rounding errors. Never-
theless, the belief persists that rounding errors can be easily detected
in another way. The contention is that one need only compute a given
result using, say single and double precision. If the two results agree
to some number of digits, then these digits are correct.

1.4.1 Rump�s Example

An example of Rump (1988) shows that this argument is not nec-
essarily valid. Using IEEE-754 computers, the following form (from
Loh and Walster (2002)) of Rump�s expression with x0 = 77617 and
y0 = 33096 replicates his original IBM S/370 results.

f (x; y) =(333:75� x2)y6 + x2(11x2y2 � 121y4 � 2)

+ 5:5y8 +
x

2y
(1.4.1)

With round-to-nearest (the usual default) IEEE-754 arithmetic, the
expression in (1.4.1) produces:

32-bit: f (x0; y0) = 1:172604
64-bit: f (x0; y0) = 1:1726039400531786
128-bit: f (x0; y0) = 1:1726039400531786318588349045201838

All three results agree in the �rst seven decimal digits and thir-
teen digits agree in the last two results. Nevertheless, they are all
completely incorrect. Even their sign is wrong.

Loh and Walster (2001) show that both Rump�s original and the
expression for f (x; y) in (1.4.1) reduce to:

f (x0; y0) =
x0
2y0

� 2; (1.4.2)

from which

f (x0; y0) = �0:827396059946821368141165095479816::: (1.4.3)
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with the above values for x0 and y0:
Evaluating f (x0; y0) in its unstable forms using interval arith-

metic of moderate accuracy produces a wide interval (containing the
correct value of f (x0; y0)). The fact that the interval is wide even
though the argument values are machine-representable is a warning
that roundo¤ and catastrophic cancellation have probably occurred;
and therefore higher-accuracy arithmetic is needed to get an accurate
answer. In some cases, as is seen in the above example, rearranging
the expression can reduce or eliminate the catastrophic cancellation.

1.4.2 Real Examples

Rump�s example is contrived. However, rounding errors and the
e¤ects of cancellation impact computed results from important real
world problems, as documented in:

www.math.psu.edu/dna/disasters/

and by Daumas (2002). For example, the failure of the Patriot Mis-
sile battery at Daharan was directly attributable to accumulation
of roundo¤ errors; and the explosion of the Ariane 5 was caused by
over�ow. The Endeavour US Space Shuttle maiden �ight su¤ered
a software failure in its Intelsat satellite rendezvous maneuver and
the Columbia US Space Shuttle maiden �ight had to be postponed
because of a clock synchronization algorithm failure.

Use of standard interval analysis could presumably have detected
the roundo¤ di¢ culty in the �rst example. The extended interval
arithmetic discussed in Chapter 4 and used in this book would have
produced a correct interval result in the second example, even in
the presence of over�ow. See Walster (2003b) for an extended in-
terval arithmetic implementation standard in which under�ow and
over�ow are respectively distinguished from zero and in�nity. The
third failure was traced to an input-dependent software error that
was not detected in spite of extensive testing. Intervals can be used
to perform exhaustive testing that is otherwise impractical. Finally,
the fourth failure occurred after the algorithm in question had been
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subjected to a three year review process and formally proved to be
correct. Unfortunately, the proof was �awed. Although it is impos-
sible to know, we believe that all of these and similar errors would
have been detected if interval rather than �oating-point algorithms
had been used.

1.4.3 Ease of Use

Despite the value of interval analysis for bounding rounding errors in
problems such as these, interval mathematics is less used in practice
than one might expect. There are several reasons for this. Undoubt-
edly, the main reasons are the (avoidable) lack of convenience, the
(avoidable) slowness of many interval arithmetic packages, the (occa-
sional) slowness of some interval algorithms, and the (unavoidable)
di¢ culty of some interval problems.

For programming convenience, an interval data type is needed to
represent interval variables and interval constants as single entities
rather than as two real interval endpoints. This was made possible
early in the history of interval computations by the use of precom-
pilers. See, for example, Yohe (1979). However, the programs they
produced were quite slow because each arithmetic step was invoked
with a subroutine call. Moreover, subroutines to evaluate transcen-
dental functions were ine¢ cient or lacking and interval programs
were available on only a few computers.

Eventually, some languages (e.g., Pascal-SC, Ada, and C++)
made programming with intervals convenient and reasonably fast by
supporting user de�ned types and operator overloading.

Microprogramming can be fruitful in improving the speed of in-
terval arithmetic. See Moore (1980). However, this has rarely been
considered.

Convenient programming of interval computations was made avail-
able as part of ACRITH. See Kulisch and Miranker (1983) and IBM
(1986a, 1986b). However, the system was designed for accuracy with
exact (degenerate interval) inputs rather than speed with interval
inputs that are not exact. Because binary-coded decimal arithmetic
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was used, it was quite slow.
The M77 compiler was developed at the University of Minnesota.

See Walster, et al (1980). It was available only on certain computers
manufactured by Control Data Corp. With this compiler, interval
arithmetic was roughly �ve times slower than ordinary arithmetic.
All the numerical results contained in the �rst edition of this book
were computed using the M77 compiler.

More recently compilers have been developed by Sun Microsys-
tems Inc. that represent the current state of the art. See Walster
(2000c) and Walster and Chiriaev (2000). These compilers imple-
ment a limited version of the closed numerical system described
brie�y in Chapter 4. This �Simple� system is designed to be fast
when implemented in software. Nevertheless, it permits calculation
of interval bounds (although not as narrow as possible) on functions
having singularities and indeterminate forms.

Support for computing with intervals has been introduced into
popular symbolic computing tools, including:

� Mathematica (see: www.wolfram.com/),

� Maple (see: www.scg.uwaterloo.ca/),

� MuPad (see: www.mupad.de/), and

� Matlab (see: www.mathworks.com/).

Using intervals to graph relations that otherwise would be im-
possible to rigorously visualize has been accomplished in:

� GrafEq (see: www.peda.com/grafeq) and

� Graphical Calculator (see: www.nucalc.com/).

Good interval arithmetic software for various applied problems
is now often available. Nevertheless, except when written in pure

Java
TM
, portable codes are rare.
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Unfortunately, at least one commercial product uses interval al-
gorithms with a quasi-interval arithmetic that does not produce rig-
orous interval bounds. This was done for speed, but at the sacri�ce
of being able to legitimately claim that computed results are interval
bounds in the commonly accepted use of the term. All the algorithms
in this book produce rigorous interval bounds.

Ideally, interval hardware will simultaneously compute both end-
points of the four basic interval arithmetic operations. When such a
computer is built the speed of interval computations will be compa-
rable to that of �oating-point arithmetic and there will be no bene�t
from cutting corners in rigor for speed. See:

www:sun:com=processors=whitepapers

There is another reason why interval analysis was slow to become
popular. In its early history, computed bounds on the solution of
certain problems were very far from sharp. Subsequent analysis by
many researchers has made it possible to compute excellent bounds
for solutions to a wide variety of applied problems. As yet, this early
stigma has been erased only slowly.

1.4.4 Performance Benchmarks

The relative speed of interval and point algorithms is often the
cause of confusion and misunderstanding. People unfamiliar with
the virtues of interval algorithms often ask what is the relative speed
of interval and point operations and intrinsic function evaluations.
Aside from the fact that relatively little time and e¤ort have been
spent on interval system software implementation and almost no time
and e¤ort implementing interval-speci�c hardware, there is another
reason why a di¤erent question is more appropriate to ask. Interval
and point algorithms solve di¤erent problems. Comparing how long
it takes to compute guaranteed bounds on the set of solutions to a
given problem, as compared to providing an approximate solution of
unknown accuracy, is not a reasonable way to compare the speed of
interval and point algorithms.
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Gustafson (1994a, 1994b, and 1995) has proposed a computer
system benchmarking strategy that focuses on the time require to
do real work (including to compute results with a known accuracy)
rather than solely on the time required to perform a �xed set of ar-
bitrary numerical computations (without regard to their accuracy).
By requiring di¤erent systems to compute comparable results, his
strategy eliminates the kind of confusion that occurs when funda-
mentally uncomparable point and interval computations are never-
theless compared.

Independently, Walster (2001) has proposed a way of formulating
interval performance benchmark problems, designed to clear up this
confusion and to provide standards with which to compare di¤erent
interval implementation systems. The following is a summary of this
proposal.

Floating-point performance benchmark problems are used
routinely to measure the performance of �oating-point
hardware and software systems. As intervals become
more widely used, interval-speci�c performance tests will
be developed. With interval performance benchmarks,
there is a need to measure both run-time given the width
of computed interval bounds, and the width of computed
bounds within a given runtime. Because the quality of
interval bounds is self-evident, there need be no require-
ment that interval benchmark codes are the same, al-
though, they can be. Rather, standard problem state-
ments are needed against which any algorithm and com-
puting system, interval or not, can be compared. The
following proposals seem reasonable:

� Interval benchmarks must be written as a mathematical prob-
lem statement with no speci�cation of how bounds are to be
computed. Bounds, however, must be produced. In other
words, it is an error if computed bounds fail to contain the
set of all possible results.
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� At least some input data items must be non-degenerate (non-
zero width) intervals, to unambiguously re�ect the benchmark�s
interval nature. The width of input data items might be �xed
or relative to the magnitude of interval data.

� When possible, benchmarks need to scale as a function of the
number of independent variables, so that e¢ ciency can be esti-
mated as a function of problem size and number of processors.

� Single and double precision versions of problems will be in-
cluded in benchmark tests. Benchmarks can be any problem,
including:

� integration of ordinary or partial di¤erential equations,

� solution of linear and nonlinear systems of equations,

� linear or dynamic programming problems, or

� nonlinear constrained or unconstrained global optimization (non-
linear programming) problems.

For uncomparable �xed sequences of operations, current interval
implementations are slower than real (i.e., noninterval) counterparts.
As mentioned, above, this is not a necessary limitation.

For uncomparable problems, current interval algorithms can re-
quire more interval operations than real counterparts. For example
to get narrow bounds on the solution to linear algebraic equations,
interval methods sometimes require about six times as many arith-
metic operations as real methods require to compute an approximate
solution. See Chapter 5. We hope that future research produces
more e¢ cient interval algorithms for this important problem. We
also hope that comparisons between point and interval algorithms
will be con�ned to comparable problems, such as those described
above.

For many even not comparable problems, the operation counts
in interval algorithms are similar to those in noninterval algorithms.
For example, the number of iterations to bound a polynomial root
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to a given (guaranteed) accuracy using an interval Newton method
(see Section 9.2) is about the same as the number of iterations of a
real Newton method to obtain the same (not guaranteed) accuracy.

For some problems, an interval method is faster than a noninter-
val one. For example, to �nd all the roots of a polynomial requires
fewer steps for an interval Newton method than for a noninterval
one. This is because the latter generally must do some kind of ex-
plicit or implicit de�ation. The interval method does not. Another
area in which interval algorithms have been reported to be faster
than point algorithms is in robust control. See Nataraj and Sadar
(2000), and Nataraj (2002a) and (2002b).

1.4.5 Interval Virtues

The transcendent virtue of interval analysis is that it enables the
solution of certain problems that cannot be solved by noninterval
methods. The primary example is the global optimization problem,
which is the major topic of this book. Even if interval procedures for
this problem were slow, this fact cannot be considered a �aw. Fortu-
nately, the procedures are quite e¢ cient for most problems. This is
in spite of the fact that even computing sharp bounds on the values
of a function of n-variables is known to be an NP -hard problem.
See Kreinovich (1998). As with many well known point algorithms
that e¢ ciently solve NP -hard problems, interval algorithms seek
to capitalize on the structure of real world problems. Walster and
Kreinovich (2003) characterize the nature of this structure. Many of
the new algorithm innovations described in this book, particularly
box and hull consistency in Chapter 10, use this strategy to achieve
signi�cant performance increases.

The obvious comment regarding the apparent slowness of interval
methods for some problems (especially if they lack the structure
often found in real world problems) is that a price must be paid to
have a reliable algorithm with guaranteed error bounds that non-
interval methods do not provide. For some problems, the price is
somewhat high; for others it is negligible or nonexistent. For still
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others, interval methods are more e¢ cient.
Consider a problem in which the input is a degenerate (zero

width) interval (or intervals) and we simply wish to bound the e¤ect
of rounding errors. For such a problem, we need to do more than just
compare the time for the interval and noninterval programs to exe-
cute. We also need to compare the time it takes to solve the problem
in the interval case with both: the time it takes in the noninterval
case, and the time (and e¤ort) it takes in the noninterval case to
somehow perform a rigorous error analysis. The proposed interval
benchmark standard seeks to expose the time and e¤ort required to
produce rigorous bounds using noninterval algorithms.

Next, consider a problem in which the input is a nondegenerate
interval (or intervals). For this problem, the interval approach pro-
duces a set of answers to a set of problems. In so doing, it provides
a rigorous sensitivity analysis (see Chapter 17). For such a problem,
it might be di¢ cult or impossible to do the sensitivity analysis by
noninterval methods. When it is possible to compare (as above) the
speeds of the interval and noninterval approaches to a given problem,
the interval approach is often faster.

There are several other virtues of interval methods that make
them well worth paying even a real performance price. In general,
interval methods are more reliable. As we shall see, some interval
iterative methods always converge, while their noninterval counter-
parts do not. An example is the Newton method for solving for the
zeros of a nonlinear equation. See Theorem 9.6.2 on page 191.

Also, natural stopping criteria exist for interval iterations. One
can simply iterate until either the bounds are su¢ ciently narrow or
no further reduction of the interval bounds occurs. The latter case
happens when rounding errors prevent further accuracy. A compa-
rable heuristic stopping criteria used in noninterval algorithms can
be di¢ cult to devise and be quite complicated to implement.

Interval methods can yield a valuable by-product. As we shall see,
algorithms for solving systems of nonlinear equations can provide
proof of existence and uniqueness of a solution without the need
for any computations not already performed in solving the problem.
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This occurs only for simple (i.e., nonmultiple) zeros.
Interval methods �nd all solutions to a set of nonlinear equations

in a given interval vector or box (see Section 5.1 for a formal de�ni-
tion of a box). They do so without the extra analysis, programming,
and computation that are necessary for a de�ation process that is
required by most noninterval methods.

Probably the transcendent virtue of interval mathematics is that
it provides solutions to otherwise unsolvable problems. Prior to the
use of interval methods, it was impossible to solve the nonlinear
global optimization problem except in special cases. In fact, various
authors have written that in general it is impossible in principle to
numerically solve such problems. Their argument is that by sampling
values of a function and some of its derivatives at isolated points,
it is impossible to determine whether a function dips to a global
minimum (say) between the sampled points. Such a dip can occur
between adjacent machine-representable �oating point values.

Interval methods avoid this di¢ culty by computing information
about a function over continua of points even if interval endpoints
are constrained to be machine-representable. As we show in this
book, it is not only possible but relatively straightforward to solve
the global optimization problem using interval methods.

For an example illustrating how an interval method detects a
sharp dip in an objective function, see Moore (1991).

1.5 THE FUTURE OF INTERVALS

Three forces are converging to o¤er unprecedented computing op-
portunities and challenges:

� Computer performance continues to double every 18 months
(Moore�s law),

� Parallel architectures with tens of thousands or even millions
of processors will soon be routinely available, and
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� Interval algorithms to solve nonlinear systems and global opti-
mization problems are naturally parallel.

With the inherent ability of intervals to represent errors from all
sources and to rigorously propagate their interactions, the validity of
answers from the most extensive computations can now be guaran-
teed. With the natural parallel character of nonlinear interval algo-
rithms, it will be possible to e¢ ciently use even the largest parallel
computing architectures to safely solve large practical problems.

Computers are attaining the speed required to replace physical
experiments with computer simulations. Gustafson (1998) has writ-
ten that using computers in this way might turn out to be as scientif-
ically important as the introduction of the experimental method in
the Renaissance. One di¢ culty is how to validate computed results
from huge simulations. A second di¢ culty is how to then synthesize
simulation results into optimal designs. With interval algorithms,
simulation validity can be veri�ed. Moreover, interval global opti-
mization can use the mathematical models derived from validated
simulations to solve for optimal designs.
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Chapter 2

INTERVAL NUMBERS
AND ARITHMETIC

2.1 INTERVAL NUMBERS

Consider a closed1, real interval X = [a; b]: An interval number X
is such a closed interval. That is, it is the set fx j a � x � bg of
all real numbers between and including the endpoints a and b. We
use the terms �interval number�and �interval�interchangeably. An
interval number can be an interval constant or a value of an interval
variable.

A real number x is equivalent to an interval [x; x], which has zero
width. Such an interval is said to be degenerate. When we express a
real number as an interval, we usually retain the simpler noninterval
notation. For example, we often write 2 in place of [2; 2] or x in place
of [x; x]

The endpoints a and b of a given interval might not be repre-
sentable on a given computer. Such an interval might be a datum
or the result of a computation on the computer. In such a case, we
round a down to the largest machine-representable number that is

1The word �closed�in this context is short hand for �topologically closed�. A
closed interval includes the interval�s endpoints. An open interval does not.
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less than a and round b up to the smallest machine-representable
number that is greater than b. Thus, the retained interval contains
[a; b]: This process is called outward rounding.

Directed rounding is rounding that is speci�ed to be either up or
down. That is, it is rounding to either a (speci�ed) larger of smaller
number than the number being rounded. Directed rounding is used
to achieve the outward rounding used in practical interval arith-
metic. The IEEE-754 (1985) standard for �oating-point arithmetic
speci�es that directed rounding be an option in computer arithmetic.
Directed rounding has been available in hardware since the Intel 8087
chip was introduced in 1981. See Palmer and Morse (1984).

2.2 NOTATION AND RELATIONS

When a real (i.e., noninterval) quantity is expressed in lower case,
we generally use the corresponding capital letter to denote the corre-
sponding interval quantity. For example, if x denotes a real variable
then X denotes an interval variable. If the real quantity is denoted
by a capital letter, we denote the corresponding interval quantity
by attaching a superscript �I�. For example, if a real matrix is de-
noted by A; the corresponding interval matrix is denoted by AI . See
Chapter 5.

A superscript �I�on the symbol for a function indicates that it
is an interval function. Thus, f I is an interval function. However, if
f (x) is a real function of a real variable x, then f (X) also denotes
the corresponding interval function. This fact is indicated by the
presence of the interval argument X. For a de�nition and discussion
of an interval function, see Chapter 3. A thorough treatment of the
notation used in this book is presented at the end of Chapter 4.

An underbar indicates the lower endpoint of an interval; and an
overbar indicates the upper endpoint. For example, if X = [a; b],
then X = a and X = b: Similarly, we write f(X) = [f(X); f(X)].

An interval X = [a; b] is said to be positive if a > 0 and nonneg-
ative if a � 0. It is said to be negative if b < 0 and nonpositive if
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b � 0.
Two intervals [a; b] and [c; d] are equal if and only if a = c and

b = d.
Interval numbers are partially ordered. We have [a; b] < [c; d] if

and only if b < c.

2.3 FINITE INTERVAL ARITHMETIC

Let +, �, �, and � denote the operations of addition, subtraction,
multiplication, and division, respectively. If � denotes any one of
these operations for arithmetic on real numbers x and y, then the
corresponding operation for arithmetic on interval numbers X and
Y is

X � Y = fx � y j x 2 X; y 2 Y g (2.3.1)

Thus the interval X � Y resulting from the operation contains every
possible number that can be formed as x � y for each x 2 X, and
each y 2 Y:

This de�nition produces the following rules for generating the
endpoints of X � Y from the two intervals X = [a; b] and Y = [c; d]:

X + Y = [a+ c; b+ d] (2.3.2)

X � Y = [a� d; b� c] (2.3.3)

X � Y =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

[ac; bd] if a � 0 and c � 0
[bc; bd] if a � 0 and c < 0 < d
[bc; ad] if a � 0 and d � 0
[ad; bd] if a < 0 < b and c � 0
[bc; ac] if a < 0 < b and d � 0
[ad; bc] if b � 0 and c � 0
[ad; ac] if b � 0 and c < 0 < d
[bd; ac] if b � 0 and d � 0

[min(bc; ad),
max(ac; bd)] if a < 0 < b and c < 0 < d

(2.3.4)
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If we exclude division by an interval containing 0 (that is, c � 0 and
d � 0), we have

1

Y
=

�
1

d
;
1

c

�
(2.3.5)

and

X

Y
= X �

�
1

Y

�
(2.3.6)

The case of division by an interval containing zero is covered in
Chapter 4. For n a nonnegative integer, we also de�ne

Xn =

8>><>>:
[1; 1] if n = 0
[an; bn] if a � 0 or if n is odd
[bn; an] if b � 0 and n is even

[0;max(an; bn)] if a � 0 � b and n > 0 is even.

(2.3.7)

2.4 DEPENDENCE

Suppose we subtract the interval X = [a; b] from itself. As a result
of using the rule (2.3.3) for subtraction of intervals, we obtain the
interval [a� b; b� a]. We might expect to obtain [0; 0]: However, we
do not (unless b = a). The result is fx� y j x 2 X; y 2 Xg instead
of fx� x j x 2 Xg:

In general, each occurrence of a given variable in an interval com-
putation is treated as a di¤erent variable. Thus X �X is computed
as if it were X � Y with Y numerically equal to, but independent of
X. This causes widening of computed intervals and makes it di¢ cult
to compute sharp numerical results of complicated expressions.

This unwanted extra interval width is called the dependence prob-
lem or simply dependence. One should always be aware of this di¢ -
culty and, when possible, take steps to reduce its e¤ect. We discuss
some ways to do this in Section 3.3 and elsewhere in this book.

Equation (2.3.7) de�nes the n-th power of an interval. It is in-
cluded to overcome the dependence problem in multiplication. For
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example, when n = 2, the de�nition is equivalent to X2 = fx2 j x 2
Xg rather than X �X = fx� y j x 2 X; y 2 Xg. Using (2.3.7), we
compute [�1; 2]2 = [0; 4] rather than [�1; 2]� [�1; 2] = [�2; 4] using
(2.3.4)

Moore (1966) notes that if a particular interval variable occurs
only once in a given form of a function, then it cannot give rise to
excess width because of dependence. Suppose every variable occurs
only once in a function. Then an (exact) interval evaluation yields
the exact range of the function as variables range over their interval
bounds.

Thus, dependence can occur in evaluating a function f(X;Y ) in
the form X�Y

X+Y ; but not if it is written in the form 1 � 2
1+X

Y

: If we

evaluate f(X;Y ) in the latter form and if no division by an interval
containing zero occurs, then the resulting interval is the exact range
of f(x; y) for x 2 X and y 2 Y . We discuss the case of division by
zero in Chapter 4.

Widening of intervals from dependence can occur even when eval-
uating a real (i.e., degenerate interval) function with a real argument.
An example of this is Rump�s expression in (1.4.1). Assume we use
interval arithmetic to bound rounding errors. As soon as a round-
ing occurs, a non-degenerate interval is introduced. If this interval
is again used in the computation, dependence can cause widening
of the �nal interval bound on the function value. As we shall see in
Chapter 5 when doing Gaussian elimination to solve systems of linear
equations, dependence can cause catastrophic numerical instability,
which is exposed by the widening of intervals. Numerical instabil-
ity can remain hidden in the result of evaluating a �oating-point
expression, but not in an interval expression result.

2.4.1 Dependent Interval Arithmetic Operations

We now describe a useful arithmetic procedure called dependent sub-
traction. In other publications we have called this procedure cancel-
lation. To motivate it, assume we have n intervals Xi and, for each
i = 1; � � � ; n, we want the sum of all but the i-th interval. Suppose
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we �rst compute the sum S1 = X2 + � � � + Xn. Next, we want the
sum S2 = X1 +X3 + � � �+Xn.

Instead of computing the entire sum S2, we want to use the
previous result. We note that

S2 = S1 +X1 �X2: (2.4.1)

Therefore, we can compute S2 by adding X1 to S1 and then can-
celling X2 from the result by subtraction. But X2 � X2 = [X2 �
X2; X2�X2] which is not the (degenerate) zero interval. Therefore,
we do not get a sharp result if we compute S2 using 2.4.1 (unless X2
is degenerate).

With the same de�nitions of X and Y as in (2.3.2) and (2.3.3),
instead of using (2.3.3) to subtract, we use the special dependent
subtraction rule which we write as

X 	 Y = [a� c; b� d]: (2.4.2)

As usual, we must round outward when computing this interval.
This can be implemented by de�ning the �interval� [d; c] and us-
ing the subtraction rule (2.3.3) to compute [a; b] � [d; c]. Note that
[d; c] is not an interval when c < d. Alternatively, if dependent in-
terval operations are allowed in an interval supporting compiler, an
expression such as X.DSUB.Y can be used to represent the operation
X	Y: The Sun Microsystems Inc. Fortran and C++ compilers sup-
port dependent subtraction using the .DSUB. syntax, (see Walster
(2000c)).

Two points to make regarding dependent subtraction are:

1. For X 	A to be legal, X must be additively dependent on A:
This is true if X = A+B for some interval B.

2. Suppose jBj << jAj ; so X = A + B is dominated by A:
Then rounding prevents dependent subtraction from recovering
a sharp bound on B: In this case, B must be saved or directly
recomputed to avoid excess width. The width (see Chapter 3)
of X 	A can be checked for this event.
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See Sections 6.2 and 10.5 for example uses of dependent subtraction.
In addition to the dependent subtraction operation, each inter-

val basic arithmetic operation (BAO) has a corresponding dependent
form. For example, dependent division, denoted �; is used to recover
either A or B from X = A�B: The key requirement to use a depen-
dent operation is: The dependent operation must be the inverse of
an operation already performed on the same variable or subfunction
being �removed�. Dependent operations cannot be performed on in-
terval constants, as they cannot be dependent. In this respect the
distinction between constants and variables is much more important
for intervals than for points.

2.5 EXTENDED INTERVALARITHMETIC

In the above rules of interval arithmetic, we excluded division by an
interval containing zero. Nevertheless, it is often useful to remove
this restriction. The resulting arithmetic is called extended interval
arithmetic. This arithmetic was �rst discussed (independently) by
Hanson (1968) and Kahan (1968). An example of its utility is that
it allows the derivation of an interval Newton method guaranteed to
�nd all real zeros of a function of one variable in a given interval.
See Alefeld (1968), Hansen (1978b), and Section 9.6.

In Chapter 4, we give an even more general interval arithmetic. It
not only allows use of intervals with unbounded endpoints but allows
for computation of expressions containing indeterminate forms such
as 0�0; 0�1;1�1;1�1, etc. This arithmetic system is closed
under all arithmetic operations and the evaluation of all arithmetic
expressions, whether they are single-valued functions or multi-valued
relations.
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Chapter 3

FUNCTIONS OF
INTERVALS

3.1 REAL FUNCTIONS OF INTERVALS

There are a number of useful real-valued functions of intervals. In
this section, we list those that we use and our notation for them.

The midpoint or center of an interval X = [a; b] is

m(X) =
a+ b

2
:

The width of X is

w(X) = b� a:

The magnitude is de�ned to be the maximum value of jxj for all
x 2 X. Thus,

mag (X) = max (jaj; jbj) (3.1.1)

The magnitude is also called the absolute value by some authors.
We use the notation jXj to denote mag (X) in the development and
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analysis of our algorithms. The mignitude is de�ned to be the min-
imum value of jxj for all x 2 X. Thus,

mig(X) =

8<:
a if a > 0
�b if b < 0
0 otherwise

(3.1.2)

The interval version of the absolute value function abs(X) can
be de�ned in terms of the magnitude and mignitude:

abs (X) = mag (X)�mig(X): (3.1.3)

We also use the notation jXj to denote abs (X) in two contexts:
discussing slope expansions of nonsmooth functions in Section 7.11;
and applications involving nondi¤erentiable functions in Chapter 18.

Various other real-valued functions of intervals have been de�ned
and used. For a discussion of many such functions, see Ris (1975).

3.2 INTERVAL FUNCTIONS

An interval function is an interval-valued function of one or more
interval arguments. Thus, an interval function maps the value of
one or more interval arguments onto an interval. Consider a real-
valued function f of real variables x1; � � � ; xn and a corresponding
interval function f I of interval variables X1; � � � ; Xn. The interval
function f I is said to be an interval extension of f if f I (x1; � � � ; xn) =
f (x1; � � � ; xn) for any values of the argument variables. That is, if
the arguments of f I are degenerate intervals, then f I (x1; � � � ; xn) is
a degenerate interval equal to f (x1; � � � ; xn).

This de�nition presupposes the use of exact interval arithmetic
when evaluating f I . In practice, with rounded interval arithmetic,
we are only able to compute F , an interval enclosure of f I : Therefore,
we have

f (x1; � � � ; xn) 2 F (x1; � � � ; xn)

even when f I is an interval extension of f .
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An interval function f I if said to be inclusion isotonic if Xi � Yi
(i = 1; � � � ; n) implies f I (X1; � � � ; Xn) � f I (Y1; � � � ; Yn). It follows
from the de�ning relation (2.3.1) that �nite interval arithmetic is
inclusion isotonic. That is, if � denotes +;�;�; or �, then Xi � Yi
(i = 1; 2) implies (X1 � X2) � (Y1 � Y2). If outward rounding is
used, then interval arithmetic is inclusion isotonic even when round-
ing occurs. See Alefeld and Herzberger (1974, p.49) or Alefeld and
Herzberger (1983, p.41).

Chapter 2 contains a brief description of the �nite interval sys-
tem as originally conceived by Moore (1966). Chapter 4 contains
the main features of closed interval systems that eliminate many of
the limitations in the �nite system. In particular, for the closed sys-
tem version (Theorem 4.8.14) of the fundamental theorem of interval
analysis (Theorem 3.2.2), the requirement that interval functions be
inclusion isotonic interval extensions is removed. To provide a base-
line from which to compare the �nite and closed systems, the remain-
der of this chapter is developed in the �nite system. The algorithms
for solving nonlinear systems and global optimization problems can
be implemented in either system, although there are signi�cant ad-
vantages to the closed system.

Except where stated otherwise (for example in Chapter 18), all
interval enclosures are assumed to be inclusion isotonic interval ex-
tensions of real valued continuous functions. In closed systems (Chap-
ter 4), these assumptions are unnecessary. When the closed system
is used and an assumption of continuity is required, there are at
least three alternatives, none of which require dealing with unde-
�ned outcomes: Constraints can be introduced to exclude points of
discontinuity, expressions can be transformed to be continuous map-
pings, or Theorem 4.8.15 can be used to enforce continuity.

For example, whenever division by an expression E occurs, the
constraints E < 0 or 0 < E can be explicitly introduced to preclude
division by zero. Whenever a ratio is assumed to be continuous this
has the e¤ect of precluding division by an interval containing zero.
The even better alternative is to transform the ratio into a continuous
function of the same independent variables. See Walster (2003a) for



26 CHAPTER 3. FUNCTIONS OF INTERVALS

a detailed analysis of how this can be done. The third alternative is
to use Theorem 4.8.15 to introduce a continuity constraint.

To simplify notation, we remove the superscript �I�on f when
it is unambiguous to do so and simply let f (X1; � � � ; Xn) denote an
interval extension of a given real-valued function f (x1; � � � ; xn) : Any
function written with interval argument(s) is implicitly an interval
function. This notation is ambiguous because there is no unique
interval function that is an enclosure of a given function f . (See
Section 3.3). Also, we shall say that we evaluate a real function
with interval arguments. What we really mean is: we evaluate some
interval function that is an enclosure of f . We ask the reader�s
indulgence in these conventions. They simplify exposition.

There is another ambiguity in notation. It is standard practice
in mathematics to use the same notation for more than one purpose.
The notation f(x) can denote a function in a theoretical sense with-
out a speci�c expression, or it can denote one speci�c expression.
It can also denote the numerical value of a function at a point x.
Usually, a di¤erent notation is used to denote an approximate value
computed, for example, using rounded arithmetic.

In the interval case, we compound this ambiguity. The notation
f(X) can refer to a theoretical function or one of many expressions
for it. Although a di¤erent notation is usually employed in this
case, f(X) can also denote the interval that is the range of values
of f(x) for all x 2 X. f(X) can even denote a bound on the range
that is understood to be unsharp because of rounding errors and
dependence, however we prefer the notation F (X) in this case.

It is common practice to let context imply the interpretation
for a given notation. We shall usually follow this practice. How-
ever, we sometimes use special notation to distinguish cases. For
example, f(X) often denotes the range of the function f over the
interval X; whereas or F (X) denotes an interval bound on f(X)
that is computed by some (unspeci�ed) �nite precision numerical
procedure. The width of F (X) includes both the range of f over
X and any numerical errors arising from rounding and dependence.
Similarly, F (x) usually denotes the numerically computed interval
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bound (including any numerical errors) on the single number f(x).
Occasionally we want to denote the fact that a real function f of a
real value x is computed using rounded interval arithmetic to bound
rounding errors. To emphasize that the result is an interval, we often
append a superscript I and denote it by f I(x):

From the fact that the interval arithmetic operators are inclusion
isotonic, it follows that rational interval functions are inclusion iso-
tonic. However, for this to be true, we must restrict a given rational
function to a single form using only interval arithmetic operations.
The following example from Caprani and Madsen (1980) shows that
if a given rational function is evaluated in di¤erent ways for di¤erent
intervals, the results might not exhibit inclusion isotonicity.

Suppose we rewrite the function f(x) = x(1� x) in the form

f(x) = c(1� c) + (1� 2c)(x� c)� (x� c)2: (3.2.1)

These two forms of f(x) are equivalent for an arbitrary value of c.
Let X = [0; 1] and c = m(X) = 0:5: Evaluating f(X) in the form
in (3.2.1), we compute f([0; 1]) = [0; 0:25]. Now replace X = [0; 1]

by X 0 = [0; 0:9]: Also replace c = 0:5 by c0 = m(X 0) = 0:45. We
compute f(X 0) = [0; 0:2925]. Thus, f(X 0) is not contained in f(X)
even though X 0 � X: Inclusion isotonicity failed because we changed
the functional form of f when we replaced c by c0.

In this example, we could say that the functional form is the same
for each evaluation since c = m(X) and c0 = m(X 0): However, the
midpoint m(X) of an interval cannot be evaluated using only the in-
terval arithmetic operations of addition, subtraction, multiplication,
and division. A separate computation involving the endpoints of X
is required for m(X).

The following Theorem shows that, for rational functions, inclu-
sion isotonicity is easily assured.

Theorem 3.2.1 Let F (X1; � � � ; Xn) be a rational function evaluated
using �nite precision interval arithmetic. Assume that F is evaluated
using a �xed form with a �xed sequence of operations involving only
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interval addition, subtraction, multiplication, and division. Then F
is inclusion isotonic.

Proof of Theorem 3.2.1 is omitted. It follows easily from inclusion
isotonicity of the four basic interval arithmetic operations.

Common practice makes use of monotonicity over an interval to
sharply bound the range of a real function. We discuss this topic in
Section 3.6. When we use monotonicity to compute our result, we
do not limit expressions to those made up of the four basic interval
arithmetic operations. However, it is easy to assure that computed
results are inclusion isotonic.

Irrational functions can be treated as follows or using the more
general closed interval system discussed in Chapter 4. Let f be a real
irrational function of a real vector x = (x1; � � � ; xn): Assume that a
rational approximation r(x) is known such that jf(x)� r(x)j � "

for all x given that ai � xi � bi (i = 1; � � � ; n) for some ai and bi.
Then

f(x1; � � � ; xn) � r(x1; � � � ; xn) + "[�1;+1]

for any points xi 2 [ai; bi] (i = 1; � � � ; n). Thus the range of f over
the region with xi 2 Xi (i = 1; � � � ; n) can be bounded by evaluating
r(X1; � � � ; Xn) using interval arithmetic and adding the error bound
[�"; "], provided:

� Xi � [ai; bi] : This is assured through the choice of Xi:

� r(x1; � � � ; xn) 2 r(X1; � � � ; Xn) for all xi 2 Xi (i = 1; � � � ; n) :
This follows from the fundamental Theorem of interval arith-
metic (Theorem 3.2.2), because r(X1; � � � ; Xn) is an inclusion
isotonic interval extension of the rational function r(x1; � � � ; xn);
for all xi 2 [ai; bi] (i = 1; � � � ; n).

This �interval evaluation�of the irrational function f is inclusion
isotonic if the interval evaluation of r is inclusion isotonic. The
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result is not an interval extension of f because F (x1; � � � ; xn) =
r (x1; � � � ; xn) + [�"; "] instead of f (x1; � � � ; xn). Nevertheless

f(X1; � � � ; Xn) � F (X1; � � � ; Xn);

which is the critically important result of the fundamental theorem.
Interval rational function approximations of irrational functions

are inclusion isotonic interval extensions provided the rational oper-
ations are those described in Theorem 3.2.1. More importantly, they
bound the range of the approximated irrational function.

Unless otherwise stated, we shall assume that any interval func-
tion used in this book is an enclosure of the corresponding real func-
tion. This is true either because the considered function is itself
an inclusion isotonic interval extension, or it is an inclusion isotonic
interval bound on the considered function.

The range of a function can be expressed in interval form as

range (f) = f(X1; � � � ; Xn) (3.2.2)

= [inf f(x1; � � � ; xn); sup f(x1; � � � ; xn)]

where the inf and sup are taken for all xi 2 Xi (i = 1; � � � ; n). The
following theorem due to Moore (1966) shows how easy it is to bound
the range of a function. It is undoubtedly the most important the-
orem in interval analysis. Rall (1969) aptly calls it the fundamental
theorem of interval analysis. One of its far reaching consequences is
that it makes possible the solution to the global optimization prob-
lem.

Theorem 3.2.2 Let f(X1; � � � ; Xn) be an in�nite precision inclu-
sion
isotonic interval extension of a real function f(x1; � � � ; xn): Then
f(X1; � � � ; Xn) contains the range of values of f(x1; � � � ; xn) for all
xi 2 Xi (i = 1; � � � ; n).

Proof. Assume that xi 2 Xi for all i = 1; � � � ; n. By inclu-
sion isotonicity, f(X1; � � � ; Xn) contains f([(x1; x1]; � � � ; [xn; xn]) =
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f(x1; � � � ; xn) because f(X1; � � � ; Xn) is an interval extension of f .
Since this is true for all xi 2 Xi (i = 1; � � � ; n), f(X1; � � � ; Xn) con-
tains the range of f over these points.

If f is a rational function, then direct evaluation using interval
arithmetic produces bounds on the set of all function values over
the argument intervals. While f(X1; � � � ; Xn) contains the values of
f(x1; � � � ; xn); given xi 2 Xi for i = 1; : : : ; n; the bounds on the set
of f -values is not sharp in general. This is because of dependence
(See Section 2.4). If a given endpoint of f(X1; � � � ; Xn) is exactly the
correct bound for the range, we say that the endpoint is sharp. If
both endpoints are sharp, we shall say that f(X1; � � � ; Xn) is sharp.

Using �nite precision interval arithmetic and directed rounding
means that in practice we are only able to compute an interval en-
closure F of f: When the width of F is as small as possible for a
given word length, we also call F sharp.

3.3 THE FORMSOF INTERVAL FUNCTIONS

When evaluating a function with interval arguments, the computed
interval depends on the form in which the function is written. One
example of this follows from the fact that interval arithmetic fails to
satisfy the distributive law of algebra. Instead, as shown by Moore
(1966), it satis�es the subdistributivity law which states that if X, Y ,
and Z are intervals, then

X(Y + Z) � XY +XZ: (3.3.1)

Therefore, interval expressions are written in factored form when
possible.

If we compute X(Y +Z), we always obtain the exact range of the
function f(x; y; z) = x(y + z) (if exact interval arithmetic is used):
This is because each variable occurs only once in the expression of
the function, so dependence (see Section 2.4) can cause no widening
of the computed intervals.

This fact holds in general. Moore (1966) notes the following.
Suppose the expression for a rational function f is such that each
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interval variable occurs only once. Then evaluation of f using exact
interval arithmetic produces the exact range of the function over the
region de�ned by the interval variables. If X(Y + Z) is computed
using exact interval arithmetic, the result is sharp.

A common way to rewrite a quadratic function to remove multi-
ple occurrences of a variable is to complete the square. For example,
we can rewrite x(x� 2) as (x� 1)2 � 1:

Considerable e¤ort has been expended by interval analysts in
attempting to produce systematic methods with which to create an
interval function that more sharply bounds the range of a given func-
tion. For example, see Ratschek and Rokne (1984), Neumaier (1989),
and Rokne (1986). Such methods are important to improve the ef-
�ciency of optimization algorithms. However, we shall discuss them
only brie�y. The range of a function can also be bounded by ex-
panding the function in Taylor series and bounding the remainder
by interval methods. See Chapter 7.

Let f(X1; � � � ; Xn) denote the true range (expressed as an inter-
val) of a function f(x1; � � � ; xn) for all xi in an intervalXi (i = 1; � � � ; n).
See (3.2.2). Denote the di¤erence between the width of a bound
F (X1; � � � ; Xn) on the range of f and the true width of the range by

E [f (X1; � � � ; Xn)] = w [F (X1; � � � ; Xn)]� w [f (X1; � � � ; Xn)] :

Also denote

d = max
1�i�n

w(Xi):

Moore (1966) proved that

E[f(X1; � � � ; Xn)] = O(d) (3.3.2)

for a rational function f in any form. He noted that f(x1; � � � ; xn)
can be written as

fc(x1; � � � ; xn) = f(c1; � � � ; cn) + g(x1 � c1; :::xn � cn)
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where g is rational and ci = m(Xi) (i = 1; � � � ; n). He conjectured
that

E[fc(X1; � � � ; Xn)] = O(d2): (3.3.3)

That is, the form fc (called the centered form by Moore) has an
excess width that is of second order in the �width� d of the box
(X1; � � � ; Xn). This conjecture was proved to be true by Hansen
(1969c).

Various centered forms have been derived. By using expansions
of appropriate orders, it is possible to derive centered forms fc for
which

E[fc(X1; � � � ; Xn)] = O(dk) (3.3.4)

for arbitrary k = 2; 3; � � � : For a thorough discussion, see Ratschek
and Rokne (1984).

Note that equations (3.3.2), (3.3.3), and (3.3.4) are asymptotic
statements. They are useful expressions only when d is small. Con-
sider two di¤erent formulations f1 and f2 for the same function.
Suppose E[f1(X)] = O(d) and E[f2(X)] = O(d2). If d is not small,
it is quite possible that f1(X) is narrower than f2(X):

An unsolved problem in interval analysis is how to know how
small the width of an interval must be for the centered form to
always yield a result at least as sharp as can be computed using the
�original�form of the function.

Centered forms are very useful and give good results when w(X)
is reasonably small. However, the extra e¤ort to use them is generally
not warranted when w(X) is not small. An apparent drawback is
that they are not inclusion isotonic unless c is �xed. See the example
in Section 3.2. However, the �xed c requirement no longer exists. As
mentioned earlier, in the closed interval systems described in Chapter
4, an explicit inclusion isotonicity assumption is not required.

In this book, we are particularly interested in the evaluation of
interval functions when �nding zeros of systems of nonlinear func-
tions and when �nding minima of functions. For this purpose, we
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often use Taylor expansions which we discuss in Chapter 7. Centered
forms and Taylor expansions yield increasingly sharp bounds as the
interval bounding a solution converges toward a point.

3.4 SPLITTING INTERVALS

In whatever form we express a function, when we evaluate it with
interval arguments, we tend to get narrower bounds on its range as
argument widths decrease. One way to compute narrower range-
bounds is to subdivide an interval argument and compute the union
of results for each subinterval. If we subdivide a given interval X
into subintervals Xi (i = 1; :::m) so that

X =

m[
i=1

Xi;

we have

f(X) �
m[
i=1

f I(Xi)

� f I(X):

We have used a superscript �I�on f to emphasize that because of de-
pendence, the computed value of f I(Xi) is generally not sharp, even
if in�nite precision interval arithmetic is used. Each computed inter-
val f I(Xi) tends to su¤er less from dependence than the computed
bound f I(X) on f(X): Therefore, the union is generally sharper. The
same inclusions hold if rounded �nite precision interval arithmetic is
used, in which case

f(X) �
m[
i=1

F (Xi)

� F (X):
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However, interval splitting can be costly in the multidimensional
case. If we divide in half each of n interval variables on which a func-
tion depends, we must evaluate the function with 2n sets of di¤er-
ent arguments. The amount of extra computing can be prohibitive.
However, if we subdivide only a few interval variables, we do not
generate as many cases. Therefore, we shall only selectively use this
approach later when solving systems of nonlinear equations and op-
timization problems; that is, when all other less costly alternatives
fail to make su¢ ciently good progress. We discuss other aspects of
splitting in Sections 11.8 and 12.13.

Even when n is relatively large, only a few dimensions of a solu-
tion set can be graphically displayed. This is typically done by �xing
values of variables in the remaining dimensions. This fact makes it
practical to subdivide displayed boxes so �slices�of the solution re-
gion can be accurately displayed.

3.5 ENDPOINT ANALYSIS

Generally, the computed interval value of a function is not sharp,
even when exact interval arithmetic is used. This is because of de-
pendence (see Section 2.4). An exception occurs when each variable
appears only once in the expression used to compute the function.
In such cases the discussion in Section 3.3 is not relevant because it
deals only with how much the computed interval value of a function
asymptotically exceeds its range.

Unfortunately, we can not know, in general, whether a computed
result is sharp or not. If we wish to know, we can do so by using
an endpoint analysis which was described by Hansen (1997b). It
requires extra (non-numerical) computing which increases as a lin-
ear function of the amount of computing necessary to evaluate the
function. We brie�y describe endpoint analysis in this section.

The rules for interval arithmetic (see Section 2.3) are expressed
in terms of the endpoints of the intervals involved. For example,
suppose we add an interval X = [X;X] to itself and subtract X
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from itself. We obtain

X +X = [2X; 2X] and

X �X = [X �X;X �X]:

Note that the lower endpoint of X +X is a function of X only and
the upper endpoint of X+X is a function of X only. However, each
endpoint of X �X is a function of both X and X.

As we shall see, these facts tell us that not only is X +X sharp
and X �X is not sharp, but also that the function f(x) = x+x is a
monotonically increasing function of x. (Remember, however, that
X 	X = [0; 0] is sharp.)

Suppose we compute an interval extension F (X1; � � � ; Xn) of a
rational function f(x1; � � � ; xn). Following the rules of interval arith-
metic, the lower endpoint F and the upper endpoint F of F (X1; � � � ; Xn)
are computed as functions of the endpoints of Xi (i = 1; � � � ; n).
However, we do not denote this fact in our notation because the
form of dependence can change when the values of the Xi change.
For example, let f (x) = x (x� 3) : If X = [1; 2] then F = X (X � 3)
and F = X

�
X � 3

�
: However, if X = [4; 5] then F = X (X � 3)

and F = X
�
X � 3

�
:

An endpoint of the range of a function is a value of the function
at a point. Therefore, if F or F is computed using more than one
endpoint of a given variable, then it cannot be sharp. A kind of
converse is expressed in the following Theorem from Hansen (1997b).

Theorem 3.5.1 If F is computed in terms of a single endpoint of
each of the variables on which F depends, and if the same is true of
F ; then F and F are sharp.

Note that this theorem permits both F and F to be a func-
tion of the same endpoint of one or more of the variables. For
example, suppose F (X1; X2) = X1X2. If X1 > 0 and 0 2 X2,
then F (X1; X2) = [X1X2; X1X2]. In this case, both endpoints of
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F (X1; X2) are functions of the same endpoint of X1. Yet, F (X) is
sharp.

Of course, both endpoints of F cannot be functions of the same
endpoint of all the components of X. If they were, the two endpoints
of F would be the same and F could not contain the range of f(x)
for all x 2 xI .

Hansen (1997) describes four applications of endpoint analysis.
In addition, it can also be used to verify monotonicity. Theorem
3.5.2 below indicates how this can be done. To state the theorem,
we need the following de�nition:

De�nition 3.5.2 A product of two intervals is a �P0(Xi) product�if
both intervals contain zero as an interior point and one is a function
of Xi; but the other is not.

Theorem 3.5.3 Assume that when F (X) is computed, no P0(Xi)
product occurs (for some i = 1; � � � ; n). If F is a function of Xi

but not Xi and F is a function of Xi but not Xi, then f(x) is a
monotonically increasing function of xi for x 2 xI. If F is a function
of Xi but not Xi and F is a function of Xi but not Xi, then f(x)
is a monotonically decreasing function of xi for x 2 xI.

Monotonicity of a function over an interval can be proved by veri-
fying that the value of a derivative does not contain zero as an interior
point. However, lack of sharpness (due to dependence) of a computed
derivative can sometimes prevent veri�cation while endpoint analysis
succeeds in doing so. The reverse can also occur since dependence
can cause loss of sharpness when the function is evaluated (while
doing endpoint analysis). In practice, both endpoint analysis and
evaluation of derivatives can be used to check for monotonicity.

In the next section, we show how to constructively use monotonic-
ity when computing an interval function. However, if endpoint analy-
sis reveals that a function is monotonic, we already have computed
the function; and no extra sharpness can be obtained by using veri-
�ed monotonicity.
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Suppose we try to prove monotonicity by evaluating a derivative
over an interval. Dependence might cause the computed interval
value of the derivative to contain zero so that monotonicity is not
veri�ed. No such failure can occur using endpoint analysis.

3.6 MONOTONIC FUNCTIONS

Sharp bounds on the range of a function can be computed if the func-
tion is monotonic. Suppose f(x) is a monotonically nondecreasing
function in an interval X = [a; b]: Then f(X) = [f(a); f(b)].

In practice, when rounding is present, we evaluate f(a) and f(b)
using outward rounding and obtain [F (a); F (a)] and [F (b); F (b)],
respectively. Then

f(X) � [F (a); F (b)]:

Thus, we compute bounds on f(X) even in the presence of de-
pendence. With exact arithmetic, we obtain the exact range of a
monotonic function over an interval.

Using rounded interval arithmetic of su¢ ciently high precision
yields bounds on f(X) = ff(x) j x 2 Xg that are as accurate as
desired when f is monotonic. Without additional analysis, sharp
bounds are rarely computed for non-monotonic functions. Depen-
dence (see Section 2.4) generally precludes sharp bounds even if ex-
act interval arithmetic is used.

However, arbitrarily sharp bounds are generally obtained for so-
lutions to problems such as nonlinear equations and optimization
because the intervals involved are successively narrowed during the
progression of the algorithms. Therefore, as guaranteed by (3.3.2),
bounds of decreasing width are obtained on the range of a function
as the widths of function arguments decrease. See the algorithms
described in later chapters.

Monotonicity can also be used to more narrowly bound the range
of functions of more than one variable. For simplicity, let us as-
sume that f(x1; � � � ; xn) is a monotonically nondecreasing function
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of x1; � � � ; xm for some m < n; but is not monotonic in xm+1; � � � ; xn
for xi 2 Xi (i = 1; � � � ; n). Denote Xi = [ai; bi] for i = 1; � � � ; n.
Evaluate

f(a1; � � � ; am; Xm+1; � � � ; Xn)

obtaining [f1; f2] and evaluate f(b1; � � � ; bm; Xm+1; � � � ; Xn) obtain-
ing [f3; f4]: Then f(x1; � � � ; xn) 2 [f1; f4] for all xi 2 Xi (i = 1; � � � ; n) :

Note that we can check for monotonicity by evaluating partial
derivatives. For example, if

@

@xi
f(X1; � � � ; Xn) � 0;

then f is a monotonically nondecreasing function of xi for all xi 2 Xi
(i = 1; � � � ; n). When we evaluate a derivative, we generally don�t
obtain its range exactly. Again, this is because of dependence. How-
ever, the computed interval contains the range. Therefore, if the
computed interval does not contain zero, neither does the range of
the partial derivative. Therefore, monotonicity can be proved even
in the presence of both rounding and dependence.

Monotonicity can often be used after subdividing an interval into
parts so that a given function is monotonic in one or more subinter-
val. Monotonicity can also be used even when the function is not
monotonic in a given interval provided the behavior of the function
is su¢ ciently well known.

For example, sin(X) can be evaluated over any given interval
X by evaluating the function at the endpoints only. We need only
check whether the interval contains a point or points where sin(x) is
known to have an extremum.

To illustrate, suppose X = [1; 2]: We �nd sin(1) < sin(2). We
observe that �

2 2 X, and we know that sin(x) is a maximum at �
2

and that sin(�2 ) = 1. Therefore, we obtain sin([1; 2]) = [sin(1); 1].
We can evaluate sin(1) as accurately as we like and thus compute
sin([1; 2]) as accurately as we like.
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3.7 PRACTICAL EVALUATIONOF INTER-
VAL FUNCTIONS

In this section, we consider how an interval function can be evaluated
in practice.

When doing scienti�c computing with real numbers, we approx-
imate irrational functions by rational functions. We generally have
a list of subroutines available to generate (approximate) values of
trigonometric functions, the exponential function, the logarithm func-
tion, etc.

We need a similar list of subroutines in the interval case. Consider
an intervalX = [a; b] and suppose we want a subroutine to compute a
sharp single-precision bound on exp(X): Since the exponential func-
tion is monotonic, we know that exp(X) = [exp(a); exp(b)]: One way
to compute the desired sharp interval is as follows.

Evaluate exp(a) using a standard double-precision noninterval
arithmetic subroutine which is guaranteed to produce a value of
exp(a) accurate to more than single-precision. Round the result
down to a double-precision number guaranteed to be a lower bound
for exp(a): Then round this intermediate double-precision result to
the largest single-precision computer number not exceeding the dou-
ble precision value of exp(a). This is the desired left endpoint of
exp(X).

Next, evaluate exp(b) using the double precision subroutine. Use
the same two step procedure applied to exp(a) to compute a single-
precision result. Now, however, rounding is upward. This produces
the desired right endpoint of exp(X).

We now illustrate another alternative with a simple example.
Suppose we want to compute arctan(X) and will be satis�ed with
about three decimal digit accuracy. We can take advantage of the
monotonicity of arctan(x). However, let us use an approximation
found in Fike (1968).

The polynomial

p(x) = x(0:079331x4 � 0:288679x2 + 0:995354) (3.7.1)
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approximates arctan(X) for x 2 [�1; 1]. The error is bounded by

max jp(x)� arctan(x)j < :00061 (3.7.2)

From this approximation and bound, we have

arctan(X) 2 p(X) + 0:00061� [�1; 1] (3.7.3)

for X 2 [�1; 1] where p(X) is obtained by replacing x with X in
(3.7.1).

Our subroutine for computing arctan(X) computes the right mem-
ber of (3.7.3) and returns the resulting interval as the �value� of
arctan(X):

When evaluating p(X) in practice, we do not use the form given
by (3.7.1). Instead, we complete the square and write

p(X) = X[0:079331(X2 � 1:81946)2 + 0:732734] (3.7.4)

to reduce the number of occurrences of the variable X and thus
produce sharper results. See Section 3.3.

We make rounding errors when deriving (3.7.4) from (3.7.1). We
must assure that (3.7.2) remains true when p is written in the form
(3.7.4). An easy way to do so is to compute the coe¢ cients in (3.7.4)
from (3.7.1) as intervals. This illustrates the extra care that must be
taken in writing interval subroutines to bound the range of irrational
functions.

As an illustrative example, let us evaluate the function

f(x) = x2 + arctan

�
sin(x)

x

�
with x replaced by the interval X = [1; 2]: To do so, let us de�ne
and evaluate the following functions:

f1(x) = sin(x);

f2(x) =
f1(x)

x
;

f3(x) = arctan[f2(x)]:
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Then

f(x) = x2 + f3(x):

We �rst evaluate f1(X) by calling a subroutine that computes sin(X).
This subroutine can use the monotonicity properties of sin(x) as is
done above for exp(x). Alternatively, it can use an appropriate ratio-
nal approximation (with error bound) as is done above for arctan(x):
As shown in Section 3.6, the desired interval sin([1; 2]) = [sin(1); 1].
An interval containing [sin(1); 1] is returned. Thus, suppose the in-
terval [0:84147; 1] is returned and becomes the �value�of f1(X):

To compute f2(X), we simply divide our value of f1(X) by X
using interval arithmetic. We obtain (using six decimals)

f2(X) = [0:420735; 1]:

Next, we call the subroutine to evaluate arctan[f2(X)]: If the
subroutine uses (3.7.3), we obtain

f3(X) = [0:303230; 0:958296]:

For our �nal step, we add X2 to f3(X) using interval arithmetic.
We obtain

f(X) = [1:30323; 4:95830]:

This result is not sharp. We lost sharpness because of dependence.
Also, (3.7.3) is only accurate to about three decimals. See (3.7.2).
The range of f overX rounded outward to six decimals is [1:69952; 4:42672].
However, the �nal result contains the range as promised by the fun-
damental Theorem 3.2.2 of interval analysis.

Note that we used outwardly rounded interval arithmetic through-
out the computation. This assures that the computed result contains
the range of f(x) despite the presence of rounding errors.

Note, also, that computing the interval f(x) involves essentially
the same operations as evaluating f(x) using real arithmetic. In
each case, we use available subroutines to compute irrational func-
tions. These routines are written in much the same way in either the
interval or noninterval case.
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3.8 THICK AND THIN FUNCTIONS

We can distinguish two types of interval functions. Suppose we eval-
uate a function using in�nite precision interval arithmetic. Assume
the function involves only degenerate interval parameters1. If the ar-
gument of the interval function is a degenerate interval, the �value�
of the function is also degenerate if the function is an interval ex-
tension of its arguments and parameters. We call such a function
�thin�.

Suppose, however, that the function involves an interval para-
meter of nonzero width. If we evaluate such a function using ex-
act interval arithmetic over a degenerate interval, the value of the
function is a nonzero-width interval. For example, if we evaluate
f(X) = X + [1; 2] over the degenerate interval X = [0; 0], we obtain
the nondegenerate result [1; 2]. We call such a function �thick�.

In most of this book, we discuss functions as if they are thin. We
usually consider functions that arise as noninterval functions and
this, of course, implies that they do not contain interval parameters.
For example, our primary concern is to �nd zeros of functions and to
�nd global minima of functions that arise in a noninterval context.
We merely use intervals to solve such problems.

The algorithms that we discuss also serve to solve problems in-
volving thick functions. In this case, a solution is generally an ex-
tended set of points instead of a single point. Unless otherwise stated,
we assume for simplicity that functions are thin or �nearly thin�so
that extended solutions are of reasonably narrow width. Special
methods involving �very thick�functions are discussed separately in
various sections. For example, see Chapter 17.

In many practical computations, however, input data are inexact
and are input as intervals to bound their true value. See for example:

http://physics.nist.gov/cuu/Constants

for internationally recommended values of fundamental physical con-
1A function�s parameter is a �xed constant that therefore cannot depend on

any of the function�s arguments.
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stants. Even if data are exact, they might not be machine-representable.
If rounding is necessary because real or interval data are input, they
must be rounded outward. In addition, (outward) rounding as a re-
sult of interval computing causes a thin function to become thick.
Therefore, we sometimes distinguish between exact and rounded in-
terval arithmetic.

In Chapter 17 and in various other places in this book, we explic-
itly consider perturbed or thick functions. Results from the analysis
of problems with narrow width parameters and subdivision can be
used to compute and display narrow interval bounds on solution
sets to problems with large numbers of arbitrarily thick parameters.
Thus concentrating attention on problems with no parameters or
thin parameters is not limiting in practice.
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Chapter 4

CLOSED INTERVAL
SYSTEMS

4.1 INTRODUCTION

Interval algorithms for solving nonlinear systems of equations and
global optimization problems can be more general, simple and ef-
�cient if the interval arithmetic system used to implement them is
closed. A closed system (or a system that is closed1 under a set of
arithmetic operations) is one that contains no unde�ned operator-
operand combinations, such as division by zero in the real number
system. How closed systems provide these bene�ts is described in
Section 4.2.

Closed interval systems are a step in the evolution of mathe-
matical systems starting with the positive integers. Each step in
this evolution was motivated by a requirement to perform opera-
tions that are unde�ned in the earlier system. For example, in the
system of positive integers the di¤erence 3�3 is unde�ned. This fact

1The word �closed� is used in analysis and topology. In analysis, a closed
system produces only members of the system. An interval [a; b] that includes its
endpoints is topologically closed. An open interval (a; b) does not include the
endpoints a or b:
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motivated adding zero to the system of positive integers. Similarly,
fractions motivated rational numbers and square (and other) roots
of positive rational numbers motivated irrational numbers. Roots of
negative real numbers motivated complex numbers.

Throughout this evolution, division by zero, operations on in�-
nite values such as +1 � (+1) or +1

+1 ; and other indeterminate
forms have remained unde�ned. The real interval system was built
up from sets of real numbers and operations on them. As a conse-
quence, existing limitations in the real point system were inherited
by the real interval system.

There is an alternative development path. Because intervals are
sets of real numbers, it is possible to �rst consider building systems
of sets of extended real numbers including in�nite values. These
systems can be closed. Intervals can then be constructed from the
convex hulls of sets of extended reals. If this is done, the resulting
interval systems are closed. This chapter describes one such closed
interval system. It is consistent with both the existing real interval
system and with basic arithmetic operations (BAOs) on all possible
operands including those that lead to indeterminate forms.

Di¤erent closed cset-based systems all have these properties, but
they di¤er in the width of computed intervals and the complexity of
their de�nitions. The system described herein is a compromise be-
tween the simplest system currently implemented in Sun Microsys-
tems�Fortran and C++ compilers, and more sophisticated and nar-
row systems described in Walster, Pryce, and Hansen (2002).

Because closed arithmetic systems contain no unde�ned operator-
operand combinations, their implementation on a computer can never
produce �exceptional events�. This means that all arithmetic op-
erations on intervals containing in�nities and zero can be de�ned.
Consequently, computer hardware and software can be simpler be-
cause exceptional event handling is unnecessary, even for arguments
outside a function�s domain of de�nition.

New analysis is required for arithmetic on in�nite intervals to be
consistent with arithmetic on �nite intervals and with the axioms
of real analysis. Let R = fz j �1 < z < +1g denote the set of
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real numbers. The closed interval system described herein includes
all extended intervals with endpoints in the set of real numbers, but
augmented with plus and minus in�nity. That is, the set of extended
real numbers is R� = R[f�1;+1g ; which is also the topologically
closed interval [�1;+1] : See Section 4.8.1. This chapter contains
the main results of this new analysis along with the principles that
motivate its form. Mathematical details and other possible systems
are presented in referenced papers.

The idea of using sets as the basis for interval analysis is dis-
cussed in Section 4.3. The critical concepts of the containment con-
straint and the containment set are introduced in Sections 4.4 and
4.5. Arithmetic over the extended real numbers is presented in Sec-
tion 4.6. Closed interval systems are de�ned in Section 4.7. The
fundamental theorem of interval analysis is extended to the closed
interval system in Section 4.8.

4.2 CLOSED SYSTEM BENEFITS

A number of characteristics can be used to evaluate di¤erent interval
systems and the algorithms they produce. These include: generality,
speed, and interval width. Using these characteristics, this section
describes positive features of closed interval systems.

4.2.1 Generality

If algorithms are more general, they are usually simpler and require
fewer special-case branches. The same is true for interval systems:
Generality is good.

Algorithms that use the closed interval system accept more inputs
and are therefore more general because:

� Defensive code is not needed to avoid exceptional events, such
as division by intervals containing zero.

� Arguments that are partially or totally outside a function�s
natural domain of de�nition are accepted.
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� Intervals with in�nite endpoints are included in the arithmetic
system and therefore can be used in algorithms.

� Interval expressions2 need not be inclusion isotonic interval
extensions for them to be covered by the extended fundamental
theorem of interval analysis (Theorem 4.8.14 on page 80).

� Interval expressions can be used to bound the range of both
single-valued functions (Chapter 3) and multi-valued relations.

A possible objection to closed interval systems is that their ben-
e�ts come at the cost of being unable to detect when an expression
either is not de�ned, or is discontinuous. This objection is ground-
less. When there is a requirement for a function to be de�ned over
a given interval, this can be enforced by introducing explicit con-
straints that delete points outside the function�s natural domain.
For example the appearance of ln (g (x)) in a composition imposes
the implicit constraint that g (x) � 0:

When the continuity assumption is required, three approaches
are possible:

1. Introduce explicit constraints that enforce the assumption by
deleting points of discontinuity;

2. Work instead with a continuous version of the discontinuous
function; or

3. Use Theorem 4.8.15 to test for continuity over any given inter-
val, or impose a continuity constraint.

The �rst option can be easily implemented if the given function
is available for analysis. The second alternative is described in Wal-
ster (2003a) and can be used when discontinuities arise at branch

2Throughout this book, the term �expression�refers to any sequence of arith-
metic operations, and/or compositions of single-valued functions and multivalued
relations. In this chapter, the term �function�is reserved for single-valued map-
pings of points onto points. The concept of an interval function is discussed in
Chapter 3.
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cuts. The third alternative can be automated and does not require
knowing the given function. However, an enclosure of the function�s
derivative is required. These methods can be used to eliminate the
requirement for defensive code to guarantee algorithm assumptions
are satis�ed when using an exception-free closed interval system.
Also see Section 4.8.5.

4.2.2 Speed and Width

A good interval system facilitates writing algorithms that quickly
produce narrow-width results. Algorithm speed generally increases
whenever the width of computed intermediate intervals is reduced.
This can even be true when local speed is signi�cantly decreased.
For example, Corliss (1995) developed an interval ordinary di¤er-
ential equation integration algorithm in which speed decreased by a
factor of 200 to compute narrow intervals using methods described in
Corliss and Rall (1991) pages 195�212. Ultimately, overall algorithm
speed was increased by a factor of 2 because of the above decrease
in interval width. Thus, it is generally good interval algorithm de-
velopment practice to optimize the performance of relatively large
algorithms rather than to focus on the runtime performance of small
code fragments. The reason is that the relationship between overall
interval algorithm speed and intermediate interval result-width can
be complicated.

All other things being equal, �more is better�when it comes to
speed. However, there can be �too much of a good thing�with nar-
row width. The quest for narrow width or speed must never come
at the cost of the failure to contain the set of required results. This
set is called the containment set of a given expression. Failure to
enclose an expression�s containment set in a computed interval is
a containment failure. Interval systems must not produce a con-
tainment failure by violating the containment constraint. Interval
algorithms can be slow and produce wide intervals, but they must
always satisfy the containment constraint.

Interestingly, the containment set of some expressions is not al-
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ways clearly de�ned in �nite interval systems. Closed interval sys-
tems precisely de�ne containment sets, thereby making clear what
is required to produce a sharp (narrow as possible) interval result.
The containment-set concept is so fundamental to computing with
intervals that the collection of containment-set results is known as
containment-set theory. The term �containment set�is abbreviated
�cset�, so the study of csets becomes �cset theory�.

4.3 THE SET FOUNDATIONFORCLOSED
INTERVAL SYSTEMS

Finite interval arithmetic, as introduced by Moore (1966) and brie�y
described in Chapters 2 and 3, is based on intervals of real numbers.
As such, �nite interval arithmetic inherits the assumptions, axioms,
and limitations of real analysis. Intervals have a dual identity both
as numeric entities and as sets. Recognizing this duality is not new.
See Moore (1966). What is new is the recognition that because in-
tervals are sets of numbers, the fundamental analysis of intervals can
be based on sets as opposed to individual real numbers. See Wal-
ster (1996). It is the set-theoretic interval foundation that enables
limitations of real and �nite interval analysis to be removed.

The set-based development of interval arithmetic, together with
additional motivation and justi�cation, are described in the follow-
ing sections. The motivation for the set-based development is to
produce a closed interval system in which there are no unde�ned
operand-operator combinations. As a consequence, expressions can
be algebraically transformed even by a compiler without regard to
the consequences of division by zero or other induced indeterminate
forms. The objective of such transformations is narrow width and
speed, but the transformed expression�s cset must enclose the orig-
inal expression�s cset. Two expressions with the same cset are said
to be cset-equivalent expressions. See page 55 in Section 4.5.2.
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4.4 THE CONTAINMENT CONSTRAINT

For all �nite intervals, X and Y; interval arithmetic operations must
satisfy:

X � Y � fx � y j x 2 X; y 2 Y g ; (4.4.1)

where � 2 f+; �; �; �g : Because division by zero is unde�ned for
real numbers, division by intervals containing zero is unde�ned in
the �nite interval system (See Chapter 2).

Bold letters x and xI are used to denote respectively, an n-
dimensional point (x1; � � � ; xn)T and an interval vector or box (X1; � � � ; Xn)T :

To be valid, any interval numerical evaluation F of a real function
f of n-variables must satisfy:

F (xI) � ff (x) j x 2 xIg : (4.4.2)

Clearly, (4.4.1) is a special case of (4.4.2).
The fundamental requirement in (4.4.2) of any interval arithmetic

system is referred to as the containment constraint of interval arith-
metic. Satisfying this constraint is necessary to produce rigorous
bounds, the key to numerical proofs, such as those produced by the
algorithms in this book. Because this constraint is so obvious and
simple, it was never even named until the possibility of extending it
to include in�nite intervals became evident.

4.4.1 The Finite Interval Containment Constraint

In �nite interval arithmetic, the containment constraint requires
computed intervals to contain the set of all possible real results,
as de�ned by the right hand side of (4.4.2). To close interval sys-
tems, the containment constraint concept must be extended to in-
clude point operations and functions that are normally unde�ned in
real arithmetic.
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4.4.2 The (Extended) Containment Constraint

For points within the domain of real BAOs and functions, the ex-
isting containment constraint must not be changed. Rather, the
existing de�nition must be extended to include otherwise unde�ned
interval operation-operand and function-argument combinations.

The approach taken is to almost, but not quite, beg the question
of the extended containment constraint�s de�nition. Rather than fo-
cusing only on the containment constraint of any single expression,
consideration is broadened to include the set of all possible contain-
ment constraints that result from any algebraic transformation of
the given expression. By making this one simple change, the door
is opened to the extended containment constraint de�nition. When
algebraically transformed, the result of any expression evaluation
must not cause the transformed expression�s containment constraint
to be violated. This is the key that unlocks the door to the needed
generalization.

The containment set of an expression is now introduced and ex-
tended.

4.5 THE (EXTENDED) CONTAINMENT SET

When evaluated over a box xI = (X1; � � � ; Xn)T in the �nite inter-
val system, the containment set that a function f must contain is
given by the right-hand side of (4.4.2) and is conveniently denoted
by f (xI) : That is

f (xI) = ff (x) j x 2 xIg : (4.5.1)

The containment set (or cset) of any expression (whether a single-
valued function or a multi-valued relation) is the set of possible values
the given expression can take on. Thus, the cset of a given expres-
sion is the union of the csets of all possible algebraic transformations
of the given expression. For example, suppose g (x) is an algebraic
transformation of the given expression f (x). Then evaluating g must
not violate f�s containment constraint. The motivation is to permit
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f to be replaced by g. See, for example, f and g in Section 4.5.2. An
equivalent way of stating this is that algebraically equivalent expres-
sions must have the same csets. A trivial way to guarantee this is to
let the cset of every expression be the interval [�1;+1] ; but this
is not useful. Therefore an additional restriction on the cset of an
expression is required: An expression�s cset must be the smallest pos-
sible set that satis�es the given expression�s containment constraint
and the containment constraint of all the expression�s possible alge-
braic transformations.

4.5.1 Historical Context

Various authors (including Hanson (1968) and Kahan (1968), and
more recently Hickey, Ju and Van Emden (1999)) have proposed
generalizations of �nite interval arithmetic in unsuccessful attempts
to extend interval arithmetic. Others (including Ratschek and Rokne
(1988), while developing conventions to support in�nite starting box-
widths in global optimization) have come close to discovering how
to close interval systems. The paper by Walster, Pryce, and Hansen
(2002), is the �rst to contain a mathematically consistent3 system
that holds for all extended real expression arguments. Extending the
containment constraint and cset concepts is required.

4.5.2 A Simple Example: 1
0

A simple example illustrates how the cset and containment constraint
concepts permit otherwise unde�ned operations to be given consis-
tent csets. Consider the problem of de�ning the cset of 10 : In the real
analysis of points, division by zero is unde�ned. A reason is that the
resulting value turns out to be a set, not a point.

3An arithmetic system is consistent if there are no contradictory operand-

operator combinations. For example, if 1
0
were de�ned to be 1; then g (0) =

1

2
in

(4.5.3). However, this contradicts the fact that f (0) = 0 in (4.5.2):
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Temporarily, ignore the fact that the cset is not de�ned until
Section 4.5.5. Consider instead:

f (x) =
x

x+ 1
: (4.5.2)

If x = 0, f (0) = 0
1 = 0. However, suppose x is replaced by an

interval. To eliminate excess interval width caused by dependence
as described in Section 2.4 (see also Section 3.3), an astute interval
analyst will choose to compute an interval enclosure of f (x) using
the algebraically equivalent expression:

g (x) =
1

1 + 1
x

: (4.5.3)

An interval extension of (4.5.3) often produces narrower results than
does an interval extension of (4.5.2). The reason is because the
dependence from multiple occurrences of the variable x is avoided in
(4.5.3). See Section 2.4. However, when x = 0, (4.5.3) is unde�ned
because 10 is unde�ned. Therefore, whenever the interval X contains
zero, the interval expression

g (X) =
1

1 + 1
X

(4.5.4)

is also unde�ned in the �nite interval system.
To make matters worse, both f (�1) and g (�1) are also unde-

�ned. Therefore, both their interval extensions are unde�ned for
any interval argument X that contains �1: One way to motivate
the closed interval system is to determine how h (x) = 1

x can be
de�ned so that g (x) = f (x) whenever f (x) is de�ned, and also to
consistently de�ne g (x) and f (x) when x = �1:

Let Df and Dg denote the natural domains (or simply the do-
mains) of the expressions f and g � that is, Df and Dg are, respec-
tively, the sets of arguments for which f and g are de�ned and �nite.
The following facts are known:
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1. Because their domains are di¤erent, the functions f and g are
di¤erent. Using R to denote the set of real numbers fz j �1 < z < +1g ;
and MnN to denote the complement of the set N in M (or all
the points of M not in N):

Df = f�1 < x < �1g [ f�1 < x < +1g

= Rn f�1g ;

and

Dg = f�1 < x < �1g [ f�1 < x < 0g [ f0 < x < +1g

= Rn f�1; 0g :

2. Let x0 denote a speci�c value of the variable, x: As long as
x0 2 Df \ Dg (so both f (x0) and g (x0) are de�ned) then
f (x0) = g (x0).

3. �Algebra�includes the set of transformations through which g
and f can be derived from each other with f (x) = g (x) for all
x 2 Df \ Dg:

In the present context, extending the de�nition of an expression�s
cset provides a consistent de�nition for the cset of both f and g that
applies for all values of x; whether �nite or in�nite. With this de�-
nition, f and g are seen to have identical csets for all extended real
values of x: When any two expressions have identical csets for all
possible arguments, the expressions (in this case f and g) are said
to be cset-equivalent. This is yet another important new construct.
Cset-equivalent expressions can be interchanged without fear of vi-
olating their common containment constraint. The choice of which
cset-equivalent expression to compute can be freely made on the ba-
sis of width and speed. This is the principle practical consequence
of, and motivation for, cset theory.
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4.5.3 Cset Notation

Denote the cset of the expression f evaluated at all the points x0 in
the set S :

cset (f; S) :

The zero subscript on x is used to connote the fact that an ex-
pression�s cset depends on the speci�c value(s) of the expression�s
argument(s).

For convenience and without loss of generality, the following de-
velopment uses scalar points and sets, rather than n-dimensional
vectors. When the set S is the singleton set fx0g and x0 2 Df ; then

cset (f; fx0g) = ff (x0)g :

The notation ff (x0)g denotes the value of the function f; but viewed
as a singleton set. Whether x0 is inside or outside the domain of f;
it is notationally convenient to permit �f (x0)� to be understood
to mean cset (f; fx0g) : Otherwise, a plethora of braces �f� � � g� is
needed to distinguish points from singleton sets. Therefore, for ex-
ample, when x0 = 0 in (4.5.3), it is understood that

g (0) = cset (g; f0g) :

There is an additional bit of notation that is necessary to explicitly
convey how csets of expressions with non-singleton set arguments
are de�ned: When the set S is not a singleton set, then f (S) =
cset (f; fSg) is understood to be the set:[

z02fSg
f (z0) =

[
z02S

cset (f; fz0g) : (4.5.5)

The reason for using the union to de�ne f (S) in (4.5.5) is that f (z0)
is now a set. Therefore, ff (z0) j z0 2 Sg is properly interpreted as
a set of sets, rather than cset (f; S) : The expression in (4.5.5) for
f (S) is exactly analogous to the de�nition of f (xI) in (4.5.1) when
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xI is a nondegenerate interval vector. Note the di¤erence in notation
between the set S of scalars and the interval vector xI . See Section
2.2.

Finally, when it is important to distinguish between a variable x
and a value x0 of it, the zero subscript notation is used. Otherwise,
let it be understood that the point arguments of expressions in csets
are speci�c given values and not simply the names of variables.

4.5.4 The Containment Set of 1
0

With the above notation conventions, the value of the containment
set (cset) of 1

0 is now addressed. Continue to use the expression

de�nitions: f (x) = x
x+1 and g (x) =

1
1+ 1

x

in (4.5.2) and (4.5.3). The

question to be answered is: What is the smallest set of values (if any)
that can be assigned to h (x) = 1

x when x0 = 0 so that g (x0) = 0: In
fact the only way for g (x0) to equal zero is if h (x0) = �1 or +1:
Therefore f�1;+1g is the set of all possible values that the cset of
h (x0) must include when x0 = 0. Moreover, when x0 = 0, if the cset
of h (x0) includes any value other than �1 or +1; then g (x0) 6= 0:
Therefore, a mathematically consistent way for g (0) to equal zero is
if

1

0
= f�1;+1g : (4.5.6)

In this case, if

h (x) =
1

x
; (4.5.7)

then because h (0) is understood to mean cset (h; f0g) ; when h (x)
is otherwise unde�ned,

h (0) = f�1;+1g :
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Then and only then (in the current cset system) is

g (0) =
1

1 + f�1g [
1

1 + f+1g
= 0:

Having informally established (4.5.6), both f (�1) and g (�1) are
seen to be f�1;+1g as well. That g (�1) = f�1;+1g can also
be seen by writing g in terms of h as de�ned in (4.5.7):

g (x) = h (1 + h (x)) :

Similar arguments to that given above can be developed to �nd
the cset of any indeterminate form in any closed cset-based system.

4.6 ARITHMETICOVERTHEEXTENDED
REAL NUMBERS

For a rigorous development of csets, see Walster, Pryce, and Hansen
(2002). With their development and/or analyses similar to that of 10
above, csets for the basic arithmetic operations (BAOs) displayed in
Tables 4.1 through 4.4 have been derived and proved to be consistent
in R�; where R denotes the real numbers fz j �1 < z < +1g ; and
the set of extended real numbers R� is the set of real numbers to
which the elements f�1g and f+1g are adjoined. This compact4
set is the same as the interval [�1;+1] and is also denoted:

R� = R [ f�1;+1g :

In each of tables 4.1 through 4.4, the upper left corner cell con-
tains the given operation in terms of speci�c values x0 and y0 of

4Compactness is necessary for all needed sequences of R� elements to have
limits. Compactness of R� is established in Walster et al (2002) by noting that
the interval [�1;+1] can be mapped onto the compact interval [�1;+1] using,
for example, the hyperbolic tangent function.
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x0 + y0 �1 y0 2 R +1
�1 �1 �1 R�

x0 2 R �1 x0 + y0 +1
+1 R� +1 +1

Table 4.1: Addition over the extended real numbers.

x0 � y0 �1 y0 2 R +1
�1 R� �1 �1
x0 2 R +1 x0 � y0 �1
+1 +1 +1 R�

Table 4.2: Subtraction over the extended real numbers.

x0 � y0 �1 �1 < y0 < 0 0 0 < y0 < +1 +1
�1 +1 +1 R� �1 �1

�1 < x0 < 0 +1 x0 � y0 0 x0 � y0 �1
0 R� 0 0 0 R�

0 < x0 < +1 �1 x0 � y0 0 x0 � y0 +1
+1 �1 �1 R� +1 +1

Table 4.3: Multiplication over the extended real numbers.

x0 � y0 �1 �1 < y0 < 0 0 0 < y0 < +1 +1
�1 [0;+1] +1 f�1;+1g �1 [�1; 0]

x0 2 Rn f0g 0 x0 � y0 f�1;+1g x0 � y0 0

0 0 0 R� 0 0

+1 [�1; 0] �1 f�1;+1g +1 [0;+1]

Table 4.4: Division over the extended real numbers.
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the variables x and y: The �rst column and �rst row in each table
respectively contain the values of x0 and y0 for which di¤erent cset
values are produced.

The value of 10 discussed above is found in the second row and
third column of Table 4.4. In this case, x0 = 1 and y0 = 0:

4.6.1 Empty Sets and Intervals

To close the set-based arithmetic system, it is necessary to de�ne
arithmetic operations on empty sets. The logically consistent de�n-
ition is for an arithmetic operation to produce the empty set if one
or both operands is empty. This result is consistent with (4.5.5) and
is also consistent with the implicit constraint that the arguments of
any expression E must be within or at least on the boundary of E�s
domain of de�nition, DE : This implicit constraint can be made ex-
plicit to limit values of independent variables in di¤erent expressions.
For example, if X = [�1;+1] and Y =

p
X � 1; then 0 � X � 1

or X � 1: If in addition Z =
p
1�X; then 0 � 1 � X or X � 1:

Therefore, the only way both Y and Z can be de�ned is to impose
the constraint on X that X = [1; 1], in which case: Y = Z = [0; 0] :

More generally, for any expression E that appears as the ar-
gument of a function whose domain is a proper subset of R�; an
implicit constraint on the values of E is imposed. For example,
with E = x

x+1; ; the expression
p
E imposes the constraint on x that

x 2 [�1;�1] [ [0;+1] : In algorithms such as those in this book
that delete impossible solutions, such constraints can be useful when
made explicit. See Chapter 10. The following is a source of implicit
constraints that must be made explicit. If the interval version of
Newton�s method is used to �nd roots of a function f over an inter-
val X; then f must be de�ned and continuous over X: See Chapter
9.

Another possibility (to explicitly impose a continuity constraint)
is mentioned in Section 4.2.1. For example, because zero is a point
of discontinuity for the expression 1

x ; if this expression is used in a
context where continuity is assumed, then the implicit constraints
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(x < 0 and x > 0) on x can be made explicit. See also Section 4.8.5.

4.6.2 Cset-Equivalent Expressions

Two expressions that have the same csets for all possible expression
arguments are said to be cset-equivalent. Two cset-equivalent expres-
sions can be interchanged without fear of violating their containment
constraints. For example,

f (x) =
x

x+ 1

and

g (x) =
1

1 + 1
x

;

can be interchanged without loss of containment because f and g
are cset-equivalent expressions. In fact, any cset enclosure of g can
be used to bound values of f . This example illustrates an important
general result: A necessary condition for an analyst or a compiler to
substitute one expression g for another f , is that g is a cset-enclosure
of f: See De�nition 4.8.12.

4.7 CLOSED INTERVAL SYSTEMS

A closed system is one in which there are no unde�ned operator-
operand or function-argument combinations. All that is necessary
to construct a closed interval system is to guarantee that any inter-
val expression evaluation produces an enclosure of the expression�s
cset. If the resulting interval is the hull of the expression�s cset, then
the computed interval is sharp. For example, hull (f�1;+1g) =
[�1;+1] is the narrowest interior interval containing 1

0 : In prac-
tice (for example when implementing the interval Newton algorithm
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in Section 9.2), the fact that 1
0 = [�1;�1] [ [+1;+1] is used,

whether or not the interval system supports exterior intervals5.
More generally, when evaluated over the interval box

xI = (X1; � � � ; Xn) ;

the usual notation can be used for the set that an enclosure F of the
expression f must contain:

F (xI) � hull (f (xI)) :

Upper case F denotes an interval enclosure, for example, as can
be obtained by evaluating the expression f using �nite precision
interval arithmetic. Thus, F is not uniquely de�ned, except to the
extent that it must satisfy the containment constraint of interval
arithmetic. The notation distinguishes between: hull (f (xI)) ; which
is the sharp interval enclosure of f�s cset over the box, xI ; and F (xI) ;
which is only an enclosure of hull (f (xI)) ; and which therefore might
be less than sharp.

Adopting the mathematically standard zero-subscript notation
(e.g.: x0) to denote a speci�c, but unspeci�ed value of the vari-
able x; let it be understood that F (x0) ; rather than F ([x0;x0]) or
F (fx0g) ; can be used to denote an interval expression evaluated at
the degenerate interval [x0;x0] ; or equivalently at the singleton set
fx0g :

4.7.1 Closed Interval Algorithm Operations

Di¤erent closed interval implementations of the same cset system are
possible to construct. They can produce di¤erent width enclosures
of interval expression csets, but they all must produce enclosures of:

5An exterior interval is the union of two semi-in�nite intervals, such as
[�1; a][ [b;+1] with a < b: The notion of exterior intervals was �rst conceived
by Kahan (1968).
Alefeld (1968) was the �rst to use division by intervals containing zero to

extend the interval version of Newton�s method to �nd all the roots of nonlinear
functions.
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1. BAO csets, that (in the present system) are given in Tables 4.1
through 4.4; and

2. the csets of expressions evaluated over sets as given in equation
(4.5.5).

All the de�nitions of �nite interval arithmetic in Section 2.3 carry
over to closed systems because the cset of a de�ned function is simply
the de�ned function�s value, but viewed as a singleton set. The cases
that require additional analysis are those that implicitly or explicitly
use unde�ned point operations, such as (�1)�(�1) ; 10 ; 0�(�1) ;
and �1

�1 :

It is a tempting mistake to conclude that each of the following
three examples is non-negative, because there is no obvious way to
produce a negative result:

[0; 1]� [2;+1] = [0;+1] ; (4.7.1a)

[1; 2]

[0; 1]
= [1;+1] (4.7.1b)

and

[0; 1]

[0; 1]
= [0;+1] : (4.7.1c)

Combining the rules of interval arithmetic in Section 2.3 with csets
from Tables 4.1 through 4.4 produces the correct results, which are:

[0; 1]� [2;+1] = [�1;+1] ; (4.7.2a)

[1; 2]

[0; 1]
= f�1g [ [1;+1] (4.7.2b)

and

[0; 1]

[0; 1]
= [�1;+1] : (4.7.2c)
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In two out of the above three cases, it works to compute interval
endpoints using the formulas in Section 2.3 and csets from Tables 4.1
through 4.4. For example, [0; 1]� [2;+1] = R�; because 0�(�1) =
R� from Table 4.3. The exception is division by an interval with zero
as an interior point, such as happens with

[1; 1]

[�1; 1] : (4.7.3)

However, by splitting the denominator interval into the union of two
interior intervals, both of which have zero as an endpoint, the entries
in Table 4.4 and the formulas in Section 2.3 interact to produce the
sharp result. From (4.5.5) and the entries in Table 4.4,

cset (�; (1; [�1; 1]))

= cset (�; (1; [�1; 0])) [ cset (�; (1; [0; 1])) (4.7.4a)

= ([�1;�1] [ f+1g) [ (f�1g [ [1;+1]) (4.7.4b)

= [�1;�1] [ [1;+1] : (4.7.4c)

From BAO csets with extended interval operands, di¤erent closed
interval arithmetic systems are possible to implement. They di¤er in
how narrowly BAO csets are enclosed. One example is when signed
zeros are introduced with 0� = 1

�1 :With this system narrower csets
can be de�ned. Another example is when exterior intervals are not
explicitly supported. Then the result of computing (4.7.3) is the hull
of (4.7.4c), which is R�. Walster (2000) proposed a �Simple�closed
interval system that has been fully implemented in Sun Microsys-
tem�s Fortran 95 and C++ compilers. See Walster (2002).

Interval algorithms, including those in the remainder of this book,
can be realized in any closed interval system using the extended
BAOs displayed in Tables 4.1 through 4.4, or their equivalent in
other di¤erent cset-based systems. To accomplish this, the funda-
mental theorem of interval analysis (Theorem 3.2.2) is generalized
in Theorem 4.8.13 to include csets and rational expressions. Finally,
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using the closed interval system, this more general fundamental the-
orem is further extended in Theorem 4.8.14 to include irrational
composite expressions.

With compiler support for interval data types in a closed interval
system, the mechanics of writing code to implement interval algo-
rithms is easier in some important respects than writing noninterval
programs. See, for example Walster (2000b, 2000c) and Walster and
Chiriaev (2000). Generalizing and extending the fundamental the-
orem completes the theoretical foundation for the compiler support
of interval data types in closed interval systems.

4.8 EXTENDED FUNDAMENTAL THEO-
REM

So far in the above development, closed interval systems are limited
to the BAOs. As described in Chapter 3, repeated application of the
fundamental theorem to compositions of �nite BAOs proves that over
the argument intervals, computed rational functions using interval
arithmetic produce bounds on the value of the underlying rational
function. Closing interval systems requires the following extensions
to the fundamental theorem:

� extending function values to expression csets,

� extending csets to their enclosures, and

� removing the requirement that computed expressions be inclu-
sion isotonic interval extensions.

At the same time these extensions are made, the fundamental theo-
rem is further extended to any expressions, whether a single-valued
continuous function with �nite domain that is a subset of the real
numbers, or a multi-valued relation that is always de�ned. Examples
of single-valued continuous functions include the log or square root
functions. A simple example of a multi-valued relation is a single-
valued function to which is added a nondegenerate interval constant.
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4.8.1 Containment Sets and Topological Closures

In this and the following two subsections, the explicit notation,
cset(f; x0) is used. This is necessary to clearly distinguish between
a function and its cset. The implicit notation in which f (x) rep-
resents its cset is resumed in Section 4.8.4 for the statement and
proof of Theorem 4.8.14 on page 80. The notation used throughout
remaining chapters is described in Section 4.9.

When an expression is a function with a non-empty domain (the
converse case is treated in Section 4.8.2), the function�s topological
closure is the function�s cset if the function is unde�ned at the given
point, say x0. Note that a function�s closure is not the same concept
as a closed system. The closure of a set S; denoted S in this chapter6,
is the union of the set S and all its accumulation points.

De�nition 4.8.1 The closure of the expression f; evaluated at the
point x0 is denoted f (x0) ; and is de�ned to be the set of all possible
limits of sequences fyjg ; where yj = f (xj) and fxjg is any sequence
converging to x0 from within f�s domain Df . Symbolically,

f (x0) =

8<:z
������
z = limj!1 yj ;
yj 2 f (xj) 7, and
limj!1xj = x0

9=; : (4.8.1)

The closure of f is always de�ned, but might be the empty set.
Namely, for yj to exist, f (xj) must be non-empty, which, by de�-

nition of f�s domain, means that xj 2 Df : Therefore, if x0 =2 Df ;
or if Df = ;; there are no sequences fxjg ; hence no yj ; and f (x0)

6 In this chapter the notation S denotes the closure of the set S: Readers
should not confuse this commonly used mathematical notation with the interval
notation X =

�
X;X

�
: The former is only used in this chapter. The latter is used

in the remaining chapters of this book to denote the in�mum and supremum of
the interval X.

7Note that the f (xj) are single valued, so for xj 2 Df ; this sequence is well
de�ned.



GLOBAL OPTIMIZATION 67

is empty. The domain of f is the set of argument values x0 for
which f (x0) 6= ;; which is Df ; the closure of f�s domain. Using the
compactness of R�; Walster, Pryce, and Hansen (2002) proved that
f (x0) is never empty if Df 6= ; and x0 2 Df . Therefore,

Df = Df : (4.8.2)

De�nition 4.8.1 imposes no restriction on the point x0 other than
x0 2 R�.

When x0 is on the boundary of f�s domain (or x0 2 DfnDf ),
the closure of a function satis�es all the requirements imposed on
the function�s cset. This result is also proved in Walster, Pryce, and
Hansen (2002).

The examples below illustrate features of cset theory at points
in Tables 4.1 through 4.4 where the normal value is not de�ned. All
sequences are indexed by n! +1:

Example 4.8.2

The expression (+1)+(�1) is the set of all lim (xn + yn)
where both xn ! +1; and yn ! �1. Any �nite limit
a can be achieved (e.g. xn = a + n, yn = �n) as well as
�1 (e.g. xn = �2n, yn = �n), so

(+1) + (�1) = R�: (4.8.3)

Example 4.8.3

The expression 0� 0 is the set of all lim (xn � yn) where
yn < 0; or yn > 0; and both xn ! 0 and yn ! 0. Any
�nite limit a can be achieved (e.g. xn = a

n , yn =
1
n) as

well as �1 (e.g. xn = � 1
n , yn = �

1
n2
), so

0� 0 = [�1;+1] : (4.8.4)

Example 4.8.4
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Let a > 0 be �nite. Then a�0 is the set of all lim
�

a
�xn

�
;

where xn > 0 and xn ! 0: If xn = 1
n ; then lim

�
a

�xn

�
=

lim (�an) ; so for any �nite a > 0

a� 0 = f�1;+1g: (4.8.5)

This result implies, for instance, that 1
[0;1] = f�1g [

[1;+1]:

4.8.2 Multi-Valued Expressions

The natural domain of an expression that is never single valued is
the empty set. As a simple example, the expression

f (x) =
1

x� x (4.8.6)

is unde�ned for all values of x. Another example is:

f (x) =
x

[�1; 1] ; (4.8.7)

the cset of which is [�1;� jxj] [ [jxj ;+1] : In these cases there is
no single function, the closure of which is the cset of such an expres-
sion. For all expressions to have csets, whether the expressions are
single-valued functions or multi-valued relations, additional analysis
is required. In Walster, Pryce, and Hansen (2002), the concept of
constant variable expressions (CVEs) is introduced. Brie�y, 1

x�x is

a CVE that can be replaced by the expression 1
y0
given that y0 = 0:

Thus, the cset of 1
x�x is unconditionally equal to f�1;+1g : Note

that CVEs are independent. This means that each occurrence of
the same CVE must be replaced by a di¤erent variable, or by a
zero-subscripted symbolic constant.

De�ning the cset of x
[�1;1] can be accomplished using composite

expressions and the union of all possible function closures in (4.8.8).
This same device can be used for CVEs and is described now.
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Let a composite expression be given, such as

f (x j c) = g (h (x j c) ;x j c) ;

in which the elements of the vector c are �xed constants. Further,
assume that Dg(y;xjc) 6= ;; but assume there are no values of x for
which the expression h (x j c) is a single-valued function. For exam-
ple, with f (x) = x

[�1;1] , let g (y; x) =
x
y ; and h (x j [�1; 1]) = [�1; 1] :

Therefore the natural domain of h given c is the empty set. Addi-
tionally, Df(xjc) = ; because Dh(xjc) = ;: Let H (x0; c) denote a set
of values that depends on the value x0 of x and the constant vector
c: H (x0;c) might be simply h (x0;c) ; or it might be a set that is de-
termined in some other way. The important point is that H (x0 j c)
need not be empty because it is the closure of a function h with an
empty natural domain. In the present case H (x0 j [�1; 1]) = [�1; 1] :
When g�s domain is not empty, the only way for f�s domain to be
empty is if h�s domain is empty. In this case, the cset of f is simply:

cset (f; (x0 j c)) =
[

h02H(x0;c)
g (h0;x j c) (4.8.8)

where H (x0; c) = cset (h; (x0 j c)) : Combining this case with the
usual case in which Df(xjc) 6= ; yields the four cases in (4.8.10) to be
distinguished if

f (x j c) = g (h (x j c) ;x j c) : (4.8.9)

if Df 6= ; and
(
x0 2 Df
x0 =2 Df

Case 1

Case 2

if Df = ; and
(
x0 2 Dh and Dg \ cset (h; (x0 j c)) 6= ;
x0 =2 Dh or Dg \ cset (h; (x0 j c)) = ;

Case 3

Case 4

(4.8.10)
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Then, the cset of (4.8.9) can be written as follows:

cset (f; (x0 j c)) =

8>>>>>>><>>>>>>>:

f (x0 j c) ; if Case 1

f (x0 j c) ; if Case 2S
y02cset(h;(x0jc))

cset (g; (y0;x0 j c)) ; if Case 3

;; if Case 4

(4.8.11)

The cset of the example in (4.8.7) can be represented in a number
of equivalent ways:

cset (f (x0)) =
[

h02[�1;1]

x0
h0

(4.8.12a)

=
x0

[�1; 1] (4.8.12b)

= x0 � ([�1;�1] [ [+1;+1]) (4.8.12c)

= [�1;� jx0j] [ [jx0j ;+1] : (4.8.12d)

To avoid a continuing plethora of zero subscripts, let it be un-
derstood that given argument values of expression csets are always
given points, even though they are written without zero subscripts.
Only where it is particularly important to emphasize the distinction
will cset (f; x) be written as cset (f; x0) :

The following example uses simple special cases of (4.8.11) to
illustrate the important distinction between constants and variables
in de�ning expression�s cset. The examples all use only scalar (not
vector) functions h; so f (x; y; z) = g (h (x; y) ; z).

Example 4.8.5

The following cases (a through d) use variations on a
common theme: The expression�

x

y

�
� (xy) (4.8.13a)
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can be simpli�ed to

x2 (4.8.13b)

because the two occurrences of the variables x and y in
equation (4.8.13a) are dependent. However, the expres-
sion �

x

[1; 2]

�
� (x� [1; 2]) (4.8.14a)

can be simpli�ed no more than to

x2 �
�
1
2 ; 2
�

(4.8.14b)

because the two occurrences of the interval [1; 2] in (4.8.14a)
are independent.

Let f (x; y; z) = g (h (x; y) ; z) ; with h (x; y) = x
y ; and

g (x; y) = xy; or equivalently, with h (x; y) = xy and

g (x; y) = x
y : Therefore, f (x; y; z) =

�
x
y

�
z; or equiv-

alently (xz)
y : The cset of f; depends on whether argu-

ments are independent constants or dependent variables
(see Section 2.4.1), together with whether any of the ar-
guments of f repeat the same variable. In the following
examples, the zero subscript, as in x0 is used to denote
a constant.

(a) If g1 (x; y) = f (x; y; x) = x2

y ; not
x�x
y because multiple

occurrences of x are dependent, then

cset (g1; (x; y)) = cset (f; (x; y; x)) (4.8.15a)

=
x2

y
: (4.8.15b)
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(b) If g2 (x; z) = f (x; x; z) = z; then

cset (g2; (x; z)) = cset (f; (x; x; z)) (4.8.16a)

= z: (4.8.16b)

(c) If h2 (z j x0) = g2 (x0; z) = f (x0; x0; z) ; then the cset of
h2 (z j x0) depends on the value of the constant x0: In
particular,

cset (h2; (z j x0))

= cset (g2; (x0; z)) (4.8.17a)

= cset (f; (x0; x0; z)) (4.8.17b)

=

8<:
z; if x0 2 Rn f0g

[0;+1] for all z; if x0 2 f�1;+1g
[�1;+1] for all z; if x0 = 0

(4.8.17c)

Note the di¤erence between the above results and

cset (g2; (x; z)) = cset (f; (x; x; z)) (4.8.18a)

= z; for all z: (4.8.18b)

(d) If h3 (x j y0) = g3 (x; y0) = f (x; y0; y0) ; then the cset of
h3 (x j y0) depends on the value of the constant y0: in pre-
cisely the same way that h2 (z j x0) depends on the value
of the constant x0:

Because variables can be dependent and constants cannot, vari-
ables and constants must be carefully distinguished. For exam-
ple, without additional information it is impossible to tell: whether
f (x; 0; 0) = x because y = 0 in f (x; y; y) ; or whether f (x; 0; 0) =
[�1;+1] because both y = 0 and z = 0 in f (x; y; z) :

The above distinctions are important to make both in mathemat-
ical notation and in computer languages that support intervals, such
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as Fortran C, C++, or Java
TM
. Otherwise, to guarantee contain-

ment, when there is any expression ambiguity, the widest interval
result must be returned.

The required distinctions can be made by introducing a com-
puter language variable dependence attribute: A computer variable
or symbolic constant can be explicitly declared to have either the
mathematical dependence or independence property. A computer
variable or symbolic constant with the dependence attribute has the
properties of a mathematical variable � namely dependence. A
computer variable or symbolic constant with the independence at-
tribute has the mathematical properties of a constant � namely,
independence. Literal constants in computer languages represent
mathematical constants and are therefore unconditionally indepen-
dent. In mathematical notation, a zero subscript, as in x0; is used
to identify a symbolic constant as contrasted with a mathematical
variable.

Henceforth, by letting the function h be a vector h, the cset of a
composite expression f is de�ned:

De�nition 4.8.6 (Containment-set) When x; and y appear as
expression arguments in a cset expression, let it be understood that
they denote speci�c values x0; and y0 of the corresponding vector
variables. Given the composition

f (x j c) = g (h (x j c) ;x j c) ; (4.8.19)

and the following case de�nitions

if Df 6= ; and
(
x0 2 Df
x0 =2 Df

Case 1

Case 2

if Df = ; and
(
x0 2 Dh and Dg \ cset (h; (x0 j c)) 6= ;
x0 =2 Dh or Dg \ cset (h; (x0 j c)) = ;

Case 3

Case 4

(4.8.20)
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then the containment set of the composition in (4.8.19) is de�ned to
be:

cset (f; (x j c)) =

8>>>>>>><>>>>>>>:

f (x j c) ; if Case 1

f (x j c) ; if Case 2S
y2cset(h;(xjc))

cset (g; (y;x j c)) ; if Case 3

;; if Case 4

(4.8.21)

The following example demonstrates the use of vector functions
h in compositions and how di¤erent compositions can have di¤erent
csets.

Example 4.8.7

Let f (x) = g (h (x)) with g (u; v) = u+ v and

h (x)=
�
h1 (x) ; h2 (x)

�
(4.8.22a)

=
�
log (x� 2) ; log (�x� 2)

�
: (4.8.22b)

The cset of f is the empty set because the closure Dh
of h�s domain is empty. In fact, if the domains of h1
and h2 are used to impose constraints on x; then x must
be empty. Such domain constraints can be used like any
constraints to reduce the set of possible solutions to a
given problem. See Section 4.8.5; and Chapters 6, 11,
and 16.

If f (x) is de�ned using

f (x) = log ((x� 2) (�x� 2)) (4.8.23)

instead of the composition in (4.8.22), f�s cset is not
empty if x 2 [�2; 2] : This is the domain constraint on
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x imposed using this alternative de�nition. With the
domain constraint x 2 [�2; 2] ; the composition

f (x) = log ((2� x) (x+ 2)) (4.8.24)

= log (2� x) + log (x+ 2) (4.8.25)

can also be used.

If the expression f in De�nition 4.8.6 is evaluated over some set
X or box xI of values, then as usual over the set X

cset (f;X j c) =
[
x2X

cset (f;x j c) ; (4.8.26a)

and over the box xI ,

cset (f;xI j c) =
[
x2xI

cset (f;x j c) : (4.8.26b)

It does not matter whether the vector of constants c is a singleton set,
a more general set, or an interval vector. Note that as a consequence
of (4.8.26a),[

y2cset(h;(xjc))
cset (g; (y;x j c)) (4.8.27)

in (4.8.21) can be written as

cset (g; (cset (h; (x j c)) ;x j c)) : (4.8.28)

If it is understood that f (x j c) represents cset (f; (x j c)) ; then
(4.8.28) can be simply represented as the right hand side of (4.8.19).
In this way the value of any expression can be replaced by its cset.

The simple example in (4.8.6) illustrates how the cset de�nition
in (4.8.21) provides a non-empty value for an expression whose cset
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is otherwise empty. Let f (x) be the composite function g (h (x))
with g (y) = 1

y and h (x) = x� x = 0: Therefore

f (x) =
1

x� x: (4.8.29)

The domain of f is empty. Combining cset De�nition 4.8.6 and
the fact that cset (h; x) = 0 for all x; it follows that cset (f; x) =
cset (g; 0) = f�1;+1g ; the same result obtained above using CVEs.

4.8.3 Containment-Set Inclusion Isotonicity

Let X represent a vector of sets. The following lemma is used in the
next section to eliminate the inclusion isotonicity requirement in the
original fundamental theorem.

Lemma 4.8.8 Expression csets are inclusion isotonic. That is, given
the expression f and its cset evaluated over the sets X � X0; then

cset (f;X) � cset
�
f;X0

�
:

Proof. From the hypothesis that X � X0; the set X0 can be
partitioned into two mutually exclusive and exhaustive sets:

X0 = X [
�
X0nX

�
: (4.8.30)

From the de�nition of the cset of f at a singleton set in (4.8.21) and
over a non-singleton set in (4.8.26),

cset
�
f;X0

�
= cset (f;X) [ cset

�
f;
�
X0nX

��
(4.8.31a)

� cset (f;X) ; (4.8.31b)

the required result.
Note that xI represents a vector of intervals and that f (x) and f (xI)
can continue to be placeholders for there respective csets. Note also
that Lemma 4.8.8 holds if set vectors X and X0 are replaced by
interval vectors xI and xI 0; respectively.
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4.8.4 Fundamental Theorem of Interval Analysis

The original fundamental theorem of interval analysis (Theorem
3.2.2 due to Moore) is remarkable. It guarantees that the values of
a real function over an interval argument can be rigorously bounded
with a single interval expression evaluation. No assumptions of
monotonicity or continuity are required.

The practical consequence of the original fundamental theorem
is to provide a simple method of constructing enclosures of real func-
tions. While the theorem is important, it can be made more general,
even in the �nite interval system. With a closed interval system,
such as that in Section 4.7, the fundamental theorem can be ex-
tended to include composite expressions that are unde�ned in the
�nite interval system. However, even the general �nite-system re-
quires all sub-expressions to be inclusion isotonic. Theorems 4.8.13
and 4.8.14, below, �rst proved in Walster (2000a) and Walster and
Hansen (1997), respectively, are the needed extensions of the orig-
inal fundamental theorem. In Walster, Pryce, and Hansen (2002),
the equivalent fundamental theorem for csets is also proved.

First the original fundamental theorem is restated. Next the orig-
inal theorem is extended to the closed interval system and the restric-
tion that interval expressions be interval extensions is removed. At
this point, the theorem applies to inclusion isotonic cset enclosures
of real functions in the closed interval system. Finally, these results
are further extended to any composite function or multi-valued re-
lation using the implicit notation for csets and the fact that csets,
themselves, are inclusion isotonic (Lemma 4.8.8).

De�nition 4.8.9 Interval extension: An interval expression, F ,
evaluated at the point x0 is an interval extension of the real function,
f , evaluated at the point, x0 if F (x0) = f(x0) for all x0 2 Df . See
Section 3.2 or Moore (1979), page 21.

De�nition 4.8.10 Inclusion isotonicity: An interval expression,
F , is inclusion isotonic if for every pair of interval boxes, xI0 � xI 00 �
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Df , then F (xI0) � F
�
xI 00
�
: See Chapter 3 or inclusion monotonic-

ity in Moore (1966).

Theorem 4.8.11 (The original Fundamental Theorem) Let F (xI)
be an inclusion isotonic interval extension of the real function f (x).
Then F (xI0) contains f (x0) for all x0 2 xI0 � Df ; where Df is the
domain of f:

Proof. See Theorem 3.2.2.
Because the four interval arithmetic operators are inclusion iso-

tonic interval extensions, interval arithmetic operations are enclo-
sures of point arithmetic operations. Repeated application of The-
orem 4.8.11 yields enclosures of rational functions. However, for
Theorem 4.8.11 to hold, an interval expression must be an interval
extension (De�nition 4.8.9) and inclusion isotonic (De�nition 4.8.10).
As a consequence, four important cases are not covered by the orig-
inal fundamental theorem.

1. Theorem 4.8.11 cannot be used to prove an interval expres-
sion is an interval enclosure of a function if the expression is
not an interval extension. For example, suppose an interval
expression is the interval evaluation of a real approximation
g (x) of some function f (x), to which is added an interval
bound on the approximation error, " [�1; 1] ; for some " > 0.
Let the approximating expression evaluated at the point x0
be F (x0) = gI (x0) + " [�1; 1]. Because F (x0) 6= g (x0) ; and
F (x0) 6= f (x0) ; F (x0) is an interval extension neither of f nor
of g. Therefore, in this case, Theorem 4.8.11 does not apply
to the expression F (x0). (Also see the discussion of bounding
irrational functions in Section 3.7.)

2. Theorem 4.8.11 only applies to continuous functions. It cannot
be invoked to construct an enclosure of a function at either a
singular point or an indeterminate form, such as f (x; y) = x=y;
either when y = 0; or when both x = 0 and y = 0:
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3. Theorem 4.8.11 does not de�ne how to construct an enclosure
when an interval argument is partially or completely outside
the domain of a function. For example, suppose f (x) = ln (x).
What is the set of values that must be contained by an en-
closure of f (x) over the interval X = [�1; 1]? This question
arises because ln (x) is not de�ned for x < 0: This situation
can arise not because of an analysis mistake or coding error,
but simply as the consequence of computed interval widening
because of dependence.

4. Theorem 4.8.11 does not de�ne how to construct an enclosure
of a composition from enclosures of component expressions if
the component expressions are not inclusion isotonic. For ex-
ample, given
enclosures of the subexpressions g (y;x) and h (x), what are
su¢ cient conditions under which G (H (x0) ;x0) is an enclosure
of
f (x0) = g (h (x0) ;x0)?

Cases 1 through 3 are covered by simply replacing any of the given
expression�s possible interval extensions (De�nition 4.8.9) in Theo-
rem 4.8.11 by any of the given expression�s cset enclosures.

De�nition 4.8.12 Containment-set enclosure: An interval ex-
pression, F , evaluated over an interval, xI0; is a containment-set
enclosure of the expression, f , if F (xI0) � cset (f;xI0) for all xI0 2
(IR�)n, where

IR� = f[a; b] j a 2 R�; b 2 R�; a � bg ;

the set of extended real intervals.

In particular, an interval expression F , evaluated at the point x0;
is a cset enclosure of the real function f (x0) if F (x0) � cset (f;x0)
for all x0 2 (R�)n : In the following theorem, this result replaces the
unnecessarily stringent requirement that an interval expression be
an extension (De�nition 4.8.9) of the given function.
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Theorem 4.8.13 Let the function f have an inclusion isotonic cset
enclosure, F (x0) ; of the expression f (x0). Then F (xI0) is an en-
closure of f�s cset for all xI0 2 (IR�)n : That is,

F (xI0) � hull (cset (f;xI0)) : (4.8.32)

The proof parallels the proof of the original fundamental theorem.
Proof. Assume x0 2 xI0. From the inclusion isotonicity hy-

pothesis, F (xI0) contains F (x0), which in turn contains cset (f;x0)
because F (x0) is a cset enclosure of f . Since this is true for all
x0 2 xI0 2 (IR�)n, F (xI0) contains the cset of f for all xI0: Since
xI0 is an arbitrary member of (IR�)n, this completes the proof.

Theorem 4.8.13 guarantees that extended real interval arithmetic
operations contain the values produced by the corresponding point
operation over all elements of the extended interval operands. This is
true even for combinations of operations and operands for which the
corresponding point operation is unde�ned. The evaluation of any
expressions that are compositions of inclusion isotonic cset enclosures
is an enclosure of the corresponding composition. For example, the
value of any rational function must be contained in the corresponding
enclosure de�ned by a the same set of extended interval operations.

While the consequences of the simple change from Theorem 4.8.11
to 4.8.13 cover cases 1 through 3 on page 78, neither theorem cov-
ers case 4 on page 79. Without an additional extension, it remains
unclear how to construct enclosures of composite expressions from
sub-expression enclosures that are not inclusion isotonic. Walster
and Hansen (1998) cover this case by extending the fundamental
theorem to include compositions of expressions that are not inclu-
sion isotonic.

The implicit notation (using f (xI0) in place of cset (f;xI0) ; and
f I (x0) in place of cset (f;x0)) for expression csets is now used for
the remainder of this book. Because it is understood that F (xI0) is
the result of evaluating a cset enclosure of f at xI0; it follows that
hull (f (xI0)) � F (xI0) :



GLOBAL OPTIMIZATION 81

Theorem 4.8.14 (Extended Fundamental Theorem) Given real
expressions, g(y;x) and h (x), the composite expression f(x) = g(h(x);x),
and cset enclosures, Y0 = H (xI0) and G (Y0;xI0). Then G (Y0;xI0)
is a cset enclosure of f (xI0) for all xI0 2 (IR�)n.

Proof. From the de�nition of csets and their inclusion isotonicity
(Lemma 4.8.8)

f (X0) � G (H (xI0) ;xI0) : (4.8.33)

BecauseG (Y0;xI0) andH (xI0) are cset enclosures, h (xI0) � H (xI0) =
Y0 and over xI0:

g (h (xI0) ;x
I
0) � G (hull (h (xI0)) ;xI0) (4.8.34)

� G (Y0;xI0) : (4.8.35)

Since xI0 is an arbitrary member of (IR�)n, this completes the proof.

The cset enclosures on which Theorem 4.8.14 depends can be
created from the de�nition of closures or by prior application of
Theorem 4.8.14. Inclusion isotonicity of g and h is not required.

4.8.5 Continuity

When using the closed interval system and continuity is required (as
for example is the interval version of Newton�s method), then there
are three options:

1. Introduce explicit constraints to eliminate points of disconti-
nuity from consideration;

2. Transform discontinuous expressions into continuous expres-
sions, see Walster (2003a); or

3. Use Theorem 4.8.15 below to select intervals that can be proved
to be continuous, or impose a containment constraint.
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The alternative of using exceptions in the �nite system to �ag
when interval arguments are outside an intrinsic function�s natural
domain is problematic for at least two reasons:

1. Explicit code is required to prevent any function argument or
operation operand from being outside the function or opera-
tor�s natural domain.

2. Not all intrinsic functions will raise an exception at points of
discontinuity, so this approach is not fail safe. The sign 8 and
Heaviside9functions are good examples.

The following theorem provides a way to automate the test for
continuity over a given interval. This, combined with explicit domain
constraints can be used to create fail-safe (at least with respect to
assumptions of existence and continuity) algorithms for �nding roots
and �xed points using the interval version of Newton�s method and
the Brouwer �xed-point theorem. See Chapters 6, 11, and 16 for the
algorithms needed to apply domain and continuity constraints.

Theorem 4.8.15 Let f be a function of n variables x1; � � � ; xn: Let
xI be an interval vector in the closure of f�s domain. That is, xI �

Df . Let g (x) =
�
@f(x)
@x1

; � � � ; @f(x)@xn

�T
denote the gradient of f eval-

uated at x: Then, if all the elements of g (xI) are bounded (that is,
jgi (xI)j < +1; for i = (1; � � � ; n)), then f is Lipschitz continuous
(or L-continuous) over the box, xI :

Proof. Begin with the open interval (a; b) and assume jf 0 (x0)j <
+1 for all x0 2 (a; b) : This implies there is a positive �nite constant

8The sign function is de�ned:

sign (x) =

8<:
�1 if x < 0
0 if x = 0

+1 if x > 0
(4.8.36)

9 The Heaviside function is de�ned:

hv (x) =

�
0 if x < 0

+1 if x � 0 (4.8.37)
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C; say, such that

lim
"!0+

jf (x0)� f (x0 � ")j
"

� C;

or from the product of limits theorem,

lim
"!0+

jf (x0)� f (x0 � ")j � C lim
"!0+

"

= 0;

which proves f is continuous in the open interval (a; b) :
At the endpoints of the closed interval [a; b] ; even if they are

on the boundary of f�s domain, jf 0 (x0)j � C guarantees continuity
from within the closed interval.

Finally, if f is a function of n variables, the above argument is
applied to each variable to obtain the required result.

4.9 VECTOR AND MATRIX NOTATION

Using cset enclosures, interval algorithms, including those in the re-
maining chapters, can be implemented using any expression, whether
a function or a relation. With compiler support for interval data
types and cset enclosures of interval expressions, any interval algo-
rithms can be implemented without regard to the form of the expres-
sions contained therein. Consequently, and without loss of contain-
ment, any enclosure of a cset-equivalent expression can be chosen by
a compiler to produce narrow bounds on expression values.

The remaining chapters can be implemented using either the �-
nite interval system discussed in Chapters 2 and 3, or using any more
general cset-based interval system such as the one discussed in this
chapter.

Unless explicitly stated otherwise, in the remainder of this and
subsequent chapters upper case letters such as X without a super-
script �I�denote intervals, not sets.

In closed (cset-based) interval systems, f (x) represents the cset
of an extended real expression that might be multi-valued. On the
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other hand, f I (x) ; f (X) ; and F (X) denote interval enclosures of
the hull of f�s cset. The notation f I (x) is used to denote an interval
bound on f�s cset f (x) at the point x. This notation serves to
denote a (non-sharp) interval bound on the cset of f (x) when f (x)
is a single point. It is convenient to use f (X) ; f I (X) ; and F (X) to
represent interval bounds on the union of f�s csets over the interval
X: When convenient to do so, f (X) can be used to denote the hull
of f�s csets over the interval X: In other situations, f (X) can be
used to denote the in�nite precision interval (not necessarily sharp
because of dependence) interval evaluation of the expression f over
the interval X: Finally, F (X) is normally used to represent the �nite
precision interval evaluation of f over the interval X.

Table 4.5 contains these representations. The �rst and second
rows contain point and interval arguments, respectively. The �rst
column is labeled �Point Function Notation� rather than �Point
Functions�, because f (X) is used to denote an interval extension
using the point function symbol f: The second column contains in-
terval functions.

Point Function Notation Interval Functions

Point
Argument

f (x) f I (x)

Interval
Argument

f (X) f I (X) F (X)

Table 4.5: Scalar Point and Interval Functions of One Variable

Note that even the above notation is not completely consistent.
For example, in some cases point functions of interval arguments are
required. Two such examples are the width w (X) and the midpoint
m(X) of an interval. Explicitly identi�ed notation overloading can
improve exposition clarity, if done carefully and judiciously. Any
residual ambiguity is resolved with explicit qualifying remarks.

The notation shown in Table 4.6 is used to generalize point and
interval functions and expressions to include vector and matrix ar-
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guments and to produce vector and matrix results. A balance has
been struck between completely consistent, but verbose notation on
the one hand, and inconsistent notation that requires continuous
restatement of context on the other hand.

A Bold upright font is used to denote vectors and matrices, with
lower and upper case used, respectively, for vectors and matrices.
Point functions of point arguments are shown in the upper-left cell
of Table 4.6. The lower-left and upper-right cells are used to denote
vector and matrix analogs of the corresponding cells in Table 4.5. In
fact (with one exception) the (1; 1)-elements in each cell of Table 4.6
contain the elements in Table 4.5. The exception is in the lower-right
cell in which there is no analogue in Table 4.6 of f I (X) in Table 4.5.
The reason is that once �ne distinctions have been made for scalars,
there is no need to notationally carry them over to vector and matrix
generalizations.

Point Function Notation Interval Functions

Point
Arguments

f (x) f (x) f (X)
f (x) f (x) f (X)
F (x) F (x) F (X)

f I (x) f I (x) f I (X)
f I (x) f I (x) f I (X)
FI (x) FI (x) FI (X)

Interval
Arguments

f (X) f (xI) f (XI)
f (X) f (xI) f (XI)
F (X) F (xI) F (XI)

F (X) F (xI) F (XI)
f I (X) f I (xI) f I (XI)
FI (X) FI (xI) FI (XI)

Table 4.6: Point and Interval Functions/Expression Notation

The above notation is not always followed. An example isN(x;xI)
to denote the result of the n-dimensional Newton operation. It is
both traditional and appropriate to use upper case in tribute to Sir
Isaac, rather than to use the more consistent notation n (x;xI) :

It is unfortunate that interval notation cannot be as simple as in
real analysis. The need for extra notation illustrates the greater vari-
ety and (greater) generality of information provided when computing
with intervals.
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4.10 CONCLUSION

With this chapter, the algorithms the remaining chapters can be im-
plemented using interval cset enclosures of any expression, whether a
function or a relation. With compiler support for interval data types
and cset enclosures of interval expressions, any interval algorithms
can be implemented without regard to the form of the expressions
contained therein. Consequently, and without loss of containment,
any enclosure of a cset-equivalent expression can be chosen to pro-
duce narrow bounds on expression values.
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Chapter 5

LINEAR EQUATIONS

5.1 DEFINITIONS

An interval vector is a vector whose components are intervals. An
interval matrix AI is a matrix whose elements are intervals. Let x
be a real vector with components xi (i = 1; � � � ; n), and let xI be
an interval vector with components Xi (i = 1; � � � ; n). We say x is
contained in xI (and write x 2 xI) if and only if xi 2 Xi for all
i = 1; � � � ; n. Let A be a real matrix with elements aij and let
AI be an interval matrix with elements Aij for i = 1; � � � ;m and
j = 1; � � � ; n. We say A is contained in AI (and write A 2 AI) if
and only if aij 2 Aij for all i = 1; � � � ;m and all j = 1; � � � ; n.

Similarly, for interval vectors xI and yI we write xI � yI if
and only if Xi � Yi for all i = 1; � � � ; n, where Y1; � � � ; Yn are
the components of yI . Also, we write AI � BI if and only if
Aij � Bij for all i = 1; � � � ;m and all j = 1; � � � ; n where the Bij
(i = 1; � � � ;m; j = 1; � � � ; n) are elements of BI .

The set of real points (i.e., vectors) x in an interval vector xI form
an n-dimensional parallelepiped with sides parallel to the coordinate
axes. We often refer to an interval vector as a box.

We de�ne the center of an interval vector xI to be the real vector
m(xI) = (m(X1); � � � ;m(Xn))T . Similarly, the center of an interval
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matrixAI is the real matrixm(AI) whose elements are the midpoints
of the corresponding elements of AI . We de�ne the width of an
interval vector (matrix) to be the width of the widest component
(element).

An interval matrix AI is said to be regular if every real matrix
A 2 AI is nonsingular. Otherwise, it is irregular . (Some authors use
the term singular in place of irregular.)

We use only one norm for interval vectors. It is the extension of
the max norm for real vectors and is de�ned by

jjxI jj = max jXij

where the max is over i = 1; � � � ; n. The magnitude of an interval is
de�ned in (3.1.1).

We say that an interval matrix AI is diagonally dominant if

mig(Aii) �
nX
j=1

j 6=i

jAij j for (i = 1; � � � ; n)

where the mignitude mig(�) is de�ned in (3.1.2).
We sometimes refer to an M-matrix. Let a square matrix A have

nonpositive o¤-diagonal elements. If there exists a positive vector u
such that Au > 0, then A is an M-matrix.

Let a square matrix of order n have eigenvalues �i (i = 1; � � � ; n).
The spectral radius �(A) is de�ned to be

�(A) = max j�ij

for i = 1; � � � ; n:

5.2 INTRODUCTION

In this section, we introduce systems of interval linear equations and
de�ne the solution set. In Section 5.3, we discuss the solution set and
give an illustrative example. We then consider interval methods for
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bounding the (to be de�ned) hull of the solution set. We introduce
an interval form of Gaussian elimination in Section 5.4 and point out
in Section 5.5 that it cannot generally be used in a straightforward
manner without considerable overestimation of the solution set. In
Section 5.6, we show how to reduce the overestimation by use of
preconditioning. We describe an interval version of the Gauss-Seidel
method in Section 5.7. In Section 5.8, we describe a procedure for
determining the exact hull of the solution set of a preconditioned
system. Section 5.10 describes a way to compute the hull of a solution
set without preconditioning. In Section 5.11, we consider use of an
alternative to the inverse of a matrix when the matrix is singular.
Section 5.12 discusses overdetermined systems.

Consider the real system of equations

Ax = b: (5.2.1)

There are many applications in which the elements of the matrix A
and/or the components of the vector b are not precisely known. If
we know an interval matrix AI bounding A and an interval vector
bI bounding b, we can replace (5.2.1) by

AIx = bI : (5.2.2)

We de�ne the solution to (5.2.2) to be the set

s = fx : Ax = b;A 2 AI ;b 2 bIg: (5.2.3)

That is, s is the set of all solutions of (5.2.1) for all A 2 AI and
all b 2 bI . This set is generally not an interval vector. In fact, it
is usually di¢ cult to describe s; as we show by example in Section
5.3. In Section 17.1, we describe a method for approximating s as
closely as desired by covering it with boxes of arbitrarily small size.
Other sections in Chapter 17 provide a means for bounding the hull
(de�ned below) of the solution set. See especially Section 17.10.

Because s is generally so complicated in shape, it is usually im-
practical to try to use it. Instead, it is common practice to seek
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the interval vector xI containing s that has the narrowest possible
interval components. This interval vector is called the hull of the
solution set or simply the hull. We say we �solve�the system when
we �nd the hull xI .

The problem of �nding the hull is known to be NP -hard. See,
for example, Heindl et al (1998). Therefore, we generally compute
only outer bounds for the hull. Various iterative and direct methods
for computing such bounds have been published. We discuss some
of these methods later in this chapter. Many publications have dis-
cussed this topic. For example, see Alefeld and Herzberger (1983),
Hansen (2000a, b), Kearfott (1996), Neumaier (1986, 1990), Shary
(1995, 1999). There is a case in which the exact hull is easy to com-
pute. This is the case in which the system has been preconditioned.
See Section 5.8.

It is di¢ cult to write (5.2.2) in an unambiguous way. Consider
the scalar case AI = [1; 2] and bI = [4; 5]: The solution set is the
interval

xI =
[4; 5]

[1; 2]
= [2; 5]:

But, the product of AI times xI is [2; 10], which does not equal bI .
That is, we cannot substitute the solution into the given equation
and get equality. All we can say is that AIxI � bI :

To understand what happens in this example, note that xI =
bI

AI and hence A
IxI = AI

�
bI

AI

�
: This formulation shows that AI

occurs twice in the computation of AIxI : Therefore, dependence (as
discussed in Section 2.4) causes loss of sharpness in the computed
result.

In this scalar example, it is possible to compute AI
�
bI

AI

�
cor-

rectly to be bI using dependent multiplication described in Section
2.4.1. However, when AI is a matrix, this does not seem to be pos-
sible.

We continue to write an equation in the form (5.2.2) wherein x
occurs as if it were a real vector. The obvious incongruity emphasizes
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the fact that the �equation�requires interpretation.

5.3 THE SOLUTION SET

To illustrate that the solution set s given by (5.2.2) is not simple,
we now give an example from Hansen (1969b). See also Deif (1986).
Consider the equations

[2; 3]x1 + [0; 1]x2 = [0; 120]; (5.3.1a)

[1; 2]x1 + [2; 3]x2 = [60; 240]: (5.3.1b)

When x is in the �rst quadrant, we have x1 � 0 and x2 � 0 and
hence (5.3.1) can be written

[2x1; 3x1 + x2] = [0; 120];

[x1 + 2x2; 2x1 + 3x2] = [60; 240]:

If x is to be a point of the solution set s, it must be such that the left
member intersects the right member in each equation. Therefore,

2x1 � 120; 3x1 + x2 � 0 (5.3.2a)

x1 + 2x2 � 240; 2x1 + 3x2 � 60: (5.3.2b)

The relation 3x1 + x2 � 0 is automatically satis�ed because we are
considering points in the �rst quadrant only. The remaining three
inequalities, when rewritten as equalities, provide boundary lines for
s in the �rst quadrant.

The boundary of s in the other quadrants can be found in a
similar way. The result is shown in Figure 5.3.1. The boundary is
composed of eight line segments. In higher dimensions, s can be
quite complicated. For an explicit description, see Hart�el (1980).

The set s has been discussed in contexts wherein interval analy-
sis is not used. For example, see Oettli (1965), Oettli Prager and
Wilkinson (1965), and Rigal and Gaches (1967).
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We consider interval methods for bounding s in Sections 5.4, 5.7,
5.8, and 5.10. The bounds are in the form of a box (i.e., an interval
vector) containing s. The smallest such box (the hull) for the solution
set of (5.3.1) is

xI =

�
[�120; 90]
[�60; 240]

�
:

Note that xI contains points that are not in s: For example, the point
(0; 200)T is in xI but not in s.

The method we have described can determine the solution set in
a given orthant. To completely determine the solution set in this way
for an n-dimensional problem requires �nding the solution set in 2n

orthants. This suggests that it is di¢ cult to determine the solution
set. It is shown in Heindl et al (1998) that even the simpler problem
of computing the hull of the solution set is NP -hard.

5.4 GAUSSIAN ELIMINATION

There are several variants of methods for solving linear equations
that can be labeled as Gaussian elimination. See the outstanding
book by Wilkinson (1965). An interval version of any of them can be
obtained from one using ordinary real arithmetic by simply replacing
each real arithmetic step by the corresponding interval arithmetic
step.

One standard method involves factoring the coe¢ cient matrix
into the product of a lower and an upper triangular matrix. An
interval version of this method with iterative improvement of the
triangular factors is discussed by Alefeld and Rokne (1984). Most
papers on interval linear equations have not used factorization and
we do not do so.

If the coe¢ cient matrix AI and the vector bI are real (i.e., nonin-
terval), then the interval version of Gaussian elimination applied to
Ax = b simply bounds rounding errors. If the coe¢ cient matrix AI
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and/or the vector bI have any interval elements, the interval solution
vector computed using Gaussian elimination contains the set s.

Suppose the elimination procedure does not fail because of di-
vision by an interval containing zero. Then it produces an upper
triangular matrix. If no diagonal element of the upper triangular
matrix contains zero, then AI is regular (i.e., each real matrix con-
tained in AI is nonsingular). If AI is degenerate, this result proves
that AI is nonsingular. That is, the interval method can prove that
a real matrix is nonsingular.

Note that regularity can be proved even when (outwardly) rounded
interval arithmetic is used because the rounding merely widens inter-
vals. If the widened diagonal elements of the transformed (by elim-
ination) matrix do not contain zero, then they do not contain zero
if exact interval arithmetic is used. Therefore, even when rounding
occurs, we can numerically prove that a given real matrix is nonsin-
gular or that every real matrix in an interval matrix is nonsingular.

If AI and/or bI has at least one nondegenerate interval element,
then the solution set s generally consists of more than one point. The
box xI computed by interval Gaussian elimination always contains
the solution set s. However, it is generally not the smallest possible
box (the hull) containing s. This is partly because of rounding errors
and partly because of dependence.

The following argument shows that the solution xI computed us-
ing interval Gaussian elimination contains s. When we do Gaussian
elimination, using real arithmetic, we compute each component of
the solution by, in e¤ect, evaluating a real rational function of the
elements of A and b.

By replacing these quantities by intervals and doing the opera-
tions using interval arithmetic, we replace this real rational function
by an inclusion isotonic interval extension of the rational function.
By Theorem 3.2.2, each such component of the interval solution con-
tains the corresponding real component of the real solution for any
A 2 AI and any b 2 bI : Since these real components constitute a
point in s, the interval solution must contain s.

Unfortunately, simply replacing real Gaussian elimination by an
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interval version generally does not yield a suitable algorithm. Bounds
of intermediate quantities tend to grow rapidly because of accumu-
lated rounding errors and especially because of dependence among
generated intervals. Thus, the computed solution is far from sharp,
in general.

An alternative algorithm is described in Section 5.6. It is more
costly in numerical operations than simple Gaussian elimination, but
produces excellent results when the given system�s elements are de-
generate or nearly so.

Special consideration must be given to pivot selection in interval
Gaussian elimination. In the real algorithm, if two elements are can-
didates for a pivot, the better choice is the one of larger magnitude.
However, if two intervals overlap, then all the real numbers in one
are not larger than all the real numbers in the other. A good choice
is the one of largest mignitude. See 3.1.2.

Wongwises (1975a, 1975b) simply selects the candidate of largest
magnitude (see the de�nition in Section 3.1) as the pivot. Hebgen
(1974) discusses a scaling invariant pivot search procedure.

5.5 FAILUREOFGAUSSIANELIMINATION

Since (outward) rounding occurs in interval computations, a solution
computed using interval Gaussian elimination is generally not as
narrow as possible. In fact, one might expect that the algorithm
occasionally fails because of division by an interval containing zero
even when the solution set s is bounded.

What is worse, however, is that dependence can cause such failure
even when exact interval arithmetic is used. In such cases a long
accumulator is obviously no help.

In practice, failure can occur even when each real matrix in the
interval coe¢ cient matrix is positive de�nite. This is proved using a
three dimensional example by Reichmann (1979).

Consider a system Ax = b in which A and b are real (i.e.,
noninterval). Suppose we solve this system by interval Gaussian
elimination simply to bound rounding errors. Hansen and Smith
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(1967) observed that the interval bounds grow as the order of the
matrix grows.

They experimented with the method on a computer with 27 bits
in the mantissa (which is the equivalent of about 8.5 decimal digits
of accuracy). they found that for well conditioned real matrices, the
endpoints of the interval components of the solution vector generally
di¤ered in the �rst digit for matrices of order 10 or more. Thus when
using single precision interval arithmetic, simple interval Gaussian
elimination cannot generally be used to solve systems of order 10 or
more.

Wongwises (1975a, 1975b) conducted much more extensive ex-
periments. Her results are a de�nitive determination of the proper-
ties of the interval Gaussian elimination algorithm.

5.6 PRECONDITIONING

Simply replacing a real Gaussian elimination algorithm by an interval
version cannot generally be recommended in practice (although there
are exceptions). In this section, we give an alternative algorithm. It
gives excellent results when applied to degenerate or near degenerate
systems.

The method was derived by Hansen (1965). A thorough study
of the method was made by Wongwises (1975a, 1975b). She showed
that, for a noninterval system the guaranteed accuracy of the interval
result (as speci�ed by the interval solution) is comparable with the
(unknown in practice) accuracy of the result computed using a real
Gaussian algorithm.

The procedure we now describe is the same whether the system
is real or interval. However, we describe and discuss the interval
version.

Let Ac denote the center m(AI) of AI . Thus, if Aij = [Aij ; Aij ];

then Acij =
1

2

�
Aij +Aij

�
. In practice, Ac need not be exact. By

some means (for example, real Gaussian elimination), we compute
an approximate inverse B of Ac:We use B as a preconditioning ma-
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trix. Using interval arithmetic to bound rounding errors, we compute
MI = BAI and rI = BbI : We then solve the preconditioned system

MIx = rI : (5.6.1)

It might happen that BI cannot be computed because Ac is sin-
gular or near singular. In such a case, the solution set of AIx = bI

might be unbounded. Thus, it is reasonable simply to abandon try-
ing to compute a solution. A program for this case might return a
message such as �Solution might be unbounded�. We describe an
alternative procedure in Section 5.11.

When exact arithmetic is used, the center of MI is the identity
matrix. If the interval elements of AI are not wide, thenMI approx-
imates the identity matrix in some sense. In this case, we can solve
(5.6.1) using rounded interval arithmetic with little growth of inter-
val widths. This is the motivation for the procedure just described.

Computing MI is done without any loss of sharpness due to
dependence. This is because each element of AI enters only once in
computing a given element of MI . Thus, only rounding errors add
width to the computed elements of MI .

We can now solve (5.6.1) by the interval Gaussian elimination
method described above. If the interval elements of AI are narrow,
then so are those ofMI : Therefore, a component of Xi (i = 1; � � � ; n)
di¤ers little from Ri

Mii
. Dependence arising from the small o¤-diagonal

elements of MI has little e¤ect.
When the elements of AI are real (i.e., degenerate intervals),

computed results using this procedure are excellent. There is lit-
tle growth of intervals from either rounding errors or dependence.
For experimental results verifying this fact, see Wongwises (1975a,
1975b).

To use the method we have described for solving systems of linear
equations, we do a considerable amount of work that is not needed
in noninterval Gaussian elimination when we merely compute an
approximate solution. The extra work consists of computing an ap-
proximate inverse B of the center Ac of AI and multiplying AI and
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bI by B. Consequently, our procedure uses about six times as many
operations as ordinary Gaussian elimination.

Extra work of this sort seems to be unnecessary for other kinds
of interval computations. It is unfortunate that the one place where
it seems to be necessary is in such a fundamental problem.

The extra work can pay a dividend other than producing good
results in interval Gaussian elimination. The approximate inverse B
of Ac is a valuable commodity in certain applications. In Section
11.4, we describe how we use it when solving systems of nonlinear
equations. In Section 12.6, we discuss its use in our global optimiza-
tion algorithm.

Suppose the coe¢ cient matrix AI is not degenerate. Then the
solution set is not a single point (in a multidimensional space) but
is a set of points. See Section 5.3. Another unfortunate aspect of
preconditioning is that it generally enlarges this solution set. See
Hansen (1992) or Neumaier (1990). However, this enlargement is
generally much less than that caused by the growth of error bounds
due to dependence. The solution set of the preconditioned system
contains the solution set of the original system AIxI = bI .

There are methods that avoid preconditioning when bounding
the solution set. See, for example, Shary (1995).

It is not always necessary to precondition a system of linear equa-
tions. If the coe¢ cient matrix AI is an M-matrix, then interval
Gaussian elimination produces the smallest box containing the solu-
tion set (i.e., the hull). See Neumaier (1990). In this case, precondi-
tioning not only is unnecessary, but should be avoided to not enlarge
the solution set.

Preconditioning can be done in ways other than that we have
discussed. See Kearfott (1996).

Suppose that at least one of the elements ofAI is a nondegenerate
interval. Then the solution of AIx = bI is not a single point but is
an extended set. See Section 5.3. The solution of the preconditioned
system (5.6.1) contains the solution set of AIx = bI ; but is generally
larger. The inner region of Figure 5.6.1 is the solution set of the
original system (5.3.1). The outer region is the solution set of this
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system after it has been preconditioned. Despite this enlargement of
the solution set, it is generally advisable to precondition the system
before solving.

The method we have described in this section is suitable when the
elements of AI are degenerate or narrow intervals. However, when
the elements of AI are wide intervals, dependence generally causes
interval widths to grow rapidly when applying Gaussian elimination
to the preconditioned system (5.6.1). In this wide interval case, it
is better to use the hull method described in Section 5.8. The hull
method uses preconditioning, but can fail. It is generally advisable
to precondition.

When the interval elements of AI are wide, Gaussian elimination
is prone to failure whether preconditioning is used or not. Failure
occurs when it is necessary to divide by an interval containing zero
in the elimination procedure. A virtue of the interval Gauss-Seidel
method in the next section is that it is always applicable.

In Section 5.8, we discuss yet another method which we call the
hull method. The hull method computes the exact hull of the precon-
ditioned system. However, it requires some extra computing. It is
reasonable to always use the hull method to solve the preconditioned
system; and we recommend its use. However, some computing e¤ort
can be saved by solving the preconditioned system using Gaussian
elimination as described above. The hull method generally provides
sharper results.

5.7 THE GAUSS-SEIDEL METHOD

In some applications, we have crude bounds on the solution xI of
AIx = bI : For example, this is the case when solving the linearized
equations in the interval Newton method to be described in Chap-
ter 11. When such bounds are known, it is possible to solve the
preconditioned system MIx = rI by alternative procedures.

An interval version of the Gauss-Seidel method was �rst dis-
cussed by Alefeld and Herzberger (1970). See also Ris (1972) and
Alefeld and Herzberger (1974, 1983). In this section, we describe an
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extension of the interval Gauss-Seidel method due to Hansen and
Sengupta (1981). We assume that the method is applied to the
preconditioned system MIx = rI : Preconditioning enhances perfor-
mance by reducing the spectral radius of the coe¢ cient matrix. See
below.

The i-th equation of the system MIx = rI is

Mi1x1 + � � �+Minxn = Ri:

Assume we have interval bounds Xj on the variables xj for all j =
1; � � � ; n. Solving for xi and replacing the other components of x by
their bounds, we obtain the new bound

Yi =
1

Mii
(Ri�Mi1X

0
1�� � ��Mi;i�1X

0
i�1�Mi;i+1Xi+1�� � ��MinXn): (5.7.1)

The intersection

X 0
i = Xi \ Yi (5.7.2)

now replaces Xi.
We successively solve using (5.7.1) and (5.7.2) with i = 1; � � � ; n.

The intersecting process given by (5.7.2) is done at each step so that
the newest bound is used in (5.7.1) for each variable xj for j < i:

Note that Mii (i = 1; � � � ; n) might contain zero. If so, the divi-
sion in (5.7.1) yields a result for Yi which is not �nite. Suppose the
numerator also contains zero. Then, if we compute Yi, the result is
[�1;+1]; and Xi \ Yi is just Xi; and we have made no progress.
Hence, if zero is in both the numerator and denominator in (5.7.1),
we do not try to compute Yi from (5.7.1). We simply skip to the
next value of i:

Now suppose 0 2 Mii but zero is not in the numerator interval
of (5.7.1). Then Yi is composed of two semi-in�nite intervals. Thus,
Xi\Yi can be one (�nite) interval, the union of two (�nite) intervals,
or empty. The arithmetic for the case when 0 2 Mii is given in
Chapter 4.
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If Xi \ Yi is empty, we have proof that equation (5.6.1) does not
have a solution in xI . Therefore the original equation AIx = bI

does not have a solution in xI . For the remainder of this section, we
assume that Xi \ Yi is not empty.

Suppose X 0
i (computed from (5.7.2) is composed of two intervals.

Then X 0
i is just the original interval with a gap missing. Since it

is tedious to work with an interval with a gap missing, we simply
(temporarily) ignore the gap and use the original interval Xi instead
of X 0

i when using (5.7.1) for the next value of i. The gap might be
used later if the box is split in its i-th component.

Suppose we have solved for X 0
i for all i = 1; � � � ; n. In the interval

Newton method discussed in Chapter 11, we might decide to split
the new box in one or more dimensions. We can delete gaps in the
process. Therefore, we save information of where gaps occur.

Although (5.7.1) and (5.7.2) are written with i in the natural
order 1; � � � ; n, we do not use their elements in this order. If 0 =2Mii,
then X 0

i (from (5.7.2)) might be strictly contained in Xi. If so,
sharper results are computed from (5.7.1) for subsequent values of i.

Hence, we �rst solve for Yi (and X 0
i) for those values of i for which

0 =2 Mii. Then we solve using the remaining values of i. It might
be that, for a subsequent value of i, the numerator does not contain
zero, whereas it does when using the natural ordering i = 1; � � � ; n.

The Hansen-Sengupta method di¤ers from the basic Gauss-Seidel
method in that:

(a) preconditioning is used,

(b) division by an interval containing zero is allowed,

(c) gaps in intervals (i.e., exterior intervals) are used,

(d) the order in which equations are solved is variable, and

(e) the intersection (5.7.1) is determined before Yi+1 is com-
puted.

Hereafter, when we refer to the interval Gauss-Seidel method, we
shall mean the Hansen-Sengupta version. However, we shall retain
the more familiar Gauss-Seidel name.
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If the o¤-diagonal elements of MI are �wide� intervals, a single
iteration of the Gauss-Seidel method improves the bounds on the
solution by little or not at all. If the o¤-diagonal elements are �nar-
row� intervals, one step of the Gauss-Seidel can give nearly sharp
results. In either case, the Gauss-Seidel step, with fewer operations
than elimination, can be the preferred procedure. This cheaper pro-
cedure was introduced into interval Newton methods by Hansen and
Sengupta (1981).

More than one Gauss-Seidel step can be used, of course. In fact,
one can iterate until no further improvement occurs. Termination
occurs in a �nite number of steps. However, this is not an e¢ cient
use of the method.

It is fruitful to solve the equations in di¤erent orders for di¤erent
steps of the Gauss-Seidel method. See, for example, Alefeld (1977).

Let �i (i = 1; � � � ; n) denote the eigenvalues of a real matrix M
of order n. The spectral radius of M is de�ned by �(M) = max j�ij
where the maximum is over i = 1; � � � ; n. The spectral radius of an
interval matrix MI is �(MI) = max �(M) where the max is over all
M 2MI .

The iterated Gauss-Seidel method in interval form converges if
�(jMI j) < 1; where jMI j denotes the matrix whose elements are the
magnitudes of the corresponding elements of MI . See Alefeld and
Herzberger (1974, 1983).

If the original vector xI used in (5.7.1) contains a solution of
MIx = rI , then the new vector computed using (5.7.1) also contains
the solution. If the intersection X 0

i\Xi is empty for any i = 1; � � � ; n,
then this fact provides proof that the original vector xI did not con-
tain a solution. Note that this is true even when (outward) rounding
occurs.

We discuss a modi�ed version of the Gauss-Seidel method in
Section 5.10.



102 CHAPTER 5. LINEAR EQUATIONS

5.8 THE HULL METHOD

The hull of the solution set of a system of interval linear equations
is de�ned to be the smallest box containing the solution set of the
system. For brevity, we speak of the �hull of a system�. In general,
�nding the hull of a system is NP -hard. See Heindl et al (1998).

Suppose a given interval system AIx = bI has been precondi-
tioned using the inverse of the center of AI as described in Section
5.6. If the preconditioned system MIx = rI is regular, its hull can
be determined exactly by a fairly simple procedure. In this section,
we describe how this is done. We refer to the procedure as the hull
method.

A procedure for computing this hull was given by Hansen (1992)
and independently by Bliek (1992). An improved version was given
by Rohn (1993). The procedure we describe in this section is a
further improved version from Hansen (2000a). See also Neumaier
(1999, 2000). Ning and Kearfott (1997) gave a method for bounding
the hull when the coe¢ cient matrix is an H-matrix. Their bounds
are sharp when the center of the H-matrix is diagonal. We do not
discuss H-matrices in this book. For a de�nition and discussion of
H-matrices, see Neumaier (1990).

We give a procedure for computing the hull; but do not derive
it. For a derivation, see Hansen (2000). We �rst give a theoretical
algorithm and then a practical one.

5.8.1 Theoretical Algorithm

In Section 5.6, we denoted the center of AI by Ac and used a matrix
B, which approximates (Ac)�1 ; to precondition the system AIx =

bI . We can write AI = Ac + Q[�1; 1] where Q is a real matrix.
Therefore, the preconditioned matrix (see (5.6.1)) is

MI = BAI = I+BQ[�1; 1]:

That is, the center of MI is the identity matrix if B is the exact
inverse of Ac:
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DenoteMI = [MI ;MI ] and rI = [rI ; rI ]: Then for i; j = 1; � � � ; n,

MI
ij = �MI

ij (i 6= j); (5.8.1a)

MI
ii +M

I
ii = 2: (5.8.1b)

Below we give a method for testing whether MI is regular. See
Theorem 5.8.1. For now assume it is. In this case,MI is nonsingular
and we de�ne P =MI�1.

We modify the system MIx = rI so that rI takes a particular
form. Suppose we multiply the i-th equation of the system by �1
and simultaneously change the sign of xi. From (5.8.1a), the o¤-
diagonal elements are unchanged. The diagonal elements change
sign twice so they have no net change. Thus, the coe¢ cient matrix
is unchanged while xi and Ri change sign.

We can assure that Ri � 0 by changing the sign of Ri (and xi)
if necessary. Assume this is the case. If 0 2 Ri, we can change the
sign of Ri (and xi) if necessary and obtain �Ri � Ri. Therefore, we
can always assure that

0 � jRij � Ri: (5.8.2)

Hereafter, we assume that (5.8.2) is satis�ed for all i = 1; � � � ; n.
This simpli�es the procedure for �nding the hull of MIx = rI .

De�ne Ci = 1
2Pii�1 and Zi = (Ri + Ri)Pii � eTi PrI where ei is

the i-th column of the identity matrix. Denote the hull by hI : Then

H i =

�
CiZi if Zi > 0,
Zi if Zi � 0

(i = 1; � � � ; n) (5.8.3a)

hI = PrI (5.8.3b)

To obtain this result, we assume that the center ofMI is exactly
the identity matrix. In practice, it is not because of rounding er-
rors made in computing MI as the product BAI and because B is
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only an approximate inverse of the approximate center of AI . We
now describe a practical procedure that takes these inaccuracies into
account.

5.8.2 Practical Procedure

Denote the computed approximation for MI by (MI)0 = [MI 0;MI 0].
We widen the elements of (MI)0 just enough so that the resulting
matrix has center I. We change no more than one endpoint of each
element.

If MI 0
ij � �jMI 0

ij j for j 6= i, we leave MI 0
ij unchanged. Oth-

erwise, we replace MI 0
ij by �jMI 0

ij j. This requires no arithmetic.
To change an endpoint of a diagonal element requires arithmetic; so
rounding might occur. We changeMI 0

ii (if necessary) so that for the

modi�ed matrix MI , we have MI
ii � 2 �MI

ii. To do so, we com-

pute 2 �MI 0
ii using interval arithmetic. We then set M

I
ii equal to

the smaller ofMI 0
ii and the lower endpoint of the computed interval

bound for 2�MI 0
ii.

Note that it is not necessary to explicitly modify an upper end-
point of (MI)0: This is because only the lower endpoints of elements
ofMI are used in computing the hull. The modi�ed matrix (implic-
itly) has the identity as its center.

Our procedure for �nding the hull is valid only if MI is regu-
lar. The following theorem from Hansen (2000) enables us to verify
regularity as a by-product of the computation of the hull.

Theorem 5.8.1 Assume MI is nonsingular so that P =MI�1 ex-
ists. Also assume that MI

ii > 0 for all i = 1; � � � ; n. Then MI is
regular if and only if P � I:

Let B0 denote the exact inverse of the exact center of A. Re-
call that instead of B0; we compute an approximation B for B0 and
therefore we must widen the approximate matrix MI 0 to obtain a
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matrix MI whose center is the identity matrix. Suppose that, us-
ing this theorem, we verify that the computed matrixMI is regular.
Then we have proved that both A and the result B0A of exact pre-
conditioning are regular. However, the converse is not true. If MI

is irregular, both A and B0A can be regular. Also, since precondi-
tioning enlarges the solution set of a system of equations, B0A can
be irregular when A is regular.

If, using this theorem, we �nd thatMI is regular, we can compute
the hull using (5.8.3). We have noted, however, that the hull of the
preconditioned systemMIx = rI is generally larger than that of the
original system AIx = bI : We have also noted that if AI is an M-
matrix, then Gaussian elimination applied to AIx = bI yields its
hull. Therefore, if AI is an M-matrix, Gaussian elimination without
preconditioning is preferred to the hull method. This not only avoids
the work of preconditioning, but Gaussian elimination requires less
computing than the hull method.

5.9 COMBININGGAUSS-SEIDELANDHULL
METHODS

Both the Gauss-Seidel method of Section 5.7 and the hull method of
Section 5.8 begin by preconditioning a given system: In the resulting
system

MIx = rI ; (5.9.1)

the center of MI is the identity matrix. If MI
ii � 0 for some

i = 1; � � � ; n, then MI is irregular. In this case, the hull method is
not applicable. However, it can be combined with the Gauss-Seidel
method as we describe in this section.

Assume thatMI
ii > 0 for one or more values of i = 1; � � � ; n. For

simplicity, assume that MI
ii > 0 for i = 1; � � � ; s and MI

ii � 0 for
i = s+ 1; � � � ; n for some s where 1 � s < n: We temporarily ignore
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the last n� s equations. We write the �rst (i = 1; � � � ; s) equations
as

MI
i1x1 + � � �+MI

isxs = r
I
i �MI

i;s+1xs+1 � � � � �MI
inxn (5.9.2)

When applying the Gauss-Seidel method, we assume that we
have bounds on the components of x: In the right member of (5.9.2),
we replace xs+1 through xn by their interval bounds. We then have
s equations in s unknowns in which the center of the coe¢ cient
matrix is the identity matrix of order s:We can use the hull method
of Section 5.8 to solve this new system. This can fail if the new
coe¢ cient matrix is irregular. In this case, we can use the Gauss-
Seidel method in the form described in Section 5.8.

If the new coe¢ cient matrix is regular, the hull method obtains
a sharp solution of equations (5.9.2) for the �rst s components of
the solution vector of (5.9.1). Solving (5.9.2) by the Gauss-Seidel
method does not produce a sharp solution.

On the other hand, the Gauss-Seidel method has the following
virtue. Suppose we apply it to (5.9.1) rather than (5.9.2). It is
possible that a sharpened bound on one component will sharpen
another component that is obtained when solving a di¤erent equation
of the system. This can occur because of the use of the intersection
step expressed by equation (5.7.2) (which is a feature of the Hansen-
Sengupta version of Gauss-Seidel). Such a sharpening does not occur
when solving (5.9.2) by the hull method.

Note that such sharpening occurs only for those components for
which the solution (before intersection) is the entire real line with
a gap missing. If the intersection with the input interval is the
union of two �nite intervals, then no sharpening of the component
occurs during the Gauss-Seidel procedure. Therefore, we can expect
that the method of this section will produce sharper bounds on the
solution of (5.9.1) than will Gauss-Seidel. A reasonable procedure is
to use both methods and take the intersection of the two results.

Note that once new bounds on x1; � � � ; xs have been obtained,
we can obtain new bounds on the remaining components of x using
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the Gauss-Seidel method as described in Section 5.7.

5.10 THE HULL OF THE SOLUTION SET
OF AIx = bI

We have noted that the problem of determining the hull of the solu-
tion set of an arbitrary (non-degenerate) linear system is NP -hard.
Nevertheless, the hull of the solution set of general systems of small
order can be computed. We now describe how this can be done.

Given an interval system AIx = bI ; suppose we de�ne a real
system by choosing one endpoint of each element of AI and one end-
point of each component of bI . Suppose we do this for every possible
combination of endpoints and solve each resulting real systems.

Nickel (1977) showed that the smallest value of a component xi
of x among all the solutions is the lower endpoint of the i-th com-
ponent of the hull and the largest such value is the upper endpoint.
Therefore, we can determine the hull by solving 2n(n+1) real systems.
The number of real systems to be solved can sometimes be greatly
reduced. See Hansen (2002b).

5.11 A SPECIAL PRECONDITIONINGMA-
TRIX

In various sections, we have discussed the inverse B of the center Ac

of an interval matrix AI : We have usually ignored the fact that B
does not exist if Ac is singular. Suppose, we try to invert Ac using
Gaussian elimination. If Ac is singular, this fails because a pivot
element is zero.

If our �nal goal is simply to compute a solution to the linear
system, we can stop. However, in later sections of this book, our
goal is to �nd the intersection of the (unbounded) solution of the
system with a given box. Therefore we wish to continue. We can
use a Gauss-Seidel step to compute a bound on this intersection. To
do so, we want an alternative preconditioning procedure.
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When we are going to use Gauss-Seidel, we can regard precondi-
tioning as an e¤ort to compute a matrix that is diagonally dominant.
Even whenAc is singular, we can generally compute a matrix B such
that some diagonal elements dominate the o¤-diagonal elements in
their row. This improves the performance of Gauss-Seidel.

To compute B when Ac is singular, we can begin the Gaussian
elimination procedure. Assume we use a Gauss-Jordan form of elim-
ination in which a pivot element is used to zero elements both above
and below the diagonal. Suppose we arrive at a stage where a nonzero
pivot element cannot be obtained using row and column pivoting.
The (incomplete) elimination steps at this stage serve to determine
a preconditioning matrix that can improve the performance of Gauss-
Seidel.

5.12 OVERDETERMINED SYSTEMS

In Hansen and Walster (2003) an algorithm is developed to compute
interval bounds on solutions to overdetermined system of interval
linear equations. This procedure and extensions of it can be used
when more interval equations than unknowns are given. Overdeter-
mined systems are better conditioned than the corresponding least
squares problem de�ned by �normal equations�. Therefore, when
overdetermined systems of linear equations arise as part of solving
nonlinear systems or optimization problems, this procedure can, and
should, be used.
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Figure 5.3.1: Solution Set S for Equations in (5.3.1)
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Figure 5.6.1: Solution Set S and the enlarged solution set due to
preconditioning for Equations in (5.3.1)
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Chapter 6

INEQUALITIES

6.1 INTRODUCTION

In this chapter, we consider inequalities that might or might not
involve interval parameters that are independent of the variable ar-
guments of the inequalities. Most of our discussion concerns linear
inequalities with interval coe¢ cients. In this case, they are gener-
ally obtained as linear expansions of nonlinear functions. We discuss
such expansions in Chapter 7.

In optimization problems, inequality constraints are often im-
posed on the solution. See Chapters 13 and 14. In Section 12.5,
14.3, and 15.3, we discuss another inequality that we introduce when
solving optimization problems.

Consider such a set of linear or nonlinear inequalities

pi(x) � 0 for (i = 1; � � � ;m) (6.1.1)

where x is a real vector of order n.
Using standard de�nitions from optimization theory, we say a

point x is feasible if pi(x) � 0 for all i = 1; � � � ;m: Otherwise x is
infeasible.

In practice, we make rounding errors when evaluating pi(x).
Hence, there might be uncertainty whether pi(x) � 0 or not. Fur-
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thermore, pi might be an interval function, in which case the meaning
of the inequality requires clari�cation.

Therefore, we consider the set of inequalities

Pi(x) � 0 for (i = 1; � � � ;m) (6.1.2)

where Pi is an interval function. Suppose we evaluate Pi(x) us-
ing outwardly rounded interval arithmetic and compute the interval
[P i(x); P i(x)]: We say the point x is certainly feasible if P i(x) � 0
for all i = 1; � � � ;m. We say that x is certainly strictly feasible if
P i(x) < 0 for all i = 1; � � � ;m. We say that x is certainly infeasible
if P i(x) > 0 for at least one value of i = 1; � � � ;m.

A point x is feasible if it is certainly feasible. Also, x is infeasible
if it is certainly infeasible. Thus, it is possible to know without
question whether a point is feasible or infeasible even when rounding
is present. A point that is neither certainly feasible not certainly
infeasible might be feasible or infeasible. In this case, more accurate
evaluation of the constraint functions at a point might change the
status of the point. If Pi contains an interval parameter, there are
points that are neither certainly feasible nor certainly infeasible even
when exact interval arithmetic is used.

Suppose we evaluate Pi over a box xI and obtain the interval
[P i(x

I); P i(x
I)]. We say the box xI is certainly feasible if P i(xI) � 0

for all i = 1; � � � ;m: We say xI is certainly infeasible if P i(xI) > 0
for any i = 1; � � � ;m. The strict cases for a box are de�ned similarly.

In noninterval problems, a goal might be to �nd a single feasible
point. When solving inequality constrained optimization problems,
the corresponding process is to eliminate certainly infeasible points
from a given box. Thus, all feasible points are retained, even when
there is uncertainty because of roundo¤. When there is uncertainty
in data, an inequality might be expressed using interval parameters.
Uncertainty does not alter the fact that feasible points are always
retained.

The process of interest for our purposes is the following: Given
a box xI , �nd the smallest subbox xI 0of xI such that every point in
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xI that is outside xI 0 is certainly infeasible. If we replace xI by xI 0,
we know we have not discarded any feasible point. In this way, we
narrow the region of search for (say) a minimum feasible point. In
practice, we do not generally obtain the smallest such subbox, xI 0.
However, that is our ideal goal.

6.2 A SINGLE INEQUALITY

We now consider how to use a single nonlinear inequality p(x) � 0.
Assume we wish to use it to eliminate at least some of the certainly
infeasible points from a box xI . One way to do this is to use hull
consistency or box consistency which we discuss in Chapter 10. In
this section, we consider linearizing and solving an interval linear
inequality.

A given inequality might already be linear in its variables. When
it is not, we can linearize it by using a Taylor expansion. See Chapter
7. An expansion using slopes (as de�ned in Chapter 7) can also be
used. We now consider a single linear inequality. Thus, consider

C0 + C1x1 + � � �+ Cnxn � 0 (6.2.1)

where each Ci (i = 0; � � � ; n) is an interval.
Assume we wish to eliminate points from a box xI that do not

satisfy this inequality. We �rst solve for x1: We replace the other
variables by their interval bounds and obtain

C0 + C1x1 + C2X2 + � � �+ CnXn � 0:

We solve this inequality for x1 and obtain a new interval bound X 0
1

for x1. We replace X1 by X1 \X 0
1 and repeat the procedure to get

a new bound on x2; � � � ; xn:
Note that when we solve for x2, we can simplify the computation

by using dependent subtraction. This dependent operation is de�ned
by (2.4.2). When solving for x1, we compute the sum C2X2 + � � �+
CnXn: If we cancel C2X2 from this sum and add C1X 0

1, we have the
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needed sum to solve for x2: We do not have to recompute the sum
of the other n� 2 terms.

In each step, we solve an inequality of the form

U + V t � 0 (6.2.2)

for a variable t where U and V are �xed intervals. That is, we solve
for a set T of values of t for which there exists at least one value of
u 2 U and at least one value of v 2 V such that u+ vt � 0: Thus,

T = ft j 9u 2 U; 9v 2 V; u+ vt � 0g: (6.2.3)

A simple way to solve U +V t � 0 is to rewrite it as the equation

U + V t = [�1; 0]:

Then T = 1
V ([�1; 0]� U), which we can evaluate using extended

interval arithmetic. Explicit results can be useful. To list them,
denote U = [a; b] and V = [c; d]. Then

T =
[�1;�a]
[c; d]

:

From the rules for cset-based interval arithmetic in Chapter 4, we
obtain

T =

8>>>>>>>>><>>>>>>>>>:

�
�a
d ;+1

�
if a � 0 and d < 0�

�a
c ;+1

�
if a > 0, c < 0, and d � 0

[�1;+1] if a � 0 and c � 0 � d�
�1;�a

d

�
[
�
�a
c ;+1

�
if a > 0 and c < 0 < d�

�1;�a
c

�
if a � 0 and c > 0�

�1;�a
d

�
if a > 0, c � 0, and d > 0

f�1g [ f+1g if a > 0 and c = d = 0

(6.2.4)

The last entry in this list is the set of values of t such that [a; b] +
[0; 0]t � 0 when a > 0. In practice, we generally seek �nite solutions
to an inequality. When a > 0 and c = d = 0 the set of �nite solution
points is empty.
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Note that if a > 0 and c < 0 < d, the solution consists of two
semi-in�nite intervals. This occurs because we divide by an interval
whose interior contains zero. If this solution is intersected with a
�nite interval (see above), the result can be empty, a single interval
or two disjoint intervals. In the latter case, we speak of an interval
with an (open) gap removed. The gap consists of certainly infeasible
points.

6.3 SYSTEMS OF INEQUALITIES

Inequality constrained optimization problems generally have more
than one inequality constraint. Each can be separately used to re-
duce the box xI as described in Section 6.2. However, combinations
of the inequalities are generally more successful in reducing xI . In
this section, we describe how inequalities can be combined.

To solve a system of linear equations, we precondition the system
and solve the preconditioned system using Gaussian elimination, the
Gauss-Seidel method, or the hull method. See Chapter 5. We use a
similar approach to solve linear systems of inequalities. In this case,
the hull method is not applicable. In this chapter we describe a
procedure for inequalities that is similar to the Gauss-Seidel method
for solving linear equalities.

It is convenient to say we �solve�a system of inequalities. How-
ever, this merely means that we apply a procedure that eliminates
some certainly infeasible subboxes from a given box. As when ap-
plying a Gauss-Seidel step to solve a system of linear equations, a
step of the method does not produce the smallest possible solution
subbox.

The procedure has a certain similarity to the Fourier-Motzkin
method which is described, for example, by Dantzig and Eaves (1975).
In the Fourier-Motzkin method, the number of generated inequali-
ties increases and can become quite large. In our procedure, we
also generate more inequalities than occur in the original system.
However, the number of generated inequalities to be solved by the
Gauss-Seidel-like procedure is always less than twice the number of
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original inequalities.
Because we restrict the number of inequalities that can be gen-

erated, we delete fewer infeasible points from a box than is possible
with greater e¤ort. However, there is good reason for not expending
too much e¤ort. In practice, one or more of the inequalities in a given
optimization problem is generally nonlinear. We linearize them to
compute a solution. The coe¢ cients in the linear expansion are func-
tions of the box in which we are solving the system of inequalities.
Therefore, the inequalities change as the box is reduced. There is
little point in getting the very best solution to a linear system that
is not the �nal one to be solved.

Once we have linearized the inequalities, we have a system of the
form

AIx � bI (6.3.1)

where AI is an interval matrix. It has as many rows (say m) as there
are inequalities. It has n columns where n is the number of variables.
The interval vector bI has m components.

If we multiply an inequality by a positive constant, we do not
change the inequality�s sense. That is, we do not change � to � :
Also, we can add two inequalities together if they have the same
sense. Hence, a positive linear combination of inequalities (having
the same sense) yields another valid inequality. Therefore, we can
perform Gaussian elimination on the set of inequalities provided we
use positive multipliers. To eliminate a given element in the coef-
�cient matrix, the given element and the pivot element must have
opposite sign.

As pointed out in Section 5.6, to solve a set of linear equations by
interval Gaussian elimination, we �rst multiply by an approximate
inverse of the center of the coe¢ cient matrix. This step reduces
the growth due to dependence of interval widths in the elimination
process.

We use a similar procedure for systems of inequalities. It is some-
what more complicated, however. The purpose in both procedures
is to reduce the e¤ect of dependence.
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Let Ac denote the center, m(AI); of AI . Using Ac, we generate a
real matrix B of nonnegative elements such that the modi�ed system
BAI � BbI can be solved with reduced interval width. Thus, B is
a preconditioning matrix similar to that used when solving linear
interval equations. Now, however, the number of rows of B might
be any number from m to 2m� 1 depending on the problem.

The matrix B can be computed in the same way a matrix inverse
is generated. To aid in understanding, we now describe this more
familiar procedure.

Let Q be a square, nonsingular, real matrix. Initially, set B
equal to the identity matrix I. Use (for example) the Gauss-Jordan
method of elimination (e.g., see Stewart (1973)) to transform Q into
the identity matrix. Simultaneously, do every arithmetic operation
on B that is done in the elimination process on Q. When Q is �nally
transformed to I, the same operations on B produce the inverse of
Q.

Suppose Q is an m by n matrix and m 6= n. If m � n; the
elimination procedure can produce zero elements in position (i; j)
for all i and j with i 6= j: If m < n, then zeros are produced only in
the �rst m columns.

Now consider the case m = n so that the system of interval
equations

QIx = cI (6.3.2)

is square. Let Qc be the center m(QI) of QI . Let B be an approxi-
mate inverse of Qc. We can compute B as just described. Multiply-
ing (6.3.2) by B, we obtain

BQIx = BcI :

In this new equation, the coe¢ cient matrix tends to be diagonally
dominant and can be solved without undue growth (from depen-
dence) of interval widths. See Section 5.6 for a more thorough dis-
cussion of this procedure.
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When solving inequalities, we use a similar procedure. We gen-
erate a preconditioning matrix B in essentially the same way. How-
ever, in the case of inequalities, the elements of B must now be
nonnegative. This restriction might prevent completion of the elim-
ination process to get the desired B. However, this does not mean
the process fails. It merely means we delete fewer points from a box.

Having computed B, we multiply (6.3.1) by B, getting

BAIx � BbI (6.3.3)

We can solve this relation with less growth of interval widths than
for the original relation AIx � bI :

In general, we do column interchanges to compute B. Therefore,
instead of (6.3.3), our new system is

(BAIP)(P�1x) � BbI (6.3.4)

where P is a permutation matrix and BAIP is the new coe¢ cient
matrix. Note that the inverse P�1 of P is the transpose PT :

The order in which the inequalities are combined by the elimina-
tion process is important. We discuss this aspect in the next section
and return to the solution process in Section 6.5.

6.4 ORDERING INEQUALITIES

Consider a set of inequalities pi(x) � 0 (i = 1; � � � ;m). If we evaluate
pi for some i = 1; � � � ;m over a box xI , we compute an interval

Pi(x
I) = [P i(x

I); P i(x
I)]:

If P i(xI) � 0, then pi(x) � 0 for all x 2 xI , and this particular
constraint cannot cause a point in xI to be infeasible. Therefore,
this constraint can be ignored when considering the box xI .

If P i(x
I) > 0, then pi(x) > 0 for all x 2 xI : That is, every point

x 2 xI is certainly infeasible. For these extreme cases, the e¤ect of
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the particular inequality is known. The case of interest is when

P i(x
I) � 0 < P i(xI): (6.4.1)

Hereafter in this section, we assume that this condition holds for all
i = 1; � � � ;m:

We want to know which inequalities are more helpful in deleting
certainly infeasible points of a given box xI . The corresponding
question in the noninterval case is: �Which constraints are most
strongly violated at some point?� This question is complicated by
the fact that the di¤erent inequalities might be scaled di¤erently.
In the interval case, we address this complication by (implicitly)
normalizing.

Consider the quantity

si =
P i(x

I)

P i(xI)� P i(xI)
(6.4.2)

for i = 1; � � � ;m. If P i(xI) = 0, then si = 0 and (as pointed out
above) the constraint pi(x) � 0 is of no help in eliminating certainly
infeasible point from xI .

If P i(x
I) = 0 and P i(xI) > 0; then si = 1 and xI cannot contain

interior points of the feasible region. That is, the constraint is about
as useful as possible in eliminating certainly infeasible points of xI .
For constraints of interest, 0 < si � 1; and the larger si, the greater
help the constraint tends to be in eliminating points of xI .

Assume (6.4.1) holds for a set of m constraints. We order them
so that si � si+1 for all i = 1; � � � ;m�1. Then the smaller the index
i; the more useful the constraint tends to be.

We proceed as follows. We �rst evaluate Pi(xI) for all i =
1; � � � ;m. (We discuss an alternative in Section 10.10.) If P i(xI) > 0
for some i, our process for solving the constraint inequalities is �n-
ished. There is no feasible point in xI . If P i(xI) � 0; then (while
xI is the current box) we drop the i-th constraint from the list of
constraints to be solved. We linearize those that remain.
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Assume xI is not certainly infeasible and that all constraints for
which P i(xI) � 0 (i.e., that are known to be inactive in xI) have been
removed from the list. We order the remaining constraints according
to the value of si as described above.

6.5 SECONDARY PIVOTS

We now return to the elimination process. Consider the step in which
we generate the preconditioning matrix B occurring in (6.3.3). We
use Gaussian elimination operations to zero appropriate elements of
Ac = m(AI): The same operations applied to the identity matrix
generates B.

We shall denote the matrix that begins as Ac by A at any stage
of the elimination process even though it changes from step to step.
Assume we have generated the desired zero elements in the �rst r�1
columns ofA. We describe the pattern of zero elements below. Next,
we generate zero elements in column r.

To do so, we use the element in position (r; r) as pivot element
and apply an elimination step to produce the desired zero elements
in column r. The pivot element is chosen to be the one of largest
magnitude in row r and it is placed in position (r; r) by interchanging
columns if necessary. This element arr is designated as the �primary
pivot�.

When doing elimination among inequalities, the multiplier must
be positive so that sense of the inequality is not reversed. Therefore
a given pivot element can only be used to zero an element which
is opposite in sign to the pivot element. Therefore, we determine
a �secondary pivot�whose sign is opposite to that of the primary
pivot. The secondary pivot in column r is used to zero appropriate
elements that have the same sign as the primary pivot arr.

The secondary pivot is chosen (as described below) from the col-
umn which is interchanged into column r when choosing the primary
pivot. It is chosen from rows r + 1; � � � ;m. A copy of the secondary
pivot row is placed as row r +m

The secondary pivot is used to eliminate elements in positions
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(i; r) for i = r + 1; � � � ; r +m � 1 which are opposite in sign to it.
Then the primary pivot is used to zero elements in these positions
which are opposite in sign to the primary pivot. This latter step
includes zeroing of the secondary pivot. Note that the secondary
pivot is zeroed only in its original position and not in the copy placed
in row r +m:

In earlier steps in which zeros are generated in columns 1; � � � ; r�
1, copies of the secondary pivot rows are placed in rowsm+1; � � � ;m+
r�1:When generating zeros in column r, elements in these rows are
zeroed.

Suppose the primary pivot is positive. Then the primary pivot
row can be used to obtain a lower bound on xr; and the secondary
pivot row (copied in row r +m) can obtain an upper bound on xr.
The roles are reversed if the primary pivot is negative.

It might happen that when we want to zero elements in column
r that all the elements in positions (i; r) for i = r; :::;m have the
same sign. If this is also true for all columns j > r (that might
be interchanged with row r), then we are unable to continue the
elimination process that we have been describing.

Let r0 denote the last column index for which zeros can be gener-
ated as described above. We now do a second phase of elimination.
We zero elements above the diagonal. That is, we zero elements in
positions (i; j) for which i < j (j = 2; � � � ; r0): A primary pivot ele-
ment is used to zero opposite sign elements above it in its column.
Elements that are copies of secondary pivots and now occur in rows
m + 1; � � � ;m + r0 are used to zero opposite sign elements in their
respective columns.

6.6 COLUMN INTERCHANGES

Assume the inequalities have been placed in the order described in
Section 6.4. Because this is a desirable order, we wish to not inter-
change rows of A even though interchanges for pivot selection might
enhance numerical stability. However, we are free to interchange
columns. In this section, we discuss how to do so to get a �well
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positioned�secondary pivot and improve numerical stability.
A procedure was described by Hansen and Sengupta (1983) for

choosing a pivotal column. We describe a simpler procedure in this
section.

We do not perform row interchanges unless the current row is
zero. In decreasing order of importance, we want

1. the secondary pivot to occur as high in its column as possible,

2. the secondary pivot to be as large in magnitude as possible,
and

3. the primary pivot to be as large in magnitude as possible.

Consider what happens when we use a (primary or secondary)
pivot element to eliminate an element in another row. We �rst
�scale� the pivot row by multiplying it by the multiplier. Then we
add the scaled pivot row to another row. If the multiplier is large in
magnitude, the scaled pivot row tends to dominate and information
in the other row is lost by being shifted o¤ the accumulator in the
addition step.

That is, information in the pivot row dominates and is saved
while information in the other row is lost. Conversely, if the mul-
tiplier is small in magnitude, the information in the other row is
retained. Preserving information in the other row is why we want a
multiplier to be small in magnitude when doing ordinary Gaussian
elimination. For the same reason, we want the pivot elements to be
large in magnitude.

In our case, if we have to use a pivot element small in magnitude,
we want the pivot row to contain highly useful information because
it will be retained intact. Thus, we want the dominating pivot row
to correspond to an inequality that is �strongly violated�in xI .

Because of the way rows are initially ordered (see Section 6.4),
higher rows are more useful in this sense than lower rows. It is for
this reason that we want the secondary pivot (which occurs lower
than the primary pivot) to occur as high in the column as possible.
The smaller the pivot, the more the pivot row dominates.
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We wish to allow more useful information rather than less useful
information to dominate in this way. Thus, it is more important
for the secondary pivot to be large in magnitude than it is for the
primary pivot to be large in magnitude.

The reader might �nd it odd that we are willing to sacri�ce nu-
merical stability (i.e., accuracy) in favor of maintaining the order of
the inequalities. The reason is that much of the time we solve the
inequalities over a relatively large box. Therefore, the linearization
of the original nonlinear inequalities does not produce very accurate
approximation.

Moreover, we are satis�ed merely to delete large infeasible por-
tions of such boxes. Accuracy is of little importance until the boxes
become small near the end of the optimization process. Therefore,
we opt for e¢ ciency over accuracy in this part of the process.

In the next section, we describe our algorithm for computing the
preconditioning matrix B discussed in Sections 6.3 and 6.5. The
above arguments are used in choosing the columns to interchange
for the pivot selection and elimination procedure.

6.7 THE PRECONDITIONING MATRIX

In this section, we give an algorithm for doing Gaussian elimination
to transform Ac into a matrix with the desired zero elements. The
algorithm saves both the primary and the secondary pivot rows.
The preconditioning matrix B is computed by performing the same
operations on a matrix that begins as the identity matrix of order
m.

We let A denote the matrix being transformed. Initially, A =
Ac. We retain the same name for the matrix throughout the elimi-
nation process even though it changes with each step.

1. Set r = 0:

2. Replace r by r + 1.

3. If r = m, set r0 = m and go to step 13.
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4. If r > n, set r0 = n and go to step 13.

5. If aij = 0 for all i = r; � � � ;m and all j = 1; � � � ; n, set r0 = r�1
and go to step 13.

6. If row r of A is zero, move rows r + 1; � � � ;m up by one and
move the old r-th row to become the m-th row.

7. Determine the smallest index s such that, for some j = r; � � � ; n,
the elements arj and asj are nonzero and have opposite signs.
If no such index exists, set r0 = r � 1 and go to step 13. Sup-
pose arj and asj have opposite signs for all j in some set J of
indices r; � � � ; n. Let j0 denote the index j 2 J for which asj
is largest in magnitude. If there is more than one such index,
choose j0 to be the index for which arj (with j 2 J) is largest
in magnitude.

8. Interchange columns r and j0.

9. Use the secondary pivot element (in position (s; r)) to zero
the elements opposite in sign to it in positions (i; r) for i =
r + 1; � � � ;m.

10. Put a copy of row s into row m+ r:

11. Use the primary pivot element (in position (r; r)) to zero the
elements opposite in sign to it in positions (i; r) for i = r +
1; � � � ;m.

12. Go to step 2.

13. The �rst m rows of A are now in upper trapezoidal form. A
submatrix of r0 � 1 rows and n columns has been appended to
A. This submatrix is composed of secondary pivot rows and is
also in upper trapezoidal form. We now begin zeroing elements
above the diagonal of each of the two submatrices. Set r = 0:

14. Set r = r + 1:
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15. If r = r0, go to step 17. If r = r0 + 1; go to step 19.

16. Use am+r;r as a pivot to zero any element (except the one in
position (r; r)) of opposite sign in column r.

17. Use arr as a pivot to zero any element (except the one in po-
sition (m+ r; r)) of opposite sign in column r.

18. Go to step 14.

19. Terminate.

6.8 SOLVING INEQUALITIES

In this section, we discuss how to �solve� inequalities with interval
coe¢ cients after they have been preconditioned.

Assume we have computed the preconditioning matrix B as de-
scribed in Section 6.7. Recall that, while performing the matrix
operations given by the steps of the algorithm, we compute B by
doing the same operations on a matrix that is initially the identity
matrix of order m.

Recall that we wish to �solve�a set of linear inequalities

AIx � bI : (6.8.1)

We precondition these inequalities by transforming them into

(BAIP)(P�1x) � BbI : (6.8.2)

where P is the permutation matrix e¤ecting the column interchanges
described in Section 6.7.

To simplify the following discussion, we assume no column in-
terchanges were necessary. In this case, (6.8.2) takes the simpler
form

MIx � cI (6.8.3)
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where MI = BAI and cI = BbI .
When we precondition a system of linear equations, we obtain a

similar system except that they are equations. See (5.6.1). We then
choose one of three procedures. The preferred choice is to use the
hull method of Section 5.8. However, this method has no counterpart
when solving inequalities; and therefore we ignore it in the current
context. Another choice is to perform interval Gaussian elimination
on the preconditioned system. A third choice is to use the Gauss-
Seidel method and simply solve the i-th equation (i = 1; � � � ; n) for
the i-th variable (after replacing the other variables by their interval
bounds).

We have similar choices when solving (6.8.3). A procedure that
uses interval Gaussian elimination on the preconditioned system is
di¢ cult to describe and complicated to program. Partly, this is
because a positive or negative element before elimination is applied
to the real matrix Ac might contain zero after elimination. We shall
not describe such a procedure.

We note the following for a reader who might use such a method.
Suppose an interval element that we wish to eliminate contains zero
as an interior point. We can use a positive (primary or secondary)
pivot to eliminate the negative part of such an element and a negative
(secondary or primary) pivot to eliminate the positive part of such an
element. In this way, the elimination step is done without changing
the sense of an inequality.

We now describe a procedure similar to a Gauss-Seidel that can
be used to �solve� (6.8.3). To use this procedure, we make use of
information obtained when computing the preconditioning matrix
B.

Suppose that when transforming Ac to obtain B, the element
that ends up in position (i; i) is used as a primary pivot. Then, in
the i-th inequality of (6.8.3), we replace all variables except the i-th
by their interval bounds. We then solve this inequality for the i-th
variable. Before this primary pivot was used, a row containing the
corresponding secondary pivot is added to row m + i of the list of
inequalities. We solve this inequality for the same variable xi in the
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same way as the i-th inequality.
Note that if row i provides an upper bound on xi, then row m+ i

provides a lower bound and vice versa.
This might not exhaust all of the inequalities in the system

(6.8.3). We might not be able to complete the elimination process
in Ac in getting B because of the lack of a secondary pivot at some
stage. Suppose we are able to produce the desired zero elements
in only some number k of the columns where k < m: Then rows
k+1 through m of BAc might all be nonzero in all of columns k+1
through n. We do not use these rows ofMI in our procedure resem-
bling Gauss-Seidel. They simply can be ignored or treated separately
using hull or box consistency as described in Chapter 10.
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Chapter 7

TAYLOR SERIES AND
SLOPE EXPANSIONS

7.1 INTRODUCTION

In our optimization algorithms, we frequently expand the objective
function and constraint functions to �rst or second order terms.
These expansions can be in terms of slopes (see Section 7.7) or can
be Taylor expansions using derivatives. Our algorithms are more
e¢ cient if slope expansions are used. However, we expect readers
to be more familiar with derivatives than slopes; and therefore we
discuss the algorithms (in other chapters) as if derivatives are used.

In this chapter, we discuss expansions of both kinds. We show
how interval methods can bound the remainder in Taylor series.
There is no remainder in a slope expansion.

Although slope expansions can replace those using derivatives,
slopes cannot replace derivatives in all situations. Note that monotonic-
ity is expressed in terms of derivatives; and there is no counterpart
in terms of slopes. We make extensive use of monotonicity in this
book.

We consider Taylor expansions for the one-dimensional case in
Section 7.2 and for the multidimensional case in Section 7.3. Jaco-
bians and Hessians are discussed in Section 7.4. In Section 7.5, we
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discuss automatic procedures to compute numerical values of deriv-
atives evaluated over intervals. In Section 7.6, we describe special
procedures for sharpening the bounds on the range of a function by
more e¤ective use of Taylor expansions.

We introduce slope expansions of rational functions in Section
7.7 and of irrational functions in Section 7.8. We discuss multidi-
mensional slope expansions in Section 7.9 and higher order slope
expansions in Section 7.10. We describe slope expansions of non-
smooth functions in Section 7.11 and the automatic computation of
slopes in Section 7.12.

7.2 BOUNDINGTHEREMAINDER INTAY-
LOR EXPANSIONS

Interval methods can be used very conveniently to bound the re-
mainder when truncating Taylor series. Consider a function f of a
single variable. For simplicity, assume f has continuous derivatives
of any necessary order. Expanding f(y) about a point x,

f(y) = f(x)+(y�x)f 0(x)+:::+(y � x)
m

m!
f (m)(x)+Rm(x; y; �) (7.2.1)

where the remainder term (in the Lagrange form) is

Rm(x; y; �) =
(y � x)m+1
(m+ 1)!

f (m+1)(�):

The point � lies between x and y. Hence, if x and y are in an
interval X, then � must be in X. Therefore, f (m+1)(�) 2 f (m+1)(X)
(see Theorems 3.2.2 and 4.8.14) and

Rm(x; y;X) =
(y � x)m+1
(m+ 1)!

f (m+1)(X) (7.2.2)

bounds the remainder for any x 2 X and any y 2 X.
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The cases m = 0 and m = 1 are of special interest later. For
m = 0, we have

f(y) 2 f(x) + (y � x)f 0(X) (7.2.3)

Since this relation holds for all y 2 X, we have

f(X) � f(x) + (X � x)f 0(X 0): (7.2.4)

Note that we have replaced X in the argument of f 0 by X 0: We
explain below why this is done. For m = 1,

f(y) 2 f(x) + (y � x)f 0(x) + (y � x)
2

2
f 00(X) (7.2.5)

and

f(X) � f(x) + (X � x)f 0(x) + (X � x)2
2

f 00(X 0): (7.2.6)

We now explain why we have replaced X by X 0 in (7.2.4) and
(7.2.6). We noted above that the quantity � in (7.2.1) must be in X:
Therefore, we replaced � by X in (7.2.3). However, this is a bound
with the same numeric value as X but is not analytically identical
to X. Thus, in (7.2.4), while X and X 0 are numerically equal, they
are not the same variable and are therefore independent.

To illustrate this fact, consider the example in which f(x) = 1
x :

Since f 0(x) = �1
x2
, (7.2.4) can be written as

f(X) � 1

x
� X � x

X 02 : (7.2.7)

If we assume that X 0 is identically equal to X, we can replace X
X02

by 1
X and write (7.2.4) as

f(X) � 1

x
� 1

X
+
x

X2
:
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Completing the square to sharpen the bound on f(X), we rewrite
this as

f(X) � x
�
1

X
� 1

2x

�2
+
3

4x
: (7.2.8)

Let X = [1; 4] and x = 2:5: Then the interval value of the right
member of (7.2.8) is [0:30625; 1:9]. This interval does not contain
the entire range [0:25; 1] of f over X.

If we evaluate the right member of (7.2.7) without analytic changes,
we obtain [�1:1; 1:9] which contains f(X):

Elsewhere in this book, we do not distinguish between X and X 0

in relations such as (7.2.4) or (7.2.6). Instead, we replace X 0 by X
and rely upon the reader to remember that, while X 0 = X, the two
intervals are independent.

7.3 THE MULTIDIMENSIONAL CASE

Now let f be a function of n variables. Assume f has continuous
partial derivatives of any necessary order with respect to each vari-
able. We �rst expand f by a standard method and then by ways
that produce better results in interval applications. We begin with
the case m = 0. Thus, the remainder is in terms of �rst derivatives.

Let x and y be vectors of n components and let � be a scalar.
We can view f [x+�(y�x)] as a function of the single variable � and
expand f using (7.2.1). Expanding about � = 0 and then setting
� = 1, we obtain

f(y) = f(x) + (y � x)Tg[x+ �(y � x)]

where 0 � � � 1 and where g is the gradient of f: Thus, the compo-
nents of g are gi =

@f
@xi

(i = 1; � � � ; n).
If Xi is an interval containing both xi and yi (i = 1; � � � ; n), then

xi + �(yi � xi) 2 Xi. Therefore,

f(y) 2 f(x) + (y � x)Tg(X1; � � � ; Xn): (7.3.1)
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Note that all the arguments of g are intervals.
We now describe a method due to Hansen (1968) that permits

some of these arguments to be replaced by real (i.e., noninterval)
quantities. This means that the components of g are narrower inter-
vals resulting in sharper bounds on f(y), in general. See also Rokne
and Bao (1987) and Bao and Rokne (1988).

We illustrate the method of derivation by considering the case
n = 3. We �rst regard f(y1; y2; y3) as a function of y3 only. Using
(7.2.1) to expand about x3, we obtain

f(y1; y2; y3) = f(y1; y2; x3) + (y3 � x3)g3(y1; y2; �3): (7.3.2)

We now expand f(y1; y2; x3) about x2 as a function of y2 and obtain

f(y1; y2; x3) = f(y1; x2; x3) + (y2 � x2)g2(y1; �2; x3): (7.3.3)

Finally, we expand f(y1; x2; x3) as a function of y1 and obtain

f(y1; x2; x3) = f(x1; x2; x3) + (y1 � x1)g1(�1; x2; x3): (7.3.4)

Combining equations (7.3.2), (7.3.3), and (7.3.4), we obtain

f(y) =f(x) + (y1 � x1)g1(�1; x2; x3) + (y2 � x2)g2(y1; �2; x3)

+ (y3 � x3)g3(y1; y2; �3): (7.3.5)

If x 2 xI and y 2 xI ; then �i 2 Xi (i = 1; 2; 3).
In applications, we sometimes want a linear bound on f(y) for

all y 2 xI . Therefore, we replace components of y in the arguments
of the components of g by xI and we replace �i (i = 1; 2; 3) by the
bounding interval Xi. We obtain

f(y) 2f(x) + (y1 � x1)g1(X1; x2; x3) + (y2 � x2)g2(X1; X2; x3)

+ (y3 � x3)g3(X1; X2; X3):

For n variables, the corresponding expression is

f(y) 2 f(x) +
nX
i=1

(yi � xi)gi(X1; � � � ; Xi; xi+1; � � � ; xn): (7.3.6)
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Compare this expression with (7.3.1). In (7.3.1), all the argu-
ments of all components of g are intervals. In (7.3.6), a fraction
1
2

�
1� 1

n

�
are real. Therefore, an interval bound on f(y) using (7.3.1)

is generally not as narrow as the corresponding one computed using
(7.3.6). The amount of work to compute the bound is the same in
either case. This is because, to bound rounding errors, we treat real
arguments as degenerate intervals.

To illustrate the superiority of (7.3.6) over (7.3.1), consider the
function

f(x1; x2; x3) =
x1

x2 + 2
+

x2
x3 + 2

+
x3

x1 + 2
: (7.3.7)

Let Xi = [�1; 1] (i = 1; 2; 3). Using (7.3.1), we �nd f(X1; X2; X3) �
[�6; 6]: Using (7.3.6), we compute [�4; 4], a much better result. The
actual range of f over the given box is [�3; 3]: Even using (7.3.6),
the result is generally not sharp because of dependence.

Note that if we evaluate f in its original form (7.3.7) (i.e.,without
expanding) over xI , we compute the sharp result [�3; 3]. For this
example, the Taylor expansion yields a wider interval result than
direct evaluation of f .

This exempli�es an unsolved problem in interval analysis. It
is not known when a centered form or Taylor expansion yields a
better or worse result than direct evaluation. Generally, they yield
a sharper result when the width of the interval (or box) is small.

The width of the bound given by the right member of (7.3.6)
depends on the order in which the variables are indexed. It is di¢ cult
to determine the best order in this regard.

We can use the same process of sequential expansion for higher
order Taylor expansions. For example, a �rst order expansion (with
error in term of second derivatives) yields

f(y) 2 f(x)+ (y�x)Tg(x)+ 1
2
(y�x)TH(x;xI)(y�x) (7.3.8)
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where H(x;xI) is an interval enclosure of the Hessian. For n = 3,

H(x;xI) =

24 h11(X1; x2; x3) 0 0
h21(X1; x2; x3) h22(X1; X2; x3) 0
h31(X1; x2; x3) h32(X1; X2; x3) h33(X1; X2; X3)

35
where

hij (x) =

8>><>>:
@2f
@x2i

for j = i (i = 1; � � � ; n) ,
2@2f
@xi@xj

for j < i (i = 2; � � � ; n; j = 1; � � � ; i� 1) ,
0 otherwise.

We have chosen to write H as a lower triangular matrix, rather than
a symmetric one, so that fewer terms occur in evaluating the bound
on f(y): The fewer terms in an expression, the less likely dependence
is to cause loss of sharpness when evaluating the expression over a
box.

In n dimensions, the arguments for the i-th column of H (on and
below the diagonal) are (X1; :::Xi; xi+1; � � � ; xn) for all i = 1; � � � ; n:

So far in this section, we have been concerned with the number
of real versus interval arguments in an expansion. We can also focus
attention on the amount of computation required. Still another con-
sideration is dependence. The form in which an expansion is written
can be just as important as the proportion of real arguments. We
now consider some examples.

Let f1 and f2 be functions of n variables. Suppose we wish to
expand their product f1�2 = f1f2: To discuss ways to obtain this
expansion, we introduce some shorthand notation.

We let (i) denote (X1; � � � ; Xi; xi+1; � � � ; xn) for i = 1; � � � ; n:
Thus, for example, fj(i) denotes fj(X1; � � � ; Xi; xi+1; � � � ; xn): We
could let (0) denote (x1; � � � ; xn). However, we use the more common
notation (x): We use (xI) to denote (X1; � � � ; Xn) when convenient.
However, when a summation index j in the symbol (j) takes the
value n, then (n) also denotes (X1; � � � ; Xn).
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Denote

gij =
@fi
@xj

(i = 1; 2; j = 1; � � � ; n) :

If we expand fi (i = 1; 2) using (7.3.6), we obtain

fi(y) 2 fi(x) +
nX
j=1

(yj � xj)gij(j): (7.3.9)

This expansion is valid for xi 2 Xi and yi 2 Xi (i = 1; � � � ; n). Using
this same method to expand f1�2 we obtain

f1�2(y) 2 f1�2(x)+
nX
j=1

(yj�xj)[f1(j)g2j(j)+g1j(j)f2(j)]: (7.3.10)

Now suppose that we simply take the product of the expanded
forms of f1 and f2 as given by (7.3.9). By combining terms appro-
priately, we obtain

f1�2(y) 2f1�2(x) + f1(x)
nX
j=1

(yj � xj)g2j(j)

+ f2(x
I)

nX
j=1

(yj � xj)g1j(j): (7.3.11)

The factor f2(xI) in the right member occurs because we have re-
placed the argument y by xI in the (unexpanded) function f2(y):
Other similar forms are possible by combining terms in other ways

Let us now compare the two forms (7.3.10) and (7.3.11). The
latter has advantages that we list and then discuss.

(a) Fewer multiplications are required. Once the required func-
tion evaluations are done, (7.3.10) requires 3n+ 1 multi-
plications while (7.3.11) requires only 2n+ 3:
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(b) A given function is evaluated using fewer sets of argu-
ments. In (7.3.10), f1 and f2 must each be evaluated for
n di¤erent sets of arguments. In (7.3.11), f1 and f2 are
each evaluated for only one set of arguments.

(c) The form given in (7.3.11) is factored. That is, depen-
dence is reduced.

The functions gij(j) (i = 1; 2; j = 1; � � � ; n) are evaluated with
the same sets of arguments for either form of expansion. The di¤er-
ence in real versus interval arguments occurs only in the arguments
of f . For (7.3.10), the ratio of the number of real to the number of
interval arguments is 1 � 2

n+1 . For (7.3.11), it is 1. For moderately
large n, these ratios are much the same.

Despite the fact that (7.3.11) has more interval arguments than
(7.3.10), it has a more favorable factored form. This permits it
to provide sharper results by taking advantage of subdistributivity.
(See Section 3.3.) In general, (7.3.11) can be the preferable form de-
spite the fact that it contains more interval arguments than (7.3.10).
This is especially true if computation speed is important.

As an example, let f1(x) = x21 + x
2
2 and f2(x) =

x1
x2
: Let us use

the two forms to evaluate expansions of f1�2(x) = f1(x)f2(x) for
X1 = [�1; 3] and X2 = [1; 3]: From (7.3.10), we compute f1�2(y) 2
[�88:5; 93:5]: From (7.3.11), we compute f1�2(y) 2 [�71:5; 76:5].
Thus (7.3.11) produces sharper bounds than (7.3.10) even though
a larger proportion of its arguments are intervals.

Less dependence is what enables (7.3.11) to give sharper results
in this example. For narrow interval arguments, dependence is a less
important concern. Therefore, the relative performance of the two
expansion methods can depend on interval widths. The number of
variables also a¤ects the choice of form.

Instead of expanding the quotient of two functions, we can use
the quotient of their expansions in a similar way. Thus, we can write



138CHAPTER 7. TAYLOR SERIES AND SLOPE EXPANSIONS

the expansion of f1=2(x) =
f1(x)
f2(x)

as

f1=2(y) = f1=2(x) +
1

f2(xI)

nX
j=1

(yj � xj)g1j(j)

� f1(x)

f2(x)f2(xI)

nX
j=1

(yj � xj)g2j(j): (7.3.12)

We have argued that when expanding a product (quotient) of
two functions in terms of �rst order derivatives, it is better to use
a product (quotient) of expansions rather than to directly expand
the product (quotient). This is also true when the expansions are in
terms of slopes.

It also seems likely that functions more complicated than simple
products or quotients should be expanded piecemeal rather than as a
single function. This is likely to be true for higher order expansions
as well.

7.4 THE JACOBIAN AND HESSIAN

Consider a vector g that is the gradient of a function f of n variables.
The Jacobian J of g has elements

Jij =
@gi
@xj

=
@2f

@xi@xj
(i; j = 1; � � � ; n):

As a noninterval matrix, J is symmetric. To compute J, we need
only compute the lower (or upper) triangle and use symmetry to get
the elements above the diagonal.

But the situation di¤ers in the interval case if we want to have
some noninterval arguments as discussed in Section 7.3. Suppose we
expand each component of g as in (7.3.6) using the same pattern of
real and interval arguments given therein. The resulting Jacobian is
not symmetric. A real argument of Jij might be an interval argument
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in Jji. To compute an interval enclosure JI in this case, we must
compute all n2 elements. We can have symmetry by using intervals
for all the arguments. But then the interval elements of JI are wider
than necessary.

In this section, we consider how to have symmetry without using
all interval arguments. We also consider how to compute both the
Hessian of f and the Jacobian of the gradient of f . In the interval
case, they can di¤er (if we want some arguments to be real) because
the pattern of real versus interval arguments can di¤er.

Consider the case n = 2. Let us expand g1 with respect to x2
and then x1. Let us expand g2 in the opposite order. Then

g(y) 2 g(x) + J(x;xI)(y � x) (7.4.1)

where

J(x;xI) =

�
J11(X1; x2) J12(X1; X2)
J21(X1; X2) J22(x1; X2)

�
:

If g is the gradient of f , then @g1
@x2

= @g2
@x1

and, hence, J21(X1; X2) =

J12(X1; X2) and J(x;xI) is symmetric. It can be shown that, in
general, J(x;xI) cannot be made symmetric for any n > 2 and still
have the maximum possible number of real arguments.

However, we can have symmetry without replacing all arguments
by intervals; but, we must use fewer than the maximum possible
number of real arguments. As an example, consider the case n = 3:
Expand g1 and g2 in the order (of indices of variables) 3, 2, 1. Expand
g3 in the order 1, 2, 3. Then

J(x;xI) =

24 J11(X1; x2; x3) J12(X1; X2; x3) J13(X1; X2; X3)
J21(X1; x2; x3) J22(X1; X2; x3) J23(X1; X2; X3)
J31(X1; X2; X3) J32(x1; X2; X3) J33(x1; x2; X3)

35 :
In this form, J(x;xI) is not symmetric. However, if we replace
J21(X1; x2; x3) by J21(X1; X2; x3) and J32(x1; X2; X3) by J32(X1; X2; X3)
we gain symmetry and still have real arguments for some element of
J(x;xI):
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We have no general rule for retaining the maximum number of
real arguments while gaining symmetry in this way.

In later chapters, we sometimes want to use both of the expan-
sions

f(y) 2 f(x) + (y � x)Tg(x) + 1
2
(y � x)TH(x;xI)(y � x)

and

g(y) 2 g(x) + J(x;xI)(y � x):

The former is a repeat of (7.3.8) and the latter is a repeat of (7.4.1).
Functionally, H(x;xI) and J(x;xI) in these equations are the same
matrix. However, if we wish to have real (instead of interval) ar-
guments everywhere possible in their matrix elements, then they
become di¤erent matrices when evaluated. This is because their
patterns of real and interval arguments di¤er.

Suppose, we use an expansion of the form (7.3.6) for each com-
ponent of g. Then the arguments of Jij are (X1; :::Xj ; xj+1; � � � ; xn)
for all i = 1; � � � ; n: These arguments are the same as those for the
elements of the lower triangle of the Hessian H as derived in Section
7.3. That is, if we compute the Jacobian J as just indicated, we
have the necessary data to form the Hessian. To get the elements
of H below the diagonal, we need only multiply the corresponding
elements of J by 2.

If we replace certain real arguments of J(x;xI) by intervals to
get symmetry, the new lower triangle of J(x;xI) still yields a lower
triangle that can be used to determine H(x;xI). That is, H(x;xI)
need not be computed separately despite such changes in J(x;xI):

7.5 AUTOMATIC DIFFERENTIATION

Nonlinear equations and optimization problems can be solved with-
out resorting to expansions using derivatives or slopes. For exam-
ple, see the discussion of hull consistency in Chapter 10. However,
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use of expansions can speed the solution process. This is especially
true when the region of search becomes asymptotically small. In
this section, we brie�y discuss how derivatives can be automatically
computed. This is an extremely valuable asset because it not only
saves the human e¤ort of di¤erentiating and coding of derivatives,
but avoids possible errors in doing so.

In Section 7.12, we give a similar discussion for generation of
slopes. Divided di¤erences with error bounds could be used but this
approach should be avoided.

One way to obtain derivatives is to �rst use a program such as
MACSYMA, Maple, Mathematica, or REDUCE to perform the al-
gebra of the di¤erentiation process. Such a process is sometimes
called symbolic di¤erentiation. Analytic expressions for derivatives
of a given function are produced automatically. Coding these ex-
pressions to evaluate the derivatives can also be automated.

If properly implemented, this can be the more desirable way to
compute derivatives in interval applications. This is because the
symbolic expressions can be written to reduce the e¤ect of depen-
dence. However, this approach can often lead to lengthy formulas
for derivatives that require considerable computation to evaluate.
The complexity of such formulas can often be greatly reduced with
an algorithm that identi�es and eliminates multiple common subex-
pressions. Proper implementation of symbolic di¤erentiation in a
form suitable for use in interval programs is not generally available.

A more commonly used procedure is automatic di¤erentiation.
This is a procedure (in two forms with variations) for numerically
generating values of derivatives without obtaining their analytic ex-
pressions. It is an idea that has occurred independently to various
people. One of them was Moore (1965) (see also Moore (1966)), who
was the �rst to apply it to interval analysis. However, earlier refer-
ences to noninterval applications can be found in Griewank (1989,
2000).

Rall (1969, 1981, 1983, 1984, 1987) and his colleagues have made
considerable use of automatic di¤erentiation in interval applications.
Some other publications on the subject are Iri (1984) and Speelpen-
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ning (1980). For a thorough discussion of automatic di¤erentiation
in noninterval applications, see Griewank (2000).

Automatic di¤erentiation is very e¢ cient (see below). Some au-
thors have pointed out that it is much more e¢ cient than symbolic
di¤erentiation. For example, see Griewank (1991, 2000). However, a
proper comparison for interval applications must take into account
the fact that, a symbolic expression for a derivative can be written
to reduce the e¤ect of dependence. The sharper bounds available
using symbolic di¤erentiation might provide better overall e¢ ciency
in solving a problem by interval methods.

Assume that a computer program exists for evaluating a given
function f . Automatic di¤erentiation can be performed using a pre-
compiler that generates code for computing the derivative of the
function as de�ned by the code to evaluate it. A better method is
to implement a user-de�ned type together with operator overload-
ing. This is called a �class� in the language C++ and a �module�
in Fortran.

We now brie�y discuss the so-called �forward form�of automatic
di¤erentiation to illustrate the ideas involved. A �backward form�is
discussed in various publications. For a brief discussion, see Kearfott
(1996). For a complete discussion of both forms and variations, see
Griewank (2000).

The steps to evaluate a rational function involve only the arith-
metic operations of addition, subtraction, multiplication and divi-
sion. Raising a quantity to a power can also be included in the set of
operations. Each of the four basic operations involves two quantities
that either have been computed in a previous step or are primitives
such as a constant or a single variable.

Consider the one-variable case. The derivative of the result of
a computational step involving functions f1 and f2 can be obtained
using Table 7.1. The derivative of each primitive and each irrational
function used must be known.

We illustrate the method with a simple example. Consider the
function f(x) = 1

x + x sinx: De�ne the primitives f1 = 1 and f2 = x
and their derivatives f 01 = 0 and f

0
2 = 1: A code to evaluate f might
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Computational step Step result derivative

f1 � f2 f 01 � f 02
f1f2 f1f

0
2 + f

0
1f2

f1
f2

f 01f2�f1f 02
f22

Table 7.1: Computational Step Derivatives

involve generation of values on the functions

f3 =
f1
f2
;

f4 = sinx;

f5 = f2f4;

f = f3 + f5:

In some manner or other, we must know that the derivative of sinx
is cosx: Using the de�nitions of the functions f3, f4, and f5 and the
rules in Table 7.1, we obtain

f 03 =
f 01f2 � f1f 02

f22
;

f 05 = f2f
0
4 + f

0
2f4;

and

f 0 = f 03 + f
0
5:

Since we know the primitives f1 and f2 and their derivatives and
the special function f4 = sinx and its derivative, we can compute
the derivative of f using the above equations. Code to compute
the right-hand side of each equation can be generated automatically.
Note that the evaluation is numerical, not analytic.

Hopefully, the readers understand what is involved in automatic
di¤erentiation from this abbreviated introduction. Details can be
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found in the references cited above. We merely wish to make read-
ers aware that automatic procedures exist that are alternatives to
symbolic di¤erentiation.

The procedure we have described is suitable for computing the
derivative of a function of a single variable. It can also serve for the
multidimensional case. However, as we showed in Section 7.3, it is
better to compute the expansion of a product or quotient by using the
product or quotient of the individual expansions. This alternative
method also can be incorporated into an automatic procedure.

Automatic di¤erentiation can be used, for example, to evaluate
the gradient of a multivariable function. Let r denote the ratio of
the amount of work to evaluate the gradient of a function and the
work to evaluate the function itself. Wolfe (1982) observed that the
value of r is usually around 1.5 in practice.

Bauer and Strassen (1983) used complexity theory to show that,
for a certain way of counting arithmetic operations, the theoretical
value of r is at most 3. For another proof, see Iri (1984). Griewank
(1989) gives an explicit algorithm and shows that, for it, r � 5:

We now consider an example to illustrate the advantage of sym-
bolic over automatic di¤erentiation from consideration of depen-

dence. Let f(x) = u(x)
v(x) where u(x) = x2 + x and v(x) = x2 � x:

The derivative is

f 0(x) =
v(x)u0(x)� u(x)v0(x)

v(x)2
:

Using automatic di¤erentiation, we get, in e¤ect,

f 0(X) =
(X2 �X)(2X + 1)� (X2 +X)(2X � 1)

(X2 �X)2 :

ForX = [4; 6]; automatic di¤erentiation produces f 0(X) = [�3:72; 2:76].
But, the numerator in this expression for f 0(X) can be simpli�ed

to �2X2. If we do so, and evaluate the result, we compute the better
result [�0:72;�0:0312]:
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7.6 SHARPER BOUNDS USING TAYLOR
EXPANSIONS

Expansions that generally give sharper interval bounds than (7.2.3)
or (7.3.6) can be computed at the expense of additional computing.
We simply use each occurrence of a given variable as a separate vari-
able and use the sequential expansion process described in Section
7.3.

For example, we rewrite F (x) = x2 sinx in the form

f(x1; x2; x3) = x1x2 sinx3:

We use the expansion (7.3.6) and then set x1 = x2 = x3 = x and
y1 = y2 = y3 = y. We obtain

f(y; y; y) = f(x; x; x)

+ (y � x)[g1(�1; x; x) + g2(y; �2; x) + g3(y; y; �3)]:

If x 2 X and y 2 X, then �i 2 X (i = 1; 2; 3). Hence, since
f(x; x; x) = F (x), we have

F (y) 2 F (x)+ (X�x)(x sinx+X1 sinx+X1X2 cosX3): (7.6.1)

The intervals X1; X2, and X3 each equal X. However, they must
be treated as independent because they represent bounds on the
separate quantities �i (i = 1; 2; 3). For example, we cannot write
X1X2 as X2.

If we simply use (7.2.4) to expand F , we obtain

F (X) � F (x) + (X � x)(2X sinX +X2 cosX) (7.6.2)

which produces a wider interval bounding F (X), in general. For
example, if X = [0; 1], and if we choose x = m(X) = 0:5, then (7.6.1)
yields F ([0; 1]) � [�0:7398; 0:9795] while (7.6.2) yields F ([0; 1]) �
[�1:2217; 1:4614]: The correct range of F over X = [0; 1] is [0; sin(1)]
which to four signi�cant digits is [0; 0:8415]:
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The extra accuracy is obtained at the cost of some extra work.
Note that (7.6.1) is somewhat more complicated than (7.6.2). For
more complicated functions, the extra work is greater.

This procedure was introduced and discussed in more detail by
Hansen (1978a). Alefeld (1981) showed that when F is a polynomial,
the same improved expansion can be obtained by more direct means.

Note that procedures such as this can never produce sharper
results than the use of monotonicity as described in Section 3.4.
For example, the function F (x) = x2 sinx discussed above is easily
shown to be monotonic over [0; 1] by evaluating its derivative over
this interval. Therefore, the method of Section 3.6 is applicable and
yields exact bounds on the range of F over [0; 1]:

7.7 EXPANSIONS USING SLOPES

Krawczyk and Neumaier (1985) described a systematic way to obtain
expansions similar to those discussed in Section 7.6. This is done by
use of slopes that we de�ne and discuss below. Their method is ap-
plicable for a rational function of a single variable. Neumaier (1989)
extended the procedure to the multidimensional case which we dis-
cuss in Section 7.9. The procedure has also been extended to the case
of irrational functions which we discuss in Section 7.8. See Rump
(1996). Ratz (1998) extended the use of slopes to nonsmooth func-
tions. See Section 7.11. Automatic evaluation of slope is discussed
in Section 7.12. Other similar expansions are mentioned in Section
7.13. Automatic evaluation of slopes is discussed in Section 7.12.
Other similar expansions are mentioned in 7.13.

We �rst discuss a function f of a single variable. We want an
expansion of the form

f(y) = f(x) + g(x; y)(y � x): (7.7.1)

This equation is an identity if

g(x; y) =
f(y)� f(x)
y � x : (7.7.2)
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Note that equation (7.7.1) is the same as Moore�s centered form
described in Section 3.3.The function g(x; y) is called the slope func-
tion. It is the slope of the chord joining the ordinates of f at x and
y. Its limit as y approaches x is the slope of the tangent to f at x.
That is, in the limit, the slope is the derivative f 0(x).

We can regard (7.7.1) as a factorization of f(y) � f(x): For ex-
ample, if f(x) = x2, then g(x; y) = y + x and (7.7.1) can be written
as

y2 � x2 = (y + x)(y � x)

Given an interval X, inclusion isotonicity of containment sets
(See Lemma 4.8.8) assures that

f(y) 2 f(x) + g(x;X)(y � x) (7.7.3)

for arbitrary x and all y 2 X. Therefore,

f(X) � f(x) + g(x;X)(X � x):

The right member does not generally provide sharp bounds on
f (X) despite the fact that it arises from the identity (7.7.1). To
illustrate this fact, let f(x) = x2: We obtain

X2 � x2 + (X + x)(X � x):

For X = [�1; 3] and x = 1; the left member is [0; 9], but the right
member is the wider interval [�7; 9]: Dependence has caused widen-
ing of the latter result.

If f is rational, we can analytically divide f(y) � f(x) by y � x
and obtain g(x; y) explicitly as we did above for f(x) = x2. When
f is not rational, we can sometimes obtain g(x;X) numerically. See
Section 7.8.

The relation (7.7.3) is a (�rst order) slope expansion. Compare
it with the corresponding Taylor form

f(y) 2 f(x) + f 0(X)(y � x); (7.7.4)
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which is valid provided both x and y are in X. However, in the slope
expansion (7.7.3), x need not be in X: When we do have x 2 X

and y 2 X; if follows that g(x;X) 2 f 0(X): Therefore, the slope
expansion provides at least as narrow a bound on f(y) for y 2 X as
does the Taylor expansion.

In e¤ect, some of the occurrences of the interval X in the ex-
pression of the derivative f 0(X) have been replaced in g(x;X) by
the degenerate interval x: Therefore, (7.7.3) generally produces a
narrower interval bound on f(y) than (7.7.4).

In Section 7.2, we noted that from (7.2.3) (which is the same as
(7.7.4)), the Taylor expansion gives the relation

f(X) � f(x) + f 0(X 0)(X � x)

where X 0 = X but that X 0 and X are independent intervals. In the
corresponding relation

f(X) � f(x) + g(x;X)(X � x)

from (7.7.3) for slopes, the interval X in g(x;X) and in the factor
X �x are identically the same. This is another advantage of a slope
expansion over a Taylor expansion because there is an opportunity
to analytically reduce multiple occurrences of the interval X:

When dependence does not cause widening, the interval value of
the slope expression f(x)+g(x;X)(X�x) provides sharp bounds on
the range of y for y 2 X. The corresponding Taylor expression f(x)+
f 0(X 0)(X �x) does not. However, dependence generally prevents us
from computing sharp results when evaluating the former expression.

For a small box, the (exact) slope expression generally yields
sharper bounds on f(X) than direct evaluation of f(X) because
f(x) is a good approximation to values of f for all x in the (small)
box. Therefore, loss of sharpness due to dependence occurs only in
g(x;X)(X � x) which is relatively smaller in magnitude than f(x):
Note that for rational functions, the slope form is the same as rewrit-
ing f in centered form.
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For the above example in which f(x) = x2, we have g(x;X) =
x + X: For X = [1; 2] and x = 2, we �nd g(x;X) = [3; 5]. For the
corresponding Taylor form, (7.7.4), we have f 0(X) = 2X = [2; 6],
which is a wider interval. Note that if we write f 0(x) as X+X, then
the function g(x;X) = x+X can be viewed as being obtained from
f 0(X) by replacing one occurrence of X by x. As a result, g(x;X)
is a narrower interval than f 0(X).

For any function, the wider the interval, the more the width
of f 0(X) exceeds that of g(x;X). If we let the width of the interval
approach zero asymptotically, the di¤erence between derivatives and
slopes disappears.

The slope of a composite function is easily obtained. Suppose
f(x) = v(u(x)).Then

g(x; y) =
v(u(y))� v(u(x))

y � x (7.7.5a)

=

�
v(u(y))� v(u(x))
u(y)� u(x)

��
u(y)� u(x)
y � x

�
: (7.7.5b)

Therefore, the slope of v(u(x)) is the product of two slopes. The
�rst factor is the slope of v with u(y) regarded as the variable and
u(x) regarded as the �xed point. The other factor is the slope of u.

We give an example illustrating the computation of the slope of
a composite function at the end of Section 7.8.

An extension of (7.7.5b) gives a chain rule for slopes similar to
that for derivatives. For example, if

f(x) = w(u(x); v(x));

then
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g(x; y) =
w(u(y); v(y))� w(u(x); v(x))

y � x

=

�
w(u(y); v(y))� w(u(x); v(y))

u(y)� u(x)

��
u(y)� u(x)
y � x

�
+

�
w(u(x); v(y))� w(u(x); v(x))

v(y)� v(x)

��
v(y)� v(x)
y � x

�
:

In the remaining chapters of this book, we discuss the use of
derivatives in solving optimization problems. We do so since deriv-
atives are more familiar than slopes. In practice, use slopes rather
than derivatives whenever possible.

Slope expansions have a useful aspect. The mean value theorem
does not hold for functions of a complex variable. Let z and w be
complex points in a box zI in the complex plane. There need not
exist a point � in zI such that

f(w) = f(z) + (w � z)f 0(�): (7.7.6)

Therefore, we cannot obtain the relation

f(w) 2 f(z) + (w � z)f 0(Z)

corresponding to (7.2.4) which holds for real variables.
However, the identity

f(w) = f(z) + (w � z)g(z; w)

where g(z; w) is a complex version of the slope yields

f(w) 2 f(z) + (w � z)g(z; zI)

for arbitrary z and any w 2 zI :
This enables us to derive an interval Newton method for �nding

complex zeros of a complex function. We do not do so; but the
derivation follows that for the real case in Section 11.2.
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7.8 SLOPES FOR IRRATIONAL FUNCTIONS

We have noted that for any rational function, f(x), we can analyti-
cally divide f(y)� f(x) by y � x. This can also be done for certain
algebraic functions. Note that, for f(x) = x

1
n (n = 2; 3; 4; � � � ) we

have

f(y)� f(x) = y � x
n�1P
k=0

x
k
n y

n�1�k
n

:

In particular, for n = 2, we obtain the slope of the square root

function. That is, if f(x) = x
1
2 , then

g(x; y) =
1

x
1
2 + y

1
2

:

However, such analytic division is not possible when f is a tran-
scendental function. Nevertheless, we can compute numerical values
of slopes for certain transcendental functions; and we can compute
bounds on slopes for others. What we need for a given function f
is to be able to compute a value, or at least, a bound, for the ratio

(i.e., the slope) f(y)�f(x)y�x over an interval.

Let x be �xed and consider g(x; y) as a function of y. Rump
(1996) (see also Ratz (1998)) proves that g(x; y) is a monotonic func-
tion of y if f(y) is convex or concave. His proof is as follows. Assume
that f(y) is continuously di¤erentiable. Then

@

@y
g(x; y) =

@

@y

�
f(y)� f(x)
y � x

�
=
(y � x)f 0(y)� f(y) + f(x)

(y � x)2 :

If f is convex, the numerator of this quotient is � 0. If f is concave,
it is � 0. That is, g(x; y) is a monotonically nondecreasing function
of y if f is convex, and is a monotonically nonincreasing function of
y if f is concave.
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If f is convex over an interval X, it follows that

g(x;X) =

�
f(X)� f(x)
X � x ;

f(X)� f(x)
X � x

�
(7.8.1)

and if f is concave,

g(x;X) =

�
f(X)� f(x)
X � x

;
f(X)� f(x)
X � x

�
: (7.8.2)

If x is an endpoint of X, then an endpoint of g(x;X) in these expres-
sions becomes an indeterminate form whose value is the derivative
f 0(x).

Even though x is real, the value of f(x) is an interval because
rounded interval arithmetic must be used to bound its value. This
must be taken into account when determining the slope. It is only a
slight complication.

If jX � xj or jX � xj is small, rounding errors can be large when
computing the slope using (7.8.1) or (7.8.2). When one or both
of these quantities become too small, it is best to use a derivative
rather than a slope when the slope is to be computed as a di¤erence
quotient.

Let " denote the smallest positive machine number such that
1 + " is represented as a machine number greater than 1 in the
number system used on the relevant computer. A standard rule when
computing di¤erence quotients as approximations for derivatives has

been to choose the di¤erence in variable values to be greater than "
1
2 :

Following this rule, we use a derivative rather than a slope (expressed

in terms of a di¤erence quotient) if jX � xj < " 12 of if jX � xj < " 12 :
Note that ex is a convex function of x: So is xn for n even or for

n odd if x � 0. Also, ln(x) is concave and so is xn when n is odd
and x � 0.

The slopes of some functions can be obtained because they are
compositions of other functions whose slopes are known. For ex-
ample, the inverse hyperbolic functions can be expressed in terms
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of square roots and the logarithm. An example is arcsinh(x) =

ln[x+ (x2 + 1)
1
2 ].

Use of monotonicity can also be used to reduce the e¤ort to obtain
the slope for the function f(x) = xn. Its slope can be expressed as

yn � xn
y � x =

n�1X
k=0

xkyn�1�k: (7.8.3)

It requires quite a bit of computing to evaluate this sum if n is large.
However, if n is even and x is an interior point of an interval X, then
the slope is

g(x;X) =

"
Xn � xn
X � x ;

X
n � xn

X � x

#
: (7.8.4)

This form requires less computing for n > 4.
It can be advantageous to use (7.8.3) rather than (7.8.4) because

the former can be manipulated analytically before numerical values
are inserted for evaluation. For example, consider the function

f(x) = x4 + 3x3 � 96x2 � 388x+ 480

which we consider again in Section 9.9. If we determine its slope
analytically using (7.8.4), we can collect terms and write the slope
as

g(x;X) = X3 + (x+ 3)X2 + (x2 + 3x� 96)X

+ x3 + 3x2 � 96x� 388:

Let X = [0; 4] and x = 2: Evaluating g(x;X) using Horner�s rule,
we obtain g(x;X) = [�904;�560]: If we use (7.8.4) to compute the
slope, we are not able to collect terms; and we obtain g(x;X) =
[�1043;�271]: this result is wider than the previous one by a factor
of approximately 2:2.
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Suppose that a given function f(x) is not convex or concave
over an interval X. But, suppose we can subdivide X into two
subintervals X1 and X2 such that X = X1 [X2 and f(x) is convex
for x 2 X1 and concave for x 2 X2. The slope of f(x) over X is

g(x;X) = g(x;X1) [ g(x;X2):

The intervals g(x;X1) and g(x;X2) can be determined using monotonic-
ity as described above. Therefore, we can determine g(x;X): Note
that x is arbitrary; but the same value must be used in computing
both g(x;X1) and g(x;X2).

This approach can be generalized by subdividing X into more
than two subintervals. This allows us to determine the slope of
functions such as sin(x).

Suppose we want the slope of a function over an interval X and
it contains a transcendental subfunction u(x) and we do not know its
slope gu(x;X). We can replace gu(x;X) by a derivative that bounds
the slope. However, the argument of the derivative must be chosen
correctly. Recall that for a slope, the �xed point x need not be in X.
The argument of the derivative that bounds the slope must contain
both x and X. Let X 0 be the smallest interval containing x and X:
Then gu(x;X) � d

dxu(X
0). Therefore, when computing the slope of

the original function, we can replace the slope of u(x) by d
dxu(X

0):

To illustrate the computation of the slope of an irrational com-
posite function, let us �nd the slope of f(x) = exp(x2 + x) over an
interval X. De�ne u(x) = x2+x and v(u) = eu. To obtain the slope
of u(x); we divide u(y)� u(x) by y � x and get x+ y + 1. Thus

gu(x;X) = x+X + 1: (7.8.5)

The exponential function is convex. Therefore, from (7.8.1),

gv[u(x); u(X)] =
eu(X) � eu(x)
u(X)� u(x) =

"
eu � eu(x)
u� u(x) ;

eu � eu(x)
u� u(x)

#
(7.8.6)

where u and u are the endpoints of u(X): That is, u(X) = [u; u]:
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For a general function u; we might not be able to determine u
and u sharply. However, we can compute bounds on u(X) by simply
evaluating u over X. The result might not be sharp because of
dependence. Therefore, the bounds on the slope of f might not be
sharp. If u is monotonic over X; this fact can be used to compute
u(X) sharply. See Section 3.6. Since we use the slope of u to obtain
an expression for the slope of f , we can also bound u(X) using the
slope expansion

u(X) � u(x) + gu(x;X)(X � x):

In our case, we can write u(X) = (X+ 1
2)
2� 1

4 and compute u(X)
sharply because X occurs only once in this expression for u(X): (See
Section 2.4.)

From (7.7.5b), the slope of f is

gf (x;X) = gv[u(x); u(X)]gu(x;X):

Therefore, (7.8.3) or (7.8.4) yield the desired slope of f:

7.9 MULTIDIMENSIONAL SLOPES

Multidimensional slopes can be obtained using the sequential expan-
sion procedure for derivatives discussed in Section 7.3. See Equations
(7.3.2) through (7.3.5). Consider the three dimensional case. If we
regard
f(y1; y2; y3) as a function of y3; then

f(y1; y2; y3) = f(y1; y2; x3) + (y3 � x3)g3(y1; y2;x3;y3)

where

g3(y1; y2;x3;y3) =
f(y1; y2; y3)� f(y1; y2; x3)

y3 � x3
:

We now expand f(y1; y2; x3) as a function of y2 and obtain

f(y1; y2; x3) = f(y1; x2; x3) + (y2 � x2)g2(y1;x2; y2;x3)
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where

g2(y1;x2; y2;x3) =
f(y1; y2; x3)� f(y1; x2; x3)

y2 � x2
:

Finally, we expand f(y1; x2; x3) as a function of x1 and obtain

f(y1; x2; x3) = f(x1; x2; x3) + (y1 � x1)g1(x1; y1;x2;x3)

where

g1(x1; y1;x2;x3) =
f(y1; x2; x3)� f(x1; x2; x3)

y1 � x1
:

Combining these results, we obtain

f(y1; y2; y3) =f(x1; x2; x3)

+ (y1 � x1)g1(x1; y1;x2;x3)

+ (y2 � x2)g2(y1;x2; y2;x3)

+ (y3 � x3)g3(y1; y2;x3;y3): (7.9.1)

Each of the functions g1; g2; and g3 are obtained using one-dimensional
expansions and hence can be computed or bounded as discussed
above.

The form of the expansion depends on the order in which the se-
quential expansion is done. Since (7.9.1) is an identity, any sequence
produces an analytically equivalent (and therefore cset-equivalent)
form. However, di¤erent forms can produce di¤erent numerical re-
sults because of di¤ering e¤ects from dependence.

In Section 7.3, we discuss two procedures for obtaining the Taylor
expansion of the product of two or more multidimensional function.
In one procedure, the expansion is done directly (see (7.3.10)). In
the other, it is obtained as the product of the expansions of the
individual functions (see (7.3.11)). This discussion applies equally
well for slope expansions. For the same reasons given in Section 7.3,
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we prefer to use a product of slope expansions rather than a slope
expansion of products.

Similarly, the slope expansion of a quotient of multidimensional
functions is obtained as the quotient of slope expansions. Compare
the above with (7.3.12).

Consider a vector function f(x). If we expand each component
of f in a form such as (7.9.1), we can combine the results in matrix
form as

f(y)� f(x) = G(x;y)(y � x)

where G(x;y) is the appropriate matrix. That is, we can generate
a slope expansion of a vector function.

Note that G(x;y) takes the place of the Jacobian in a Taylor
expansion. In Section 7.4, we discussed how to make the Jacobian
symmetric when f is the gradient of some function. Unfortunately,
the slope expansion does not seem to provide a means for making
G(x;y) symmetric.

Anticipating our discussion of solving systems of nonlinear equa-
tions in Chapter 11, we note the following. If y is a zero of f in a
box xI ; then f(y) = 0 and we can seek a solution y of f(y) = 0 by
solving

G(x;xI)(y � x) = �f(x):

See Chapter 11 for further discussion.

7.10 HIGHER ORDER SLOPES

We now consider how to obtain higher order slopes comparable to
higher order derivatives. We consider the one-dimensional case. As
we have seen, the �rst order expansion of f is

f(y) = f(x) + (y � x)g(x; y):

To obtain a second order expansion, we can expand g(x; y) to �rst
order. Thus, we want an expansion of the form

g(x; y) = g(x; x) + (y � x)h(x; y):
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The slope g(x; y) is de�ned to be f(y)�f(x)
y�x . Therefore,

g(x; x) = lim
y!x

f(y)� f(x)
y � x = f 0(x):

Therefore, the second order expansion is of the form

f(y) = f(x) + (y � x)f 0(x) + (y � x)2h(x; y):

That is, the slope g(x;y)�g(x;x)
y�x of g becomes

h(x; y) =
f(y)� f(x)� (y � x)f 0(x)

(y � x)2 :

For a rational function f , the numerator can be explicitly divided
by the denominator. For example, if f(x) = x4; then h(x; y) =
3x2+2xy+ y2. If g(x;X) is composed of functions for which we can
compute the slopes, then we can compute the second order slope
h(x;X). If g(x;X) is convex or concave, we can compute h(x;X) as
described in Section 7.8.

Note that slopes of arbitrarily high order can be obtained iter-
atively. If we have an expansion of order n, we need only expand
the highest order term to �rst order to obtain an expansion of order
n+1: This is how we obtained the second order expansion from the
�rst order expansion.

7.11 SLOPE EXPANSIONSOFNONSMOOTH
FUNCTIONS

In theory, slope bounds can be determined for any function f . What

is needed is a bound on the di¤erence quotient f(y)�f(x)y�x for arbitrary

but �xed x and all y in an arbitrary interval X. Such bounds can
be obtained for certain nonsmooth functions.

In Section 18.1, we show that the absolute value of a function
and the max of two functions can be replaced by smooth functions
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plus constraints. An alternative exists in which a slope expansion
is used for these functions. Kearfott (1996) provides the slopes of
these functions and also for the so-called if-then-else function de�ned
below. See also Ratz (1998), (1999).

Consider the absolute value function
f(x) = jxj:

We can determine the slope of this function for an interval X by
separately considering positive and negative values in X. We obtain

g(x;X) =

8>>>><>>>>:
[1; 1] if x � 0 and X � 0;
[�1;�1] if x � 0 and X � 0;h
jXj�x
X�x ; 1

i
if x � 0 and 0 2 X;h

�1; jXj�jxj
X�x

i
if x � 0 and 0 2 X:

Next consider the function

f(x) = maxfu(x); v(x)g:

For this function, we merely bound the slope. If u(x) � v(x) for all
x in an interval X, then f(x) = u(x) for x 2 X; and the slope of f
over X is the slope gu(x;X) of u. Similarly, if u(x) � v(x) for all
x 2 X, the slope of f over X is the slope gv(x;X) of v: Otherwise,
the slope of f for a given point in X must be either the slope of u or
of v for the point. Therefore, the slope for the point is in the union
of the slope of u and of v.

That is, the slope of f is contained in

g(x;X) =

8<:
gu(x;X) if u(x) � v(x) for all x 2 X;
gv(x;X) if u(x) � v(x) for all x 2 X;
gu(x;X) [ gv(x;X), otherwise.

The if-then-else function is de�ned to be

ite(u; v; z) =

�
u if z < 0;
v otherwise.
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Its slope can be bounded in a way similar to that for the maximum
function. We obtain

g(x;X) =

8<:
gu(x;X) if z < 0;
gv(x;X) if z � 0;
gu(x;X) [ gv(x;X), otherwise.

7.12 AUTOMATIC EVALUATIONOF SLOPES

To evaluate a rational function on a computer, we program a se-
quence of steps involving the four arithmetic operations of addition,
subtraction, multiplication, and division. Krawczyk and Neumaier
(1985) point out that we can automatically obtain the slope of the
function in the same way automatic di¤erentiation obtains the deriv-
ative of a functions. See Section 7.5.

If

fi(y) = fi(x) + gi(x; y)(y � x) (7.12.1)

for i = 1 and 2, then

f1(y)� f2(y) = f1(x)� f2(x) + [g1(x; y)� g2(x; y)](y � x):

Hence, if f = f1 � f2, then

f(y) = f(x) + g(x; y)(y � x)

provided

g(x; y) = g1(x; y)� g2(x; y): (7.12.2)

For multiplication, we have

f(y) = f1(y)f2(y)

= [f1(x) + g1(x; y)(y � x)]f2(y)

= f1(x)[f2(x) + g2(x; y)(y � x)] + g1(x; y)f2(y)(y � x):
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Hence,

g(x; y) = f1(x)g2(x; y) + g1(x; y)f2(y): (7.12.3)

Note that one of the functions f1 and f2 has argument x and the
other has argument y. If we interchange the roles of f1 and f2; we
obtain g (x; y) in a di¤erent form. Analytically, the two forms are
interchangeable, because they are containment-set equivalent (see
Chapter 4) algebraic rearrangements of one another. Nevertheless,
the e¤ect of dependence on the computed values might be di¤erent
for the two cases; so di¤erent results might be produced.

The slope of the quotient of two functions is unique and is given
in Table 7.2. Note that the table includes the slopes of the primi-
tives f = constant and f = x which are necessary for starting the
procedure for automatic evaluation of slopes.

f(x) g(x; y)

constant 0

x 1

f1(x)� f2(x) g1(x; y)� g2(x; y)
f1(x)f2(x) f1(y)g2(x; y) + f2(x)g1(x; y)

f1(x)
f2(x)

f2(x)g1(x;y)�f1(y)g2(x;y)
f2(x)f2(y)

Table 7.2: Slopes for the Basic Arithmetic Operations on Two Func-
tions.

Ideally, we want merely to program the evaluation of a function
and have code generated automatically to evaluate its slope. When
a slope cannot be determined, such a program can produce a bound
for the slope. Such a bound can be in the form of a derivative. The
approach is the same as for automatic di¤erentiation as described in
Section 7.5. It automatically yields numerical values of the slope.

In the multivariable case, special procedures are used to generate
the expansion of the product and quotient of functions. See Sections
7.3 and 7.5 for discussion of expansions using derivatives.
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Alternatively, the slope can be generated in a way similar to sym-
bolic di¤erentiation (see Section 7.5) using algebraic manipulation by
a program such as MACSYMA, Maple, Mathematica, or REDUCE.
It is then possible to express the slope function analytically to pro-
duce sharper numerical results by reducing dependence (see Section
2.4). Identi�cation and use of common subexpressions should be
included.

A simple example shows how such an analytic approach can yield
sharper results than the automatic procedure. Consider the function
f(x) = x2�x3 with X = [0; 1] and x = 0:5: The automatic procedure
using Table 7.2 produces numerical values as if the slope is computed
using

g(x; y) = (x+ y)� (x2 + xy + y2) (7.12.4)

with y replaced by X. This results in g(x;X) = [�1:25; 1:25]:
Suppose we obtain g(x; y) explicitly in the algebraic form given

by (7.12.4). We can rewrite g(x; y) as

g(x; y) =
1� 3x2
4

�
�
y � x� 1

2

�2
:

Evaluating g using this form, we produce the much better result
g(x;X) = [�0:5; 0:0625]. It can be shown that this is the best pos-
sible result. That is, it is the range of g(x; y) for y 2 X (when
x = 0:5).

Krawczyk and Neumaier point out that the computational e¤ort
to compute a slope of a function f using the rules in Table 7.2 in-
creases only linearly with the number of computational steps needed
to evaluate f . For rational functions, the computational complex-
ity is essentially the same as that for computing a gradient using
automatic di¤erentiation as discussed in Section 7.5.

Suppose that a given function is de�ned in terms of subfunctions
and that slopes can be determined for some of the subfunctions but
can only be bounded for others. We can expand such a function using
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slopes when possible and using derivatives otherwise. See Zuhe and
Wolfe (1990).

Suppose we wish to obtain an expansion using a method such
as the automatic procedure described earlier in this section or by
an analytic procedure. We begin as if we are able to obtain a slope
expansion. Suppose that at some stage, we require the slope of some
subfunction f(x) over an interval X, but it cannot be determined.
Assuming f is continuously di¤erentiable for all x 2 X; then

g(x; y) =
f(y)� f(x)
y � x 2 f 0(X)

for x 2 X and y 2 X: Therefore, we can replace the slope g(x;X)
by the derivative f 0(X) which bounds it.

When we generate a slope expansion over an interval X; the
point of expansion x need not be in X. If we want to replace g(x;X)
by a derivative, the derivative must be evaluated over an interval
containing both x and X.

The algorithms described in this book use expansions of �rst
or second order only. We have noted that second order expansions
can be obtained by generating a �rst order expansion of the slope.
However, second order expansions can be generated directly using a
similar automatic procedure.

To do so, we need expansions for a sum, di¤erence, product and
quotient. Let h(x; y) denote the second order slope; i.e., the slope of
the slope. Let

fi(y) = fi(x) + (y � x)f 0i(x) + (y � x)2hi(x; y) (i = 1; 2)

For addition or subtraction,

f(y) = f1(y)� f2(y)

= f1(x)� f2(x) + (y � x)
�
f 01(x)� f 02(x)

�
+ (y � x)2 [h1(x; y)� h2(x; y)] :
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For multiplication,

f(y) = f1(y)f2(y)

= f1(x)f2(x) + (y � x)
�
f1(y)f

0
2(x) + f

0
1(x)f2(x)

�
+(y � x)2

�
f 01(y)h2(x; y) + f2(x)h1(x; y)

�
:

For division,

f(y) =
f1(y)

f2(y)

=
f1(x)

f2(x)
+ (y � x)f

0
1(x)f2(x)� f1(x)f 02(x)

f2(x)f2(y)

+ (y � x)2 f2(x)h1(x; y)� f1(x)h2(x; y)
f2(x)f2(y)

:

7.13 EQUIVALENT EXPANSIONS

A salient feature of a slope expansion is that its analytic form for
a rational function is exact. Intervals enter only when terms are
bounded. In contrast, intervals enter into a Taylor expansion to
bound unknown derivative values. There are other types of expan-
sions which are equivalent to slope expansions (and to each other)
because they also use exact analytic expansions and then bound cer-
tain terms. The oldest of these is Moore�s (1966) centered form (see
Section 3.3) which generalizes in various ways (see Ratschek and
Rokne (1984)).

Another equivalent type of expansion is the generalized interval
arithmetic introduced by Hansen (1975). It has been used to speed
the process of solving nonlinear equations by interval methods. See
Hansen (1993).

Curiously, perhaps, these older methods did not become popular
as methods of expansion and slope expansions have become more
widely used. For this reason, we have discussed slopes rather than
other forms. Centered forms are not as easily automated and this



GLOBAL OPTIMIZATION 165

probably explains their limited use. However, generalized interval
arithmetic is as convenient to use as slopes. Generalized interval
arithmetic is very similar to slope expansions. Addition, subtraction
and division are identically the same. Multiplication di¤ers only in
that second order terms are incorporated into the zero-th order term
in generalized interval arithmetic and into the linear term in slope
expansions.
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Chapter 8

QUADRATIC
EQUATIONS AND
INEQUALITIES

8.1 INTRODUCTION

When solving systems of nonlinear equations and optimization prob-
lems, we frequently want to compute the real roots of a quadratic
equation in which the coe¢ cients are intervals. These roots might be
�nite intervals, semi-in�nite intervals, or the entire real line. A naive
procedure for determining the roots can be surprisingly complicated.
In this chapter, we describe a procedure due to Hansen and Walster
(2001) for computing such roots. We also discuss solving quadratic
inequalities. These procedures are useful elsewhere in this book.

Consider the quadratic equation

Ax2 +Bx+ C = 0 (8.1.1)

where A = [A;A]; B = [B; B]; and C = [C;C] are intervals. The
interval roots of (8.1.1) are the set of real roots x of the quadratic
equation ax2 + bx+ c = 0 for all real a 2 A, b 2 B, and c 2 C:
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We can express an interval enclosure for the roots as

r� 2 �B � (B
2 � 4AC)1=2
2A

: (8.1.2)

This interval enclosure is not sharp except in special cases described
below. This is because the intervals A and B occur more than once
in this expression and dependence causes loss of sharpness. It does
not help to use the algebraically equivalent enclosure:

r� 2 2C

�B � (B2 � 4AC)1=2

because B and C now occur twice.
Since x2 � 0; Ax2 = [Ax2; Ax2]: The term Bx in (8.1.1) can be

written

Bx =

�
[Bx;Bx] if x � 0;
[Bx;Bx] if x � 0:

Denote

F1(x) = Ax
2 +Bx+ C;

F2(x) = Ax
2 +Bx+ C;

F3(x) = Ax
2 +Bx+ C;

and

F4(x) = Ax
2 +Bx+ C:

We can rewrite (8.1.1) as [F1(x), F2(x)] = 0 when x � 0 and as
[F3(x), F4(x)] = 0 when x � 0: Denote

F (x) =

�
F1(x) if x � 0;
F3(x) if x � 0:

F (x) =

�
F2(x) if x � 0;
F4(x) if x � 0:

(8.1.3)
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Then the quadratic function

F (x) = Ax2 +Bx+ C

can be expressed as

F (x) = [F (x); F (x)]:

Suppose there exists a value of x such that

F (x) � 0 � F (x): (8.1.4)

Then there exists a 2 A, b 2 B, and c 2 C such that ax2+bx+c = 0
for this value of x: Given such a point x, let R be the largest interval
containing x such that every point in R also satis�es (8.1.4). We call
R an �interval root�of F (x):

In the noninterval case, there might be no real root, or there
might be only one (multiple root), or there might be two disjoint
roots. The same is true for the interval case. However, the interval
case di¤ers from the non-interval case in that there might be three
disjoint interval roots. In the latter case, one interval root extends
to �1 and another extends to +1: That is, it is really an exterior
interval. We can think of an exterior interval root as two interval
roots joined at projective in�nity to form a single interval.

We can simplify the process of determining the interval roots by
assuming that A > 0: If this is not the case, we need only change the
sign of F (x): This can fail only if A = 0 in which case the equation
is not quadratic.

A natural way to determine the interval roots is to �nd the set
of points where F (x) � 0 and the set of points where F (x) � 0 and
take the intersection of these two sets.

This is surprisingly tedious. We must separately consider the
cases B > 0; B < 0; and B < 0 > B and (independently) consider
the cases C > 0; C < 0 < C, and C < 0: Also we must consider
the cases A < 0, A = 0, and A > 0: There are 27 cases in all. For
each possible combination of these possibilities, there are multiple
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sub-cases to consider. Determining an interval root in this way re-
quires comparing the values of F (x) and F (x) at their extrema with
their values at x = 0 and determining the shape and orientation of
F (x) and F (x). For the case A < 0 and B < 0 < B; there are 11
sub-cases to consider. For other cases, there are 6 sub-cases.

In our optimization algorithms, we sometimes want to �nd the
solution set of the quadratic inequality

Ax2 +Bx+ C � 0 (8.1.5)

We can solve this relation by rewriting it as the equation

Ax2 +Bx+ C = [0;+1]

so that it becomes

Ax2 +Bx+ [�1; C] = 0:

This has the form of (8.1.1) and can be solved by the method that
we now describe.

8.2 A PROCEDURE

We wish to know where the lower and upper real functions de�n-
ing F (x) are zero. These functions are determined by Fi(x) (i =
1; 2; 3; 4). It is easily veri�ed that the upper function F (x) is convex.
If A > 0, then the lower function F (x) is also convex. If A < 0, the
lower function F (x) is concave for x � 0 and for x � 0; but it can
have a cusp at x = 0.

Let us compute the real roots of each of these real functions Fi(x)
(i = 1; 2; 3; 4) and place them in a list L. A double root is to be
entered twice. If A = 0; then F1 and F3 are linear and we have only
a single root. The roots are computed using interval arithmetic to
bound rounding errors. Thus, the entries in the list L are intervals.

Since we omit complex roots, it appears that these four func-
tions can have a total of 0 to 8 roots. However, these real roots are
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endpoints of the interval roots and there can be no more than three
interval roots. Therefore, the list L can contain no more than six
real roots.

The functions F1(x) and F2(x) de�ne bounds on F (x) only when
x � 0: Therefore, we drop any negative root of these functions from
the list L: Also, drop any negative part of the interval bounding such
a root. Similarly, drop any root (or part of root) of F3(x) or F4(x)
that is positive.

The intervals remaining in L bound values of x that are either
a lower or an upper endpoint of an interval root. We need only de-
termine which they are. Before doing so, it is convenient to put the
interval root endpoints �1 into L (if they occur).

We have assumed that A > 0: Therefore, F > 0 for all su¢ ciently
large jxj. If A > 0; then F (x) > 0 for all su¢ ciently large jxj.
Therefore, there is no interval root for �large� jxj: That is, if any
root exists, it must be �nite.

However, if A < 0, then F (x) < 0 for all su¢ ciently large jxj.
Therefore, an interval root exists whose lower endpoint is �1 and
an interval root exists whose upper endpoint is +1:

Similar arguments show that there exists an interval root whose
left endpoint is �1 if A = 0 and B > 0 or if A = 0 and B = 0 and
C � 0: Therefore, we put a value �1 into the list L if A < 0 or if
A = 0 and B > 0 or if A = 0 and B = 0 and C � 0: Similarly, we
put a value +1 into L if A < 0 or if A = 0 and B > 0 or if A = 0,
B = 0, and C � 0:

If L is empty, there are no interval roots. Otherwise, we name
the entries in L as Si = [Si; Si] where we have ordered them so that
Si � Si+1: Let si denote the exact root that is bounded by Si.

We want the computed interval roots to contain the exact interval
roots. To assure this, we replace si by Si if si is the lower endpoint
of an interval root and by Si if si is an upper endpoint.

A particular case requires attention. If C = 0, then F1(x) and
F3(x) are both zero at x = 0: However, this particular zero of F (x)
must be listed only once in L. Similarly, if C = 0; the zero at x = 0
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of F (x) must be listed only once.

In the next section, we list the steps to implement our procedure
for computing the interval roots. Before doing so, we note that there
are certain cases in which the roots can be computed more simply.

In some cases, the roots are monotonic functions of the coe¢ -
cients and hence are easily computed. This is true if AC � 0: It is
also true if AC � 0 provided either B � 0 or B � 0.

There are two cases in which we can compute an interval root by
directly using an interval version of equation (8.1.2). It can be shown
using the endpoint analysis of Section 3.5 that the interval roots

can be sharply computed as �B+(B
2�4AC)1=2
2A and 2C

�B+(B2�4AC)1=2 if

A � 0; B � 0, C � 0; and B2 � 4AC � 0: That is, dependency
does not cause loss of sharpness. They can be correctly computed

as �B�(B2�4AC)1=2
2A and 2C

�B�(B2�4AC)1=2 if A � 0; B � 0, C � 0;

and B2� 4AC � 0: In each of these two cases, the roots can also be
determined using monotonicity.

Roots for other special cases can be easily obtained. This is the
case if B = 0 or if C = 0:

Incidentally, the roots of a real quadratic ax2 + bx + c = 0 are
best computed as [�b�(b2�4ac)1=2]=(2a) and 2c=[�b�(b2�4ac)1=2]
if b > 0 and as [�b+(b2�4ac)1=2]=(2a) and 2c=[�b+(b2�4ac)1=2] if
b < 0. This well known procedure minimizes the e¤ect of rounding
errors. This procedure is also used in computing the real roots of
the quadratic equations Fi(x) = 0 (i = 1; 2; 3; 4) de�ned above.

Our method for computing roots of interval quadratics can also
be extended to compute the real interval roots of a polynomial of
any degree with interval coe¢ cients.

It is a simple process to determine the range of an interval quadratic
equation over an interval X. The real functions F (x) and F (x) are
the lower and upper functions of the interval quadratic. The lower
bound of F (x) and the upper bound of F (x) over X are easily found.
These bounds de�ne the range of the interval quadratic over X:
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8.3 THE STEPS OF THE ALGORITHM

Our procedure for computing interval roots can be implemented in
various ways. We have chosen the following steps.

1. Compute intervals containing the real roots of each of the real
functions Fi(x) (i = 1; 2; 3; 4): Put the results in a list L. A
double root is to be entered twice. If C = 0; both F1(x) and
F3(x) have a root at x = 0: This root is entered only once into
L. If C = 0, both F2(x) and F4(x) have a zero at x = 0: This
root is entered only once into L.

2. Put a value �1 into the list L if A < 0 or if A = 0 and B > 0
or if A = 0 and B = 0 and C � 0:

3. Put a value +1 into the list L if A < 0 or if A = 0 and B > 0
or if A = 0, B = 0, and C � 0:

4. Order the (interval) entries in L so that if they are named
Si, then Si � Si+1: Note that entries �1 can be regarded as
degenerate intervals.

5. Denote the number of entries in L by n: If n = 0, there are
no interval roots. If n = 2; there is one interval root [S1; S2]:
(Note that it might be [�1;+1]:) If n = 4; there are two
interval roots [S1; S2] and [S3; S4]: If n = 6, the interval roots
are [�1; S2]; [S3; S4], and [S5;+1]:
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Chapter 9

NONLINEAR
EQUATIONS OF ONE
VARIABLE

9.1 INTRODUCTION

Consider a continuously di¤erentiable scalar function f of a single
variable x. In this chapter, we consider the problem of �nding and
bounding all the zeros of f(x) = 0 in a given �nite, closed interval
X0. The only methods we consider are the interval Newton method
and the variation of it in which derivatives are replaced by slopes.

Various other interval methods for this problem have been pub-
lished including more general versions of the method we describe.
However, the simple version of the interval Newton method has so
many remarkable properties (see Section 9.6) and is so e¢ cient that
no other methods or variations are needed.

The quotation below points up the value of some of the properties
of the method. Section 2.1 of the excellent book by Dennis and
Schnabel (1983) is entitled �What is not possible�. As we shall see,
properties of the interval Newton method make this title erroneous.
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Dennis and Schnabel de�ne the functions

f1(x) = x
4 � 12x3 + 47x2 � 60x

f2(x) = f1(x) + 24

f3(x) = f1(x) + 24:1:

They state that �It would be wonderful if we had a general purpose
computer routine that would tell us: �The roots of f1(x) are 0; 3; 4;
and 5; the real roots of f2(x) are x = 1 and x �= 0:888; f3(x) has no
real roots��.

They continue: �It is unlikely that there will ever be such a
routine. In general the questions of existence and uniqueness � does
a given problem have a solution, and is it unique? � are beyond
the capabilities one can expect of algorithms that solve nonlinear
problems�.

As described in this chapter, the general purpose computer rou-
tine that Dennis and Schnabel say �would be wonderful� does, in
fact, exist. It was used by one of the authors to solve the prob-
lems listed. It produced precisely the information requested in the
above quotation, including answers to the questions of existence and
uniqueness.

We derive this �wonderful� algorithm in the next section and
give a version of it in Section 9.3. We now list some of its properties
in informal terms. The properties are proved formally as theorems
in Section 9.6

1. Every zero of f in an initial interval X0 is always found and
correctly bounded. See Theorems 9.6.2, 9.6.3, and 9.6.5 below.
Noninterval methods sometimes use explicit or implicit de�a-
tion to �nd all zeros of a function. No special de�ation steps
are required in the interval algorithm. The loss of accuracy
due to explicit de�ation has no counterpart here.

2. If there is no zero of f in X0, the algorithm automatically
proves this fact in a �nite number of iterations. See Theorems
9.6.4 and 9.6.5.
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3. The existence or nonexistence of a zero of f in a given interval
might (but might not) be automatically proved without extra
computing. See Theorems 9.6.4 and 9.6.8.

4. Assume the interval Newton method is applied to an interval
X. If 0 =2 f 0(X), at least half of X is eliminated in one step.
Thus, convergence can be reasonably rapid even when w(X) is
large. See Theorem 9.6.6.

5. If 0 =2 f 0(X): then, if the interval Newton method is applied it-
eratively beginning with X, the asymptotic rate of convergence
to a zero of f in X is quadratic. See Theorem 9.6.7.

After discussing stopping criteria in Section 9.4, we list the steps
of the algorithm in Section 9.5. We then state and prove several
theorems about the properties of the algorithm in Section 9.6 and
give a numerical example in Section 9.7. In Section 9.8, we describe a
variant of the method using the slope function (discussed in Section
7.7). An illustrative example of this variant is given in Section 9.9.
We close the chapter with a brief discussion of perturbed problems
in Section 9.10.

9.2 THE INTERVAL NEWTON METHOD

The interval Newton method was derived by Moore (1966) in the
following manner. From the mean value theorem

f(x)� f(x�) = (x� x�)f 0(�) (9.2.1)

where � is some point between x and x�. If x� is a zero of f , then
f(x�) = 0 and, from (9.2.1),

x� = x� f(x)

f 0(�)
:
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Let X be an interval containing both x and x�. Since � is between x
and x�, it follows that � 2 X: Therefore, f 0(�) 2 f 0(X) by Theorem
3.2.2. Hence, x� 2 N(x;X) where

N(x;X) = x�
f I(x)

f 0(X)
;

and we use f I(x) to denote the interval evaluation of f(x) to bound
rounding errors. Temporarily assume 0 =2 f 0(X) so that N(x;X) is
a �nite interval. Since any zero of f in X is also in N(x;X); it is in
the intersection X \N(x;X):

Using this fact, we de�ne an algorithm for �nding the zero x�.
Let X0 be an interval containing x�. For n = 0; 1; 2; � � � ; de�ne

xn = m(Xn)

N(xn; Xn) = xn �
f I(xn)

f 0(Xn)
(9.2.2)

Xn+1 = Xn \N(xn; Xn)

We call xn the point of expansion for the Newton method. It is not
necessary to choose xn to be the midpoint of Xn. We require only
that xn 2 Xn to assure that x� 2 N(xn; Xn) whenever x� 2 Xn.
However, it is convenient and e¢ cient to choose xn = m(Xn): Later
in this section, we discuss a useful result of this choice. In Section
9.3, we discuss a case in which the point of xn is an endpoint of Xn:

In his original derivation of the interval Newton method, Moore
(1966) assumed that 0 =2 f 0(X0). Alefeld (1968) and (independently,
but much later) Hansen (1978b) extended the algorithm to include
the case 0 2 f 0(X0). We consider this more general case in this
section.

If 0 =2 f 0(X0) then 0 =2 f 0(Xn) for all n = 1; 2; � � � : This follows
from inclusion isotonicity and the fact that Xn � X0 for all n =
1; 2; :::: However, if 0 2 f 0(X0); then evaluating N(x1; X1) requires
the use of extended interval arithmetic (see Chapter 4). If x� is a
multiple zero of f , then f 0(x�) = 0 and so 0 2 f 0(X) for any interval
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X containing x�. Even though N(xn; Xn) is not �nite in such a case,
the intersection Xn+1 = Xn \N(xn; Xn) is �nite.

When we evaluate f(xn); we use interval arithmetic to bound
rounding errors and denote this fact by a superscript �I�on f I(xn) =
[an; bn]: If 0 2 f I(xn), then xn is a zero of f or else is �near�to one
(if one exists). If 0 2 f I(xn) and 0 =2 f 0(Xn); a step of the interval
Newton method using the interval Xn might or might not yield a
smaller interval than Xn.

Now consider the cases 0 =2 f I(xn) and 0 2 f 0(Xn). Denote
f 0(Xn) = [cn; dn]: Using extended interval arithmetic, we obtain the
following results. Since 0 =2 f I(xn) = [an; bn], either an > 0 or bn < 0.
If an > 0, then

N(xn; Xn) =

8<:
[�1; qn] [ f+1g if cn = 0
[pn;+1] [ f�1g if dn = 0
[�1; qn] [ [pn;+1] if cn < 0 < dn

(9.2.3)

where

pn = xn �
an
cn

qn = xn �
an
dn
:

If bn < 0, then

N(xn; Xn) =

8<:
[q0n;+1] [ f�1g if cn = 0
[�1; p0n] [ f+1g if dn = 0
[�1; p0n] [ [q0n;+1] if cn < 0 < dn

(9.2.4)

where

p0n = xn �
bn
cn

q0n = xn �
bn
dn
:
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The intersection Xn+1 = Xn \ N(xn; Xn) might be a single in-
terval, the union of two intervals, or the empty set. Figure 9.2.1
illustrates the case of the union of two intervals. Points in Xn+1
are �nite (or nonexistent if Xn+1 is empty). Therefore, we do not
actually have to use unbounded intervals in the Newton method.

One more case remains. Let X denote the interval to which a
step of the Newton method is applied. Let the point of expansion x
be any point in X: If both 0 2 f I(x) and 0 2 f 0(X), then N(x;X) =
[�1;+1], a useless result.

This can occur when X is a narrow interval containing a mul-
tiple zero x� of f because, in this case, f(x�) = 0 and f 0(x�) = 0.
Therefore, f 0(X) must contain zero; and x must be near x� so it is
not unlikely that 0 2 f I(x).

But, it can happen that both 0 2 f I(x) and 0 2 f 0(X) when
X is wide and x accidentally is a zero or near a zero of f . A wide
interval X is likely to contain a stationary point of f; in which case
0 2 f 0(X). Since X is not a good bound for the zero of f in this
case, we must assure that we continue to narrow it. We discuss a
procedure for doing this in Section 9.4.

9.3 A PROCEDURE WHEN 0 =2 f 0(X).

In a particular case, we can get what is essentially the sharpest
possible (for the number system used) bounds on a zero of a function
without using traditional stopping criteria. In this section, we discuss
this special case and a procedure for it. In Section 9.4, we discuss
other criteria for terminating an interval algorithm for �nding and
bounding zeros of a function:

Assume we seek a zero of f(x) in an interval X and that 0 =2
f 0(X): The relation 0 =2 f 0(X) is the condition of interest in this
section. It assures that there is no more than one zero of f in X;
and if there is a zero of f in X, then it is a simple one. We use the
fact that inclusion isotonicity assures that 0 =2 f 0(X 0) for any interval
X 0 contained in X.
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We now discuss a related topic. As previously noted, when we
compute f(x) using outwardly rounded arithmetic, we obtain an
interval result that we denote by f I(x): Let x� be a zero of f . Then
0 2 f I(x�): Because of rounding errors, it is generally true that
0 2 f I(x) for a set of values of x near x�. We de�ne the interval X�

to be the largest interval containing x� such that 0 2 f I(x) for every
machine number x 2 X�. The function f can depend on interval
parameters. This can cause widening of X�

We are satis�ed if our algorithm produces an interval approxi-
mating X� as the �nal bound on x�. Actually, we can often compute
a better bound on x� than X�. This is because the Newton step uses
information about both f and f 0 rather than just f . However, we
discuss termination as if X� is the desired bound on x�. We refer to
X� as the �optimal bound�on x�:

We now return to our discussion of the special case in which
0 =2 f 0(X): Assume this is the case and that we seek a zero of f in
an interval X: Suppose we apply an interval Newton method that
is derived (as in Section 9.2) by expanding about the midpoint x =

m(X) of X. We compute N(x;X) = x� f I(x)
f 0(X) and we then determine

a new bound X \N(x;X) on the zero:
We write f I(x) in place of f(x) to emphasize that N(x;X) now

denotes the computed value of the theoretical function rather than
the function itself. It is common practice to omit such notation.

From Theorem 9.6.6 below, if 0 =2 f I(x), then w(X 0) � 1
2
w(X):

That is, convergence is adequately rapid as long as 0 =2 f I(x): There-
fore, we iterate the Newton step. Asymptotically, convergence will
be quadratic. See Theorem 9.6.7. Eventually, either a result is empty
or else 0 2 f I(x) for the current point x.

Assume that 0 2 f I(x). Then it is likely that x is in the opti-
mal bound X� for a zero x� of f . We wish either to compute an
approximation for X� or else to prove that there is no zero of f in
X.

Denote the point x for which we �rst satisfy the condition 0 2
f I(x) by ex. Suppose we have performed the Newton step when 0 2
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f I(ex). Assume (as is generally the case) that we have used a Newton
method that is de�ned using an expansion about the center of the
current interval. We now change to the following procedure in which
a Newton step is sometimes computed by expanding f about an
endpoint of the current interval and sometimes about its center. We
denote the current interval by X = [a; b] even though it changes in
various steps of the procedure. The point ex does not change.

We expand about the endpoint x = a only if 0 =2 f I(a) We set a
�ag Fa when 0 2 f I(a). Similarly, we set a �ag Fb when 0 2 f I(b):
We begin with �ag Fa = 0 and �ag Fb = 0:

We cycle through the procedure no more than four times. The
integer n counts the cycles.

0. Set n = 0:

1. If �ag Fa = 1 go to step 4.

2. Evaluate f(a): If 0 2 f I(a), set �ag Fa = 1 and go to step 4.

3. Apply a Newton step in which the point of expansion is a. If
the result is empty, stop.

4. If �ag Fb = 1, go to step 7.

5. Evaluate f(b): If 0 2 f I(b), set �ag Fb = 1 and go to step 7.

6. Apply a Newton step. If ex 2 X; then use b as the point of
expansion. Otherwise, expand about the midpoint m(X) : If
the result is empty, stop.

7. If �ag Fa = 1 and �ag Fb = 1, stop.

8. Apply a Newton step in which the point of expansion is m(X) :
If the result is empty, stop.

9. Replace n by n+ 1:

10. If n < 4, go to step 1. Otherwise, stop.
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The procedure might stop when n < 4: Instead of stopping when
n = 4; we can continue iterating until no further reduction of the
interval occurs. However, this might entail an excessive number of
iterations with little reduction in the width of the interval bounding
the zero.

This procedure stops when the evaluation of f at each endpoint
produces an interval containing zero. It also stops if a Newton step
results in an empty interval. The �nal interval can be narrower than
the optimal bound X�.

This procedure begins only after a Newton step has been applied
in which the point of expansion is a point ex such that 0 2 f I(ex)
and 0 2 f 0(X): When this is true, the result of this Newton step
is generally a narrow interval. Therefore, the procedure can stop in
one or two iterations. However, suppose an endpoint of f 0(X) is near
zero for the interval X used when the procedure begins. Then more
iterations might be required.

The point ex is de�ned when ex = m(X); 0 2 f(ex); and 0 =2 f 0(X):
The Newton step when this is the case will usually prove existence
of a simple zero of f in X. See Theorem 9.6.8 below. This zero will
be contained in the �nal interval produced by the above steps. See
Theorem 9.6.1 below. Even if such proof is not obtained, it is very
likely that the �nal interval contains a zero. A possible but unlikely
alternative is that there is a zero of f in an interval abutting X but
not in X itself. Such a zero is bounded by the algorithm in Section
9.5.

Suppose 0 2 f 0(X) for some interval X: If we know that X con-
tains a single multiple zero of f , we can use the above procedure
to compute an optimal bound. However, if X contains two or more
distinct zeros, the procedure only returns an approximation for the
smallest interval containing all of them. We therefore do not use the
procedure when 0 2 f 0(X):
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9.4 STOPPING CRITERIA

Criteria for stopping iteration of an interval Newton method must
assure that iteration is continued until an interval bound on a zero
of f is su¢ ciently narrow. Also, the criteria should avoid needless
iteration. We discuss these issues in this section. Throughout this
section, we assume 0 2 f 0(X) for any interval X that is a candidate
for a �nal bound on a zero of f . Otherwise, we use the stopping
procedure of Section 9.3.

A simple criterion is to terminate when the width w(X) of the
current interval X is small. However, this can create a di¢ culty.
Consider a hypothetical computer that uses three signi�cant decimal
digits in its arithmetic. Suppose we require w(X) < 0:001 for any
�nal interval. We consider two examples using this criterion on such
a computer.

Example 9.4.1 Suppose the solution is x� = 123:4 and we compute
the interval X = [123; 124] bounding it. In the number system used,
there is no narrower interval that bounds the solution. We have
the best possible result. However, the termination criterion w(X) <
0:001 is not satis�ed because w(X) = 1:

Example 9.4.2 Suppose the solution is x� = 0:000123 and we com-
pute the interval X = [�0:0004; 0:0004]: This interval satis�es the
termination criterion. However, we do not even know the sign of
the solution bounded by X.

The di¢ culty in Example 9.4.1 can be overcome by using a rel-
ative rather than an absolute error criterion. That is, instead of re-

quiring that w(X) < " for some " > 0, we can require that w(X)jXj < "

where jXj is the magnitude of X as de�ned in Section 3.1.
Suppose 0 2 X: It is easily seen that in this case, jXj � w(X) �

2jXj so w(X)jXj � 1: If our termination criterion is
w(X)
jXj < " with " � 1,

then the criterion can never be satis�ed by any interval containing
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zero. Therefore, when 0 2 X, the di¢ culty in Example 9.4.2 is not
resolved by using a relative criterion.

Suppose that 0 2 X. We can use the point x = 0 as the point
of expansion for a Newton step. When we evaluate f(0) using out-
wardly rounded interval arithmetic, we obtain a result f I(0): If 0 =2
f I(0); then the point x = 0 is not in the Newton result N(0; X) and
can no longer be in the region of search. Therefore, we can rely upon
the relative criterion for subsequent Newton steps.

It is reasonable to expand about x = 0 when 0 2 X; but we
do not do so. It might very well happen that only a small interval
about x = 0 is eliminated. In this case, the di¢ culty concerned with
relative error still occurs. If 0 =2 f I(0), the point x = 0 is likely to be
eliminated by the Newton method without a special procedure. We
consider the case 0 2 f I(0) later in this section.

We now consider the criteria we use to decide when to stop trying
to reduce an interval bound on a solution. We have already men-
tioned the relative error criterion. We express it formally as follows.

Criterion 9.4.3 w(X)
jXj < "X for some given "X > 0:

It is reasonable to require that jf(x)j be small for every x in an
interval X accepted as a �nal bound on a solution. Therefore, we
consider the following criterion for termination.

Criterion 9.4.4 jf(X)j < "f for some given "f > 0.

Note that this criterion is in absolute rather than relative form be-
cause it is used when 0 2 f(X).

If both criteria are satis�ed, we regard the interval X as an ade-
quate bound on a zero. If desired, a user can choose either "X or "f
to be large so stopping is caused by only one criterion.

Consider an interval X that contains a multiple zero of f . Then
0 2 f 0(X): Suppose 0 2 f I(x). To apply a Newton step, we must
compute f I(x)

f 0(X) . Since zero is contained in both the numerator and

denominator, the computed quotient is [�1;+1]. Therefore, the
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Newton step does not improve the bound X for the zero of f: If Cri-
teria 9.4.3 and 9.4.4 are so stringent that X is not accepted as a �nal
bound, the Newton algorithm splits the interval. This step could be
repeated so that the optimal bound (as de�ned in Section 9.3) for the
zero is eventually covered by a large number of subintervals. This
would be wasted e¤ort. Thus, we need a stopping criterion that can
override Criteria 9.4.3 and 9.4.4 when 0 2 f I(x) and 0 2 f 0(X):

On the other hand, X might be a wide interval and thus a poor
bound on a zero. We must assure that we do not override Criteria
9.4.3 and 9.4.4 in this case.

Let x 2 X be the point of expansion for the Newton step. Sup-
pose that 0 =2 f I(x) Suppose, also, that either Criterion 9.4.3 or
Criterion 9.4.4 (or both) is not satis�ed. Then we can say that the
tolerances are not too small because there is at least one point x in
X where 0 =2 f I(x): Therefore, we require that 0 2 f I(x) before we
override Criteria 9.4.3 and 9.4.4: Note that it is possible that x = 0.
This is the case we mentioned earlier in this section when discussing
relative error criteria.

Now suppose that both 0 2 f I(x) and 0 2 f 0(X): This can occur
when X is either wide or narrow. It can occur when X is narrow
and contains a multiple zero of f . If X is wide, it might contain a
zero of f 0; and the center x of X might accidentally be at or near
a zero of f . In the latter case, we wish to reduce the width of the
bound X. In either case, we wish to assure that the �nal bound on
the zero approximates the optimal bound de�ned in Section 9.3.

Assume we are applying the interval Newton method in Section
9.5. Assume that when it is applied to a particular interval X =
[a; b], we �nd that 0 2 f I(x) and 0 2 f 0(X): In this case, we use
the following sub-procedure and then return to the main Newton
algorithm.

The sub-procedure does one of three things. Steps 1 and 2 select
a point of expansion for the Newton step. Step 3 decides whether an
interval should be split. Step 4 decides when to accept an interval
as a solution.

1. Evaluate f at the lower endpoint a of X: If 0 =2 f I(a); select
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the point x = a as the point of expansion for the Newton step;
and return to the main algorithm.

2. Evaluate f at the upper endpoint b of X. If 0 =2 f I(b), select
the point x = b as the point of expansion for the Newton step:
and return to the main algorithm.

3. Denote x1 = 1
4 (3a+ b) and x2 =

1
4 (a+ 3b) : If 0 =2 f

I(x1) or
0 =2 f I(x2), split X in half and record the information that
the interval X is to be split in half. Then return to the main
algorithm. (Note that x1 and x2 are the centers of the two
halves of X.)

4. Accept X as a �nal bound on a zero of f ; and return to the
main algorithm.

Note that X is accepted as a �nal bound in step 4 only if the
computed (interval) value of f contains zero for each of the �ve
equally spaced points m(X); a, b, x1, and x2. It is possible that X is
a wide interval and each of these points is at or near a separate zero
of f: However, we ignore this very unlikely possibility. Examination
of output should reveal this case.

Use of higher precision interval arithmetic can help resolve the
uncertainty when 0 2 f I(x) and 0 2 f 0(X). It is possible to always
determine the optimal bound for a zero as de�ned in Section 9.3.
This can be done using bisection in conjunction with the interval
Newton method.

Our overall stopping criterion is now as follows: If 0 =2 f 0(X);
we use the procedure in Section 9.3 which has its own method of
stopping. If 0 2 f 0(X) and 0 2 f I(x), we use the above procedure
when Criterion 9.4.3 or 9.4.4 is not satis�ed.

If 0 =2 f 0(X), the procedure in Section 9.3 always continues until
a suitable bound is obtained (or nonexistence of a zero of f in X
is proved). If 0 =2 f I(x), a Newton step can always make progress
because the point x is not in the Newton result. If 0 2 f 0(X) and
0 2 f I(x), a Newton step does not reduce X:
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Note that we can set the tolerances "X and "f equal to zero. In
this case, a �nal condition before an interval is accepted as a �nal
bound is that 0 2 f I(x): In this case, Criteria 9.4.3 and 9.4.4 cannot
be satis�ed. Earlier, we mentioned the case in which x = 0 is a
zero of f . Recall that Criterion 9.4.3 cannot be satis�ed in this case
if 0 2 X and "X < 1: This situation can also occur if a zero of f
occurs near x = 0: No di¢ culty occurs if one or both criteria cannot
be satis�ed. Our algorithm in Section 9.5 assures that, in this case,
termination occurs using either the procedure in Section 9.3 or the
above procedure in this section.

Earlier in this section, we noted the possible di¢ culties in using
an absolute error criterion for stopping an interval Newton method.
However, a user might prefer such a criterion. It can replace Crite-
rion 9.4.3 or be used in addition.

9.5 THE ALGORITHM STEPS

We now describe the steps of our interval Newton algorithm.
It is about as simple as an interval Newton method can be if it is

to possess the desired convergence behavior. It is easily programmed.
In Section 10.16, we describe a somewhat more complicated, but
more e¢ cient interval method for solving a nonlinear equation. It
adds a procedure introduced in Section 10.3 to the interval Newton
method to form a combined algorithm.

In both algorithms we assume that an initial interval X0 and
stopping tolerances "X and "f are given. The algorithm stops when
interval bounds for all zeros of f in X0 have been found.

After termination, the bounds on any simple zero generally ap-
proximate the optimal bound as de�ned in Section 9.3. If the tol-
erances "X and "f (see Section 9.4) are not chosen too small, then
each multiple zero of f in X0 is generally isolated within an interval
of relative width less than "X : Also, we generally have jf(x)j < "f
for all points x in an interval bounding a multiple zero. When this
condition is veri�ed by the algorithm, it can be recorded for output.

Note that we can set "X = "f = 0: In this case, the algorithm
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generally �nds the best possible solution(s) possible for the number
system used on the computer.

In the following algorithm, the current interval is denoted by X
at each step although it changes from step to step. Also x denotes
m(X) so x changes as well. Except when using the procedure in
Section 9.3 (see step 4 below) and Section 9.4 (see step 7 below), the
Newton step is de�ned by an expansion about x:

The following steps are performed in the order given except as
indicated by branching:

1. Put the initial interval X0 into a list L of intervals to be
processed.

2. If the list L is empty, stop. Otherwise, select the interval from
L that has been in L for the shortest time. Denote the interval
by X: Delete X from L.

3. If 0 2 f 0(X), go to step 5:

4. Iterate the Newton method until either the result is empty
or else 0 2 f (m(X)) :In the latter case, apply the procedure
described in Section 9.3. If the result is empty, go to step
2. Otherwise record the solution interval that the procedure
produces and go to step 2.

5. If 0 2 f I(x), go to step 7.

6. If w(X)jXj < "X and w (f (X)) < "f , record X as a �nal bound

and go to step 2. Otherwise, go to step 8.

7. Use the procedure listed in Section 9.4. If that procedure pre-
scribes a point of expansion record it; and go to step 8. If it
decides that the interval X should be accepted as a solution,
record X and go to step 2. If it prescribes that the interval is
to be split in half, put the halves in the list L and go to step
2.
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8. Apply a Newton step as given by (9.2.2) using the interval
X. If a point of expansion was prescribed in step 7, use it in
determining the expansion de�ning the Newton method. If the
result is empty, go to step 2. If the result is a single interval,
go to step 9. If the result is two intervals, put them is list L
and go to step 2.

9. If the Newton step reduced the width of the interval by at least
half, go to step 3.

10. Split the current interval in half. Put one half in list L. Des-
ignate the other half as the current interval and go to step
3.

When the algorithm stops (see step 2), each zero of f in X0 is in
one of the intervals recorded in step 4, step 6, or step 7. Intervals
might have been recorded that do not contain a zero of f . However,
every zero in X0 is in one of the output intervals. As noted in Section
9.3, the algorithm might prove the existence (using Theorem 9.6.8
below) of a zero of f in a recorded interval.

In step 2, we process the interval that has been in the list L
for the shortest time. This tends to keep the list L short and con-
serve memory. This choice of interval is easily implemented using a
stack. An alternative choice that keeps the list short is to choose the
narrowest interval in L. Our choice tends to do this.

In the next chapter, we discuss a procedure that we have called
�hull consistency�. Before the above Newton method is used, hull
consistency is applied. This can reduce the region of search for zeros
of f .

The interval X0 to which an interval Newton method is applied
generally contains more than one zero of f . Steps 7 and 10 split the
current interval and serve to separate di¤erent zeros into di¤erent
intervals. This enables rapid convergence to each zero separately.
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9.6 PROPERTIES OF THE ALGORITHM

The interval Newton method is a truly remarkable algorithm when
compared to its noninterval counterparts. In this section, we present
eight theorems that illustrate its reliability, e¢ ciency, and other
properties. For these theorems, we assume exact interval arithmetic
is used. Relevant comments are included for the case in which prac-
tical rounded arithmetic is used.

We begin with a theorem due to Moore (1966).

Theorem 9.6.1 If there exists a zero x� of f in Xn, then x� is also
in the interval N(xn; Xn) given by (9.2.2).

The conclusion of this theorem is a motivating idea in the deriva-
tion of the interval Newton method. An examination of the deriva-
tion of the algorithm in Section 9.2, reveals that the theorem is
correct.

In practice, when rounding occurs, we calculate an interval (or in-
tervals) containing N(xn; Xn). Hence, even with rounding, we never
�lose� a zero. That is, the theorem is true even when rounding is
present.

Theorem 9.6.2 Let an initial interval X0 be given and assume that
f and f 0 have a �nite number of zeros in X0. Denote the intervals

in the list L at the i-th stage by X(i)
j (j = 1; � � � ; Ni) where Ni is the

number of intervals in L at stage i. Assume that at the i-th stage,
a step of the interval Newton method is applied to the interval of
greatest width in L. Then for arbitrary " > 0, and all su¢ ciently
large i, we have wi < " where

wi =

NiX
j=1

w(X
(i)
j ):

Note that in Theorem 9.6.2, we assume that the algorithm is
applied to the widest interval in the list L. In practice, we generally
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apply the algorithm to the narrowest interval because this tends to
minimize the number of intervals in L and conserves storage. Since
the practical algorithm stops iterating on an interval while it is still
�nite in width, this does not a¤ect the convergence argument. The
amount of work is the same if the intervals are chosen from L in
arbitrary order

In e¤ect, this theorem says that the interval Newton algorithm al-
ways converges. The theorem is proved in Hansen (1978b). Note that
with exact interval arithmetic, the interval f I(x) obtained from eval-
uating f(x) is the degenerate interval [f(x); f(x)]: Hence, if f(x) = 0
then x is a zero of f . Thus the di¢ culty that occurs in the practical

algorithm (i.e., with rounding) when zero is in both f I(x) and f 0(X _)
cannot occur with exact arithmetic. This simpli�es the theorem�s
proof.

In the practical case, we can generally achieve �convergence�to
the accuracy permitted by rounding. In Section 9.3, we discussed
how to compute the optimal bound when 0 =2 f 0(X): When 0 2
f 0(X); this procedure can be added on after the algorithm in Section
9.5 terminates. Thus, we can compute an approximation for the
optimal bound.

Theorem 9.6.3 Every discrete zero of f in X0 is isolated and bounded
to arbitrary accuracy.

Proof. From Theorem 9.6.1, no zero of f in X0 can be �lost�.
From Theorem 9.6.2, the bounds become arbitrarily sharp. Thus,
the theorem follows.

In practice, discrete zeros are isolated only if the number system
provides the needed accuracy. The sharpness of the �nal bounds also
depends on the accuracy of the number system used.

If there is no zero of f in X0, this fact is proved by the algorithm.
Theorem 9.6.4 to follow, shows how this occurs. Theorem 9.6.5 shows
that it occurs within a �nitely bounded number of iterations.

Theorem 9.6.4 (Moore, 1966) If X \N(x;X) is empty, then there
is no zero of f in X:
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Proof. If there is a zero of f in X, then it is also in N(x;X) by
Theorem 9.6.1. Since X \N(x;X) is empty, there is no zero of f in
X.

If rounding occurs, we compute an interval, say N0(x;X) contain-
ing N(x;X): If X \ N0(x;X) is empty, then X \ N(x;X) is empty.
Therefore, the theorem is applicable even when rounding occurs.

Theorem 9.6.5 Assume jf(x)j � � > 0 for all x 2 X0 and jf 0(X0)j �
M for some positive number M . Then X0 is entirely eliminated in
m steps of the algorithm of Section 9.5 where

m � M w(X0)

2�
(9.6.1)

This theorem, proved in Hansen (1978b), says that if there is no
zero of f in X0, then this fact is proved in no more than m steps
where m is bounded as in (9.6.1).

Suppose rounded interval arithmetic is used and that the con-
ditions of this theorem on f(x) and f 0(X0) hold for the rounded
values. Then X0 is still eliminated in a �nite number of steps. How-
ever, (9.6.1) might not be a correct bound.

Theorem 9.6.6 Assume 0 =2 f 0(XN ) for some integer N . If f is
a thin function (see Section 3.8), then w(Xn+1) � 1

2
w(Xn) for all

n � N . If f is a thick function, then w(Xn+1) � 1
2
w(Xn) for any n

for which 0 =2 f(xn) and 0 =2 f 0(Xn):

Proof. If f is a thick function and 0 =2 f(xn) and 0 =2 f 0(Xn),
then f(xn)=f 0(Xn) is either positive or negative. Therefore, N(xn; Xn) <
xn or N(xn; Xn) > xn. Since xn is the midpoint of Xn, at least half
of xn is eliminated.

If f is a thin function, the same argument holds even if f(xn) = 0.
Moreover, Xn � XN for n � N . Therefore, by inclusion isotonicity,
f 0(Xn) � f 0(XN ) so 0 =2 f 0(Xn) for all n � N . Hence, the theorem
follows.
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Note that when f is a thin function, rounding, in e¤ect, turns it
into a thick function. To invoke the theorem in the rounded case, we
need only assume that the interval obtained when computing f(xn)
does not contain zero.

If 0 2 f 0(Xn), convergence is not as rapid. From (9.2.3) and
(9.2.4), we see that Xn+1 might be a single interval, the union of two
intervals with a gap between them, or the empty set. In each case,
we have made progress in reducing the region of search for a zero of
f .

Using (9.2.3) and (9.2.4), it can be easily shown that xn =2 Xn+1.
Therefore, if Xn is a single interval, then w(Xn+1) � 1

2
w(Xn). That

is, substantial progress is made.
Suppose Xn is the union of two intervals and that xn = m(Xn).

This midpoint xn is not in N(xn; Xn). Therefore, each of the two
subintervals generated in the n-th step is of width less than 1

2
w(Xn):

It might happen that Xn+1 = Xn when 0 2 f 0n(Xn). That is, the
Newton step makes no progress. In this case, we split Xn in half.
(See step 10 of the algorithm in Section 9.5.). Thus, in all cases,
any new interval generated for use in a later Newton step has width
less than or equal to half the width of the interval from which it is
computed. This helps assure convergence as guaranteed by Theorem
9.6.2.

Theorem 9.6.7 If 0 =2 f 0(Xn); then there exists a constant C such
that w(Xn+1) = C[w(Xn)]2.

This well-known theorem was �rst proved by Moore (1966) (see
also Alefeld and Herzberger (1983)). The theorem states that if
0 =2 f 0(Xn); then convergence is rapid asymptotically (i.e., quadratic)
while Theorem 9.6.6 says that the rate can be reasonably fast (i.e.,
geometric) even for wide intervals.

Theorem 9.6.8 Let X be a �nite interval. If N(x;X) � X, there
exists a simple zero of f in N(x;X).
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This theorem was �rst proved by Hansen (1969a). His proof is
for the case in which f is a thin function (as de�ned in Section 3.8).
The proof contained herein follows as a special case of Theorem 9.6.9
below.

Note that evaluation of N(x;X) = x � f(x)=f 0(X) involves di-
vision by f 0(X): If 0 2 f 0(X); then N(x;X) is not �nite and the
hypothesis N(x;X) � X of the theorem cannot be satis�ed. If X
contains a multiple zero or more than one isolated zero of f; then
0 2 f 0(X). Therefore, Theorem 9.6.8 can prove existence of simple
zeros only.

Theorem 9.6.9 below is a generalization of Theorem 9.6.8. It
is particularly useful in practice because it holds when f is a thick
function (as de�ned in Section 3.8).

Let f depend on an interval parameter C. to emphasize this
dependence, we rewrite f(x) as f(x;C) and f 0(X) as f 0(X;C). As-
sume that f(X;C) is a continuously di¤erential function of x for
each c 2 C: The function N(x;X) becomes

N(x;X;C) = x�
f(x;C)

f 0(X;C)

To account for the parameter C, we rewrite Theorem 9.6.8 as follows:

Theorem 9.6.9 Let X be a �nite interval. If N(x;X;C) � X, then
there exists a simple zero of f(x; c) in X for each real c 2 C:

This theorem (and the proof that follows) holds equally well when
C is a vector of more than one interval parameter. We assume that
C is a single parameter merely to simplify exposition.

Proof. We develop a proof by showing that f(x; c) changes sign
in X for each c 2 C:

Let c be a point in C and let x and y be points in X: From the
mean value theorem, for each c 2 C,

f(y; c) = f(x; c) + (y � x)f 0(�(c); c)
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for some �(c) between x and y. Since x and y are in X; it follows
that �(c) 2 X. Therefore,

f(y; c) 2 f(x; c) + (y � x)f 0(X; c) (9.6.2)

for each c 2 C.
Note that if 0 2 f 0(X; c), then N(x;X;C) is not �nite. Hence,

the hypothesis N(x;X;C) � X of the theorem can be true only if
0 =2 f 0(X;C) since X is �nite. Note that the condition 0 =2 f 0(X;C)
implies that any zero of f(x; c) in X must be simple for each c 2 C.

Denote f 0(X;C) = [p; q]: Then 0 =2 [p; q]: Since we can change
the sign of both f and f 0 without changing the algorithm, there is
no loss of generality in assuming f 0(X;C) > 0: Therefore, we assume
that p > 0:

Since C is a nondegenerate interval, so is f(x;C) even though
x is degenerate. Denote f(x;C) = [f(x;C); f(x;C)]: Also, denote

X = [X;X] and N(x;X;C) = [N(x;X;C); N(x;X;C)]:
We show that f(X; c) � 0 and f(X; c) � 0 for each c 2 C; which

implies that f(x; c) has a zero in X for each c 2 C. Note that the
assumption p > 0 implies that f(x; c) is monotonically increasing in
X for each c 2 C. Hence, if f(x;C) < 0, then f(X;C) < 0: That is,
f(X; c) < 0 for each c 2 C; as we wished to show.

Now consider the case f(x;C) � 0. In this case, the lower end-
point of N(x;X;C) is

N(x;X;C) = x� f(x;C)
p

By assumption, N(x;X;C) � X. Therefore, the left endpoint X of
X satis�es the inequality

X � x� f(x;C)
p

:

That is,

f(x;C) + (X � x)p � 0
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which implies that

f(x; c) + (X � x)p � 0 (9.6.3)

for each c 2 C.
From (9.6.2),

f(X; c) 2 f(x; c) + (X � x)[p; q]

and, hence,

f(X; c) � f(x; c) + (X � x)p

for each c 2 C: Therefore, from (9.6.3), f(X; c) � 0 for each c 2 C.
We have now proved that f(X; c) � 0 for all c 2 C: Proof that

f(X; c) � 0 for all c 2 C follows in the same way. Therefore, f(x; c)
either is zero at an endpoint of X or changes sign in X. In either
case, f(x; c) has a zero in X for each c 2 C as stated in the theorem.

When rounding is present, we compute an interval, sayN0(x;X;C),
containing N(x;X;C): If N0(x;X;C) � X, then N(x;X;C) � X.
Therefore, even when rounding is present, we can prove infallibly, as
in Theorem 9.6.9 that a zero of f is contained in X.

The previous theorems in this section are related to the inter-
val Newton method. The following theorem is not. However, its
hypothesis can be checked using data computed for use in the inter-
val Newton method. Therefore, it can be used when applying the
method.

Theorem 9.6.10 Assume 0 =2 f 0(X): Then if X contains a zero of
f , the zero is simple (i.e., unique).

Proof. If 0 =2 f 0(X), then f 0(x) is of one sign throughout X.
That is, f is monotonic in X. Hence the theorem follows.

The computed (with rounding) interval f 0(X) contains the value
of f 0(X) which can be computed with exact interval arithmetic.
Therefore, the theorem is applicable using the rounded value.
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9.7 A NUMERICAL EXAMPLE

We now give a simple example to illustrate the performance of the
algorithm of Section 9.5 when the prescribed values of the tolerance
"X and/or "f are too small. We set "X = "f = 0: In this case, the
algorithm generally yields a solution that is slightly narrower than
the �optimal bound� de�ned in Section 9.3. We use four decimal
digit interval arithmetic.

Consider the function f(x) = 4567(x� 1)2, which we evaluate in
the expanded form

f(x) = 4567x2 � 9134x+ 4567 (9.7.1)

using Horner�s rule. Let the initial interval be X0 = [0; 3]:
For each of the �rst six steps of the algorithm, the interval

value of f and/or f 0 does not contain zero and the intervals X1 =
[0:7585; 0:8909] and X2 = [0:9349; 1:088] remain. The interval X1 is
deleted in one step. We �nd that 0 2 f I [m(X2)] and 0 2 f 0(X2):

However, 0 =2 f I(X2) so we use X2 as the point of expansion for
the Newton step and proceed. After two more steps, we obtain the
intervals X3 = [1:036; 1:041] and X4 = [0:9298; 1:024]: The interval
X3 is deleted in one step. We �nd that 0 =2 f I(X4) so we proceed
using X4 as the point of expansion.

The result of the next step is X5 = [0:9852; 1:024]. We �nd
that 0 2 f I [m(X5)] and 0 2 f I(X5): However, 0 =2 f I(X5) so we
proceed using X5 as the point of expansion. One additional step
yields X6 = [0:9852; 1:015]. When f is evaluated at m(X6); X6, and
X6, each interval value contains zero. Therefore, we split X6: When
f is evaluated at the center of each of the subintervals of X6; each
result contains zero. Therefore, we accept X6 as our �nal interval
bound on the solution.

The optimal bound de�ned in Section 9.3 is X� = [0:9820; 1:015]:
Our result is somewhat sharper because the Newton method uses
information about the derivative of f while the optimal bound is
de�ned using f only.
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9.8 THE SLOPE INTERVALNEWTONMETHOD

We now describe the slope interval Newton method. To obtain it, we
modify the above interval Newton method by replacing the derivative
f 0 by the slope function g discussed in Section 7.7.

From (7.7.1),

f(y) = f(x) + (y � x)g(x; y) (9.8.1)

where g(x; y) is the slope function. If y is a zero of f; then f(y) = 0
and, from (9.8.1),

y = x�
f(x)

g(x; y)
:

If y is in an intervalX in which we seek a zero of f , then y 2 NS(x;X)
where

NS(x;X) = x�
f(x)

g(x;X)
: (9.8.2)

To �nd a zero of f in an interval X, we can use the iterative
method

NS(xn; Xn) = xn �
f(xn)

g(xn; Xn)
;

Xn+1 = Xn \NS(xn; Xn);

for n = 0; 1; 2; ::: where X0 = X: A good choice for xn is m(Xn): We
call this procedure the slope interval Newton method. Figure 9.8.1
depicts this method.

If we compare this relation with the relation (9.2.2) for the in-
terval Newton method, the only apparent di¤erence is that we have
replaced f 0(X) by g(x;X). Actually, there is another di¤erence. To
assure that any zero of f in X is also in N(x;X) as given by (9.2.2),
it is necessary that the point x be in the interval X: For the slope
interval Newton method, this is not necessary.
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If x 2 X, then g(x;X) � f 0(X); and the containment is generally
strict. Therefore, the slope interval Newton method is generally more
e¢ cient than the interval Newton method given in (9.2.2).

It can be shown that Theorems 9.6.1 through 9.6.5 are true for
this method using slopes. Proof of Theorem 9.6.2 requires that g
have a �nite number of zeros in X.

9.9 ANEXAMPLEUSINGTHE SLOPEMETHOD

We now consider a simple example to illustrate the virtue of the
slope form of the interval Newton method. Consider the function

f(x) = x4 + 3x3 � 96x2 � 388x+ 480

discussed in Section 7.8. If we determine its slope analytically using
(7.7.2), we can collect terms and write the slope as

g(x;X) = X3 + (x+ 3)X2

+ (x2 + 3x� 96)X + x3 + 3x2 � 96x� 388:

Suppose we seek a root of f(x) in the interval X = [0; 4] and
expand about the center x = 2 of X: Evaluating the slope using
Horner�s rule, we obtain g(x;X) = [�904;�560]: Since f(x) = �640,
the slope Newton result is [0:8571; 1:093] approximately.

Suppose we use Horner�s method to evaluate the derivative in the
standard interval Newton method. The Newton result is [0:3505; 1:429]
approximately. The ratio of the widths using the slope to that using
derivative is 0:4034: That is, the slope result is considerably nar-
rower.

In this example, we have used a relatively wide input interval
X = [0; 4]: The slope method remains superior for narrower intervals.
For example, if X = [0:999; 1:003] and x = 1:001; the ratio of widths
is 0:4744.
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9.10 PERTURBED PROBLEMS

In some problems, there might be uncertainty about the values of
certain parameters. For example, they might be measured quantities
of uncertain accuracy. The function f whose zeros we seek might
involve numbers that cannot be exactly expressed in the computer�s
number system. For example, the function might be expressed in
terms of transcendental numbers such as �:

Any such parameters or numbers can be expressed as intervals
that contain their true values and whose endpoints are machine-
representable numbers. The �value� of a function f(x) involving
such intervals is itself an interval for any x. We must then ask:
What do we mean by a solution to the equation f(x) = 0?

To answer this question, it is su¢ cient to consider a problem
involving a single parameter p. Assume we know that p is contained
in an interval P . We rewrite the problem as f(x; P ) = 0: We de�ne
the solution to this problem to be the set S = fx : f(x; p) = 0g for
all p 2 P:

For a given value of p, we expect the function f to have a set of
discrete zeros. As p varies over P , a given zero, say x� �smears out�
over an interval, say X�. This is precisely the situation we discussed
in Section 9.3. Rounding errors made while evaluating f(x) cause
the resulting interval f I(x) to contain zero when x is not a zero of
f . In e¤ect, the zeros of f are smeared out by the rounding errors.

Although the zeros of f(x; P ) = 0 are generally discrete for a
single value of p, some of the smeared zeros might overlap. This cor-
responds to the case in which rounding prevents us from determining
whether there is a multiple zero or if there are close but separated
zeros.

It makes no real di¤erence to the interval Newton method whether
values of f are intervals because of rounding in evaluating f or be-
cause f itself is a thick interval function. Therefore, there is no
change in the algorithm to solve the perturbed problem.

We make rounding errors when evaluating the perturbed function
f(x; P ). This merely widens the computed interval. An interval
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solution is, in e¤ect, widened because of the rounding. As in the
unperturbed case, this creates no di¢ culty.

If P is a wide interval, there can be considerable uncertainty as
to where the boundary of the solution set lies. In Chapter 17, we
discuss how this di¢ culty can be overcome.

One easily avoidable di¢ culty can occur with a perturbed prob-
lem. The interval Newton method might converge to an interval
larger than a true smeared zero. To illustrate, we consider an exam-
ple from Hansen and Greenberg (1983).

Let P = [4; 9] and f(x; P ) = x2�P . The solutions are obviously
X� = [2; 3] and [�3;�2]: Let X = [0:1; 4:9] and note that X con-
tains only one of the smeared zeros of f . Then x = m(X) = 2:5,
f(x) = [�2:75; 2:25], and f 0(X) = 2X = [0:2; 9:8]: The Newton step
produces the interval N(x;X) = [�8:75; 16:25]. Therefore, no reduc-
tion in the original interval X occurs even though X is considerably
wider than the solution [2; 3] it contains.

Note that 0 =2 f 0(X): This is the case we discussed in Section
9.3. In that discussion, we considered the case in which the com-
puted (interval) value f I(x) of f(x) contains zero. For simplicity, we
assume the only reason f I(x) is not a degenerate interval is because
of rounding. However, as noted above, there is no real di¤erence
if the value of f I(x) is widened because of the presence of interval
parameters.

Following the procedure prescribed in Section 9.3, we de�ne three
successive Newton steps by expanding about the center, the lower
endpoint, and the upper endpoint of the current interval. Four
of these cycles produce the interval solution [1:9988; 3:0000] when
recorded to �ve signi�cant decimal digits. Additional iterations can
increase the lower bound, thereby reducing the width of the result.

An alternative procedure for sharply bounding the solution set
is given in Section 17.11.
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Figure 9.2.1: The Two-Interval Newton Iteration.
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Figure 9.8.1: Slope Interval Newton Method.
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Chapter 10

CONSISTENCIES

10.1 INTRODUCTION

Consider an equation f(x; y) = 0 and assume that x and y are in
intervalsX and Y , respectively. We can say that values of x 2 X and
y 2 Y are consistent relative to the function f if for any x 2 X there
exists y 2 Y such that f(x; y) = 0 and for any y 2 Y , there exists
x 2 X such that f(x; y) = 0: This concept obviously generalizes
to more variables. It also generalizes in various other ways. See
Collavizza et al (1999).

Suppose that for a subset of values of x 2 X, there is no y 2 Y
such that f(x; y) = 0: Then these values of x can be excluded from
consideration when seeking solutions of f(x; y) = 0: This general-
izes to functions of more variables. Suppose we are searching for a
solution of a system of nonlinear functions in a given box. We can
apply the concept of consistency to each equation of the system to
eliminate subboxes of the given box that cannot contain the solution.

In this chapter, we consider two such procedures based on the
concept of consistency. One is our version of what is called box
consistency by McAllester et al (1995). See also Van Hentenryck,
Michel, and Deville (1997) and Van Hentenryck, McAllester and Ka-
pur (1997). To save space, we abbreviate box consistency as BC. We
discuss BC in the next two sections. We discuss our version of �hull
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consistency� (see the above references) in Section 10.3 and discuss
various aspects of it in Sections 10.4 through 10.12. We compare the
two procedures in Section 10.13.

10.2 BOX CONSISTENCY

Various theoretical aspects of consistency are discussed in the above
references. We restrict our discussion to those aspects needed to de-
rive and implement our version of what is termed �box consistency�.
We motivate the procedure from a point of view di¤erent from that
in the references. We also implement it di¤erently. In the above ref-
erences, the implementation of box consistency involves application
of a one dimensional Newton method to �solve� a single equation
for a single variable. This is the extent of the commonality between
their procedure and ours.

Despite the di¤erences in derivation and implementation, we refer
to our procedure as the box consistency procedure or simply as box
consistency. The abbreviation BC refers either to the concept or to
the procedure.

Assume the solution of a given problem must satisfy the nonlinear
equation

f(x1; � � � ; xn) = 0:

This equation can be one in a system to be solved or it can be a con-
straint that must be satis�ed in an optimization problem. Whatever
the problem, suppose that we seek a solution in a box xI . We use
BC to eliminate subboxes of X that cannot contain a point satisfying
f(x1; � � � ; xn) = 0:

If we replace all the variables except the i-th by their interval
bounds (i.e., components of xI), we obtain an equation that we write
as

q(xi) = f(X1; � � � ; Xi�1; xi; Xi+1; � � � ; Xn) = 0: (10.2.1)

If 0 =2 q(xi) for xi in some subinterval X 0
i of Xi, then we do not have



GLOBAL OPTIMIZATION 207

consistency for xi 2 X 0
i and the subbox (X1; � � � ; Xi�1; X 0

i; Xi+1; � � � ; Xn)
of X can be deleted.

To help motivate the BC procedure, let us now consider (10.2.1)
from a di¤erent viewpoint. Note that q(xi) = 0 is an equation in
a single variable xi since the Xj are �xed constant intervals for all
j 6= i. If the intervals Xj for all j 6= i are degenerate, the zeroes of q
(as a function of xi) are isolated points. The presence of the interval
constants �smears� these zeros into intervals that we call �interval
zeros�. If we evaluate q(xi) for some value of xi, the resulting interval
cannot contain zero unless xi is in one of these interval zeros. The
interval zeros can contain all or none of Xi. They can also form
one or more subintervals of Xi: There might be gaps in Xi between
interval zeros.

Let az denote the smallest value of xi that is in the intersection
of Xi = [ai; bi] and the interval zeros of q(xi). If az > ai, then a
point xi 2 Xi that is in the semi-open interval [ai; az) cannot be a
component of a solution of f(x) = 0: Therefore, we want to know
az so that we can delete the interval [ai; az). In practice, we use a
one dimensional Newton method to compute an interval bound on
az and delete values of xi less than the lower bound on az.

Similarly, let bz denote the largest value of xi in the intersection of
Xi and the interval zeros of q(xi). We want to delete the subinterval
(bz; bi] of Xi.

The widths of the interval roots of q(xi) depend on the widths
of the interval bounds Xj for all j 6= i. Therefore, az and bz change
as the latter intervals change. There is little point in bounding the
quantities az and bz very sharply unless the bounds on other variables
are relatively narrow. Therefore, we make only a modest e¤ort to
bound az and bz before sharpening the bounds on the variables other
than xi (using the same process). Then we do the same process for
the other variables in turn. We also use other procedures besides
BC to narrow the bounds on each variable before returning to again
sharpen the bounds on xi:

Unless there is substantial progress, we apply only one Newton
step to narrow the bound on az and one Newton step to narrow the
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bound on bz. However, there are cases in which it is reasonable to use
more steps. For example, suppose that f is a very complicated func-
tion and/or there are many variables and it requires 1000 arithmetic
operations to compute q(xi) in the form (10.2.1) from f . Suppose,
also, that only 5 arithmetic steps are needed to evaluate q(xi) and
5 steps to evaluate the derivative q0(Xi): Then applying a Newton
step to solve q(xi) = 0 is so cheap compared to computing q(xi)
that we might as well apply Newton several times. Therefore, a user
might wish to modify our algorithm (given below) for appropriate
functions.

To simplify notation, we now drop the index i:We seek to bound
az and bz in an interval X = [a; b].

Suppose we evaluate q(a): If 0 =2 q(a), then a < az so we use
a Newton method to remove points from the lower end of X that
are less than az. If 0 2 q(a), we do not. To remove points, we use
the already computed value of q(a) in a step of a one dimensional
Newton method. Similarly, we try to reduce the upper bound on bz
only if 0 =2 q(b): The e¤orts to increase a and decrease b are treated
independently.

The input interval to which the algorithm is applied is [a; b]. We
separately try to increase a and decrease b. A new lower bound is
sought in a subinterval Y = [a; c] of X and a new upper bound is
sought in a subinterval Z = [d; b] of X: Later in this section, we
describe how Y and Z are determined by choosing c and d.

It is common (good) practice to use the center of the interval as
the point of expansion when deriving an interval Newton method.
However, since we evaluate q(a) to decide whether to even try to
increase the lower bound, we de�ne the Newton method to use this
value. This saves an extra evaluation of q. Thus, the Newton result
when expanding about the point a is

N(a; Y ) = a�
q(a)
@
@xi
q(Y )

:

For the interval Y = [�4; 2] ; Figure 10.2.1 illustrates how a Newton
step about the point a = �4 produces a (small) reduction in the
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width of Y . The slopes of the slanting lines in Figure 10.2.1 equal
the lower and upper bounds of @

@xq(Y ):

Similarly, we use q(b) to obtain a Newton result. Expanding
about b, the Newton result is

N(b; Z) = b�
q(b)
@
@xi
q(Z)

:

For the interval Z = [�4; 2] ; Figure ?? illustrates how the Newton
step about the point b = 2 produces a substantial reduction in the
width of Z. In our �gures, Y = Z. In practice, this will not be the
case.

We need to choose the widths of the intervals Y and Z to which
these Newton steps are applied. Our choices depend on how much
progress is made in previous Newton steps.

We now describe how we choose Y . We choose Z in the same
way. We choose the width of Y to be a variable fraction � of the
width of X so Y = [a; a + � w(X)]. If we choose Y too narrow, we
make little progress in reducing X even if all of Y is deleted. If we
choose Y too wide, the derivative of q over Y is a wide interval and
again little (or no) progress is made.

Initially, we choose � relatively small. We choose � so that if all
of Y is deleted, we delete a small but non-negligible part of X. If we
succeed, we repeat the Newton step with a larger value of �.

Thus, we choose � = 1
4 initially: That is, we choose c =

1
4 (3a+ b) :

If all of Y is deleted by the Newton step, we double � and repeat
the step on the remaining part of X. If only a part of Y is deleted,
we stop trying to increase the lower endpoint of X. We then use the
same procedure to try to reduce the upper endpoint of X. That is,
we apply the Newton method to an interval Z = [d; b] with the point
of expansion equal to b. The value of d is chosen in the same way c
is chosen.

In the algorithm, we use a tolerance "X to decide when a given
interval is su¢ ciently narrow to provide a �nal bound on a variable.
We discussed such tolerances in Section 9.4. Di¤erent tolerances can
be chosen for each variable.
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The algorithm below lists steps to increase the lower bound on
az: Similar steps are used to decrease the upper bound on bz: After
listing the steps, we discuss why some are chosen as they are.

1. Set � = 1
4 and w0 = b� a:

2. If 0 2 q(a); exit from the algorithm.

3. Denote w = b� a and set c = a+ �w. De�ne Y = [a; c]:

4. Compute the Newton interval N(a; Y ) and the interval Y 0 =
Y \N(a; Y ):

5. If Y 0 is empty and � = 1, record the fact that all of X has
been deleted and exit from the algorithm.

6. If w(Y 0) < "X and � = 1; record Y 0 and exit from the algo-
rithm.

7. If Y 0 is empty and � < 1, replace a by c and replace � by 2�
and go to Step 2.

8. If w(Y 0) < 0:5w(Y ) and � = 1, replace a by Y 0 and replace b

by Y
0
and go to Step 2.

9. If a < Y
0
and Y

0
< c; then a gap (Y

0
; c) has been generated in

the interval [a; b] leaving two intervals N(a; Y ) and [c; b]. Exit
the algorithm and then return to apply it separately to each of
the two intervals. (Note that, since N(a; y) � Y; a solution to
q(xi) = 0 exists in N(a; y):)

10. Replace a by Y 0

11. If b� a < 0:5w0, go to Step 1.

12. Record the �nal interval [a; b] and terminate the algorithm.
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This is the BC algorithm for narrowing the bounds on a given
component of a box X. Note that if 0 =2 q(a); then a =2 N(a; Y ):
That is, progress is made in reducing X. If the progress is su¢ cient,
we apply another Newton step. See Steps 8 and 11.

The algorithm to use BC is called by a main program that stops
when the interval bounds on the variables satisfy: w(Xi) � "X (i =
1; � � � ; n) for some "X > 0: The interval resulting from the Newton
step to bound az might satisfy this condition. If so, we exit without
trying to reduce the interval any further. See Step 6.

If N(a; Y ) � Y in Step 4, we have proved that an interval zero of
q exists in N(a; Y ): See Theorem 9.6.9. Since

q (xi) = f (X1; � � � ; Xi�1; xi; Xi+1; � � � ; Xn)

this proves the existence of a solution of f(x) = 0 for any xj 2
Xj (j = 1; � � � ; n; j 6= i) provided xi 2 N(a; Y ). This fact might or
might not be signi�cant.

Note that BC can be applied to �solve� inequalities. Suppose
that in place of the equality (10.2.1), we have an inequality q(xi) � 0:
We can replace this inequality by q(xi) = [�1; 0] and obtain the
equation q(xi) + [0;+1] = 0: Note that the derivative of this new
function is the same as if the original relation were an equation.

We conclude our discussion of BC with comments on how it is
applied. Suppose there is more than one equation to be solved.
Suppose we have applied BC to one equation to try to narrow the
bounds on xi; and we now wish to try to narrow the bounds on the
next variable xi+1: We use a di¤erent equation to do so.

To see why a di¤erent equation is used, consider the following ar-
gument. Suppose we reduce the current box of interest by decreasing
the bound on xi when we apply BC to a given equation. The proba-
bility that an arbitrary point satis�es this equation is greater if the
point is chosen randomly from the new reduced box than from the
old unreduced box. Because unsatis�ed equations are needed to re-
duce or delete a box, it is better to use a di¤erent equation the next
time BC is applied to the new reduced box.
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Thus, we cycle through the equations in the order in which they
occur. We cycle through the variables in such a way that each equa-
tion is solved once for each variable. Having chosen an equation to
be solved, we solve for the variable with smallest index that has not
been used with the given equation.

We have described a simple way to order variables and equations.
Further research might provide an improved procedure.

10.3 HULL CONSISTENCY

In this section, we introduce our version of a concept (and procedure)
called �hull consistency�. We apply it in various ways throughout
this book.

We begin our discussion with a function of a single variable hav-
ing a special form. Suppose we wish to solve an equation of the
form

f(x) = x� h(x) = 0:

For a solution x� of f(x) = 0, we have x� = h(x�): Given an interval
X; inclusion isotonicity of containment sets (lemma 4.8.8) assures
that any solution in X satis�es x� 2 h(X). Therefore the interval
X 0 = h(X) contains any solution in X. If X 0 \X is smaller than X,
this intersection provides improved bounds on any solution in X:

When f contains multiple terms, we replace x by its bound X
in some terms of f . We then solve for x from the remaining terms.
We abbreviate �hull consistency� as HC. We now consider a more
general form of f .

Assume f involves a function g that has an easily obtained in-
verse. For example, g might be a power of x or ex or even a polyno-
mial in x. Assume, also, that we can easily solve for g from f . For
example, if f = ug�v = 0; we obtain g� v

u = 0: If f =
u
g+v �w = 0;

we obtain g � u
w + v = 0: For simplicity, we assume that such ma-

nipulations have been done and that

f(x) = g(x)� h(x) = 0:
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If x� 2 X, then containment-set inclusion isotonicity assures
that x� 2 g�1 [h(X)] : In practice, the width of the interval bound
g�1 [h(X)] depends on how well we are able to overcome dependence
in evaluating h(X):

There are usually many choices for g(x): For example, suppose
we wish to use HC to narrow the interval bound X on a solution of
f(x) = ax4 + bx + c = 0. We can let g(x) = bx and compute X 0 =

�aX4+c
b or we can let g(x) = ax4 and compute X 0 = �

�
� bX+c

a

� 1
4 :

We can also separate x4 into x2 � x2 and solve for one of the factors
as X 0 = �

�
� bX+c

aX2

� 1
2 . We consider a particular method for choosing

g in Section 10.6.
A virtue of consistency methods is that they can work well �in the

large�. When we seek a solution of f(x) = 0; we often start the search
over a large interval to assure that it contains the solution. When
the solution is not where jxj is large, we must somehow eliminate
large values. For this purpose, HC is very useful.

As an example, suppose we seek a solution of x4+x�2 = 0 in the
interval X = [�100; 100]: Solving for x4 and replacing x in the re-
maining terms by the intervalX; we obtain (X 0)4 = 2�[�100; 100] =
[�98; 102]: Since (X 0)4 must be non-negative, we replace this equa-

tion by (X 0)4 = [0; 102] and conclude that X 0 = � [0; 102]
1
4 so

X 0 = [�3:18; 3:18] approximately: This is a substantial reduction
of the original interval.

In Chapter 9, we discussed the interval Newton method for solv-
ing nonlinear equations. Its asymptotic convergence to a solution
is usually rapid. However, generally it does not perform well when
the interval in which a solution is sought is very wide. For the ex-
ample just discussed, a step of the Newton method is able to delete
a sub-interval of width only about 10�6 from the original interval
[�100; 100]:

When we seek all the solutions of a given equation, we often
begin the search in a large interval to assure that all solutions are
included. Our solution procedure must eliminate the values of large
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magnitude. A Newton method is not e¢ cient in doing so. The BC
and HC procedures �ll this need.

The Newton method and HC complement each another. One can
work well when the other does not. In an algorithm using both meth-
ods to solve a system of nonlinear equations, we can emphasize use
of the Newton method when the interval is narrow and emphasize
use of HC (and BC) when the interval is wide.

Unfortunately, it is di¢ cult to know when an interval is narrow or
wide in this sense. In our algorithms using HC and BC, we monitor
their behavior relative to that of a Newton method and emphasize
use of each based on the observed behavior.

In the multidimensional case, there is an essential di¤erence be-
tween consistency methods and a Newton method. The former are
applied to one equation of a system at a time while a Newton method
is applied to all equations simultaneously. This enables the Newton
method to have better convergence properties �in the small�. How-
ever, multidimensional Newton methods tends to make little or no
progress when the box is �large�.

Note that HC can be applied to inequalities. We need only re-
place an inequality of the form f(x) � 0 by the equation f(x) =
[�1; 0]:

10.4 ANALYSIS OF HULL CONSISTENCY

Consider a general function f(x) = g(x) � h(x) = 0: The iterative
step we are considering is g(X 0) = h(X) from which X 0 = g�1[h(X)].
If necessary, we delete1 any values of the range of h(X) that are not
in the domain of g�1. Therefore, we obtain X 0 = g�1(Z) where Z is
the intersection of the ranges of g and h over X.

For example, suppose f(X) = X2�X +6 and we de�ne g(X) =
X2 and h(X) = X � 6. Let X = [�10; 10]: The procedural step
is (X 0)2 = X � 6 = [�16; 4]: Since (X 0)2 must be non-negative, we

1Such deletions are done automatically by the compiler if cset-based interval
arithmetic is used.
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replace this interval by [0; 4]: Solving for X 0, we obtain X 0 = �[0; 2]:
In replacing the range of h(x) (i.e., [�16; 4]) by non-negative values,
we have excluded that part of the range of h (x) that is not in the
domain of g(x) = x2.

Suppose that we reverse the roles of g and h and use the iterative
step h(X 0) = g(X): That is, X 0 � 6 = X2. We obtain X 0 = [6; 106].
Intersecting this result with the interval [�10; 10], of interest, we
obtain [6; 10]. This interval excludes the set of values for which the
range of g(X) is not in the intersection of the domain of h(X) with
X.

Combining these results, we conclude that any solution of g(x)�
h(x) = 0 that occurs in X = [�10; 10] must be in both [�2; 2] and
[6; 10]: Since these intervals are disjoint, there can be no solution in
[�10; 10]:

In practice, if we have already reduced the interval from [�10; 10]
to [�2; 2] by solving for g, we use the narrower interval as input when
solving for h:

This example illustrates the fact that it can be advantageous to
solve a given equation for more than one of its terms. The order in
which terms are chosen a¤ects the e¢ ciency. Unfortunately, it can
be di¢ cult to choose the best order.

Figure 10.4.1 illustrates a simple example of hull consistency.

The interval Newton method works rather well when solving
quadratics. Nevertheless, it requires seven steps to prove that there
is no zero of x2 � x + 6 = 0 in [�10; 10]. Thus, HC is much more
e¢ cient for this example.

When g(x) is a su¢ ciently simple function, the step of solving
g(X 0) for X 0 can be done sharply. However, if f(x) is not a simple
function, then the simplicity of g implies that h(x) = f(x) � g(x)
is more complicated. Therefore, when evaluating h(X) in practice,
dependence can prevent us from computing sharp bounds on the
range of h. In this case, we do not delete as much of X as is possible
if we know the exact range of h over X.
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10.5 IMPLEMENTINGHULLCONSISTENCY

There are so many ways to implement HC that it is di¢ cult to choose
a procedure. We take the viewpoint that we want it to be most
e¢ cient in eliminating variable values that are large in magnitude
relative to solution values. This helps us choose the implementation
of HC to use.

Earlier, we noted why we want HC to eliminate variable values
that are large in magnitude. It is because we initially introduce such
values to assure that our region of search includes all solutions to a
problem. Since a Newton method is not e¢ cient in eliminating such
values, we want HC to do so.

Let us look at the general procedure for applying HC and then
focus on the case in which the width of the interval X is �large�.
When choosing g; we want g and h = f � g to have disjoint ranges
over as much of X as possible. One way to do this is to �nd a term
of f that dominates the other terms for some portion of X. For
example a given power of x dominates a power of lower degree for
su¢ ciently large values of jxj > 1: This makes HC a valuable tool for
reducing �large�boxes because it is often easy to �nd such a term:

Note that it is not always the term of highest degree that dom-
inates in a given interval. For example, 100x3 dominates x4 when
jxj < 100:

When jxj < 1, a term of lower degree tends to dominate a term of
higher degree. Therefore, the implementation of HC to delete small
values of the variable must be di¤erent from when large values are
to be deleted.

A simple procedure for choosing which term of g(x) to solve is
to evaluate all terms that are easily inverted and solve for the term
with widest range.

Solving for the dominant term is e¤ective in practice. However,
sometimes there is a better choice. Consider the function

f(x) = x4 + x2 � x� 1 = 0:

It does not have a zero in the interval X = [2; 108]: If we apply HC
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by solving for any one term, we obtain an interval that intersects X.
However, if we write the term x2 as x times x and solve for one of
the factors, we obtain

x = 1� 1
x � x

3.

Solving for X 0 as 1� 1
X �X

3, we �nd that X 0 is negative so it has
an empty intersection with X. This proves that f(x) = 0 does not
have a solution in X.

HC can be automated so that various implementations are used.
Without automation, it is simpler to program only one or a few
di¤erent forms. Rather than change implementations of HC as the
box size changes, we can use one of the following options.

First, we can implement HC so that it is e¤ective for large boxes
and rely on Newton�s method to provide e¢ ciency when this is not
the case.

Second, we can use more than one implementation of HC to in-
crease the likelihood that one is e¢ cient. This has a drawback. If we
solve each of a system of n equations for each of the n variables, this
is n2 procedures. Until HC is automated, adding additional proce-
dures might not be warranted, especially because of the amount of
programming involved. On the other hand, the example in Section
10.4 shows that it can be advantageous to solve a given equation for
more than one occurrence of a given variable. It might be possible to
automate the implementation of HC and avoid extensive program-
ming for a given problem.

We can solve an equation for each of two occurrences of each
variable. For each variable, we can solve for a term that tends to
dominate when the magnitude of the variable is large, and also solve
for a term that tends to dominate when the magnitude of the variable
is small.

Suppose we wish to apply HC when the current interval is X =
[a; b]: Another option is to solve for a term that dominates when
x = a and then solve for a term that dominates when x = b:

We prefer another option that we now describe. Suppose f(x)
is a complicated function but has several simple terms that enter
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additively. That is, suppose f(x) is of the form

f(x) =

mX
i=1

gi(x)� h(x) = 0 (10.5.1)

and assume the inverse of each function gi(x) (i = 1; � � � ;m) is easily
determined. We might wish to use each gi(x) as the function to solve
using HC. We now describe how cancellation can be used to simplify
the process in a suboptimal way.

To simplify the discussion, let m = 2 so that

f(x) = g1(x) + g2(x)� h(x):

Let X be given and evaluate g1(X); g2(X), h(X), and then f(X):
Suppose we have used g1 as the function to solve using HC and
obtained a new interval X 0.

We now want to solve for g2 as g2(X 00) = h(X 0)� g1(X 0): But if
f (and hence h) is quite complicated, this is a lengthy computation.
Instead of computing h(X 0); we can use h(X), which has already
been computed. This saves computing at the expense of loss of
sharpness. Therefore, we want to obtain

g2(X
00) = [f(X)� g1(X)� g2(X)] + g1(X 0):

However, f(X) contains g1(X) + g2(X) and we lose sharpness if
we subtract an interval from itself. Therefore, we use cancellation.
That is, we replace f(X)�g1(X)�g2(X) by f(X)� [g1(X)+g2(X)].

Thus, we obtain g2(X 00) using only two additions and one cancel-
lation. This is not really what we want because our result uses h(X)
rather than h(X 0). However, it saves the e¤ort of computing h(X 0).
This use of h(X) is implicit since we actually use g(X)� f(X):

If we solve for additional functions gi (i > 2) in the same way,
we implicitly use X as the argument of h, X 0 as the argument of
g1; X

00 as the argument of g2, etc. Therefore, we obtain a narrower
result if we reevaluate f each time we solve for a new term. If we
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reevaluate f each time, we do so m times for a function of the form
(10.5.1). Using the procedure just described, the total amount of
work is generally less than that to evaluate f twice.

This process produces a result that is generally much better than
solving for a single term only. Therefore, we might as well solve (in
this way) a given function f for every simple term in its expression.

In this procedure, we can order the terms gi (i = 1; :::m) of f in
any way we like. As we discussed earlier, it can be advantageous to
implement HC to solve for a dominant term when jxj is large. In the
procedure just described, we can choose g1 to be such a term. That
is, we can eliminate large values of a variable �rst.

This same procedure can be used in the multidimensional case
when each summand gi is solved for a di¤erent variable. When there
is more than one variable, there is likely to be more than one equation
to be solved. For a system of equations, we can cycle through the
equations and variables as described for BC at the end of Section
10.2. When these functions have more than one simple term, we
can cycle through the terms as well while using the procedure just
described.

Often in practice, we wish to apply HC to a function that contains
terms that are powers of x. In this case, we do not solve for each
term separately as described above. Instead, we simultaneously use
all the terms that form a polynomial.

For example, suppose the equation

f(x; y) = x4y � x2y2 � 4x� 2ex = 0

is to be satis�ed in the box given by X = [1; 2] and Y = [1; 2]:
Replacing y by its bounding interval Y and replacing ex by its bound
[e; e2], we obtain the polynomial

[1; 2]x4 � [1; 4]x2 � 4x� [2e; 2e2] = 0:

Computing the roots of this polynomial by the method of Chapter
8, we obtain the new bound [1:6477; 2] on x.

In some cases, it can be useful to solve for roots of a moder-
ately complicated function. For example, suppose the function is a
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multinomial. This is often the case. If we replace all the variables
except one by their bounding intervals, we obtain a polynomial (with
interval coe¢ cients) in the remaining variable. Call it x1: The inter-
val roots of an interval polynomial can be found using the method
of Chapter 8. These interval roots bound the acceptable values of
x1. Note that the interval roots need be sought only in the (assumed
known) interval that bounds x1.

In this and later chapters, we consider polynomial examples that
are normally treated in the manner just described. However, we do
not do so because we are demonstrating other aspects of HC.

While it is generally a good idea to replace all variables except
one by their interval bounds to get a polynomial in the remaining
variable, this is not always true. Consider the function

f(x; y) = x2 + y2 + x2y2 � 24xy + 13: (10.5.2)

Suppose f(x; y) = 0 is one equation of a system that we wish to
solve. Assume we seek a solution in a box given by x 2 [�a; a] and
y 2 [�a; a] where a is some large number.

If we replace y by its bound [�a; a] and solve the resulting quadratic
equation for x, we learn only that x 2 �

�
13
24a ; a

�
, approximately.

Since a is large, we have eliminated very little of the initial box.
But, suppose we write the function in the form

f(x; y) = x2 + y2 + (xy � 12)2 � 131:

If we replace both x and y by their bounds except for the x2 term
and solve for x2 (and then x). We obtain

x 2 (131)1=2[�1; 1] = 11:45[�1; 1]: (10.5.3)

Here and in what follows we record results to four signi�cant digits:
This greatly improved bound is independent of the size of a.
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This example can be used to illustrate how variations in the use
of HC can change a result. Assume we have not obtained the bound
(10.5.3) and we solve for the term 24xy from (10.5.2). Replacing
all other terms by their bounds. We obtain xy = [0:3909; a2]: This
relation can be useful in the process of solving the system of which
f(x; y) = 0 is a member. It shows that x and y have the same sign.

But,we can do better by writing f(x; y) in the form

(x� y)2 + x2y2 � 22xy + 13 = 0

and solve for 22xy:We obtain the slightly better result xy = [0:5909; a2]:
We can do still better by writing f(x; y) = 0 in the form

(x� y)2 + (xy � 11)2 � 108 = 0:

Solving for the term (xy � 11)2, we obtain xy = [0:6076; a2]:

10.6 CONVERGENCE

The step to solve for g(x) (and then x) can be iterated. Thus we
can de�ne

X(k+1) = g�1[h(X(k))] \X(k)

for k = 0; 1; 2; ::: where X(0) is an initial interval in which a solu-
tion of f(x) = 0 is sought: This iterative procedure might or might
not converge to a single point. In practice, we generally do not it-
erate this process to convergence. Nevertheless, consideration of its
convergence can help in choosing g.

We have noted that a primary virtue of HC is its ability to delete
substantial portions of wide boxes. However, it can be of value for
narrow boxes as well. That is, it can be of value asymptotically when
the search for a solution is in a small box. For best performance on
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narrow boxes, special implementation is required. We discuss this
aspect in this section.

Our algorithm for solving systems of nonlinear equations (see
Chapter 11) uses a multidimensional Newton method. When applied
to a small box, it generates (by preconditioning) a new system of
linearized equations such that each equation depends strongly on a
single variable and weakly on all others. This enables HC and BC
(which operate on only one equation at a time) to perform well on
this new system. Since HC requires much less computing than the
Newton method, we apply it because it can be pro�table to do so.
In this case (when the box is small), we use a special implementation
of HC.

Another reason to apply HC to small boxes is that it might prove
existence of a solution of a system of nonlinear equations in the mul-
tidimensional case. See Section 10.12. The possibility of doing so is
enhanced when the procedure converges rapidly as a one-dimensional
method.

Let us �rst consider convergence of HC in the noninterval case.
We now show that if convergence occurs, its asymptotic rate is gen-
erally linear. We then introduce a modi�cation of the procedure that
generally converges asymptotically at a quadratic rate.

If we apply HC to the equation f(x) = g(x)�h(x) = 0; we solve
for x0 from the relation

g(x0) = h(x): (10.6.1)

In an iterative procedure, we repeat this step. Let x� be a solution
of f(x) = g(x)� h(x) = 0: Then

g(x�) = h(x�): (10.6.2)

From (10.6.1) and (10.6.2),

g(x0)� g(x�) = h(x)� h(x�): (10.6.3)

Assume that g and h are continuously di¤erentiable in some interval
X containing x, x0, and x�: Using the mean value theorem, we can



GLOBAL OPTIMIZATION 223

expand g(x0) and h(x) and obtain:

(x0 � x�)g0(�) = (x� x�)h0(�)

where � 2 X and � 2 X. If g0(�) 6= 0 for all � 2 X, then this
equation shows that if we iterate use of (10.6.1), the asymptotic rate
of convergence (if it occurs) is at least linear. That is, the error
x0� x� in x0 is a linear function of the error x� x� in x: However, it
is generally not superlinear.

To get a higher rate of convergence, let us introduce a function
v(x) and write f(x) as

f(x) = [g(x) + v(x)]� [h(x) + v(x)]

Instead of solving for x0 using (10.6.1), we now use the iterative step

g(x0) + v(x0) = h(x) + v(x): (10.6.4)

Using (10.6.3), we can rewrite (10.6.4) as

g(x0)�g(x�)+v(x0)�v(x�) = h(x)�h(x�)+v(x)�v(x�): (10.6.5)

As before, assume x, x0, and x� are in an intervalX. Also, assume
g is continuously di¤erentiable and that h and v are twice continu-
ously di¤erentiable. We expand (10.6.5) about x�. We expand the
left member to �rst order as a function of x0 and the right member
to second order as a function of x: We obtain

(x0 � x�)[g0(�) + v0(�)] = (x� x�)[h0(x�) + v0(x�)]

+
1

2
(x� x�)2[h00(�) + v00(�)]

where � 2 X and � 2 X.
Suppose we choose v so that

h0(x�) + v0(x�) = 0: (10.6.6)
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Then

x0 � x� = h00(�) + v00(�)

2[g0(�) + v0(�)]
(x� x�)2: (10.6.7)

If g0(�) + v0(�) 6= 0 for all � 2 X, then (10.6.7) shows that the
procedure is quadratically convergent asymptotically as x! x�:

In practice, we do not know x�; so we cannot use (10.6.6). In-
stead, we approximate (10.6.6) by replacing x� by x. Thus, we choose
v so that

v0(x) + h0(x) = 0: (10.6.8)

To use the iterative step indicated by (10.6.4), we must be able to
solve g(x0) + v(x0) for x0: A simple choice for v(x) that enables such
a solution is v(x) = �g(x); where � is a constant. For this choice,
we need only solve (1 + �)g(x0) for x0. We can do so because we

assume g is easily invertible. From (10.6.8), we have � = �h0(x)
g0(x) and

the iterative step is

(1 + �)g(x0) = h(x) + �g(x):

This step fails if � = �1: This is asymptotically the case if f 0(x�) = 0;
which implies that x� is a multiple zero of f:

It is theoretically possible to choose v so that HC is quadratically
convergent to a multiple zero of f . To achieve quadratic convergence
we have to choose v so that (10.6.8) holds and also h00(x)+v00(x) = 0:
The added condition makes it di¢ cult to choose v; and therefore we
do not consider this generalization.

Our choice of v must be such that we can invert g(x) + v(x):

Among the possible choices are v(x) = �[g(x)]2 or v(x) = �[g(x)]
1
2 .

In either case, we need only solve a quadratic to obtain g(x0) and
then solve g(x0) for x0.

As x approaches a solution x�, the coe¢ cient of (x � x�)2 in
(10.6.7) approaches a value known as the asymptotic constant. We
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denote it by

C(x�) =
h00(x�) + v00(x�)

2[g0(x�) + v0(x�)]
:

The asymptotic behavior of a quadratically convergent form of HC
can depend strongly on how g and v are chosen. We can see this by
considering C(x�):

For example, suppose we choose v(x) = �g(x) and use HC to
�nd the zeros 10 and 0:001 of

f(x) = (x� 10)(x� 1)(x� 0:001)(x+ 1)

= x4 � 10:001x3 � 0:99x2 + 10:001x+ 0:01:

Let us �rst choose g(x) so that it is large when jxj is large. Let g(x) =
x4. Then C(10) = 0:152 and C(0:001) = 1500: That is, convergence
to the large zero is much more rapid than to the small zero. Next,
choose g = 10:001x so that g(x) dominates the other powers of x
when jxj is small. We �nd C(10) = �0:303 and C(0:001) = 0:003.
Now convergence is more rapid to the smaller zero.

These di¤erences in values of the asymptotic constant are qual-
itatively the same for this example if we use v(x) = �[g(x)]2 or

v(x) = �[g(x)]
1
2 instead of v(x) = �g(x): That is, if g is chosen so

that HC is e¢ cient in deleting values of x that are (say) large in
magnitude, the procedure remains so no matter the form we use for
v.

It can be argued that there is no need for a quadratically con-
vergent form of HC because the interval Newton method has this
property (when converging to a simple zero of f). For best perfor-
mance for both small and large values of jxj, more than one form of
HC must be used. However the Newton method requires use of a
single form only.

The data needed for HC to exhibit quadratic convergence is es-
sentially the same as for Newton�s method. For Newton�s method,
we need to evaluate f 0(X) and we can compute it by separately com-
puting g0(X) and h0(X): If we de�ne v(x) = �g(x), then for HC, we
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want � = �h0(x�)
g0(x�) . Knowing g

0(X) and h0(X); we can approximate

this value by � = �m(h0(X))
m(g0(X)) : Therefore, one can use both methods

with very little extra computing.
It can be shown that the asymptotic constant for Newton�s method

is

CN(x
�) =

f 00(x�)

2f 0(x�)
:

For the above example, we �nd CN(10) = �0:908 and CN(0:001) =
0:096: Thus, the asymptotic performance of the Newton method can
be better or worse than a particular form of HC.

10.7 CONVERGENCE IN THE INTERVAL
CASE

Quadratic convergence is rather meaningless for an iterative step of
a noninterval iterative procedure when the current point is far from
a solution. Correspondingly, there is little or no virtue in considering
the asymptotic behavior of an interval procedure when the box in
which a solution is sought is large.

Therefore, there is no point in introducing the term v(x) in the
interval case unless the box is small. This is especially true since to
determine v we must do the extra work of evaluating the derivatives
of g and h.

Suppose we do want to improve convergence in the interval ver-
sion of HC. Suppose we choose the function v(x) occurring in (10.6.4)
to have the form v(x) = �u(x). As noted in Section 10.6, some easy-

to-implement choices for u(x) are g(x); [g(x)]2 and [g(x)]
1
2 . From

(10.6.3), we want to choose � so that �u0(x�) + h0(x�) = 0. In the
interval case, we approximate the unknown x� by x0 = m(X) where

X is the current interval. Thus, � = �h0(x0)
u0(x0)

:

The right member of (10.6.4) becomes h(x)+�u(x): Before evalu-
ating this function with interval argument X, we rewrite its analytic
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form to reduce the e¤ect of dependence. This might entail combining
terms, cancelling terms, factoring, completing squares, etc.

10.8 SPLITTING

Suppose we are solving a system of nonlinear equations or an opti-
mization problem by an interval method. We use HC as one of the
procedures in the algorithm to solve such problems. When progress
is slow or nonexistent, it is necessary to split the current box into
subboxes. Suppose we implement HC so that it is most e¤ective
at eliminating values of variables that are large in magnitude. This
in�uences how we split a given box.

We have noted that an interval Newton method is most e¤ective
when the width of the box is small. We can split so that both HC
and Newton�s method tend to be e¤ective in one of the subboxes
generated by splitting.

A natural way to split an interval such as X = [�10; 10] is to
split it into the two sub-intervals [�10; 0] and [0; 10]: However, each
new interval contains both small and (relatively) large values of x:
A better way to split is to subdivide X into [�10;�1]; [�1; 1]; and
[1; 10]. Assuming we have designed our HC method to perform best
for large values of a variable, it should do well in the new intervals
where jxj � 1. We expect the Newton method to perform better in
the interval [�1; 1] than in a wider interval such as [0; 10]: Therefore,
if we split in this way, one method or the other is likely to perform
well in each new interval.

This kind of splitting can have an added bene�t that we illustrate
by an example. Suppose we have a two-dimensional box speci�ed by
component intervals X and Y ; and we wish to solve an equation of

the form f(x; y) = xy � h(x; y) for x as X 0 = h(X;Y )
Y : If 0 2 Y , then

X 0 is unbounded. Suppose we obtain the interval Y by splitting an
interval [�10; 10]. If we split it into [�10; 0] and [0; 10], then, for Y
equal to either of these subintervals, the interval X 0 is unbounded.
But if we split [�10; 10] into [�10;�1], [�1; 1]; and [1; 10], then for
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two of these cases, X 0 is bounded.
We use these considerations when discussing splitting in Section

11.8 and elsewhere. We now give the steps of a splitting procedure
that is based on the above discussion. It can be used when solving
either nonlinear equations or optimization problems.

For one dimensional problems, it is reasonable to split an interval
into more than two parts. For multidimensional problems, we prefer
to split more than one component interval rather than split a given
component into more than two parts. This explains Step 2 in the
procedure below.

Denote the interval to be split by [a; b]:

1. If X � [�2; 2] and m(X) = 0 (so that a = �b), split X
into

�
a; a
1024

�
and

�
a

1024 ; b
�
: (Note: The number 1024 is an

arbitrarily chosen power of 2.)

2. If X * [�2; 2], and 0 2 X; split X as follows:

(a) If the problem being solved by the main program is multi-
dimensional, split X at whichever of �1 and +1 is nearest
the center of X. If m(X) = 0, split at either x = �1 or
x = +1.

(b) If the problem being solved is one dimensional, split X at
�1 if �1 2 X and also at +1 if 1 2 X:

3. Otherwise, split X in half.

There is an obvious exception to this way of splitting. Suppose,
f(x; y) = xy � h(x; y) and we �nd that h(X;Y ) > 0 so that xy > 0:
Then x and y have the same sign. If (for example), both X and Y
contain zero, we split both X and Y at 0 to delete the second and
fourth quadrants where x and y have opposite signs. This method
of splitting takes precedence over splitting at �1:
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10.9 THE MULTIDIMENSIONAL CASE

In the multidimensional case, we apply HC to one equation of a
system of equations and solve for one variable at a time. To do so,
we replace all other variables by their interval bounds. Let a box X
and an equation f(x) = 0 be given. As for BC (see Section 10.2),
obtain

q(xi) = f(X1; � � � ; Xi�1; xi; Xi+1; � � � ; Xn) = 0:

We can now solve this equation for the single variable xi: This is
the case we have been discussing. The di¤erence is that now the
equation involves interval constants.

A subset of the equations in a system of nonlinear equations
often contains terms that are linear in some of the variables. In
this case, we can use HC to solve for linear combinations of such
variables and then solve the linear system. We can also solve for
linear combinations of simple nonlinear functions.

In the multidimensional case, we can solve for a term involving
more than one variable. We then have a two stage process. For
example, suppose we solve for the term 1

x+y from the function

f(x; y) =
1

x+ y
� h(x; y) = 0:

Let x 2 X = [1; 2] and y 2 Y = [0:5; 2]: Suppose we �nd that
h(X;Y ) = [0:5; 1]. Then 1

x+y 2 [0:5; 1] so x + y 2 [1; 2]: Now we

replace y by Y = [0:5; 2] and obtain the bound [�1; 1:5] on X. Inter-
secting this interval with the given bound X = [1; 2] on x, we obtain
the new bound X 0 = [1; 1:5]:

We can use X 0 to get a new bound on h; but this might require
extensive computing if h is a complicated function; so suppose we do
not. Suppose that we do, however, use this bound in our intermediate
result x+ y = [1; 2]: Solving for y as [1; 2]�X 0, we obtain the bound
[�0:5; 1]. Intersecting this interval with Y , we obtain the new bound
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Y 0 = [0:5; 1] on y. Thus, we improve the bounds on both x and y by
solving for a single term of f .

For a system of equations, we apply HC by cycling through the
equations and variables as described at the end of Section 10.2. Sup-
pose we have solved once for each variable from each equation. We
can now repeat the process. In our optimization algorithms, we do
so only if su¢ cient progress is made in a given cycle. Otherwise, we
apply other procedures. If they also fail to make su¢ cient progress
we split the box.

10.10 CHECKING FOR NONEXISTENCE

Consider a single equation f(x) = 0 in which x is a vector. We often
want to know if there exists a point or points in a box xI that satis�es
the equation. It is common practice to check for nonexistence of such
points by evaluating f over the box. If 0 =2 f(xI); then no such point
exists in X: That is, f has no zero in xI :

When this test fails to prove nonexistence, one usually seeks a
point or points x in xI that satis�es f(x) = 0 (and generally other
equations as well). If we do seek such points, it is better to replace
this nonexistence test by an application of HC. In so doing, we might
be able to reduce xI when performing a nonexistence test that fails
(to prove nonexistence).

To illustrate this fact, consider a one dimensional equation of the
form f(x) = x � h(x) = 0: Suppose that for a given interval X, we
obtain f(X) > 0, which proves that there is no point x 2 X that
satis�es f(x) = 0: We can express f(X) > 0 as X > h(X): Suppose
we apply HC in the form X 0 = h(X). Then we have X 0 < X: Since
any solution of f(x) = 0 in X must also be in X 0, we conclude (as
for the nonexistence test) that there does not exist a solution in X.
Note that this is a kind of converse of an existence proof of a solution
using a �xed point theorem.

If X 0\X is not empty but is smaller than X, the latter procedure
makes progress in isolating any zero of f inX. We make this progress
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with essentially the same amount of computing needed to evaluate
f(X) to perform the nonexistence test. Since HC yields the same or
more information than the nonexistence test with the same amount
of computing, we always use HC rather than a nonexistence test.
We often use HC in this way in our optimization algorithms.

Little extra computing is needed if we use HC in the more general
form in which f(x) = g(x)� h(x) and we solve for g(X 0): Only one
small extra step is needed to solve g(X 0) for X 0: We have assumed
that this is easy to do.

This same saving of e¤ort can be used for inequalities. Suppose
we have an inequality f(x) � 0: Instead of testing whether a boxX is
certainly infeasible by evaluating f(X), we can solve f(x) = [�1; 0]
using HC and possibly eliminate some certainly infeasible points from
X. We have occasion to use HC in this way for both equations and
inequalities in various places in this book.

Consider the function

f(x; y) = xy � 10 = 0:

and assume 0 2 X and 0 2 Y: To solve for x or y when using HC, we
must divide by an interval containing zero. Thus, it might appear
that evaluating f(X;Y ) is better than HC to check for nonexistence
of a solution. This is not so.

Suppose X = [�4; 6] and Y = [�2; 2]: If we evaluate f(X;Y ), we
obtain [�22; 2]: Since 0 2 f(X;Y ); we have failed to prove nonex-
istence. If we replace y by Y and solve for X, we obtain X 0 =
[�1;�5] [ [5;+1]: Since X \X 0 = [5; 6], the equation f(x; y) = 0
has a solution with y 2 Y only if x is in this reduced interval.

It takes a little more e¤ort to compute X 0 and X \ X 0 than
to simply evaluate f(X;Y ): However, the extra e¤ort reduces the
interval bound on x from [�4; 6] to [5; 6]: Even if we have to divide
by an interval containing zero to apply HC, it is better to do so than
to simply check for nonexistence by evaluating f:

Suppose we have applied HC to a function f over a box xI . If xI

is unchanged in doing so, we obtain the data to easily evaluate f(xI).
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If xI is only slightly changed, we can get a good approximation for
f evaluated over the reduced box.

This can be useful. In our optimization algorithms, we split a
box when little or no progress is made in applying the algorithm to
the box. This implies that we can get good approximations to the
value over the box for any function to which we have applied HC.
We can use such information to determine how best to split the box.
We now show how to compute the approximation.

Suppose we apply HC to a function of the form f(x) = a(x)g(x1)�
h(x) where x = (x1; � � � ; xn)T and we seek a new bound on x1: In
previous sections, we implicitly assume that a function of this form
is rewritten by dividing through by a (x) to isolate g (x1). When
we apply HC over a box xI , we evaluate a(xI) and h(xI): We then

determine X 0
1 = g

�1
�
h(xI)
a(xI)

�
and X 00

1 = X1\X 0
1: Since g is chosen to

be a simple function, we can easily evaluate g(X 00
1 ) and thus obtain

the function ef(xI ; X 00
1 ) = a(x

I)g(X 00
1 )� h(xI):

Denote the new box by xI 00 = (X 00
1 ; X2; � � � ; Xn)T : We want a

value for f(xI 00): Note that a(xI) and h(xI) are evaluated using X1
rather than X 00

1 : Therefore, f(x
I 00) � ef(xI ; X 00

1 ) because X
00
1 � X1:

By assumption, either xI 00 = xI or else xI 00 di¤ers very little from

xI : Therefore, either ef(xI ; X 00
1 ) = f(xI) or else ef(xI ; X 00

1 ) is a good
approximation for f(xI):

Normally, we apply hull consistency to solve a given equation for
each of the variables on which it depends. In practice, the step to
bound f(xI) is done only after solving for the last of the variables.

10.11 LINEARCOMBINATIONSOF FUNC-
TIONS

Suppose we wish to �nd a solution of a system of nonlinear equations
in a given box. We can apply HC to each equation of the system to
try to eliminate parts of the box that cannot contain the solution.
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But, we can sometimes eliminate larger parts of the box if we apply
HC to a linear combination of equations from the system.

The following system is trivial but illustrates the idea. Suppose
we want to solve the system

x+ y = 0;

x� y = 0

for x 2 X = [�1; 1] and y 2 Y = [�1; 1]: Note that these functions
represent the diagonals of the box: For either equation, if we choose
any x 2 X, there exists a y 2 Y that satis�es the equation. There-
fore, HC cannot reduce the box. If we add the equations, we get
2x = 0 and if we subtract them we get 2y = 0: From these equations
HC produces the solution x = y = 0:

By taking linear combinations, we have rotated (and stretched)
the diagonals of the box so that they coincide with the coordinate
axes. Now HC can eliminate half planes into which a given line does
not enter.

Suppose we seek a solution to a general system of nonlinear equa-
tions in a box of small width. If the width is su¢ ciently small, the
surfaces represented by the functions are closely approximated by
their tangent planes. If the tangent planes at a given point are lin-
early independent, a linear combination of them can transform them
to coincide with the coordinate axes. This enables HC to eliminate
larger parts of the box than when using the original system.

Denote a system of nonlinear equations by the vector function
f(x) = (f1(x); :::fn(x))

T : In an interval Newton method (see Chapter
11), we use the expansion

f(y) = f(x) + J(x;xI)(y � x) = 0 (10.11.1)

where J(x;xI) is the Jacobian of f evaluated over a box xI containing
the points x and y. See Section 7.4. If x is the center of xI and if Jc

is the center of J(x;xI), then the equation f(x) + Jc(y� x) = 0 ap-
proximates the tangent planes of the components of f at x. Assume
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the matrix Jc is nonsingular and let B be an approximation for its
inverse. Then the tangent plane of the i-th equation of Bf(x) ap-
proximates the i-th coordinate axis. In an interval Newton method,
we precondition the system (10.11.1) using B:

We can apply HC to the linear combination Bf(x) of nonlinear
equations from the original system. We solve the i-th equation of
Bf(x) for the i-th variable only. Before doing so, we analytically
generate the function

[Bf(x)]i = Bi;1f1(x) + � � �+Bi;nfn(x): (10.11.2)

We write it in analytic form with terms collected and arranged
to produce the sharpest interval values when evaluated with inter-
val arguments. Afterward, we substitute numerical values for Bi;j
(i; j = 1; � � � ; n).

If the box is not small, the tangent planes can be poor approxi-
mations for the functions. In this case, this procedure might not be
helpful. Moreover, a linear combination of functions is more com-
plicated than the original component functions of f(x): Therefore, it
is likely that dependence causes greater loss of sharpness when ap-
plying HC to the transformed functions. Therefore, this procedure
for using linear combinations of functions is best used only when the
box is small. It is for small boxes that we want to use an interval
Newton method; and it is for the Newton method that we compute
the matrix B needed for the HC procedure just described.

After a Newton step is applied, we apply HC and BC to the
linear combination of nonlinear functions as described above. This
involves more computation than application to the original system.
If the box is small, it is for this step that the quadratically convergent
form of HC (described in Section 10.6) is of value. This is because
it is applied to an equation that depends strongly on only one vari-
able and because the box is small so behavior of the procedure is
approximately asymptotic.
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10.12 PROVING EXISTENCE

It is possible to prove the existence of a solution of a system of
nonlinear equations in a box X using HC. Let x; f ; g, and h be
vectors of n components and let the components of f be of the form
fi(x) = gi(x)�hi(x) (i = 1; � � � ; n). Suppose we compute a new box
xI 0 as X 0

i = g
�1
i [hi(x

I)] (i = 1; � � � ; n). This is equivalent to applying
HC to the equation xi � g�1i [hi(x)] (i = 1; � � � ; n). Therefore, we
might as well assume that the original equation has the form f(x) =

x � h(x) = 0. For simplicity, we do so. We now apply HC in the
form

xI
0
= h(xI):

Let h be a continuous function of x for x 2 xI and let hI(xI) be
a continuous, containment-set enclosure of h(x) for x 2 xI .

Theorem 10.12.1 If hI(xI) � xI, then there exists a solution of
f(x) = x� h(x) = 0 in xI :

Proof. Since h(x) 2 hI(xI) for all x 2 xI , the function h(x)
maps the convex, compact set xI into itself. Therefore, the Brouwer
�xed point theorem (see Theorem 5.3.13 of Neumaier (1990)) assures
that this function has a �xed point x� in the interior of xI . That is,
x� = h(x�) and hence f(x�) = 0:

To apply this theorem, we evaluate each component of h over the
same box xI : In practice, we use a reduced component of xI as soon
as it is computed. We can prove existence using this more e¢ cient
form.

We illustrate the procedure for a system of two equations of two
variables. Assume we are able to write the equations in the form

f1(x1; x2) = x1 � h1(x1; x2) = 0;

f2(x1; x2) = x2 � h2(x1; x2) = 0:
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We apply HC to the �rst equation in the form

X 0
1 = H1(X1; X2):

Assume that X 0
1 � X1. We next apply HC to the second equation

in the form

X 0
2 = H2(X

0
1; X2):

Assume that X 0
2 � X2:

Since X 0
1 � X1, we conclude from Theorem 9.6.8:

Conclusion 10.12.2 For each x2 2 X2, there exists x�1 2 X1 such
that f1(x�1; x2) = 0: Since X

0
2 � X2, we conclude:

Conclusion 10.12.3 For each x1 2 X 0
1, there exists x

�
2 2 X2 such

that f2(x1; x�2) = 0:

Since Conclusion 10.12.2 is true for each x2 2 X2 and since x�2 2 X2;
it is true for x�2: That is, f1(x

�
1; x

�
2) = 0. Since Conclusion 10.12.3

is true for each x1 2 X 0
1 and since x

�
1 2 X 0

1, it is true for x
�
1. That

is, f2(x�1; x
�
2) = 0: Therefore, the point (x�1; x

�
2) is a solution of the

system. Thus, we have proved the existence of a solution in a subbox
of the original box.

We have shown that it is possible to prove existence of a solu-
tion of a system of equations by applying HC to one equation at a
time. This same method of proof of existence can be used when any
method is applied to one equation at a time provided the method can
verify existence in the one dimensional case. In particular, the one
dimensional interval Newton method is such a method. See Theorem
9.6.9. We use this fact in Chapter 15.

10.13 COMPARINGBOXANDHULLCON-
SISTENCIES

Box consistency and hull consistency di¤er in performance and ca-
pabilities. To apply BC to a function, the function must be contin-
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uously di¤erentiable so that the Newton method is applicable. To
apply HC, the function need not even be continuous.

HC is much faster than BC in achieving its result. Therefore, we
emphasize its use and let BC play a subordinate role. However, a
result from HC might not be as narrow as a result from BC. This is
generally the case when HC solves for a single term. However, when
HC solves for more than one term (such as a quadratic expression),
the result can be sharper than would be obtained using BC. We give
an example in Section 12.7. Each method has virtues and drawbacks.
We use the virtues of both methods in our algorithms.

To illustrate the di¤erence in performance of HC and BC, con-
sider the function

f(x; y) = x3 + 100x+ 10y = 0:

Assume we wish to bound x when x 2 X = [�100; 100] and Y =

[�100; 100]: Replacing y by Y , we obtain

x3 + 100x+ [�1000; 1000] = 0:

If we apply HC by solving for the term x3; we obtain

x3 2 �100X � [�1000; 1000] = [�11000; 11000]

and hence x 2 [�22:24; 22:24]. If we iterate this step, the limiting
interval bound on x is approximately [�13:25; 13:25]:

Suppose we use BC by applying one Newton step to increase the
lower bound and one Newton step to decrease the upper bound. We
obtain [�66:42; 66:42] approximately. Thus, we perform more work
than a step of HC and obtain less sharp bounds. To get bounds as
good as that from one step of HC, we must apply ten Newton steps
when using BC. However, if we iterate BC, the limiting interval
bound is approximately [�6:824; 6:824], which is narrower than the
best possible HC result.

BC can usually produce bounds that are at least as narrow as
those from HC. However, this requires more computing e¤ort. In
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fact, it might be true only in the limit after an in�nite number of
BC steps.

Consider a function of the form xm1 � h(x2; � � � ; xn) = 0 where
m � 2 and where x1 does not occur in h. To solve for x1 using either
HC or BC, we replace x2; � � � ; xn by their interval bounds and solve
for x1. Using HC, we get the best possible result in one step. Using
BC, we must iterate and generally stop with a result that is not as
good as that produced by HC.

In the various algorithms in this book, we often follow a HC step
with a BC step. The BC step is skipped in certain cases. Recall that
to apply HC, we solve for a given variable xi using g(xi) = h(x):

If h(x) is independent of xi; then BC cannot improve the interval
bound on xi obtained using HC. Therefore we do not use BC.

Consider a function of a single variable x whose value is domi-
nated by a term xm when x is large. Assume the width of the initial
bound X on x is relatively large. Then a Newton step applied to X
tends to reduce the width of X by a factor 1� 1

m : Thus, under these
circumstances, BC can be rather slow.

The speed of HC for such an example depends on the subdomi-
nant terms. It can be slow or fast or it might not make any progress
at all.

Although BC might be slow in some cases, it is still of consider-
able value. Consider a problem in which HC makes little progress.
Let us compare BC in this case with the alternative of using a mul-
tidimensional Newton method (see Section 11.2).

Suppose we are solving a system of nonlinear equations over a
large box xI . If the Newton method fails to make progress, we have
wasted a great deal of e¤ort. If BC fails, much less e¤ort is wasted.
To make progress for either method, we split one or more components
of X. Generally, less splitting is needed for BC to make progress.
This is because BC is a one dimensional procedure; and splitting
need be done only in the one dimension. To improve the performance
of a multidimensional Newton method, it is generally necessary to
split a box in more than one dimension. Less splitting can result in
considerable saving of computing e¤ort.
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A virtue of consistency methods is that they reduce the region
of search for solutions to a given problem. The region might contain
one or many solutions (or none). When a region has been reduced
so that it contains only one solution, we generally rely on a New-
ton method to provide better performance. See Chapters 9 and 11.
When solving for zeros of functions in one dimension, we precede the
Newton procedure by an application of HC.

However, BC is omitted. It is designed merely to reduce the
region of search. The Newton procedure of Section 9.5 is designed
to separate isolated solutions and provide rapid convergence to each
of them. If HC is appropriately implemented, it can also separate
isolated solutions.

10.14 SHARPENING RANGE BOUNDS

Suppose we want to bound the range of a function f(x) over an
interval X. From Theorem 3.2.2, we can obtain bounds by simply
evaluating the function over X using interval arithmetic. However,
as noted in Section 2.4, dependence generally precludes the bounds
from being sharp. In this section, we show how consistency methods
can be used to sharpen such bounds.

We discuss the procedure for the case in which HC is used. How-
ever, BC can also be used. We assume the function is thin. That
is, it contains no nondegenerate interval parameters. However, this
need not be the case.

Denote the exact range of f over X by f(X) = [f(X); f(X)]:

Suppose we evaluate f(X) using interval arithmetic and, because of
rounding and dependence obtain a nonsharp interval [F (X); F (X)]
bounding f(X). Suppose we also evaluate f at two or more points of
X. For example, we might evaluate f at the endpoints of X. Denote
the smallest sampled value by fS and the largest by fL. Then

F (X) � f(X) � fS � fL � f(X) � F (X): (10.14.1)

Inequalities of this sort are used by Jaulin, et al (2001) to de�ne
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versions of BC.
Suppose we use HC to delete points of X where f > fS : Denote

the resulting interval by X 0: Note that any point of X at which
f = f(X) will be retained in X 0: Suppose we now evaluate f over X 0

and obtain [F (X 0); F (X 0)]. Then F (X 0) is a lower bound on f(X):

This new bound will generally by sharper than F (X) since X 0 is
generally a narrower interval than X.

A similar procedure can be used to sharpen the upper bound
F (X):

As an example, consider the function

f(x) = x3 � 4x2 + 15x:

If we evaluate f over the interval X = [2; 6] using nesting, we obtain

F (X) = 6 and F (X) = 162:

Evaluating f at the endpoints of X, we obtain

fS = f(2) = 22 and fL = f(6) = 162:

To apply HC to the inequality f(x) � 22, we de�ne g(x) = x3

and we write h(x) = 4x2 � 15x in the form

h(x) = 4(x� 1:875)2 � 14:0625

to reduce dependence when evaluating h: We thus solve for X 0 from

(X 0)3 � 4(X � 1:875)2 + 14:0625 = [�1; 22]:

After intersecting the result with X, we obtain X 0 = [2; 4:236]:

This interval must contain the minimum of f: Evaluating f(X 0)

using nesting, we obtain F (X 0) = 13:0567. Thus, we have increased
the lower bound on f(X) from 6 to 13:0567: The function f is
monotonic in X and the exact lower bound is 22.

Using a similar procedure to obtain a subinterval X 00 of X con-
taining f(X), we obtain F (X 00) = 162: Since this value is actually
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taken on at the sampled value of f at x = 6, we have proved that
the exact value of f(X) is 162. That is, our upper bound for f(X)
is sharp.

A similar procedure can be used to improve bounds on the range
of a multivariable function.

10.15 USING DISCRIMINANTS

The equations to which we apply HC in practice often contain a given
variable both linearly and quadratically. In this case, the function g
used to de�ne a step of HC can be a sum of these terms. To invert g
we must solve a quadratic equation. In this section, we note that the
discriminant of the quadratic equation can play a signi�cant role.

The ancient formula

r� =
�B �

�
B2 � 4AC

� 1
2

2A
(10.15.1)

expresses the roots of a quadratic equation
Ax2 +Bx+ C = 0

in terms of the square root of the discriminant
D = B2 � 4AC:

We noted in Section 8.1 that generally one should not use the explicit
expression (8.1.2) to �nd roots of an interval quadratic equation. In-
stead, the method of Section 8.2 should be used. This procedure
reduces loss of sharpness in computed roots resulting from depen-
dence.

Nevertheless, (10.15.1) is useful because of the implied condition

B2 � 4AC � 0; (10.15.2)

which is necessary for the roots to be real. This condition can be used
in various ways when solving problems in which an (appropriate)
equation must be satis�ed. The inequality in (10.15.2) is an example
of a domain constraint discussed in Chapter 4 on page 74.
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We now consider some illustrative examples. First, consider the
equation

x2y2 � 20xy + x2 + y2 + 10 = 0: (10.15.3)

Suppose we wish to �nd all solutions of this equation in the box
given by X = Y = [�100; 100]: We can apply HC by regarding this
equation as a quadratic in the product xy. Solving the quadratic by
the method of Section 8.2 does not reduce the box. Similarly, if we
regard the equation as a quadratic in x (or in y) we do not reduce
the box.

However, regarding the equation as a quadratic in xy, the dis-
criminant is

D1 = 360� 4(x2 + y2):
If we apply HC to the condition D1 � 0, we obtain a new box given
by X 0 = Y 0 = [�9:49; 9:49], approximately.

We get an even better result if we regard (10.15.3) as a quadratic
in y. The discriminant is

D2 = �4x4 + 356x2 � 40:
The condition D2 � 0 yields X 0 = �[0:335; 9:43], approximately.
The same result can be obtained for y.

In this example, we are unable to reduce the box simply by solv-
ing the quadratic equation. However, reduction is obtained using
the condition that a discriminant be nonnegative.

The di¢ culty that prevents us from reducing the box by solving a
quadratic is that the coe¢ cients of the quadratic are dependent. It is
possible to overcome this di¢ culty by a more sophisticated approach
in which we �nd the extrema of the roots when they are expressed
analytically using (10.15.1).

As another example, assume the equation

x4y � x2y2 � 4x� 20 = 0 (10.15.4)

must hold in some box. We can obviously regard this equation as a
quadratic in y: Also, we can think of x in the linear term as a separate
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variable and regard the equation as a quadratic in x2. Also, we can
think of x4 in the leading term as a separate variable and regard the
equation as a quadratic in x. The relevant discriminants for these
cases are

D1 = x
8 � 4x2(4x+ 20) � 0;

D2 = y
4 + 4y(4x+ 20) � 0;

D3 = 16 + 4y
2(x4y � 20) � 0:

Suppose (10.15.3) must be satis�ed in a box given by X = Y =

[�5; 5]: If we apply HC directly to (10.15.4), we are unable to reduce
the box. However, applying HC to D1 � 0, we can delete the gap
(�1:91; 2:20) from X. Applying HC to D3 � 0, we can reduce the
interval Y to [�0:448; 5]: Thus, use of the discriminant relations is
fruitful.

10.16 NONLINEAR EQUATIONS OF ONE
VARIABLE

In Section 9.5, we give the steps of an interval Newton method for
solving nonlinear equations in one variable. We now give the steps
of that algorithm after incorporating hull consistency. This makes
the new steps somewhat more complicated than the original ones in
Section 9.5. However, they are more e¢ cient, especially when the
initial interval is wide.

At any stage of the algorithm, the current interval is denoted by
X even though it changes from step to step.

1. Put the initial interval X0 into a list L of intervals to be
processed.

2. If the list L is empty, stop. Otherwise, select the interval X
from L that has been in L for the shortest time. For later
reference (in Step 10), record this interval X by the name X(1):

3. Using the interval X, apply hull consistency to the equation
f(x) = 0: If the result is empty, go to Step 2.
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4. If 0 2 f 0(X); go to Step 6.

5. Apply the procedure described in Section 9.3, which either
bounds a solution in X or proves that there is no solution
in X. If the result is empty, go to Step 2. Otherwise record
the solution interval that the procedure produces and go to
Step 2.

6. If 0 2 f I(x);go to Step 8.

7. If w(X)jXj < "X and w(f(X)) < "f ; record X as a �nal bound

and go to Step 2. Otherwise, go to Step 9.

8. Use the procedure listed in Section 9.4. If that procedure pre-
scribes a point of expansion, record it; and go to Step 9. If it
decides that the interval X should be accepted as a solution,
record X and go to Step 2. If it prescribes that the interval
is to be split, do so using the procedure at the end of Section
10.8. Put the subintervals generated by splitting into the list
L and go to Step 2.

9. Apply a Newton step as given by (9.2.2) using the interval
X. If a point of expansion was prescribed in Step 8, use it in
determining the expansion de�ning the Newton method. If the
result is a single interval, go to Step 10. If the result is two
intervals, put them in list L and go to Step 2.

10. If the width of X is less than half that of X(1) (de�ned in Step
3), go to Step 3.

11. Split X using the procedure given in Section 10.8. Put the
resulting subintervals into list L and go to Step 2.
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Figure 10.2.1: Newton iteration with expansion about left endpoint.
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Figure 10.4.1: Hull Consistency Example
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Chapter 11

SYSTEMS OF
NONLINEAR
EQUATIONS

11.1 INTRODUCTION

Let f : Rn ! Rn be a continuously di¤erentiable function. In this
chapter, we consider the problem of �nding and bounding all the so-

lution vectors of f = 0 in a given box xI(0). For noninterval methods,
it can sometimes be di¢ cult to �nd one solution, quite di¢ cult to
�nd all solutions, and generally impossible to know whether all so-
lutions have been found. In contrast, it is a straightforward problem

to �nd all solutions in xI(0) using interval methods; and it is trivially

easy to computationally determine that all solutions in xI(0) have
been found. We describe such interval methods in this chapter.

If a given problem has a large number of isolated solutions, it, of
course, requires a large amount of time for any method to compute
them all.

The nature of interval methods is such that it appears that they
must always converge globally. However, there is no proof as yet. In
practice, they �fail�only in taking too much computing time. It has
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been proved that convergence is global for the one-dimensional case.
See Theorem 9.6.2.

Watson (1986) states that �the raison d�être for homotopy meth-
ods is global convergence�. Therefore, the (presumed) global con-
vergence of interval methods is su¢ cient motive for their use. The
reason interval methods were originally introduced, however, was to
provide (as they do) guaranteed bounds on the set of all solution(s).

Interval Newton methods can be said to have a raison d�être for
any of the three reasons given: They �nd all solutions, they (ap-
parently) converge globally, and the computed bounds are guaran-
teed to be correct. We see below (especially in Section 11.15) that
they have other valuable properties as well. For example, they can
(despite rounding errors) prove the existence (or nonexistence) and
uniqueness of a solution.

11.2 DERIVATION OF INTERVAL NEW-
TON METHODS

Let x and y be points in a box xI : Suppose we expandeach component
fi (i = 1; � � � ; n) of f by one of the procedures given in Chapter 7.
Combining the results in vector form, we have

f (y) 2 f (x) + J (x;xI) (y � x): (11.2.1)

We refer to J as the Jacobian of f although it need not be formed
using di¤erentiation. A more e¢ cient method is obtained if it is
formed using slopes. See Section 7.7.

If y is a zero of f , then f(y) = 0 and we replace (11.2.1) by

f (x) + J(x;xI)(y � x) = 0: (11.2.2)

Let x be �xed. De�ne the solution set of (11.2.2) to be

s =

�
y

���� f (x) + J(x;x0)(y � x) = 0x0 2 xI :

�
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This set contains any point y 2 xI for which f(y) = 0:We could use
the notation fsg to emphasize the solution set is not a point, but we
choose not to do so.

The smaller the box xI , the smaller the set s. The object of an
interval Newton method is to reduce xI until s is as small as desired
so that a solution point y 2 xI is tightly bounded. Note that s is
generally not a box. (See Section 5.3).

Suppose we solve the linear equation (11.2.2) using a method
such as described in Chapter 5. Let yI denote the resulting box.
Then yI contains the solution set s:

For convenience, we write the suggestive relation

f (x) + J(x;xI)(yI � x) = 0: (11.2.3)

We discussed in detail in Section 5.2 why this relation is only sug-
gestive. It is because even when yI is a solution of (11.2.3), if we
compute the left member of (11.2.3), the result is generally not the
zero vector. The exception is when x is a zero of f and yI = x.

For future reference, it is desirable to have a distinctive notation
for the solution of (11.2.3). In place of yI , we use the notation
N(x;xI); which emphasizes the dependence on both x and xI .

From (11.2.3), we de�ne an iterative algorithm of the form

f(x(k)) + J
�
x(k);xI

(k)
� h
N
�
x(k);xI

(k)
�
� x(k)

i
= 0; (11.2.4a)

xI
(k+1)

= xI
(k) \N(x(k);xI(k)) (11.2.4b)

for k = 0; 1; 2; � � � where x(k) must be in xI(k). A good choice for x(k)

is the center m(xI(k)) of xI(k): However, in Section 11.4, we consider
how to compute a better choice.

See Alefeld (1999), for example, for a discussion of a method in
which the linear system (11.2.4a) is solved by an interval form of
Gaussian elimination.

In some procedures, the components of N(x(k);xI(k)) are com-
puted sequentially. The intersection in (11.2.4b) is computed as
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soon as a new component is obtained so that components computed
later are narrower intervals.

In what follows, we sometimes omit the superscripts from terms
in (11.2.4).

In Section 5.6, we noted that to obtain satisfactory results when
computing the solution of a system of linear equations, it is generally
necessary to precondition the system. To do so in the present case,
we multiply (11.2.3) by an approximate inverse B of the center Jc

of J(x;xI): We discuss another way to precondition in Section 11.9.
If the matrix Jc is singular, we can (implicitly) modify it slightly

so that the modi�ed form is nonsingular. We describe a way to do
so in Section 5.11.

Other alternatives when Jc is singular are either to begin again
with a new point x of expansion, or to split the box xI into subboxes
and apply the method to each subbox separately. In either case, we
hope the new Jc is nonsingular.

Denote

M(x;xI) = BJ(x;xI) and rI (x) = �Bf I (x) : (11.2.5)

In place of (11.2.4), we can write (temporarily reintroducing super-
scripts)

M(x(k);xI
(k)
)
h
N(x

(k);xI
(k)
)� x(k)

i
= rI

�
x(k)

�
(11.2.6a)

xI
(k+1)

= xI
(k) \N(x(k);xI(k))

(11.2.6b)

(k = 0; 1; 2; � � � )
As before for (11.2.4b), the intersecting in (11.2.6b) is done for

a given component as soon as it is computed.
We frequently make reference to the interval Newton method in

which we solve (11.2.6a) using a step of the Gauss-Seidel method
described in Section 5.7. We write the iteration in succinct form by
dropping the superscript k and letting x0 and xI 0 denote x(k+1) and
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xI(k+1), respectively. We also replaceM(x;xI) byMI . The iteration

for the i-th element of N(x(k);xI(k)) is simply denoted by

Ni = xi +
1

MI
ii

24Ri � i�1X
j=1

MI
ij(X

0
j � xj)�

nX
j=i+1

MI
ij(Xj � xj)

35 ;
X 0
i = Ni \Xi (11.2.7)

Note that computing Ni can be regarded as an application of hull
consistency to the i-th equation of the preconditioned system.

In practice, we do not complete the application of a step of the
Gauss-Seidel method if all the diagonal elements ofMI contain zero.
Note that these elements occur in the denominator or (11.2.7). If
all the diagonal elements of MI contain zero, it is likely that in
(11.2.7) the quantity in square brackets contains zero for every value
of i = 1; � � � ; n. In this case, Ni = [�1;1] for all i = 1; � � � ; n and
thus xI 0 = xI : That is, no progress is made in applying a step of the
Gauss-Seidel method.

If at least one diagonal element of MI does not contain zero, we
apply the Gauss-Seidel method. When doing so, before other values
of i, we solve for Ni for those values of i for which 0 =2 Mii. This is
because Xi might be reduced for the former (but generally not for
the latter) values of i. The latter might produce an exterior interval
(that is, the interval [�1;1] with a gap removed). We ignore such
gaps during the Gauss-Seidel step unless their intersection with Xi
is empty or a single �nite interval. However, information about such
gaps is saved for later use if a box is to be split. See Section 11.8.

We sometimes refer to the Krawczyk method; but we do not use
it because the Gauss-Seidel method is more e¢ cient. To describe it
we de�ne the matrix PI = I�MI . The iteration is
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Ki = xi +Ri +

i�1X
j=1

PI
ij(X

0
j � xj)�

nX
j=i

PI
ij(Xj � xj);

X 0
i = Ki \Xi: (11.2.8)

This is actually an improved version of the Krawczyk method due
to Hansen and Sengupta (1981). In the original version, intersecting
is done only after all new components are computed.

11.3 VARIATIONS OF THE METHOD

The ways in whichN(x(k);xI(k)) is computed from (11.2.4a) or (11.2.6a)
and the ways in which J is de�ned distinguishes the various interval
Newton methods. In this section, we concentrate on variations of
the former kind.

Some variations attempt to bound the solution set s as sharply as
possible each time (11.2.6a) is solved. Others do not. We distinguish
between methods by de�ning the following types:

Type I: Equation (11.2.6a) is solved as sharply as possible in each
iteration.

Type II: Equation (11.2.6a) is solved to obtain bounds on its solu-
tion set; but the bounds are not sharp, in general.

Type III: A method of type I or a method of type II (or both)
is used in each iteration depending on criteria designed to en-
hance overall e¢ ciency.

A type I method generally uses fewer iterative steps to obtain
a bound of a given tolerance on a solution point. An example of a
type I method is one in which the hull method of Section 5.8 is used
to solve (11.2.6a).

A type II method generally uses more steps of a simpler nature.
Therefore, the work per iteration is less. Examples of type II are
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those using Krawczyk�s method (11.2.8) or the Gauss-Seidel method
(11.2.7) to solve (11.2.6a).

We discuss a type III method in Section 11.12.
When we evaluate the real vector function f (x) at the point x;

we use outwardly rounded interval arithmetic and denote this fact
by writing f I (x). Assume that the resulting box is of �reasonably
small� width. That is, assume that rounding and dependence do
not produce pathologically large bounds. Assume, also, that f does
not depend on any parameter that enters as a wide interval. Then
any interval Newton method of any type produces bounds on s that
become tight as the width of xI becomes small.

Note that the solution set s of (11.2.3) becomes smaller as the
current box xI becomes smaller, and the box to which the interval
Newton method is applied gets progressively smaller as the algorithm
progresses. In the early stages in solving a system, there is little point
in bounding s sharply.

The �rst interval Newton method was due to Moore (1966). It
is of type I; but a single step does not achieve as much progress as
later variants. Because we wish to refer to it later, we now describe
Moore�s original algorithm. It uses (11.2.4) rather than (11.2.6).

Let x = m(xI) and assume J(x;xI) in (11.2.4a) does not contain
a singular matrix. Let V(x;xI) be an interval matrix containing the
inverse of every matrix contained in J(x;xI). Then the solution of
(11.2.3) is contained in the vector NM (x;xI) where

NM (x;x
I) = x�V(x;xI)f I (x) (11.3.1)

The �rst procedure, which does not sharply bound s, was intro-
duced (independently) by both Kahan (1968) and Krawczyk (1969).
It is given by (11.2.8). It is commonly called the Krawczyk method
and has been studied thoroughly. For example, see Alefeld (1999),
Moore (1979) and Neumaier (1990).

In Moore�s method the interval matrix V(x;xI) in (11.3.1) is
computed using interval Gaussian elimination. This can fail because
of division by an interval containing zero. At the time of incep-
tion, the Krawczyk method was an important development because
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it avoided applying Gaussian elimination to an interval matrix. In
fact, the Krawczyk method avoids solving any set of interval linear
equations. Instead, only a real (i.e., noninterval) matrix inverse is
computed. This was the motivating factor for its introduction. For
a recent discussion of the Krawczyk method, see Alefeld (1999).

A minor weakness of the Krawczyk and Gauss-Seidel methods
is that even if x� is a zero of f so that f(x�) = 0, the solution of
(11.2.6a) does not yield a result precisely equal to the degenerate
box x�. Instead, a nondegenerate box containing x� is produced.
Partly for this reason, these methods are not as rapidly convergent
as some other interval Newton methods.

Hansen and Sengupta (1981) noted that the Gauss-Seidel method
is more e¢ cient than the Krawczyk method. See also Hansen and
Greenberg (1983). Neumaier (1990), discusses the Gauss-Seidel and
Krawczyk methods in the form in which intersecting is done only
after all new components have been computed. He notes (page 177)
that in this form N(x;xI) � K(x;xI) where Ni; the elements of
N(x;xI) ; are given by Equation (11.2.7) and Ki; the elements of
K(x;xI) ; are given by (11.2.8). Therefore, between the two methods,
the Gauss-Seidel method is preferred.

For variations of algorithms using the Gauss-Seidel method, See
Hansen and Sengupta (1981) and Hansen and Greenberg (1983).

Shearer and Wolfe (1985a, 1985b) give an improved form of
Krawczyk�s method that they call the symmetric form. They solve
the Krawczyk formula for new interval variables in their natural or-
der. Before recomputing the Jacobian, they again solve the Kraw-
czyk formula. This time, however, they solve for the variables in
reverse order. This same symmetric approach can be used to solve
(11.2.6a) using the Gauss-Seidel method.

The best available method for solving the preconditioned equa-
tion (11.2.6a) is the �hull method�of Section 5.8. It produces the
exact hull of the solution set of (11.2.6a). However, it fails if the
coe¢ cient matrix is irregular, see Section 5.8.2. In this case, we use
the Gauss-Seidel method.
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11.4 AN INNER ITERATION

In this section, we describe an �inner iteration�that has been used
in the past to improve the convergence of interval Newton methods.
It can be used in the way described. In Section 11.4.1, we describe
an alternative way to apply an inner iteration. We prefer the latter
form. We use this alternative form in the algorithms given in Section
11.12 and 11.14.

The purpose of an inner iteration is to �nd an approximation for
a solution of f = 0 in the current box xI . This approximation can
be used as the point of expansion x in (11.2.1). The closer x is to a
solution point of f = 0, the smaller the solution set of (11.2.6a).

Later in this section, we describe an inner iteration that gener-
ally obtains a point x 2 xI where jjf (x) jj is smaller than at the
center of xI . The expectation is that by obtaining this better point
of expansion, we require fewer iterations of the main algorithm. This
means that fewer evaluations of the Jacobian are required. There-
fore, less overall computation is required to solve the system of non-
linear equations. This has been veri�ed by experiment. For example,
see Hansen and Greenberg (1983).

In Section 11.2, we note that the �rst step in solving (11.2.3) is to
multiply by an approximate inverse B of the center of the coe¢ cient
matrix J(x;xI). Hansen and Greenberg (1983) pointed out that
since B is available, we can use it to perform a real Newton step (or
steps) to try to obtain a better approximation for a zero of f than
the center m(xI) of xI .

The inner iteration is

z(i+1) = z(i) �Bf(z(i)) (i = 0; 1; � � � ): (11.4.1)

The initial point z(0) can be chosen to be the center of the current
box. At the �nal point, f is as small or smaller in norm than at z(0).
The �nal point is used as the point of expansion x in (11.2.1). This
�nal point must be in xI so that the expansion (11.2.1) is valid for
the ensuing interval Newton step using xI .
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The iteration is discontinued if z(i+1) is outside xI . Suppose this
is the case. Let z0 denote the point between z(i) and z(i+1) where
the line segment joining these two points crosses the boundary of xI .
If jjf(z0)jj < jjf(z(i))jj; we choose z0 as our approximation for a zero
(and hence as our point of expansion). Otherwise,we choose z(i).
The vector norm we use in this book is

jjf jj = max
1�j�n

jfj j:

The inner iteration is also stopped if jjf(z(i+1))jj > jjf(z(i))jj:
In this case, we let x = z(i). Otherwise, the iteration (11.4.1) is

stopped after three steps and we set x = z(3). Further iteration
might converge to a zero of f . However, the convergence rate is only
linear if B is �xed. Hence, it is not e¢ cient to perform too many
iterations.

It is more important to have f (x) small when solving (11.2.6a)
using either the hull method or Gaussian elimination than using a
step of the Gauss-Seidel method. This is because the former two
methods yield convergence in one step of (11.2.6a) if f (x) = 0 (and
exact interval arithmetic is used). A Gauss-Seidel step does not.

Therefore, a di¤erent number of steps using (11.4.1) can be used
depending on which method is used to solve the linearized system
(11.2.3). In the algorithm given below in this section, we have used
the same upper limit (i.e., 3) on the number of inner iterations using
(11.4.1).

The amount of work to do the inner iteration is small compared
to that required to compute J(x;xI) and B and then to solve the
preconditioned linear system (11.2.6a). Therefore, the inner iteration
is worth doing even when its e¤ect on convergence is small. However,
its use depends on having computed B for use in preconditioning.

We now list the steps of the inner iteration. All steps are done in
ordinary rounded arithmetic. That is, interval arithmetic need not
be used. Let the current box be xI .
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0. Initialize:

(a) Set z(0) = m(xI).

(b) Set i = 0:

1. Compute z(i+1) using (11.4.1).

2. If z(i+1) 2 xI ; go to Step 3. Otherwise, go to Step 5.

3. If jjf(z(i+1))jj < jjf(z(i))jj; go to Step 4. Otherwise, set x = z(i)
and go to Step 6.

4. If i < 3, replace i by i + 1 and go to Step 1. Otherwise, set
x = z(i+1) and go to Step 6.

5. Let z0 denote the point where the line segment joining z(i) and
z(i+1) crosses the boundary of xI . If jjf(z0)jj < jjf(z(i))jj, set
x = z0. Otherwise, set x = z(i):

6. If xi is not in Xi for some i = 1; � � � ; n, replace xi by the
nearest endpoint of Xi. (Note that rounding might have been
such that x is not in xI). Return to the main program.

The �rst time Step 1 is used in this procedure, we have z(0) =
m(xI) and we want Bf(z(0)): Note, that �Bf(z(0)) is the vector rI
(see Equation (11.2.5)) already computed in the algorithm in Section
11.12. That is, we need not recompute f and Bf the �rst time Step
1 is used.

The same kind of inner iteration can be performed in the one-
dimensional interval Newton method described in Chapter 9. How-
ever, in this case, the derivative of f (i.e., the one-dimensional Ja-
cobian) generally takes about the same amount of computation to
evaluate as is required to evaluate f . Hence, there is little motive to
do the inner iteration.
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11.4.1 A POST-NEWTON INNER ITERATION

In the previous section, we describe an inner iteration that is used
during an interval Newton step. In this section we describe how an
inner iteration can be used after an interval Newton step. It is de-
signed to improve the performance of a subsequent interval Newton
step rather than the current one.

If all the arguments of all the elements of the Jacobian are chosen
to be intervals, then the method of the previous section is preferred
to the one we now describe. This is because (in this case) changing
the point of expansion does not change the Jacobian. However, in
practice, one implements the Jacobian so that some arguments of
some of its elements are real rather than interval. This is necessarily
the case if we use a slope expansion (see Section 7.7). It is also
desirable when using a Taylor expansion. (See Section 7.4.)

Suppose we compute the Jacobian by expanding about a partic-
ular point such as the center of a box. Suppose we use Jacobian
data to determine a point nearer a solution of the given system. If
we change the point of expansion to this new point, we change the
Jacobian and it must be recomputed if it is to be used in the current
interval Newton step. Therefore, the bene�t of having a good point
of expansion is o¤set by having to perform this recomputation.

In this section, we advocate an alternative method. In this
method, we use an inner iteration after the interval Newton step
is performed. Suppose the inner iteration using the real matrix B
obtains a point xB as an approximate solution to a system of equa-
tions. When a subsequent interval Newton step is applied to a box
containing xB, we use xB as the point of expansion over the box.
Therefore, the Jacobian need be computed only once to perform a
given Newton step.

This point xB is generally obtained by an inner iteration in a
larger box than the current one. It might seem reasonable to evaluate
f at the center of the current box to see if this value is smaller in
norm than the value at xB. If so, the Jacobian can be expanded
about this center. We do not do this.
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To use this procedure, one must store xB along with the box in
which it was obtained. If the box changes, we keep xB only if it is
contained in the new box. If the box is split, we store the point xB

only with the one subbox containing it.

11.5 STOPPING CRITERIA

In this section, we consider how to terminate an interval Newton
algorithm. Termination procedures for interval methods are similar
in some ways to those for noninterval methods. However, they are
distinctly di¤erent in other ways. For a discussion of termination cri-
teria in the noninterval case, see, for example, Dennis and Schnabel
(1983).

We begin this section on stopping criteria by discussing some
relevant concepts.

Suppose we evaluate f at a point x using rounded interval arith-
metic. Instead of obtaining the noninterval vector f (x), outward
rounding causes us to get an interval vector f I (x) containing f (x) :
Let x� be a zero of f . Because of rounding errors, there is a set of
points xs about x� for which 0 2 f I (x) for all x 2 xs: Let xI� denote
the smallest box containing this set.

A reasonable convergence criterion is to require that the interval
Newton method produce a box that contains xI� and is a good ap-
proximation for xI�. Actually, we can generally compute a slightly
better result because information is used about the Jacobian and not
just f . However, the extra accuracy might require using expansion
points on the boundary of the current box that are not selected by the
algorithm we give in Section 11.12. In that algorithm, we make no
special e¤ort to improve on xI�. Sometimes the result is better and
sometimes not. For an illustrative example in the one-dimensional
case, see Section 9.7.

For simplicity, we discuss termination as if our goal is to compute
a good approximation for xI�. We discuss tolerances that a user
might prescribe to save work by causing termination before xI� is
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closely approximated. If these tolerances are too small, the algorithm
reverts to approximating xI� to prevent fruitless computation.

In Section 9.4, we noted that if, in the one dimensional case,
an interval X contains zero, then 1 � w(X)=jXj � 2: Therefore,
care has to be taken when using a relative stopping criterion. The
condition w(X)=jXj � " can never be satis�ed if " < 1 and 0 2 X:

We might use a relative criterion of this form in the multidimen-
sional case (and a user might choose to do so). However, a solution
vector xI� might have a component X�

i that is zero. If this compo-
nent of a bounding box xI is the widest component of the box, a
relative criterion with " < 1 cannot be satis�ed.

It is possible to use a procedure in which a separate criterion is
used for each component of a box. A component containing zero
can use (say) an absolute criterion. This has the added bene�t of
permitting unequal scaling of variables to be taken into account.

We take the simple approach of using an absolute criterion for
the box as a whole. Thus, we de�ne:

Criterion A:

w(xI) < "X for some "X > 0: (11.5.1)

As noted in Section 9.4, care must be taken when choosing "X for
use in an absolute criterion of this form.

A user might want to have jjf (xI) jj small for all x in a �nal box
xI bounding a zero of f . Therefore, we de�ne:

Criterion B:

jjf(xI)jj < "f for some "f > 0: (11.5.2)

Criterion A corresponds to the noninterval criterion that two
successive iterates be close together. The criterion in the noninterval
case corresponding to Criterion B is that an approximation (of
uncertain accuracy) for jjf (x) jj be small at a single point x.
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In each step of the interval Newton method, the current box is
either substantially reduced in size1 (see Section 11.7) or split into
subboxes. Therefore, each remaining box is eventually as small as
desired (subject to wordlength limitation), so it is trivially easy to
satisfy Criterion A.

The interval approach to solving systems of equations has a virtue
that is unavailable in the noninterval case: in practise, it is possible
to determine when "X has been chosen too small. If "X is too small,
many boxes (each satisfying Criterion A) are required to cover the
set xI�. Similarly, "f can be chosen too small. Therefore, we wish
to override Criteria A and B when they are too stringent and try
to approximate xI� instead.

Note, however, that a user might wish to map the solution region
by small boxes as �pixels�. This can be done by allowing Criterion
A to determine convergence.

The vector f(xI) is not computed by the Newton algorithm.
Therefore, extra e¤ort is required to use Criterion B. However,
extra information results from its use. When Criterion B is sat-
is�ed for all �nal boxes, we know that jjf (x) jj < "f for all x in all
�nal boxes. This information can be useful.

Actually, it is not necessary to compute f(xI) directly. Instead,
we can reduce the e¤ort (unless f is quite simple) by using the rela-
tion

f(xI) � f I (x) + J(x;xI)(xI � x): (11.5.3)

Since f I (x) and J(x;xI) are computed when performing a Newton
step, the only extra e¤ort required to compute a bound on f(xI) is a
matrix-vector multiplication and a vector addition. Moreover, when
w(xI) is small, this method generally bounds the range of f over xI

more sharply than directly evaluating f(xI).
When we use the relation in (11.5.3) to bound f(xI), we use the

already computed J(x;xI) to obtain a new box xI 0 in xI . Thus, we
use f(xI 0) � f I(x) + J(x;xI)(xI � x): Therefore, J(x;xI) has wider

1We often simply write: �reduced�.
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elements than the correct Jacobian. As a result, the computed bound
on f(xI 0) is wider than necessary. However, if we simply evaluate
f(xI 0), then dependence causes widening so computed bounds are
not sharp in either case.

To see if Criterion B is satis�ed, another option when evalu-
ating f(xI) is to use hull consistency to bound f(xI) as described in
Section 10.10. The box might be reduced in the process.

In our termination procedure, we check whether Criterion A
is satis�ed before checking to see if Criterion B is satis�ed. If
Criterion A is not satis�ed, we continue iterating on the current
box. Hence, we often avoid evaluation of f(xI) because Criterion
B is not checked in this case.

We want to have the option of stopping only when we have the
best (or near best) possible result with the numerical precision used.
That is, we want the option to stop when (and only when) we have
a good approximation for xI�. This is especially desirable when one
or both of the tolerances "X and "f are chosen too small. We now
discuss how this can sometimes be done.

Recall that to compute a new interval Newton iterate, we solve

f (x) + J(x;xI)(y � x) = 0:

(See (11.2.4a).) To precondition the system, the �rst step in solving
this equation is to multiply by an approximate inverseB of the center
of J(x;xI): (See Sections 5.6 and 11.2.) The resulting coe¢ cient
matrix isM(x;xI) = BJ(x;xI):We discuss another way to compute
M(x;xI) in Section 11.9.

Assume that J(x;xI) is regular (i.e., does not contain a singular
matrix). Then the inverse B exists and M(x;xI) can be computed.
If w(xI) is small, then the interval elements ofM (x;xI) are generally
small in width and M(x;xI) approximates the identity matrix.

For our current purpose, we are interested only in whetherM(x;xI)
is regular or not. Below, we see that for another reason M(x;xI) is
checked for regularity. Therefore, no extra computation is required
to make this check for our current purpose.
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Note that regularity of M(x;xI) assures that any zero of f in xI

is simple. In this case, we are able to decide when xI approximates
xI�. We use

Criterion C: 0 2 f I (x) ; M(x;xI) is regular, and N(x;xI) � xI :

The condition 0 2 f I (x) assures that x is at or near a zero of
f . The condition N(x;xI) � xI indicates that the interval Newton
step is unable to reduce xI . WhenM(x;xI) is regular, the other two
conditions of Criterion C assure that xI approximates xI�.

In our algorithm, if Criterion C is satis�ed, we stop trying to
reduce xI . We do not require that Criteria A and B be satis�ed
in this case. If the tolerance "X and/or "f are too small and if
we do not give precedence to Criterion C, a box approximating xI�

might be split into many subboxes, all of which must be output. The
�solution�is their union. Letting Criterion C dominate the other
criteria, less work is done, because the algorithm tends to return a
single box approximating xI�.

If xI contains a multiple zero (or more than one isolated zero)
of f , the Jacobian J(x;xI) is irregular. Therefore, M(x;xI) is also
irregular. In this case, we need a criterion di¤erent from Criterion
C to decide when xI approximates xI�. This case is more di¢ cult.
However the �di¢ culty�is really only a nuisance. Consider

Condition D: 0 2 f I (x) ; N(x;xI) � xI , and M(x;xI) is irregular.

All we really need is a condition that assures that xI is not large
when Condition D holds. However, a choice must be made on how
to proceed. We describe our choice in this section. WhenM(x;xI) =
BJ(x;xI) is regular, we can determine the hull of the solution set of
the preconditioned system

Bf (x) +BJ(x;xI)(y � x) = 0

by the hull method given in Section 5.8. WhenM(x;xI) is irregular,
this method is not applicable; and neither is Gaussian elimination.
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Therefore, we use the Gauss-Seidel method described in Section 5.7.
A di¢ culty of the Gauss-Seidel method (from the perspective of
termination) is that even when 0 2 f I (x) and xI is large; it is possible
to have N(x;xI) � xI .

Suppose that in our algorithm, we have applied hull and box
consistencies to a box (say yI) and have obtained the box xI to
which the Newton method is applied. Suppose yI 6= xI : Then the
consistency methods have reduced yI : In this case, we assume xI is
not as small as it can be made to be, even if the Newton method
fails to reduce it.

In our algorithm, we rely upon Criteria A and B to stop itera-
tion on a box for which Condition D holds. However, we now point
out some alternatives that can be used, that we have not yet tried.

We can compare jjf(x)jj with jjf(xI)jj for x 2 xI . Note that
jjf(xI)jj approaches jjf(x)jj as the width of xI approaches zero with
x 2 xI .

We can attempt to �nd a point x in xI for which 0 =2 f I (x) : To
do so, we can evaluate f at a few corners of xI . If such a point can
be found, then xI might not be as small as we want it to be.

An unsatisfactory alternative is to accept a box xI when w(xI)
is less than some relatively large tolerance (and Condition D is
satis�ed), Then the user can examine the output, reset the tolerance
on w(xI) to a smaller value, and continue iterating.

It is unlikely that Condition D holds unless xI approximates
xI�: It is rare to have 0 2 f I (x) except when the smallness of xI
forces x to be near a zero of f .

Note that boxes near a solution can satisfy the convergence cri-
teria but not contain a zero of f : This is rare for well conditioned
simple zeros, but is common for multiple zeros. Such a �solution�
box generally abuts or is near a box that actually contains a zero.

Note, also, that prescribing a value of "X in Criterion A does
not assure that the location of a zero of f is bounded to within "X .
First of all, it might not be possible with the numerical precision
used to isolate the zero that sharply. The box xI� (described above)
containing the region of uncertainty might be of width larger than
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"X . In this case, we approximate what is achievable with the given
precision; not what is requested.

Also, the algorithm might return a cluster of two or more abut-
ting boxes each of width less than "X . The smallest box containing
such a cluster might exceed "X in width. To isolate a given zero
within a box of a given size, one can choose "X slightly smaller than
the desired value. This advise is meaningless if "f is chosen so small
that function width causes the width of a �nal box to be even smaller
than "X . Moreover, a solution box�s width is often smaller than "X
in width because a Newton method tends to �overshoot the mark�.
Similarly, if "X is small and "f is large, jjf(xI)jj is much smaller than
"f for each �nal box xI :

11.6 THE TERMINATION PROCESS

In this section, we describe two termination procedures based on the
analysis of Section 11.5. Assume the tolerances "X and "f have been
speci�ed. Let xI denote the box to which a Newton step is applied.
The result can be more than one box. Let xI 0 denote a resulting box
although it might not be the only one.

Our �rst process causes termination when Criteria A and B
are satis�ed. It is useful when the tolerances are chosen �relatively
large�. In this case, processing stops early and computing e¤ort is
relatively small. The second process forces the algorithm to produce
the best (or near best) possible result for simple zeros.

The termination process for the �rst case involves the following
steps:

1. If Criteria A and B of Section 11.5 are satis�ed, accept xI 0

as a �nal result. Otherwise, go to Step 2.

2. If Criterion C of Section 11.5 is satis�ed, accept xI 0 as a �nal
result. Otherwise, go to Step 3.

3. Continue processing xI 0:



266 CHAPTER 11. SYSTEMS OF NONLINEAR EQUATIONS

The steps for the second case are as follows:

1. If Criterion C is satis�ed, accept xI 0 as a �nal result. Other-
wise, go to Step 2.

2. If the preconditioned coe¢ cient matrix M(x;xI) is regular,
continue processing the box xI 0. Otherwise, go to Step 3.

3. If Criteria A and B are satis�ed, accept xI 0 as a �nal result.
Otherwise, go to Step 4.

4. Continue processing xI 0.

Note that our termination processes do not take special measures
when Condition D of Section 11.5 holds. In this case we assume
that the tolerances in Criteria A and B are chosen adequately to
cause termination in a suitable manner.

It might happen that two or more abutting boxes are output as
�nal results and it is their union that contains a solution (or multiple
nearly coincident solutions). However, some of these output boxes
might not contain a solution.

11.7 RATE OF PROGRESS

If a box is not su¢ ciently reduced by a Step of our algorithm, we
split the box into two or more subboxes and apply the algorithm to
each subbox separately. A Newton algorithm is more e¢ cient when
applied to a small box than to a large one. This is partly because
Taylor expansions are better approximations to functions over small
regions. It is also partly because the e¤ect of dependence is less for
small boxes.

We need a criterion to test when a box is �su¢ ciently reduced�
in size during a Step or steps of our algorithm. We derive a criterion
for su¢ cient reduction in this section. The purpose of the criterion is
to enable us to decide that it is not necessary to split a box. Instead,
any procedure can be repeated that has su¢ ciently reduced the box.
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Let xI denote a box to which the algorithm is applied in a given
step. Assume that xI is not entirely deleted by the algorithm. Then
either xI or a subbox, say xI 0, of xI is returned. It might have been
determined that a gap can be removed from one or more component
of xI 0. If so, we can choose to split xI 0 by removing the gap(s). We
discuss this case subsequently. For now, assume we ignore any gaps.

We could say that xI is su¢ ciently reduced when for some i =
1; � � � ; n; we have

w(x0i) < �w(xi) (11.7.1)

for some constant � where 0 < � < 1: But suppose xi is the narrowest
component of xI : Then this condition is satis�ed when there is little
decrease in the distance between extreme points of xI .

We could also require that

w(xI
0
) < � w(xI) (11.7.2)

for some constant � where 0 < � < 1. In this case, we compare the
widest component of xI with the widest component of xI 0. But even
if every component of xI except the widest is reduced to zero width,
this criterion says that insu¢ cient progress has been made.

We avoid these di¢ culties by requiring that for some i = 1; � � � ; n;
we have

w(xi)� w(x0i) > 
 w(xI) (11.7.3)

for some constant 
 where 0 < 
 < 1: This assumes that at least one
component of xI is reduced in width by an amount related to the
widest component of xI .

We choose 
 = 0:25. Thus, we de�ne

D = 0:25w(xI)� max
1�i�n

fw(xi)� w(x0i)g (11.7.4)

We say that xI is su¢ ciently reduced if D � 0:
When, according to the criterion, a box is not su¢ ciently reduced

by one �pass�through our algorithm, we split the box into subboxes
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and apply the algorithm to each subbox separately. A pass though
the main algorithm includes application of hull and box consistencies
and perhaps application of the interval Newton method. In the next
section, we describe how splitting is done. When a box is su¢ ciently
reduced, we do not split it. Instead, we try to reduce it further by
reapplying the algorithm.

We also need another measure of rate of progress. Our overall
algorithm for solving systems of nonlinear equations uses hull con-
sistency, box consistency, and two forms of Newton�s method. We
need to know whether it is better to emphasize the use of consistency
methods, or a Newton method.

Early in the solution process when the current box is large, a
Newton method might make little or no progress reducing the box.
If hull consistency makes su¢ cient progress (i.e., if D � 0), we might
let it continue to be used without applying a Newton step. But
when the box is small, a Newton method generally exhibits quadratic
convergence (see Theorem 11.15.8 below) and can be much faster
than hull consistency.

We wish to avoid repeated use of hull consistency when a Newton
step might be more e¢ cient. The computational e¤ort to apply a
Newton step rises faster as a function of the number n of variables
than does hull consistency. Therefore, we arbitrarily limit the num-
ber of hull consistency applications to n before we apply a Newton
step. Recall that n is the number of variables in the system being
solved.

We also generally apply a Newton step when hull consistency
(and box consistency) make insu¢ cient progress.

On the other hand, if a Newton step makes exceptionally good
progress, we repeat it. In this case, we use hull and box consistencies
in only a limited way. See Section 11.9. We repeat the Newton step
when it reduces the width of the box by a factor of at least 8. That
is, we repeat a Newton step if

w(xI
0
) � 0:125w(xI): (11.7.5)

We do not use this criterion form (see (11.7.2)) for determining



GLOBAL OPTIMIZATION 269

when progress is barely su¢ cient. However, we use it in the present
case when it indicates that progress is more than just su¢ cient.

11.8 SPLITTING A BOX

Our algorithm for solving a system of nonlinear equations is com-
posed of several procedures. Suppose we have applied each of these
procedures to try to �nd a solution in a given box and the box is
not su¢ ciently reduced. In this case, we split the box into subboxes.
We then apply the procedures to these smaller subboxes. Actually,
we sometimes split when we have used some, but not all, of the
procedures in the algorithm.

In this section, we consider how to split a box when the pro-
cedures for reducing a box are making insu¢ cient progress. If a
procedure has produced a gap in one or more components of the
box, this provides an optional way to split. In fact, if a gap occurs,
it can be worthwhile using it to split the box even when progress in
reducing the box is su¢ ciently rapid. We discuss gaps below in this
section. For now, assume no gap exists.

Suppose that we have completed the part of our algorithm that
tries to reduce a box xI ; and that the result is xI 0. Assume that
D > 0 whereD is given by (11.7.4). Then xI has not been su¢ ciently
reduced; so we wish to split xI 0.

Suppose we split each interval component of a box of n compo-
nents into two subintervals. Then 2n subboxes are generated. This is
generally too many new boxes even for moderate values of n. There-
fore, if the number n of variables is � 3, we split each component
of xI 0: If n > 3 we sometimes split just three components so that
eight subboxes are generated; and we sometimes split so that n+ 1
subboxes are generated.

Suppose we have made a pass through our algorithm (see Section
11.12) for solving a system of nonlinear equations; and it speci�es
that splitting should be done. How we split depends upon whether
the Newton method was used in the given pass. This is because in
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applying the Newton method, we obtain information that is useful
in deciding how to split.

Let us �rst consider the case in which the Newton method is not
used. in a particular pass. Instead, we use only consistency meth-
ods. We split when the consistency methods do not make su¢ cient
progress in reducing a box. A signi�cant fact is that consistency
methods require much less e¤ort to apply than the Newton method.
We can split so as to produce only a few new subboxes. If the split-
ting does not enable the next pass through the algorithm to make
good progress, the original application of the consistency methods
can have wasted only a relatively small e¤ort.

We split only three interval variables de�ning the box. This
produces eight new subboxes. We split the three widest components
of the box. This can be a poor choice because it does not take
scaling into account. We rely upon a case in which we have applied
a Newton method before splitting to help us do splitting in a better
way.

The way we split when the Newton method has been used re-
quires some introductory discussion. We �rst discuss how we decide
the importance of splitting a particular component of a box. We
then consider how the splitting is done.

When applied to a box xI , assume the algorithm produces a box
xI 0 that we wish to split. We wish to split because xI 0 di¤ers very
little from xI . We would like to have the Jacobian of the nonlinear
system f evaluated over the box xI 0 for use in the splitting procedure.
Rather than compute it, we use the Jacobian J(x;xI) that was eval-
uated during the Newton process. This di¤ers little from J(x;xI 0)

because (by assumption) xI 0 di¤ers little from xI . Moreover, we need
only a crude estimate of the Jacobian.

Knowing J(x;xI), we can easily compute

Tj = w(X
0
j)

nX
i=1

jJij(x;xI)j: (11.8.1)

It is clear that the system f depends more strongly on xj than on xk
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over xI 0 if Tj > Tk In this case, we prefer to split the j-th component
of xI 0 rather than the k-th. This criterion is crude because we are
using a single number, Tj , to represent behavior of an entire system.
The criterion is especially crude because when determining J(x;xI);
we select some arguments of elements of J(x;xI) to be real and some
to be interval. See Section 7.3. The choice of which arguments are
chosen to be real can a¤ect the value of Tj :

Having determined which components we prefer to split, we now
discuss the information that we use to decide how to split.

Ratz (1994) describes a splitting strategy that produces n + 1
subboxes (of varying sizes) of a given n dimensional box. Using his
procedure, we �rst split the box in half in a given component. We
store one of the resulting subboxes without splitting any other com-
ponent. We split the remaining subbox in half in one (di¤erent)
component. We again store one portion and repeat the process us-
ing the remaining subbox. In this way a splitting is done in each
dimension, but for a succession of smaller and smaller boxes.

Ratz compares this strategy with ones in which fewer subboxes
are produced that all have the same size. He considers a global
optimization method that uses a Gauss-Seidel step to solve the sys-
tem of nonlinear equations formed by the gradient of the objective
function. He gives numerical evidence to show his strategy provides
better overall e¢ ciency than splitting a few dimensions to obtain
subboxes of equal sizes.

In Ratz�s procedure, each successive splitting divides a compo-
nent of a box in half. However, we use information about the Tj
to split components into portions of di¤ering widths. We store the
smaller portion and continue to split the subbox with the larger por-
tion of the component. We have noted that Tj is a crude measure of
how much f changes as xj changes over a box. We now use an even
cruder measure. We assume that

V =

"
nX
i=1

T 2i

#1=2
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is a measure of how much f can change due to the combined changes
in x1; � � � ; xn over the box. We would like to simply evaluate f
over each generated box, but before we split, we do not know the
dimensions of the boxes concerned. Functions other than V could
be used, but using V is convenient.

Assume we have ordered the variables so that

Tj � Tj+1 (j = 1; � � � ; n� 1) :

We use the following modi�cation of Ratz�s procedure. We split
X1 into two unequal parts. We store the smaller resulting subbox
and divide the component X2 of the larger portion into two unequal
parts. We repeat this process until Xn�1 is divided. In the �nal step,
we divide Xn into equal halves. We save both of the two subboxes.

Note that Tj (j = 1; � � � ; n) and hence V changes as the box
changes. We choose each splitting so that V is the same for all
saved subboxes. Let wi (i = 1; � � � ; n) denote the width of the i-th
component of the initial box being subdivided. Let w0i (i = 1; � � � ; n)
denote the width of the i-th component of the subbox that is stored
when the i-th component is split. Let �i = w0i=wi. It can be veri�ed
that V is the same for each box saved if

�n�1 =
1

2
+

3T 2n
8T 2n�1

�k =
1

2

"
1 + �k+1(2� �k+1)

T 2k+1
T 2k

#
(k = 1; � � � ; n� 2)

Each �i; and thus w0i (i = 1; � � � ; n� 2) can be found by recurring
backward.

Suppose we are splitting a particular component of a box by the
process we have described. Since the component is not split in half,
we must decide whether to have the split occur in the lower half or
the upper half of the component.

We have no information concerning how well a Newton step will
perform in each new subbox. In fact, since we use the Jacobian in
deciding how to split, it is reasonable to assume that a Newton step
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(which uses the Jacobian) will be equally e¤ective in any one of the
generated subboxes. However, the consistency methods (which do
not use the Jacobian) provide a small amount of guidance.

In Section 10.8, we argue that in some cases, the e¤ectiveness
of hull consistency in reducing a component can be less if another
component contains zero. Moreover, we might have implemented
hull consistency so that it is more e¤ective for boxes with large val-
ues of the variables. Therefore, when splitting a component, we
choose to store the portion that has smaller values of the relevant
variable. Additional subboxes will be formed using the other portion
and they will be subdivided in additional splitting. If the component
to be split is symmetric about zero, an arbitrary choice can be made
whether to split at a negative or a positive value.

Note that we could choose not to split a component whose width
is less than "X when there are components of width greater than "X :
We do not make this distinction. It might be necessary to split a
narrow component for the algorithm to reduce a wider one.

We now consider the case in which a gap has been produced in
a component, say xi of a box xI . That is, we have determined that
no solution of the system f (x) = 0 exists when xi is in a gap in xi:
We want to split xI by deleting the gap and remove such points from
consideration.

There are reasons why we might not want to split xI using a
particular gap. First, there might be gaps in too many components.
We have noted that, whether using gaps or not, we sometimes split
no more than three components of a box.

Second, using a particular gap to do the splitting might be of little
value. For example, suppose the gap is quite narrow and occurs near
an endpoint of the component interval of xI . If we split xI using
this gap, we merely shave o¤ a thin slice of xI as one of the two new
subboxes.

Third, the gap might occur in a component of xI that is already
much narrower than the other interval components of xI . It is more
important to split a component xi for which Ti (as given by (11.8.1))
is large.
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Fourth, more than one gap might have been generated in a given
component of xI . We use only one such gap.

Consider a component of xI that contains a gap. Let the compo-
nent be the interval [a; d] and let the gap be the open interval (b; c):
Removing the gap leaves the two subintervals [a; b] and [c; d]. We
consider this gap to be suitable for use in splitting xI if

minfc� a; d� bg � 0:2w(xI) (11.8.2)

Note that if the width of the gap is � 0:2w(xI), then (11.8.2) is
satis�ed. In this case, we are willing to shave o¤ a thin slice of xI

because we also delete a relatively wide gap. Any gap we discuss
subsequently is assumed to satisfy (11.8.2). If gaps exist that satisfy
condition (11.8.2) for use in splitting, their use takes precedence
over simply splitting a component of xI at a point. The parameter
Tj given by (11.8.1) is used to select the gaps to be used. That is,
we do not simply use the widest gaps.

Suppose we are using the procedure given above in this section
to split in n dimensions. When a particular component is to be split
and it contains a gap suitable for splitting, we split using the gap
rather than the computed point. We store the smaller part and use
the larger part for splitting as the procedure prescribes. This does
not alter the relative sizes of subboxes formed subsequently by the
procedure.

When solving an optimization problem using methods given in
subsequent chapters, we sometimes use the splitting procedure de-
scribed above. In this case, the matrix J(x;xI) whose elements occur
in (11.8.1) is the Jacobian of the gradient of an objective function.
In some constrained problems, this Jacobian does not involve some
of the variables de�ning the box to be split. In this case, we proceed
as follows:

Let SJ denote the set of indices of variables that occur in the
de�nition of J(x;xI): Let S0 denote the set of remaining variable
indices.

We order all components of the box in order of decreasing width.
If the Jacobian has not yet been evaluated, we split the three leading
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components in the list. If the Jacobian has been evaluated and the
three leading components all have indices in the set SJ , we use the
above procedure to split all the components with indices in SJ : If
the index of at least one of the three leading components in the list
is in S0, we split only the three components leading the list.

If parallel processors are available, each can have a copy of the in-
terval Newton algorithm. The initial box can be split before process-
ing starts so that each processor has a box to process. When any
box is split, a resulting subbox can be passed to an available proces-
sor. A processor becomes available when it has completed its job by
either deleting its box or adding its �nal boxes to the set of possible
solution boxes.

Not only does each processor tend to remain productive, but
progress is enhanced because a Newton method is more e¢ cient when
applied to the smaller boxes produced by splitting. The presence or
lack of available processors can a¤ect the decision of how many new
subboxes to generate by splitting.

We have speci�ed that splitting is sometimes done in three di-
mensions. However, when parallel processors are used and there is
some danger of a processors running out of boxes to be processed,
it can be desirable to split in more dimensions to provide more new
boxes.

11.9 ANALYTIC PRECONDITIONING

We noted in Section 11.2 that we precondition the system

J(x;xI)(y � x) = �f (x) (11.9.1)

by multiplying by an approximate inverse B of the center of J(x;xI):
This tends to make the new coe¢ cient matrixM(x;xI) = BJ(x;xI)
diagonally dominant. That is, preconditioning tends to make the
i-th equation of the system depend strongly on the i-th variable and
weakly on the other variables. However, if xI is a large box, the
interval elements of J(x;xI) are generally wide and M(x;xI) need
not be diagonally dominant.
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If the preconditioned linear system is diagonally dominant, then
the i-th equation (i = 1; � � � ; n) of the preconditioned nonlinear sys-
tem Bf (x) depends strongly on the i-th variable and weakly on the
other variables. We use this fact by analytically forming this system
and solving the i-th analytic function [Bf (x)]i for the i-th variable.
When we analytically precondition f (x) we can reduce the e¤ect of
dependence by combining and cancelling terms.

We can write a component

[Bf (x)]i = Bi1f1 (x) + � � �+Binfn (x)

and/or its derivative in the best form to reduce dependence in its
evaluation with interval arguments. When a particular matrix B
is determined, its numerical elements can be substituted into this
expression.

Whenever we apply a Newton step in our algorithm, we com-
pute a preconditioning matrix B. We use this matrix to determine
Bf (x) : We then apply hull and box consistencies to this precon-
ditioned system. When doing so, we solve the i-th (i = 1; � � � ; n)
equation for the i-th variable only.

Hansen (1997a) describes a procedure in which the analytically
preconditioned function Bf (x) is expanded to obtain the matrix
M(x;xI) = BJ(x;xI): This generally yields narrower interval ele-
ments of M(x;xI) than computing J(x;xI) and numerically multi-
plying by B. This analytic preconditioning is of value if Gaussian
elimination or a Gauss-Seidel step is used to solve the linearized
equations.

However, we prefer the hull method of Section 5.8 over Gaussian
elimination. When the hull method is used, the center of the coe¢ -
cient matrix must be the identity matrix or else the interval matrix
elements must be widened to achieve this condition. Unfortunately,
if analytic preconditioning is used, the center is not the identity ma-
trix. Widening the matrix elements might undo the gain obtained
by analytic preconditioning. Experiments are needed to determine
if it is desirable to use analytic preconditioning in conjunction with
the hull method.
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It is possible to use the following procedure. Compute B as indi-
cated above and analytically determine Bf : Evaluate the Jacobian of
Bf and compute an approximate inverse B0 of its center. Use B0 to
precondition the Jacobian of Bf : This produces a coe¢ cient matrix
whose center is the identity matrix (if exact arithmetic is used); so
the hull method can be used e¤ectively. This involves computing an
extra Jacobian and an extra preconditioner B0: The extra computing
might not be warranted.

Note that analytic preconditioning involves non-numerical com-
puting that might not be readily available to a user. Its use can be
bypassed with little e¤ect on the performance of our algorithm. So
that it is clear how to proceed without analytic preconditioning, we
have inserted a note in the algorithm steps in Section 11.13 (and in
other algorithms in later chapters).

Frequently, there are cases in which use of analytic precondition-
ing is not warranted. Consider the case in which each fi (i = 1; � � � ; n)
is a function of only a few of the n variables. Each function resulting
from analytic preconditioning generally involves all n variables. This
increased function complexity reduces their utility. Thus, analytic
preconditioning is of value if each initial function involves all or most
of the variables. It is of diminishing value as there is a reduction of
the number of variables upon which each function depends

11.9.1 An alternative method

We now consider an alternative to the procedure described above in
this section. We believe this alternative to be preferable; but we do
not have enough practical experience to decide if this is true.

We introduce the procedure as follows. Recall that the precon-
ditioning matrix B is an approximate inverse of the center Jc of
J(x;xI): That is BJc = I: Using this fact, we can condition the
system (11.9.1) by rewriting it as

M0(x;xI)z = �f (x) (11.9.2)

where M0(x;xI) = J(x;xI)B and z = Jc(y � x): To distinguish this
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result from the preconditioned case, we shall say thatM0(x;xI) is a
postconditioned form of J(x;xI): To solve this new system, we �rst
solve for z and then use the relation

y = x+Bz: (11.9.3)

This procedure does not seem to be as e¤ective in practice as
using preconditioning. However, the conditioning in (11.9.2)is done
numerically. In the procedure described below, it is done analytically.

We now consider an analytically conditioned form of this proce-
dure. Recall that (11.9.1) is obtained from

f (y) = f (x) + J(x;xI)(y � x)

by assuming that y is a solution of f (y) = 0: Using (11.9.3), this
relation is

f(x+Bz) = 0: (11.9.4)

When xI is a small box containing a solution of f = 0; postcon-
ditioning causes the i-th component of equation (11.9.2) to depend
strongly on zi and weakly on the other components of z. Since this
is true for the linearized form (11.9.2), it is true for the original form
(11.9.4). Therefore, we solve the i-th component of (11.9.4) for zi
(i = 1; � � � ; n).

To solve, (11.9.4), we want initial bounds on z. They can be
obtained from (11.9.3) as zI = B(xI � x): After new bounds zI 0 are
obtained, the corresponding new bounds xI 0 are obtained as xI 0 =
x + JczI 0: The steps of getting zI from xI and xI 0 from zI 0 each
enlarge the bounding box because of the �wrapping e¤ect�. See
Moore (1979) for a discussion of the wrapping e¤ect.

Earlier in this section, we considered the preconditioned equation
Bf = 0: Note that each component of this vector equation is a
linear combination of all the components of f and hence is generally
quite complicated. However, a component of (11.9.4) is a single
equation but involves every component of z. In the latter case, each
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component is likely to be much simpler than in the former case.
Therefore, the alternative method has simpler equations to be solved
but its e¤ectiveness is reduced by the wrapping e¤ect.

11.10 THE INITIAL BOX

We have noted that the search for solutions to the system of nonlinear

equations is con�ned to a box xI(0): Generally, this box is speci�ed
by the user. Actually the region of search can be a set of boxes. The
boxes can be disjoint or overlap. However, if they overlap, a solution
at a point that is common to more than one box is separately found
in each box containing it. In this case, computing e¤ort is wasted.

If the user does not specify an initial box (or boxes), we use a
�default box�. Let N denote the largest �oating point number that
can be represented in the number system used on the computer.

Our default box has components x(0)i =
�
�N; N

�
for all i = 1; � � � ; n.

We assume that any �nite solution outside the default box is of no
interest. To �nd any solution outside the default box requires higher
precision arithmetic.

Since we use extended interval arithmetic, it is possible to let the
initial box have components [�1;+1]. However, we assume that
any solution at +1 or �1 is uninteresting. Therefore �nding one
is a waste of e¤ort.

A user can usually specify a smaller box than the default. The
smaller the initial box, the faster the algorithm can solve the prob-
lem.

11.11 A LINEARIZATION TEST

In an interval Newton method, we linearize a nonlinear system of
equations and solve the linear system. The linear system provides
a good approximation to the nonlinear system over a box when the
box is small. However, the linear system is generally a poor approx-
imation when the box is large.
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Therefore, when solving a system of nonlinear equations, it is
generally more e¢ cient to use other procedures or to split a box
when the box is large. In our algorithm, we defer use of a Newton
method until other procedures have reduced the size of a large box.

To determine whether a box is �large�, we use a test. We use
similar tests later in the book. In each case, we test whether certain
functions should be linearized over a given box. We call our tests
�linearization tests�.

Assume we have applied a Newton method to a box xI ; and as-
sume it uses (if applicable) the hull method of Section 5.8 to solve
the linear system. In so doing, we learn whether the preconditioned
coe¢ cient matrix MI (x;xI) of the linearized (and preconditioned)
system is regular. This determines whether the hull method is ap-
plicable. If MI (x;xI) is irregular, we regard the box xI as �too
large�.

When solving a system of nonlinear equations, we often attempt
to apply a Newton step in this way. When a Newton step is applied
to a box xI , MI (x;xI) might be regular or irregular. We let wR
denote the width of the largest box for which MI (x;xI) has been
found to be regular. We let wI denote the width of the smallest box
for which MI (x;xI) has been found to be irregular.

In our algorithm to solve a system of nonlinear equations (see
Section 11.12), we apply the Newton method to a box xI only if

w(xI) � 1

2
(wR + wI): (11.11.1)

Before beginning to solve a given system in a box xI(0), we initialize

by setting wR = 0 and wI = w(xI(0)). As the algorithm progresses
and wR and wI change, it might happen that wR becomes larger
than wI : This does not change our procedure. Note that (11.11.1)
is not satis�ed for the initial box. Therefore, other procedures must
reduce the width of the initial box by at least a half before a Newton
step is applied. If the initial box is already �small�, this condition
can be overridden.
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If, in a given application of a Newton method,MI (x;xI) is irreg-
ular, we can apply the Gauss-Seidel method to the preconditioned
linear system. If a Gauss-Seidel step su¢ ciently reduces (as de�ned
using (11.7.4)) the box to which it is applied, we regard the box as
�small�just as ifMI (x;xI) were regular. We update wR accordingly.

11.12 THE ALGORITHM STEPS

In this section, we list the steps of our interval Newton method.
The algorithm contains the procedures described earlier. Note that
we refer to it simply as a Newton method. However, it involves
application of hull and box consistencies and two forms of Newton
methods.

The selected features of the algorithm were chosen using both ex-
perimentation and theoretical considerations. There is undoubtedly
room for improvement. In particular our selection of various numer-
ical parameters was often made with too little experimental work to
obtain the best values. For example, it might be better to let some
parameters vary with dimensionality. Despite its shortcomings, the
algorithm works well in practice.

We assume that an initial box xI(0) is given. We seek all zeros of
f in this box. However, as discussed in Section 11.10, more than one
box can be given. As the algorithm proceeds, it usually generates

various subboxes of xI(0). These subboxes are stored in a list L
waiting to be processed. At any given time, the list can be empty or
contain several (or many) boxes.

The algorithm initially sets wR = 0 and wI = w(xI
(0)): See Sec-

tion 11.11. If more than one box is input, wI is set equal to the
maximum box width.

The steps of the algorithm are to be performed in the order given
below except as indicated by branching. The current box is denoted
by xI even though it changes from step to step. We assume the
tolerances "X and "f discussed in Section 11.5 are given by the user.
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0. Put the initial box(es) in the list L.

1. If the list L is empty, stop. Otherwise, choose the box most
recently put in L to be the current box. Delete it from L.

2. For future reference, store a copy of the current box xI : Call

the copy xI(1): If hull consistency has been applied n times in
succession without applying a Newton step, go to Step 9. (In
making this count, ignore any applications of box consistency.)
Otherwise, apply hull consistency to the equation f i (x) = 0

(i = 1; � � � ; n) for each variable xj (j = 1; � � � ; n). To do so,
cycle through equations and variables as described at the end
of Section 10.2. Use more general hull consistency methods if
desired. See Section 10.5. If the result is empty, go to Step 1.

3. If xI satis�es bothCriteria A andB (see (11.5.1) and (11.5.2)),
record xI as a solution and go to Step 1.

4. If the box xI(1) (see Step 2) was su¢ ciently reduced (as de�ned
using (11.7.4)) in Step 2, repeat Step 2.

5. Using the algorithm in Section 10.2, apply box consistency to
each of the equations f i (x) = 0 (i = 1; � � � ; n) for each of the
variables xj , (j = 1; � � � ; n). If the result is empty, go to Step
1.

6. Repeat Step 3.

7. If the current box xI is a su¢ ciently reduced (as de�ned using

(11.7.4)) version of the box xI(1) de�ned in Step 2, got to Step
2.

8. If w(xI) > 1
2(wR + wI), go to Step 28.

9. If xI is contained in a box for which the matrix B was saved in
Step 19, use B to compute a point xB as described in Section
11.4.1. (The procedure to do so uses an iterative version of
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y = x�Bf(x)): Then set x = xB for use in Step 10. Otherwise,
set x equal to the approximate center of xI :

10. For later reference, denote the current box by xI(2): Compute
J(x;xI) using a Taylor expansion based on (7.3.6) or else using
slopes (see (7.9.1)). Use the point determined in Step 9 as the
point of expansion. Compute an approximation Jc for the cen-
ter of J(x;xI). Compute an approximate inverse B of Jc. If Jc

is singular, compute B as described in Section 5.11. Compute
M(x;xI) = BJ(x;xI) and r(x) = �Bf(x): If M ii(x;x

I) � 0

for any i = 1; � � � ; n, then M(x;xI) is irregular; so update wI
as described in Section 11.11 and go to Step 12.

11. Compute PI = [M(x;xI)]�1: If PI � I; then M(x;xI) is reg-
ular (see Theorem 5.8.1). Otherwise, M(x;xI) is irregular. If
M(x;xI) is regular, update wR as described in Section 11.11
and go to Step 16. If M(x;xI) is irregular, update wI and go
to Step 12.

12. If every diagonal element ofM(x;xI) contains zero, go to Step
14. Otherwise, apply one pass of the Gauss-Seidel method
(11.2.7) to �solve�M(x;xI)(y � x) = r(x): If the result is
empty, go to Step 1.

13. Repeat Step 3.

14. If the box was su¢ ciently reduced (as de�ned using (11.7.4)) by
the single pass of the Gauss-Seidel method of Step 12, update
wR as ifM(x;xI) were regular for the box to which the Gauss-
Seidel method was applied in Step 12 and return to Step 12. If
the box was not su¢ ciently reduced in Step 12, go to Step 15.

15. If the current box is a su¢ ciently reduced (as de�ned using

(11.7.4)) version of the box xI(1) de�ned in Step 2, put x in
list L and go to Step 1. Otherwise, go to Step 28.

16. Use the hull method (see Section 5.8.2) to solve M(x;xI)(y �
x) = r(x): If the result is empty, go to Step 1.
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17. Repeat Step 3.

18. If Criterion C of Section 11.5 is satis�ed, record xI as a so-
lution and go to Step 1.

19. Record the fact that the matrix B computed the last time Step
10 was applied is to be used whenever Step 9 is applied to any
subbox of xI .

20. If w(xI) � 1
8
w(xI(2)) (note xI(2) was de�ned in Step 9), go to

Step 9.

21. Note: The user might wish to bypass analytic preconditioning.
See the comment in Section 11.9. If so, go to Step 25.

Additional note: This step as well as Steps 22 and Step 25
are written for the case in which the �rst method of analytic
preconditioning described in Section 11.9 is used. If the alter-
native method in Section 11.9.1 is used, these steps must be
altered accordingly. In either case, determine the analytically
preconditioned function Bf I (x) as described in Section 11.9.

22. If hull consistency has been applied n times to the analytically
preconditioned equation Bf(x) = 0 without changing B, go to
Step 25. Otherwise, apply hull consistency to solve the i-th
equation of Bf(x) = 0 to bound xi for i = 1; � � � ; n: If the
result is empty, go to Step 1.

23. Repeat Step 3.

24. If the box xI is su¢ ciently reduced (see (11.7.4)) in Step 16,
go again to Step 22.

25. Apply box consistency to solve the i-th equation of the an-
alytically preconditioned system Bf(x) = 0 to bound xi for
i = 1; � � � ; n. If the result is empty, go to Step 1.

26. Repeat Step 3.
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27. If xI is a su¢ ciently reduced (see (11.7.4)) version of the box

xI(1) de�ned in Step 2, put xI and xB in L, and go to Step 1.

28. Split xI as described in Section 11.8. Put the boxes generated
by splitting in list L. Then go to Step 1.

After termination (in Step 1), bounds on all solutions of f (x) in

the initial box xI(0) have been recorded. A bounding box xI recorded
in Step 3 satis�es the conditions w(xI) � "X and jjf(xI)jj � "f
speci�ed by the user. A box xI recorded in Step 14 approximates
the best possible bounds that can be computed with the number
system used.

11.13 DISCUSSIONOFTHEALGORITHM

In this section, we discuss why certain steps of the algorithm in
Section 11.12 are as given.

In Step 1, we select the box for processing that has been in the
list the shortest length of time. This tends to select the smallest box
without bothering to determine box sizes. This, in turn, tends to
keep the length of the list short. If, for example, we processed the
largest box, it is more likely to be split and this adds boxes to the
list.

After an interval Newton method has been applied, we have com-
puted a Jacobian over a box containing xI and a matrix B which is
the approximate inverse of the center of the Jacobian. If the result-
ing box xI is split we could use B to try to obtain an approximate
solution to f(x) (as described in Section 11.4.1) for each of the new
boxes generated by the splitting. However, recall that we split only
if the Newton step fails to make su¢ cient progress. This lack of
progress tends to indicate that B is not useful in reducing jjf(x)jj:
Therefore, we do not use B for this purpose in any of the generated
subboxes. A user might wish to insert such a procedure.

If the matrix M(x;xI) used in Step 16 is regular, then the hull
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method produces the hull of the solution set of

M(x;xI)(y � x) = rI (x) ;

where M(x;xI) and rI (x) are de�ned in (11.2.5). In this case, a
repeat of Step 16 cannot improve the result without recomputing
this matrix. However, if M(x;xI) is irregular, a Gauss-Seidel step
is used and it might be possible to compute a sharper solution by
repeating Step 12 using the same matrix. This explains Step 14.

When the Newton method exhibits rapid convergence, there is
little point in using other methods. Therefore, in Step 20, we by-
pass hull consistency and box consistency when the Newton method
su¢ ces.

11.14 ONE NEWTON STEP

We use an interval Newton method as part of an algorithm to solve
a global optimization problem. For example, see Section 12.8. When
we do so, we do not iterate the interval Newton algorithm to con-
vergence. The reason is that it might be converging to a point that
another procedure can show is not the global solution.

Therefore, we perform one �pass� of an interval Newton algo-
rithm and then apply other procedures before doing another pass.
We describe such a one-pass algorithm in this section.

This �one Newton step�algorithm does not use consistency meth-
ods because, these procedures are implemented di¤erently in our
optimization algorithms. Various steps of the algorithm of Section
11.12 are omitted because they occur in the main optimization al-
gorithm. In particular, this special algorithm does not check for
progress or convergence and does not split boxes.

When we refer to one pass of the interval Newton method, we
mean the following:

1. Compute J(x;xI) using a Taylor expansion based on (7.3.6)
or else using slopes (see 7.9.1)). Compute an approximation
Jc for the center of J(x;xI). Compute an approximate inverse



GLOBAL OPTIMIZATION 287

B of Jc. If Jc is singular, compute B as described in Section
5.11. Compute M(x;xI) = BJ(x;xI) and r(x) = �Bf(x): If
Mii(x;x

I) � 0 for any i = 1; � � � ; n, thenM(x;xI) is irregular;
so update wI as described in Section 11.11 and go to Step 3.

2. Compute P = [M(x;xI)]�1: If P � I; then M(x;xI) if regu-
lar (see Theorem 5.8.1). Otherwise, M(x;xI) is irregular. If
M(x;xI) is regular, update wR as described in Section 11.11
and go to Step 5. If M(x;xI) is irregular, update wI and go
to Step 3.

3. If every diagonal element of M(x;xI) contains zero, return to
the main program. Otherwise, apply one pass of the Gauss-
Seidel method (11.2.7) to �solve�M(x;xI)(y�x) = r(x): If the
result is empty, record this fact for use in the main program;
and return to the main program.

4. If the box was su¢ ciently reduced (as de�ned using (11.7.4))
by the single pass of the Gauss-Seidel method of Step 3, update
wR as ifM(x;xI) were regular for the box to which the Gauss-
Seidel method was applied in Step 3 and return to step 3. If the
box was not su¢ ciently reduced in Step 3, record the �nal box
for use in the main program; and return to the main program.

5. Use the hull method (see Section 5.8.2) to solve M(x;xI)(y �
x) = r(x): Record the result for use in the main program; and
return to the main program.

No matter which method is used to solve the preconditioned system,
it is good practice to follow with the inner iteration of Section 11.4.1
to obtain a point of expansion for a subsequent Newton step.

11.15 PROPERTIES OF INTERVAL NEW-
TON METHODS

Interval Newton methods for multidimensional problems have most
of the properties listed in Section 9.6 for the corresponding one-
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dimensional algorithm. In this section, we discuss a possible excep-
tion and then state some relevant theorems. In practice, we combine
use of hull and box consistencies with use of an interval Newton
method. In this section on theorems we concentrate on Newton
methods and assume no consistency methods are used.

Global convergence is a subject of interest in noninterval algo-
rithms for �nding the zeros of systems of nonlinear equations. Will
the algorithm always converge from any initial point to some solu-
tion if one exists? In the interval case, we can bypass this question
and ask the more important one: Will the algorithm always �nd all
solutions in a given box.

Proof exists in the interval case for local convergence under cer-
tain conditions (see below). However, the authors know of no proof
that all solutions in a given box are always found. Nevertheless,
there is little doubt that an algorithm such as the one given in Sec-
tion 11.12 always does so when the number of these solutions is
�nite. It is di¢ cult to conceive how the truth can be otherwise. The
authors are unaware of any failure in practice.

Of course, it is easy to formulate an example in which there are
so many isolated solutions that it is impractical to �nd them all. It
is obviously impossible to �nd all solutions when there are in�nitely
many of them, each of which is isolated from the others. However,
for appropriate problems, interval methods can �nd and bound an
in�nite set of solutions consisting of a continuum of points. See
Section 11.17.

We now consider proven properties of interval Newton methods.
We begin with a theorem due to Moore (1966).

Theorem 11.15.1 If there exists a zero x� of f in xI, then x� 2
N(x;xI):

In this theorem, N(x;xI) is the box obtained (using exact interval
arithmetic) by a particular interval Newton method that bounds the
solution set Sy of all vectors y that satisfy J (x;xI) (y�x) = �f I (x) :
See Section 11.2. The conclusion of this theorem is the motivating
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idea in the derivation of an interval Newton method. Examining the
derivation in Section 11.2 shows that the theorem is correct.

In practice, when rounding occurs, we compute a box containing
N(x;xI): Hence, even with rounding, we never �lose�a zero of f .

The following theorem is also due to Moore (1966).

Theorem 11.15.2 If xI \ N(x;xI) is empty, then there is no zero
of f in xI.

Proof. If there is a zero of f in xI , it must also be in N(x;xI)
by Theorem 11.15.1. Hence, if xI \ N(x;xI) is empty, there can be
no zero of f in xI :

If rounding occurs, we compute a boxN0(x;xI) containingN(x;xI).
If xI \N0(x;xI) is empty, then xI \N(x;xI) is empty. Therefore, the
theorem is applicable even in the presence of rounding.

Proofs of convergence have been given for various interval Newton
methods. Theorem 11.15.3 below is for the method in which equation
(11.2.2) is solved by Gaussian elimination. A more general form was
proved by Alefeld (1984). See also Alefeld (1999). Krawczyk (1983)
proved convergence for his method. See (11.2.8). Alefeld (1979)
proved convergence for the Hansen-Sengupta version (11.2.7) of the
Gauss-Seidel method. For a thorough discussion of convergence of
various interval Newton methods, see Neumaier (1990).

We know of no explicit proof of convergence when the hull method
of Section 5.8 is used. Note that it produces the exact hull of the
preconditioned linear system

M(x;xI)(y � x) = rI (x) (11.15.1)

(see (11.2.6a ) when M(x;xI) is regular. Therefore, it produces a
solution at least as sharp as when using the Gauss-Seidel method to
�solve� this system. Therefore if M(x;xI) is regular, any proof of
convergence using Gauss-Seidel also proves convergence when using
the hull method.

To state Alefeld�s convergence theorem, we must introduce some
notation relevant to Gaussian elimination. Consider a system of
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interval linear equations AIx = bI . Suppose we are successful in
trying to solve this system by Gaussian elimination. Using Alefeld�s
notation, we denote the computed solution by IGA(AI ;bI) where
IGA stands for interval Gauss algorithm.

Note that success or failure when solving the system depends on
the coe¢ cient matrix AI but not on the right hand side vector bI .

For the interval Newton method we are considering, we wish to
solve (11.9.1) with preconditioning. Therefore, AI = J(x;xI) and
bI = �f I (x) :

The order of the matrix J(x;xI) is n. For theoretical reasons, we

consider the case in which we solve J(x;xI)z = b(i) for i = 1; � � � ; n
with b(i) equal to the i-th column of J(x;xI). We place the i-th
solution vector as the i-th column of a matrix that we denote by
IGA [J(x;xI);J(x;xI)] :

In a real sense, this matrix is the solution, say zI ; to the equa-
tion J(x;xI)zI = J(x;xI): Therefore, IGA [J(x;xI);J(x;xI)] approx-
imates the identity matrix. It is the di¤erence of this matrix from
the identity that we use to determine whether the interval Newton
method converges.

In Theorem 11.15.3 given below, we use the following notation.
Let AI be an interval matrix. The real matrix jAI j is the matrix
derived from AI by replacing each element by its magnitude.

Theorem 11.15.3 Let f be continuously di¤erentiable. Let xI(0) be
the initial box in the interval Newton algorithm given by (11.2.4) and

assume x(0) 2 xI(0): Assume Gaussian elimination can be completed
successfully for the coe¢ cient matrix J(x(0);xI(0)): Assume �(zI) < 1
where � is the spectral radius and

zI =
���I� IGA hJ(x(0);xI(0));J(x(0);xI(0))i��� :

Then the sequence de�ned by (11.2.4) is well de�ned. If f has a

zero x� in xI(0), then the limit of xI(k) as k ! 1 is x�: If f does

not have a zero in xI(0), then there is an integer k0 � 0 such that
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N(x(k
0);xI(k

0)) \ xI(k
0) is empty. This proves there is no zero of f in

xI(0):

See Alefeld (1984) for a proof of this theorem. See also Alefeld
(1999). In our algorithm in section 11.12, we always precondition
the system (11.9.1). Alefeld�s proof holds whether the system is
preconditioned or not.

The following theorem shows that, under certain conditions, the
volume of the current box is reduced by at least half in a step of the
interval Newton method using Gaussian elimination.

Theorem 11.15.4 Let the hypothesis of Theorem 11.15.3 be satis-

�ed. Assume that m(xI(k)) is not a zero of f . If there exists a zero

of f in xI(0), then m(xI(k)) =2 xI(k+1).

Any box that does not contain the center of xI(k) must intersect

less than half of xI(0). Therefore, the theorem states, in e¤ect, that

the volume of xI(k+1) is less than half that of xI(k) for all k.
This theorem is proved by Alefeld (1984). Compare Corollary

5.2.9 of Neumaier (1990).
To discuss how interval Newton methods can prove the existence

of a solution, we introduce the following proposition.

Proposition 11.15.5 If N(x;xI) � xI, then there exists a zero of f
in N(x;xI):

This proposition has been proved for various interval Newton
methods. Recall that interval Newton methods di¤er in how the
bound N(x;xI) is computed from (11.2.6a). Each proof of Proposi-
tion 11.15.5 has been for a method using a speci�c procedure for com-
puting N(x;xI): The �rst proof of Proposition 11.15.5 was by Kahan
(1968) for a method he derived and which is now called Krawczyk�s
method after its independent derivation by Krawczyk (1969). See
(11.2.8). Proof for this method can also be found in Moore (1977,
1979). See also Alefeld (1999).
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Proofs for various methods can be found in Alefeld (1999), Kraw-
czyk (1986), Nickel (1971), Qi(1982), Shearer and Wolfe (1985a), and
especially Neumaier (1990).

When the Gaussian elimination or the Gauss-Seidel method is
used to compute N(x;xI); an intersection process is used to compute
each new component. See (11.2.6b). Therefore, we always have

xI(k+1) � xI(k). To invoke Proposition 11.15.5, we must assume that
the box N(x;xI) is the same one that results if no intersecting is
done.

Alternatively, authors usually impose the slightly stronger con-

dition that xI(k+1) be strictly in the interior of xI(k). Thus, we state
a relevant theorem as follows.

Theorem 11.15.6 Let f be continuously di¤erentiable in xI and let
x be an interior point of xI : Assume N(x;xI) is computed from
(11.2.6a) using Gaussian elimination or a Gauss-Seidel step. If
N(x;xI) is in the interior of xI, then there exists a unique zero of f
in xI (and hence in N(x;xI)).

For a proof of this theorem, see Neumaier (1985, 1990) or Alefeld
(1999).

In practice, when rounding is present, we compute a box N0(x;xI)
containing N(x;xI). If N0(x;xI) � xI , then N(x;xI) � xI : Hence, we
can invoke Theorem 11.15.6 even when rounding occurs and guaran-
tees the existence and uniqueness of a zero of f in a box xI .

Hansen and Walster (1990b) conjectured as follows that Propo-
sition 11.15.5 is true for all interval Newton methods.

Conjecture 11.15.7 Let s denote the set of solutions s of

f (x) + J(x;xI)(s� x) = 0:

(See (5.2.3 )). If s � xI, then there exists a solution of f = 0 in s.

All interval Newton methods compute a box N(x;xI) containing
s: If N(x;xI) � xI , then s � xI . Therefore, if the conjecture is true,
then Proposition 11.15.5 is true for all interval Newton methods.
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The following theorem shows that, despite its crudeness, the ear-
liest interval Newton method (given by (11.3.1)) exhibits quadratic
convergence. For a more thorough discussion of convergence of inter-
val Newton methods, see Neumaier (1990). Also, see Alefeld (1999)
and Frommer and Mayer (1990).

Theorem 11.15.8 Let f be continuously di¤erentiable in the initial
box xI(0). Assume xI(0) contains a zero x� of f = 0: Assume that

an interval matrix V(x(0);xI(0)) exists that contains the inverse of

every matrix in J(x(0);xI(0)): If the sequence of boxes generated by
(11.3.1) converges, then

w(xI
(k+1)

) � 

h
w(xI

(k)
)
i2

for some constant 
 � 0:

This theorem was proved by Alefeld and Herzberger (1974, 1983).
The theorems in this section implicitly or explicitly depend on

the assumption that f is expressed in a Taylor series. They remain
valid if the expansion is in terms of slopes.

11.16 A NUMERICAL EXAMPLE

In this section, we give a simple numerical example that we solved
by the algorithm in Section 11.12. Consider the well known Broyden
banded function (Broyden (1971)). It is given by

fi (x) = xi(2 + 5x
2
i ) + 1�

X
j2Ji

xj(1 + xj) = 0 (i = 1; � � � ; n)

where Ji = fj : j 6= i; max(1; i� 5) � j � min(n; i+1)g. Let n = 3.
Let the initial box be given byXi = [�1; 1] (i = 1; 2; 3) :We chose

"X = 10
�8 and "f = 1 so that termination was driven by the size of

the �nal box.
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Hansen and Greenberg (1983) solved this problem with the same
initial box. Depending on the form used, their algorithm required
twelve or thirteen Newton steps to satisfy the convergence criterion
speci�ed by "X = 10�8: The algorithm in Section 11.12 used three
Newton steps.

However, this algorithm also uses hull and box consistencies. For
this example, it applied hull consistency �ve times to the original
equations. It applied both hull and box consistencies twice to the
preconditioned system. These procedures used almost as many arith-
metic steps as the three Newton steps. Note that for problems in
higher dimensions, these procedures require fewer arithmetic opera-
tions than a Newton step.

In this example, the box consistency steps can be omitted with
almost no change in the performance of the algorithm.

No splitting of the original box or any subbox was required by
the algorithm of Section 11.12 to solve the above example.

11.17 PERTURBEDPROBLEMSAND SEN-
SITIVITY ANALYSIS

Interval Newton methods can be used to solve perturbed problems
and to provide sensitivity analysis. We discuss the procedures brie�y
in this section. For other discussions of this topic, see, for example,
Neumaier (1990) and Rump (1990). See also Section 17.11.

When using an interval Newton method, noninterval quantities
such as f (x) are computed as interval quantities because interval
arithmetic is used to bound rounding errors. If f (x) is de�ned in
terms of a transcendental constant such as �; it is necessary to replace
the constant by an interval containing it to assure that the computed
version of f (x) contains the true value.

In general, then, the function f (x) is really an interval. The
interval Newton method treats it as such. In general, a �zero�of f
is therefore a set of points and not a single point.

To simplify discussion, assume f depends on a single parameter
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p that cannot be exactly represented in the number system used on
the computer. Let us replace p by an interval P containing it. We
now denote the function by f(x; P ): A �zero�of f(x; P ) is the set of
zeros of f(x; p) as p varies over P .

Whether p can be exactly represented on the computer or not, we
might be interested in the set of zeros of f as a parameter p varies
over some interval P . We can compute a box containing this set.
We simply replace p by P and apply an interval Newton method to
solve f(x; P ) = 0: No change in the interval Newton algorithm is
necessary. It is already designed to solve this problem.

In general, the solution set is not a box. In a sense, the best the
interval Newton method can do is to compute the smallest box con-
taining the solution set. The alternative is to cover the solution set
with a number of small boxes. Actually, the smallest box contain-
ing the solution cannot generally be computed because of rounding
errors. However, it is contained in the computed solution.

A directly related problem is sensitivity analysis. Suppose we
wish to know how much a zero of f changes as p varies over some
interval. That is, we wish to know the size of the solution set. A
partial answer is produced if we compute the smallest box containing
the solution set.

We can approximate the solution set as closely as desired by
subdividing P into small subintervals, solving the problem for each
subinterval separately, and taking the union of the results.

As just pointed out, the computed box cannot generally be the
best possible box because of rounding errors. However, we can ap-
proximate it. But to do so, we must allow the interval Newton algo-
rithm to continue until it stops progressing. That is, we cannot use
stopping Criteria A or B discussed in Section 11.5. We discussed
the implications of this possibility in that section.

Previously, in this chapter, we have usually assumed that the
point of expansion for the interval Newton method is the center of
the current box. In the perturbed case, convergence of the method
does not necessarily yield the smallest box containing the solution
set. We discussed this di¢ culty for the one dimensional case in
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Section 9.10. An illustrative example for the multidimensional case
is given by Hansen and Greenberg (1983).

It seems certain that the best result can be produced by using
appropriate corners of the current box as the points of expansion.
However, we do not know if this is true. Moreover, it might be
necessary to use too many di¤erent corners for this approach to
work. Nevertheless, it seems reasonable to do the following. Use the
center of the current box as the point of expansion until convergence
Criterion C is satis�ed. Then perform two extra iterations of the
interval Newton method. First use the lower endpoints and then the
upper endpoints of the components of the current box as the point
of expansion.

In Section 17.11, we give an alternative procedure for sharply
bounding the smallest box containing a solution. For another ap-
proach to computing the best result, see Dinkel, Tretter, and Wong
(1988). For a method that covers the solution set with boxes of a
speci�ed size, see Neumaier (1988).

11.18 OVERDETERMINED SYSTEMS

A square system of nonlinear (or linear) equations can be solved di-
rectly, or as an optimization problem in which a norm, usually L2
(least squares), is minimized. The direct solution, when available,
is preferred because it is better conditioned than the corresponding
optimization. When the system is overdetermined, the only proce-
dure has been to use optimization. Walster and Hansen (2003) have
developed a procedure to directly solve overdetermined systems of
nonlinear equations. This procedure can be used directly, or as part
of a constrained optimization problem. It is worth noting that an
empty solution set can be used to numerically prove a system of in-
terval equations (whether linear or nonlinear) is inconsistent. This
event can then be used to falsify a theory or model.
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Chapter 12

UNCONSTRAINED
OPTIMIZATION

12.1 INTRODUCTION

In this chapter, we consider the unconstrained optimization problem.
Constrained problems are discussed in Chapters 13, 14, and 15. An
interval method for multicriterion optimization is given in Ichida and
Fujii (1990).

We consider the problem

Minimize (globally) f(x) (12.1.1)

where f is a scalar function of a vector x of n components. We
seek the minimum value f� of f and the point(s) x� at which this
minimum occurs.

In our algorithm, we often use a Taylor expansion of the objective
function f . For simplicity, we assume that any used derivative exists
and is continuous in the region considered.

Interval methods exist that do not require di¤erentiability. See
Ratschek and Rokne (1988) or Moore, Hansen, and Leclerc (1991).
We discuss this case in Section 12.18. Such methods are slower than
those that take advantage of di¤erentiability.
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In Chapter 18, we show that some problems in which f is not
di¤erentiable can be reformulated as problems in which the new ob-
jective function has continuous derivatives of arbitrary order. An
alternative approach is to use subdi¤erentials or slopes of nondi¤er-
entiable functions. See Section 7.11.

Following our convention, the discussion below is in terms of
derivatives. However, replacing derivatives by slopes yields more
e¢ cient algorithms.

A simple way to use interval analysis in optimization is merely to
bound rounding errors. Its �rst use for this purpose was by Robinson
(1973). For other early papers of this kind, see Mancini (1975) and
Mancini and McCormick (1976).

However, interval analysis has had a much more profound impact
on optimization than just providing a means for bounding rounding
errors. Interval analysis makes it possible to solve the global opti-
mization problem, to guarantee that the global optimum is found,
and to bound its value and location. Secondarily, perhaps, it pro-
vides a means for de�ning and performing rigorous sensitivity analy-
ses. See Chapter 17.

Until fairly recently, it was thought that no numerical algorithm
can guarantee having found the global solution of a general nonlinear
optimization problem. Various authors have �atly stated that such
a guarantee is impossible. Their argument was as follows: Optimiza-
tion algorithms can sample the objective function and perhaps some
of its derivatives only at a �nite number of distinct points. Hence,
there is no way of knowing whether the function to be minimized dips
to some unexpectedly small value between sample points. In fact the
dip can be between closest possible points in a given �oating point
number system.

This is a very reasonable argument; and it is probably true that
no algorithm using standard arithmetic will ever provide the desired
guarantee. However, interval methods do not sample at points. They
compute bounds for functions over a continuum of points, including
ones that are not �nitely representable. See Theorem 4.8.14.
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For example, consider the function

f(x) = x4 � 4x2

that has minima at x = �21=2. Suppose we evaluate f at the point
x = 1 and over the interval [3; 4]: We obtain

f(1) = �3 and f ([3; 4]) = [17; 220]:

Thus, we know that f(x) � 17 for all x 2 [3; 4] including such
transcendental points as � = 3:14:::: Since f(1) = �3, the minimum
value of f is no larger than �3. Therefore, the minimum value of f
cannot occur in the interval [3; 4]. We have proved this fact using
only two evaluations of f .

In general the evaluation of f at a point involves rounding. Sup-
pose that (outward) rounding and widening of intervals from depen-
dence occurred in our example and we somehow obtained

f I(1) = [�3:1;�2:9] and f I([3; 4]) = [16:9; 220:1]:

Because we have bounded all errors, we know that f(1) � �2:9 and
that f(x) � 16:9 for all x 2 [3; 4]. Hence, as before, we know the
minimum value of f is not in [3; 4]: Rounding and dependence have
not prevented us from infallibly drawing this conclusion.

By eliminating subintervals that are proved to not contain the
global minimum, we eventually isolate the minimum point. We de-
scribe various ways to do the elimination.

An algorithm for global optimization was introduced by Hansen
(1980). The algorithm provides guaranteed bounds on the globally
minimum value f� of an objective function and on the point(s) x�

where it occurs. It guarantees that the global solution(s) in some
given box has been found. A one dimensional version of the algo-
rithm can be found in Hansen (1979).

In this chapter, we describe an improved version of the algorithm.
The primary improvement is the introduction of hull and box con-
sistency. Various other changes are also made.
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Because of computational limitations on accuracy, our algorithm
might also �nd �near global�minima when rounding and/or depen-
dence prevents determination of which of two or more candidates is
the true minimum. However, if the termination criteria are chosen
stringently enough, our algorithm always eliminates a local minimum
from consideration if f is su¢ ciently larger than f� at the local min-
imum. Obviously, �su¢ ciently larger� depends on the wordlength
used in the computations

In Section 12.2, we present an overview of the optimization al-
gorithm. In Section 12.3, we discuss the initial box in which the
solution is sought. Sections 12.4 through 12.13 describe various sub-
algorithms of the overall procedure. Termination procedures are
considered in Section 12.9. The steps of the algorithm are given in
Section 12.14 and discussed in Section 12.15. A numerical exam-
ple is given in Section 12.16. Problems with multiple minima are
discussed in Section 12.17. Section 12.18 discusses problems with
nondi¤erentiable objective functions.

12.2 AN OVERVIEW

Our algorithm computes guaranteed bounds on the minimum value
f� of the objective function f and on the point(s) x� where f takes
on this minimum value. If there is more than one solution point, our
algorithm never fails to �nd them all. It proceeds roughly as follows:

1. Begin with a box xI(0) in which the global minimum is sought.
Because we restrict our search to this particular box, our prob-
lem is really constrained. We discuss this aspect in Section
12.3.

2. Delete subboxes of xI(0) that cannot contain a solution point.
Use fail-safe procedures so that, despite rounding errors, the
point(s) of global minimum are never deleted.

The methods for Step 2 are as follows:
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(a) Delete subboxes of the current box wherein the gradient
g of f is nonzero. This can be done without di¤eren-
tiating g, as is described in Section 12.4. This use of
monotonicity was introduced by Hansen (1980). Alterna-
tively, consistency methods (see Chapter 10) and/or an
interval Newton method (see Chapter 11) can be applied
to solve the equation g = 0. In so doing, derivatives (or
slopes) of g are used. By narrowing bounds on points
where g = 0; application of a Newton method deletes
subboxes wherein g 6= 0:

(b) Compute upper bounds on f at various sampled points.
The smallest computed upper bound f is an upper bound
for f�. Then delete subboxes of the current box wherein
f > f: See Section 12.5. The concept of generating and us-
ing an upper bound in this way was introduced by Hansen
(1980).

(c) Delete subboxes of the current box wherein f is not con-
vex. See Section 12.7. The concept of using convexity in
this way was introduced by Hansen (1980).

3. Iterate Step 2 until a su¢ ciently small set of points remains.
Since x� must be in this set, its location is bounded. Then
bound f over this set of points to obtain �nal bounds on f�

For problems in which the objective function is not di¤erentiable,
Steps 2a and 2c cannot be used because the gradient g is not de�ned.
Step 2b is always applicable.

We describe these procedures and other aspects of our algorithm
in this chapter. For simpler tutorial discussions, see Hansen (1988)
and Walster (1996). For a survey discussion, see Hansen and Walster
(1990b).
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12.3 THE INITIAL BOX

The user of our algorithm can specify a box or boxes in which the
solution is sought. Any number of �nite boxes can be prescribed to
de�ne the region of search. The boxes can be disjoint or overlap.
However, if they overlap, a minimum at a point that is common
to more than one box is separately found as a solution in each box
containing it. In this case, computing e¤ort is wasted. For simplicity,

assume the search is made in a single box that we denote by xI(0):

If the user does not specify xI(0), we search in a �default box�
described in Section 11.10. The smaller the initial box, the faster
the algorithm can solve the problem. Therefore, it is better if the
user can specify a smaller box than the default.

Since we restrict the region of search to a �nite box, we have
replaced the unconstrained problem by a constrained one of the form

Minimize (globally) f(x)

Subject to x 2 xI(0) (12.3.1)

Actually, we do not solve this constrained problem because we as-
sume the solution occurs at a stationary point of f . We can solve
this problem by using the method for inequality constrained prob-
lems to be discussed in Chapter 14. However, it is simpler to assume

the box xI(0) is so large that a solution does not occur at a nonsta-

tionary point on the boundary of xI(0).

Experience has shown that, in practice, xI(0) can generally be
chosen quite large without seriously degrading the e¢ ciency of the
algorithm. For noninterval algorithms, this is not necessarily the
case. An algorithm that converges nicely for a given initial search
point x(0) might fail to converge from the point 10x(0) or 100x(0).
See Moré, Garbow and Hillstrom (1981).

Walster, Hansen, and Sengupta (1985) compared run time on
their interval algorithm as a function of the size of the initial box.
They found that increasing box width by an average factor of 9:1�
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105 increased the run time by an average factor of only 4:4. For one
example, however, the run time increased by a factor of 265. R. E.
Moore (private communication) observed a case in which run time
increased by a factor of only 2:3 when the box width increased by a
factor of 4:2� 108.

Often, a �nite region of interest is known; and we can specify xI(0)

with assurance that it contains the global minimum. For simplicity
in what follows, we assume that this is the case.

12.4 USE OF THE GRADIENT

We assume that f is continuously di¤erentiable. Therefore, the gra-
dient g of f is zero at the global minimum. Of course, g is also zero
at local minima, at maxima and at saddle points. Our goal is to �nd
the zero(s) of g at which f is a global minimum. As we search for
zeros, we attempt to discard any that are not a global minimum of
f: This is done by procedures outlined in Section 12.2 and discussed
fully in other sections of this chapter. Generally, we discard boxes
containing nonglobal minimum points before we spend the e¤ort to
bound such minima very accurately.

Note that the condition g = 0 does not have a counterpart ex-
pressed in terms of slopes. This is one of the few cases where deriv-
atives, rather than slopes, must be used.

Hansen (1980) noted that we can use a simple monotonicity test
that can enable us to prove nonexistence of a stationary point in
a box. In such a case, the box can be deleted. We now describe
this test and then note that it is better replaced by a step of a hull
consistency procedure.

Let xI be a subbox of the initial box xI(0): (In Section 12.14, we
discuss how xI might be obtained.) We evaluate the components of
g over xI . That is, we evaluate gi(xI) for i = 1; � � � ; n. Denote the
resulting interval by [g

i
(xI); gi(x

I)]: If g
i
(xI) > 0 or if gi(x

I) < 0,

then gi(x) 6= 0 for any x 2 xI . Therefore, there is no stationary
point of f in xI . Therefore, xI cannot contain the global minimum
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of f and can be deleted.
In practice, the bounds on gi(xI) can fail to be sharp because of

rounding and/or dependence. Nevertheless, the procedure remains
valid.

In Section 10.10, we note that hull consistency can perform a
test of this kind with essentially the same amount of computing.
Moreover, it can sometimes reduce the box in the process. Therefore,
hull consistency is better than simply evaluating g(xI): The following
example illustrates this point.

A well known example in unconstrained optimization is the so-
called three hump camel function

f(x; y) = 2x2 � 1:05x4 + 1
6
x6 � xy + y2:

The components of the gradient of f can be written as

g1(x; y) = x[(x
2 � 2:1)2 � 0:41]� y;

g2(x; y) = 2y � x:

For the box used, we have written g1(x; y) in a form from which its
interval value can be sharply computed.

Let X = [3; 4] and Y = [1:9; 142]: If we simply evaluate g1(X;Y )
and g2(X;Y ), we �nd that each of these intervals contain zero.
Therefore, we gain no information about nonexistence of a stationary
point in the box.

Now suppose we use hull consistency. We write g1(x; y) in its
more natural form

g1(x; y) = 4x� 4:2x3 + x5 � y:

Suppose we solve for the term 4x. We write the remaining terms
containing x in factored form so that

4X 0 = Y �X3(X2 � 4:2):

We compute X 0 = [�188:325; 3:1], which we replace by X 00 = X \
X 0 = [3; 3:1]. Thus, we have improved the interval bound on x:
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We can continue to apply hull consistency to g1 by solving for
other terms; but suppose we do not. Let us now apply hull con-
sistency to g2. Suppose we solve for y as 2Y 0 = X 00: We obtain
Y 0 = [1:5; 1:55]: Since Y 0 \ Y is empty, there is no point in the
original box at which g = 0. Therefore, the box cannot contain a
minimum of f .

Simply evaluating g over the box gave no information. With
essentially the same computational e¤ort, hull consistency �rst im-
proves the bounds on x and then reveals the nonexistence of a solu-
tion in the box.

12.5 AN UPPER BOUND ON THE MINI-
MUM

We use various procedures to �nd the zeros of the gradient of the
objective function. We have noted that these zeros can be stationary
points that are not the global minimum. Therefore, we want to avoid
spending the e¤ort to closely bound such points when they are not
the desired solution. In this section we consider procedures that help
in this regard.

As our algorithm proceeds, we evaluate f at various points in the

original box xI(0). The computed upper bound on each such value
is an upper bound for the globally minimum value f� of f . We use
the smallest bound f obtained in this way.

Let xI be a subbox of xI(0) generated by the algorithm. In any
given step of our algorithm, such a box might be deleted or accepted
as a �nal bound for a global solution point. More often, xI is reduced
in size and/or split into subboxes. That is, one or more new subboxes
is generated. When this occurs, we evaluate f at the center of each
new box. We can also do a local search for the smallest value of f
in such a box. See Section 12.6.

Suppose we evaluate f at a point x. Because of rounding, the
result is generally an interval [f I(x); f I(x)]: Despite rounding errors

in the evaluation, we know without question that f I(x) is an upper
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bound for f(x) and hence for f�. Let f denote the smallest such
upper bound obtained for various points sampled at a given stage of
the overall algorithm. This upper bound plays an important part in
our algorithm.

Since f � f�, we can delete any point (or subbox) of xI(0) for
which f > f. This might serve to delete a subbox that bounds a
nonoptimal stationary point of f . We describe four methods that
can be applied to the relation f(x) � f to try to delete part or all
of a subbox generated by our algorithm. The concept of generating
and using an upper bound in this way was introduced by Hansen
(1980).

12.5.1 First Method

Let xI be a given subbox of xI(0). We can simply evaluate f over xI

and obtain [f(xI); f(xI)]: Despite rounding errors, it is certain that

f(xI) is a lower bound for f(x) for any x 2 xI . Hence, if f(xI) > f,
then f(x) > f� for every x 2 xI : Therefore, we can delete xI

However, there is a better alternative (within the �rst method).
We can apply hull consistency to the relation f(x) � f over the box
xI . As we noted in Section 10.10, this serves the same purpose with
essentially the same amount of computing required to evaluate f(xI).
However, an added bene�t is that part of xI might be deleted. In
this case hull consistency is applied to the equality f(x) = [�1; f].

The following example illustrates the utility of this procedure.
Problem number 3.1 of Schwefel (1977) is to �nd the unconstrained
minimum of

f(xI) =
3X
i=1

[(x1 � x2i )2 + (xi � 1)2]:

Let the initial box be given by Xi = [�106; 106] for i = 1; 2; 3: We
use hull consistency and solve f(x) � f � 0 for each variable in two
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ways. We use

(x1 � x2j )2 � f�
3X
i=1
i6=j

(X1 �X2
i )
2 �

3X
i=1

(Xi � 1)2

for j = 1; 2; 3 and

(xi � 1)2 � f�
3X
i=1

(X1 �X2
i )
2 �

3X
i=1
i6=j

(Xi � 1)2

for i = 1; 2; 3:
When new bounds on both variables have been obtained in this

way, we get a new bound f on f� by evaluating f at the center of
the new box. We iterate these steps. The procedure converges to
the solution at (1; 1; 1) in only seven steps.

The �rst method (just described) applies hull consistency to
f(x) � f: Note that it does not involve use of derivatives or slopes.
The methods we now discuss use Taylor expansions. However, better
results can be obtained using slope expansions. Because expansions
are used, the following methods require more computing than the
�rst method, which uses only hull consistency.

12.5.2 Second Method

We can apply box consistency (see Section 10.2.) to the inequality
f(x) � f: To do so, we rewrite the inequality as the equation F (x) =
0 where

F (x) = f(x) + [�f;1]:

Suppose we use box consistency to solve F (x) = 0 for a compo-
nent xi (i = 1; � � � ; n) of x: To do so, we replace all variables except
xi by their interval bounds. Thus, we apply the one-dimensional
Newton method to the function

qI(xi) = F (X1; � � � ; Xi�1; xi; Xi+1; � � � ; Xn) = 0:
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To do so, we expand qI about an endpoint, say ai of Xi: The Newton
result is thus computed as

N(ai;x
I) = ai �

qI(ai)

gi(xI)
: (12.5.1)

However, we do not apply the Newton step if 0 2 qI(ai): See the
algorithm in Section 10.2. Therefore, assume 0 =2 qI(ai):

In the denominator of (12.5.1), the function gi(xI) is the deriva-
tive of F with respect to xi: That is, it is the i-th component of the
gradient g of f . If 0 =2 gi(xI) then there is no stationary point of f
in xI ; and we delete xI . Therefore, when we apply box consistency
to F , we always have 0 2 gi(xI):

We now know that the denominator interval in (12.5.1) contains
zero but the numerator does not. Therefore, the quotient in (12.5.1)
is computed as the union of two semi-in�nite intervals. The endpoint
ai of Xi is in the interior of the gap between these intervals. This
implies that, if the Newton step is applied, it always deletes part of
Xi. However, the deleted part can be vanishingly small.

Box consistency can be e¤ective when applied to f(x) � f even
when it is applied over a large box. We now consider methods that
are usually e¤ective only when the box is small.

12.5.3 Third Method

We �rst describe a method in which we use a Taylor expansion to
linearize f(x). In a sense, this method is the same as the second
method using box consistency except that f is expanded with respect
to all the variables. It is more e¤ective than the second method when
the box is small.

Let x be a given point in the current box xI and let y be a
variable point in xI . Denote

gI i = gi(X1; � � � ; Xi; xi+1; � � � ; xn):

where gI i is the i-th component of the gradient of f . From (7.3.6),
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the �rst order Taylor expansion of f gives

f(y) 2 f(x) +
nX
i=1

(yi � xi)gI i: (12.5.2)

For some j = 1; � � � ; n, rewrite (12.5.2) as

f(y) 2 f(x) + (yj � xj)gIj +
nX
i=1
i6=j

(yi � xi)gI i: (12.5.3)

For all i 6= j, replace yi by Xi in the right member of (12.5.3). Since
yi 2 Xi,

f(y) 2 f(x) + (yj � xj)gIj +
nX
i=1
i6=j

(Xi � xi)gI i: (12.5.4)

Note that f(y) > f if the left endpoint of the right member of (12.5.4)
exceeds f.

De�ne t = yj � xj and the intervals

U = f(x) +

nX
i=1
i6=j

(Xi � xi)gI i � f

and V = gIj . We wish to delete points of x
I where yj is such that

U + V t > 0 and retain points where

U + V t � 0: (12.5.5)

Let T denote the set of values of t for which (12.5.5) holds. This
set can be an interior or an exterior interval as given by (6.2.4).

Note that if T is the empty set, we have proved that f(y) > f for
all y 2 xI so we delete xI .
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Having computed T for a particular value of j, the set of retained
values of yj is T + xj . Since we are interested only in values of yj
within xIj , we retain only the intersection

Yj = x
I
j \ (T + xj):

If this set is empty, we delete all of xI . Otherwise, we replace Xj by
Yj . When computing Yj+1, we use the updated intervals X1; � � � ; Xj
if and when they are narrowed. We repeat this procedure for all
j = 1; � � � ; n.

Note that Yj might be composed of the two intervals surrounding
a gap. Suppose this is the case. Denote the two intervals by [aj ; bj ]
and [cj ; dj ] where bj < cj . We know that the global minimum does
not occur in the gap (i.e., the open interval) (bj ; cj):

However, for the purpose of computing Yj+1, we ignore this fact
and replace xj by the single interval [aj ; dj ] containing both of the
smaller subintervals and the gap. This simpli�es the work of comput-
ing subsequent components of x: However, we retain the information
about identi�ed gaps so that if we later split a component of the box,
we can do so by removing a gap.

12.5.4 Fourth Method

We now consider a method for using f(x) � f in which we expand
f through second derivative terms. We do not use it in our un-
constrained optimization algorithm. However, we do use it for the
constrained case because the necessary second derivatives are some-
times computed for other purposes.

From (7.3.8), we have

f(y) 2 f(x) + (y � x)Tg(x) + 1
2
(y � x)TH(x;xI)(y � x)

where the element Hij of the Hessian H(x;xI) has arguments
(X1; :::Xj ; xj+1; :::xn). Note that H(x;xI) is lower triangular. See
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Section 7.4. We choose x to be the center of xI . Denote z = y � x:
We can delete points y where

f(x) + zTg(x) +
1

2
zTH(x;xI)z > f:

To simplify presentation, we describe the case n = 2. If we delete
the points indicated, we retain the complementary set of points y
where

f(x) + z1g1 + z2g2 +
1

2
(z21H11 + z1z2H21 + z

2
2H22) � f (12.5.6)

We �rst solve (12.5.6) for z1. Therefore, we replace z2 by Z2 =
X2 � x2. That is, we replace y2 by its bounding interval X2. Thus,
(12.5.6) becomes

A+Bz1 + Cz
2
1 � 0 (12.5.7)

where

A = f(x)� f+ Z2g2 +
1

2
Z22H22

B = g1 +
1

2
Z2H21

C =
1

2
H11:

Suppose we solve the quadratic relation (12.5.7) (as described in
Section 8.2) for z1 and obtain an interval Z 01 and thus the interval
X 0
1 = Z 01 + x1. Since we are interested only in points in X1, the

solution of interest is X 00
1 = X1 \ X 0

1. If X
00
1 is empty, there is no

point in xI at which f is as small as f. In this case, we have proved
that the global minimum of f cannot occur in xI :

The intervalX 0
1 might contain a gap in which the global minimum

of f cannot occur. If there is such a gap, we temporarily ignore it.
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Next, we solve (12.5.6) for z2. To do so, we replace z1 by the
interval bounding it. We use the improved result Z 001 = X

00
1 �x1. We

obtain the quadratic relation

A+Bz2 + Cz
2
2 � 0 (12.5.8)

where

A = f(x)� f+ Z 001 g1 +
1

2
(Z 001 )

2H11

B = g2 +
1

2
Z 001H21

C =
1

2
H22:

Whether we are solving (12.5.7) or (12.5.8), we must determine
the solution points t of a quadratic inequality of the form

A+Bt+ Ct2 � 0 (12.5.9)

where A, B, and C are intervals. The solution set of (12.5.9) was
derived by Hansen (1980) in explicit form. Although his analysis was
correct, there are errors in his listed results. Denote A = [a1; a2].
His errors are for the case a1 = 0: A correct form (with some simpli-
�cations) was given in the �rst edition of this book. To list all the
cases required almost a full page. We gave a simpler procedure in
Section 8.2. See also Hansen and Walster (2001).

12.5.5 An Example

We have described four procedures for deleting points x where f(x_) >
f. Generally, none of these methods can delete all the points x of
a box xI where f(x) > f unless this inequality holds for all x 2 xI .
This is because the complementary set in xI (where f(x) � f) is gen-
erally not in the form of a box. Nevertheless, the relation f(x) � f
can be very useful.
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As an example, consider the objective function

f(x) = x2(2 + sin�x):

It is easily shown that the derivative f 0(x) of this function has a zero
in the interval [n; n+1] for all n = �2, �3; � � � . To see this, note that
f 0(0) = 0; f 0(�n) > 0 for n even and nonzero, and f 0(�n) < 0 for n
odd and n � 3: Also, f 0(x) = 0 for x = 1:118, approximately. Thus,
�f 0 has at least 2n+1 zeros in the interval [�n; n] for all n = 1; 2; ::::
Suppose we have sampled the value of f at x = 1: Since f(1) = 2;

we have the upper bound f = 2 on f�: We can replace the relation
x2(2 + sin�x) � f = 2 by

x2(2 + sin�x) = [�1; 2]:

Consider the interval X = [2; 1030]: To solve this equation using hull
consistency we can replace sin�x by sin�X = [�1; 1] and solve for
the factor x2. We obtain

(X 0
1)
2 = [�1; 2]=[1; 3] = [�1; 2]:

Since (X 0
1)
2 must be nonnegative, we replace this equation by (X 0

1)
2 =

[0; 2] from which X 0
1 = [�21=2; 21=2]:

Since X 0 is disjoint from X, there is no point in X where f � f.
Therefore, no point in X can be the global minimum. We have
proved this with one simple application of hull consistency. In so
doing, we have proved that the 1030 � 2 local extrema in X are not
global minima.

Note that of the four methods described above, only the �rst can
be e¤ective for this example. This is because the other methods use
interval bounds on derivatives; and these bounds contain zero for
almost any subinterval of X of unit width.

12.6 UPDATING THE UPPER BOUND

In Section 12.5, we discussed how we can use an upper bound f on the
global minimum f� to delete points that cannot be global minimum
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points. We noted that whenever we generate a new subbox of the

initial box xI(0), we evaluate f at its center and use the value to
update f. However, we can also search for a point where f < f and
use such a point to reduce f: In this section, we discuss two ways
that this can be done e¢ ciently.

Suppose that before starting to solve an unconstrained optimiza-
tion problem by our algorithm, we know a value of f that is near or
equal to the global minimum f�. In this case, the solution is found
more rapidly than when no such initial value is known.

Walster, Hansen and Sengupta (1985) observed that obtaining
a good approximation f to f� early in the process of solving an
optimization problem did not greatly improve the e¢ ciency of their
algorithm. However, they solved the relation f � f by expanding f
in Taylor series through �rst or second derivative terms as in Section
12.5.4. As we note throughout this book, using Taylor expansions in
interval algorithms is generally e¤ective only when the box is small.
Therefore, expanding f to solve f � f is not fruitful in the early
stage of the solution process when the current box is large. That is,
having a good upper bound f early in the solution process was not
very helpful in their algorithm.

Using hull and box consistency changes the situation. If a value
of f near f� is available, consistency methods can e¤ectively reduce a
box even when the box is large. Therefore, it is now more important
to have a good approximation to f� early in the solution process.
Sampling a value of f at the center of each new generated box serves
to produce good values of f fairly quickly. This is particularly true
because of the way we choose which box to process. See Section
12.12.

Because it is so helpful to have a small value of f; we also use
other procedures to reduce f: In one such procedure, we do a line
search for a point where f is small. We now describe this procedure.

Suppose we evaluate the gradient g(x) of f(x) at a point x. Note
that f decreases (locally) in the negative gradient direction from x.
A simple procedure for �nding a point where f is small is to search
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along this half-line. Let x be the center of the current box. De�ne
the half-line of points y(�) = x � �g(x) where � � 0: We now use
a standard procedure for �nding an approximate minimum of the
objective function f on this half-line.

We �rst restrict our region of search by determining the value
�0 such that y(�0) = x � �0g is on the boundary of the current
box xI . We search between x and x0 = y(�0): We use the following
procedure. Each application of the procedure requires an evaluation
of f .

Procedure: If f(x0) < f(x), replace x by (x + x0)=2: Otherwise,
replace x0 by (x+ x0)=2:

We apply this procedure eight times. We then use the smaller of
the �nal values of f(x) and f(x0) to update f.

Much of this procedure can be done using rounded real arith-
metic. The evaluation of g(x) and the computations to do the search
steps need only be approximate. However, the �nal evaluation of f
used to update f must be done using interval arithmetic.

The other procedure that we use to update f uses data that are
expensive to compute. Therefore, we apply the procedure only when
the data are available because they have been computed for another
purpose. The relevant data are computed when we apply a Newton
method to bound a zero of the gradient g(x): When we do so, we
compute the Jacobian J(x;xI) and an approximate inverse B of the
center of J(x;xI): See Section 11.2. We also evaluate g at the center
x of the current box xI . The data we require consist of g(x) and B.

If the Newton method succeeds in obtaining a new box bounding
the solution of g = 0; we evaluate f at the center of the box and
use the result to update f. Regardless of whether the Newton step
is successful or not, we use the data already computed to obtain an
additional test point at which to evaluate f(x): This test point is the
point y = x�Bg(x): It doesn�t matter whether y is in the current
box or not. In fact, y need not even be in the initial box xI(0). Any
point can be used to update f: This procedure can be iterated. Steps
of a method for doing so are given in Section 11.4.
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We used a similar procedure in Section 11.4 to get an approxi-
mation for a solution to a system of nonlinear equations.

We can iterate this step starting from the point y and use the

same value of B. However, this requires recomputing g(y_); and
therefore we choose not to do so.

Note that the computation of y from the quantities x, B, and
g(x) can be done using real arithmetic. Only the evaluation of f(y)
must be done using interval arithmetic so that f can be correctly
updated.

12.7 CONVEXITY

If f(x) has a minimum at x�; then f must be convex in some neigh-
borhood of x�. Hence, the Hessian H of f must be positive semi-
de�nite at x�: A necessary condition for this is that the diagonal
elements Hii (i = 1; � � � ; n) of H be nonnegative. Note that H can-
not be replaced by its counterpart in an expansion using slopes.

Consider a box xI . If Hii(xI) < 0 for some i = 1; � � � ; n, then
Hii(x) < 0 for all x 2 xI . Hence, H cannot be positive semide�nite
for any point in xI . Therefore, f cannot have a stationary minimum
in xI and we can delete xI . The concept of using convexity in this
way was introduced by Hansen (1980).

There are other conditions that H must satisfy to be positive
semide�nite. For example, the leading principal minors of H of all
orders 1; � � � ; n must be nonnegative. (This is also a su¢ cient con-
dition.) We could check to see if one or more of these conditions is
violated over xI and, if so, delete xI : However, this extra e¤ort is
probably not warranted.

To use the convexity condition, we could simply evaluate Hii(xI).
If Hii(xI) < 0, for any i = 1; � � � ; n, then xI cannot contain a mini-
mum of f and we might delete xI . However, for essentially the same
amount of e¤ort, we can apply hull consistency to solve Hii(xI) � 0.
If hull consistency proves that Hii(xI) < 0, then we can delete xI .
Additionally, hull consistency might be able to delete part of xI .
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Simply evaluating Hii(xI) cannot reduce xI .
There is generally an extended region of points (a basin) at and

near a minimum of f in which f is convex. Using the conditions
Hii(x) � 0 does not delete such points. Compare this with solving
the condition g(x) = 0 on the gradient. The latter condition deletes
all but isolated points. We cannot expect the condition Hii(x) � 0
to be as useful.

It is possible to linearize the set of inequalities Hii(x) � 0 and
use the procedure in Chapter 6 to solve systems of linear inequalities.
However, linearization is generally worth doing only when the box
over which a function is linearized is small. When the box is small
in a optimization algorithm, it is probably because the box contains
or is near a solution. In this case, it is probably in the region where
the objective function is convex. That is, the condition Hii(x) � 0
does not serve to delete points. Therefore, we do not linearize this
condition.

Nevertheless, it is worth applying hull consistency to Hii(x) �
0 over a box that is at least moderately large. Consider the one-
dimensional function

f(x) = x6 � 15x4 + 27x2 + 250:

This is problem #1 of Levy et al (1981). Its �Hessian�is

f 00(x) = 30x4 � 180x2 + 54;

which is positive for jxj < 0:5628 and for jxj > 2:384, approximately.
Therefore, hull or box consistency applied to f 00(xI) � 0 is not able
to delete any part of an interval X if jXj < 0:5628 or if jXj > 2:384.

However, f 00(x) < 0 in the intervals �[0:5628; 2:383]. If X in-
tersects one of these intervals, box consistency (when iterated) can
delete this intersection. Depending on how hull consistency is imple-
mented, it can delete all or part of this intersection. For example, if
X = [�1; 2] and we solve

30x4 � 180x2 + 54 = [0;1] (12.7.1)
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for the term in the left member that is dominant over [�1; 2], we
have

180x2 2 30X4 + [�1; 54] = [�1; 534]:

Since x2 must be nonnegative, we replace the right member by
[0; 534]: Solving for x, we �nd that x 2 �[0; 1:723] or, equivalently,
[�1:723; 1:723]. The intersection of this interval with the original
one is [�1; 1:723]. Thus, we have deleted part of the original inter-
val. Iterating box consistency produces the interval [�1; 0:5628] in
the limit:

When applying hull consistency, we can solve (12.7.1) as a quadratic
in x2 and then solve for x. The interval zeros (as a function of x2)
of

30x4 � 180x2 + [�1; 54] = 0

are approximately [�1; 0:3167] and [5:683;1]. Since x2 � 0; we
replace the �rst interval zero by [0; 0:3167]: The square roots of
these intervals are the solution intervals�[0; 0:5628] and�[2:384;1]:
These are rounded versions of the exact solutions. If the initial in-
terval is [�a; a] with a > 2:384, the intersection of this result with
[�a; a] reveals that no value of x in the gap (0:5628; 2:384) can be a
solution of the optimization problem. Box consistency cannot prove
this since the interval value of the function at either endpoint �a
contains zero.

In the early stages of our optimization algorithm, we apply hull
and box consistencies to the relations Hii(x) � 0 (i = 1; � � � ; n). We
stop doing so when we expect that these relations will be of little or
no use in reducing boxes obtained subsequently. We now describe
our procedure.

Consider a box xI generated by our optimization algorithm. Sup-
pose we �nd that Hii(xI) � 0 for all i = 1; � � � ; n. Then we assume
that xI is in a basin around a minimum of the objective function.
Let wH denote the largest such box so far generated at a given stage
of the algorithm. We do not use the relations Hii(xI) � 0 for any
box of width less than wH .
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This is not a totally satisfactory procedure. If wH is deter-
mined when seeking a solution in a large basin, we might fail to use
Hii(x

I) � 0 outside some other small basin. Moreover, the procedure
can be useful in a small box which does not contain a minimum of f .
A more elaborate procedure might be better. However, we use this
simple one. Generally the relation Hii(xI) � 0 is of little use near a
solution. It should not be serious if we stop using it too soon.

There is another way in which we can use the condition Hii(xI) �
0 that is necessary for convexity. We have noted that the gradient g
of the objective function f is zero at a minimum of f . One procedure
for �nding such a point is to apply an interval Newton method to
solve g = 0: See Section 12.8.

To do so, we linearize g and solve

g(x) + J(x;xI)(y � x) = 0 (12.7.2)

for y. See Section 11.2. But the Jacobian J of g is the Hessian of
the objective function f . In Sections 7.4 and 12.7, we noted that the
diagonal elements of the Hessian must be nonnegative at a minimum
That is, the diagonal elements of JI (x;xI)must be nonnegative when
expanding the gradient of f .

Note that certain arguments of elements of JI (x;xI) are real
(rather than interval). See Section 7.4. That is why we denote the
Jacobian by JI (x;xI) rather than JI(xI): However, one element of
JI (x;xI) in each of its rows must have all its arguments as intervals.
The sequential expansions to obtain a row of JI (x;xI) can be ordered
di¤erently for each row so that it is the diagonal element which has
intervals for all its arguments.

We can now conclude that there is no minimum of f in xI if a
diagonal element of J (x;xI) is negative. In our minimization algo-
rithm, this fact is useful because we sometimes check to see if any
diagonal element of J (x;xI) is negative before we compute the re-
maining elements of J (x;xI) : See Step 20 of the algorithm in Section
12.14. However, we can delete any negative part of a computed in-
terval value of a diagonal element of J (x;xI) : This is a valid step
whether or not xI contains a minimum of f .
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Note that this modi�cation of Jii(xI) is not valid if J is obtained
using slopes. This is one of the few cases in which derivatives have
an advantage over slopes.

12.8 USING A NEWTON METHOD

The solution of an unconstrained optimization problem occurs where
the gradient g of the objective function is zero. Therefore, we can
apply an interval Newton method to solve g(x) = 0 over a box xI

in which we seek a minimum. In a given step of our optimization
algorithm, we apply a Newton step only if the current box is not �too
large�. We decide if this is the case by using the relation (11.11.1).

The gradient g is zero at any stationary point of the objective
function f . We do not want to spend e¤ort to sharply bound such
a point if it is not the global minimum. Therefore, we do not want
to iterate the Newton method to convergence when solving (12.7.2).
Instead, we want to alternate a step of the method with other pro-
cedures that might prove a given stationary point is not a global
minimum.

Therefore, we make only one �pass�through the Newton method
before using other procedures. It is for this reason that we introduced
the special interval Newton method of Section 11.14. One �pass�
consists of a single application of that method.

The Jacobian can be singular at a global minimum. In this case,
the Newton method is not very e¤ective in reducing a box that con-
tains the minimum. Our criterion for when to apply the Newton
method causes it to be less frequently used in this case.

12.9 TERMINATION

Because our optimization algorithm often splits a box into subboxes,
the number of stored unprocessed subboxes stored can grow. The
algorithm can entirely eliminate a given subbox. This generally keeps
the number of stored boxes from growing too large.
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Splitting and reducing boxes eventually causes any remaining box
to be �small�. We require that two conditions be satis�ed before a
box is deemed to be small enough to be included in the set of solution
boxes. First, a box xI must satisfy a condition

w(xI) � "X (12.9.1)

where "X is speci�ed by the user.
Second, we require

w[f(xI)] � "f ; (12.9.2)

that is, f(xI) � f(xI) � "f where "f is also speci�ed by the user.
Condition (12.9.2) guarantees that the globally minimum value f�

of the objective function is bounded to within the tolerance "f . See
Section 12.10.

Condition (12.9.1) can be replaced by a set of conditions w(Xi) �
"X (i = 1; � � � ; n). Thus, scaling can be taken into account and the
convergence condition can be dominated by the width of the bound
on (say) a single variable. Also, conditions (12.9.1) and (12.9.2) can
be replaced or augmented by relative error conditions.

If desired, a user can choose either "X or "f to be large. This
enables a single criterion to control termination.

Care must be taken that "f is not so small that rounding er-
rors and/or dependence preclude satisfying (12.9.2). Otherwise, the
tolerances can be chosen rather arbitrarily. If "X is small and "f is
large, then (12.9.2) is actually satis�ed for a quantity smaller than "f
because f does not vary much over a small box. If "X is large and "f
is small, then (12.9.1) is satis�ed for a quantity smaller than "X be-
cause (12.9.2) is not satis�ed for a large box. Having two tolerances
merely allows the user to specify a preference.

Termination conditions on solution boxes can essentially be dis-
pensed with altogether if we are not interested in the point(s) x�

where the global minimum occurs. Suppose, instead, we are inter-
ested only in bounding f�. In this case we can modify the procedures
of Section 12.5 and delete subboxes where f(x) > f � "f instead of
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f(x) > f: This allows more points to be deleted by the procedure
than if we use the inequality f(x) > f: Eventually, every point of the
original box is deleted.

When this occurs, the �nal value of f is such that

f� "f � f� � f:

That is, f� is bounded to the required accuracy. Note that with
this approach, we can dispense with computations required to check
termination conditions.

12.10 BOUNDS ON THE MINIMUM

The algorithm provides both lower and upper bounds on the global
minimum f�. After termination, the solution box (or boxes) must
contain the global minimum. Suppose that some number s of boxes

remain. Denote them by xI(i) (i = 1; � � � ; s).
The algorithm evaluates f(xI(i)) for each i = 1; � � � ; s: Denote

the result by

f(xI
(i)
) = [f(xI

(i)
); f(xI

(i)
)]:

Denote

F = min
1�i�s

f(xI
(i)
):

The algorithm also evaluates f at (an approximation for) the

center of each box to update the upper bound f on f�. A box xI(i)

is deleted if f(xI(i)) > f: Therefore,

f(xI
(i)
) � f � f(xI(i)) (12.10.1)

for all i = 1; � � � ; s:
Since the global minimum must be in one of the �nal boxes,

F � f�: (12.10.2)
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Let j be an index such that f(xI(j)) = F : Letting i = j in (12.10.1),
we obtain

f� � f � f(xI(j)): (12.10.3)

From the termination condition (12.9.2),

f(xI
(j)
)� f(xI(j)) � "f : (12.10.4)

From (12.10.2), (12.10.3), and (12.10.4),

F � f� � F + "f : (12.10.5)

Thus, the global minimum is bounded to within "f . In general, the

upper bound f on f� is smaller than F + "f :
From (12.10.1) and (12.10.4), we conclude that

F � f � F + "f :

From this relation and (12.10.5), we see that f and f� are in the same
interval of width "f : Therefore, using (12.10.3)

f� � f � f� + "f : (12.10.6)

That is, the upper bound f di¤ers from the global minimum by no
more than "f :

Note that f� � f: This might be a sharper upper bound on f�

than that given by (12.10.5).
From (12.10.1), (12.10.4), and (12.10.6), we conclude that f(x)�

f� � 2"f for each point x in each �nal box.
The accuracy speci�ed in the above relations is guaranteed to

be correct for the results computed using our algorithm. This is
because we use interval arithmetic to bound rounding errors. In
contrast, noninterval algorithms generally cannot guarantee accu-
racy. This fact is illustrated by a published paper in which run time
for a noninterval algorithm is given to obtain eight digit accuracy
for the solution to a given problem. However, the reported solution
is correct to only four digits.
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12.11 THE LIST OF BOXES

Our optimization algorithm normally begins its search in a single

given box xI(0): For simplicity, our discussion throughout this book
usually assumes this to be the case. We can also begin with a set of
boxes wherein we seek the global minimum. This is no disadvantage
even if the region formed by the set of starting boxes is not connected.
We put the initial box(es) in a list L1 of boxes to be processed.

As the algorithm progresses, it generally divides xI(0) into sub-
boxes. This might be done by direct splitting of a box or by removing
a gap in a component of a box that is proved to not contain the global
minimum. Such a gap might be generated by hull consistency, box
consistency, or by an interval Newton method.

Any box xI that satis�es the termination criteria

w(xI) � "x (12.11.1a)

w[f(xI)] � "f (12.11.1b)

(where f is the objective function) is put in a list L2. Any box
for which these criteria are not both satis�ed is placed in a list L1
of boxes yet to be processed. Assuming both "X and "f are small,
boxes in L2 are small and f varies very little over any one of them.

12.12 CHOOSING A BOX TO PROCESS

Whenever the algorithm generates a new box xI , it is placed in the
appropriate list as speci�ed in the previous section. As a cycle of
the main algorithm begins, the box to be processed is chosen from
the list L1. We now describe how the choice is made.

Before the choice is made, the algorithm evaluates f(xI) for every
box xI in L1. Let [f(xI); f(xI)] denote the result. The box chosen
to be processed is the one for which f(xI) is smallest.

This procedure is more likely to pick the box containing the point
x� of global minimum than if a box is chosen at random from the
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list. Therefore, we tend to get a good upper bound f for the global
minimum f� sooner than for some other choice of box. This speeds
convergence because the procedures in Section 12.5 are more e¤ective
when f is smaller.

If the width w(xI) of a box xI is large, then f(xI) tends to be
much smaller than the smallest value of f(x) for any x 2 xI . This
is because of dependence when evaluating f(xI). See Section 2.4.
Therefore, when L1 contains large boxes, the procedure tends to
pick either a box in which f has some small values or else a box in
need of reduction so that sharper information can be obtained about
f and its derivatives. This reduction of xI occurs either because the
box is reduced in size by the optimization algorithm or because it is
split into parts.

There are other �natural� ways to choose a box from L1: For
example, we can choose the box of largest width or the one that has
been in L1 longest. Experience has shown that the method described
above is preferable.

12.13 SPLITTING A BOX

When the algorithm makes little or no progress in reducing the size
of a box xI , it splits xI into parts by dividing one or more compo-
nent of xI into smaller parts. We discussed splitting in Section 11.8.
The reasons and procedure for doing so are similar when solving an
optimization problem and a system of nonlinear equations.

Recall that, when solving systems of nonlinear equations, our
procedure for splitting depended on whether Newton�s method had
been used in the pass though the algorithm preceding the decision
to split. This is again true when solving an optimization problem.

If Newton�s method has been used, we have the information avail-
able to use equation (11.8.1) as a criterion for which components of
the box take priority in splitting. This criterion is used here in
the same way. The equations in the system being solved are the
equations gi = 0 (i = 1; � � � ; n) expressing that the gradient of the



326 CHAPTER 12. UNCONSTRAINED OPTIMIZATION

objective function is to be zero. The Jacobian elements in equation
(11.8.1) are Jij = @gi=@xj (i; j = 1; � � � ; n).

Recall that when Newton�s method is used to solve nonlinear sys-
tems, we split the box into n subboxes because we have information
about how to do so. If Newton�s method is not used, we had no such
information. We simply split the components of largest width. In
the current optimization case, we do have some information when
Newton�s method has not been used. The width of a gradient ele-
ment is a measure of how much the objective function changes over
the box as a variable changes. This is not of great import unless the
box contains the global minimum.

We approximate the change in f resulting from the i-th variable
changing over Xi: We use the rather crude approximation

Di(x
I) = w[gi(x

I)] w(Xi): (12.13.1)

where gi is the i-th component of the gradient of f . We split the
component(s) Xi (i = 1; � � � ; n) of xI for which Di(xI) is largest.

This choice provides better e¢ ciency of the optimization algo-
rithm than splitting the widest component of xI . Note that it tends
to be independent of variable scaling.

A virtue of this criterion is that little extra computing is required
to implement it. In Section 12.4, we noted that we get an approxima-
tion for a gradient component gi(xI) evaluated over a box xI when
applying hull consistency to the equation gi(x) = 0. We use this
approximation in (12.13.1).

Hull consistency, box consistency, and the interval Newton method
can each generate a gap in a component of xI in which the solution
to the optimization problem cannot exist. Gaps generated by di¤er-
ent procedures might overlap. If so, they are merged. When a gap
is deleted, two new subboxes are generated. It is desirable to split
a box using a gap because we remove part of the region of search.
However, if the gap is quite narrow, little reduction in the search
region is made. Therefore, we use a gap for splitting only if it is
su¢ ciently wide to satisfy criterion (11.8.2).
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If a gap in the i-th component of a box is su¢ ciently wide to
satisfy (11.8.2), we regard it as one to be used in splitting regardless
of the value of Di(xI) from (12.13.1). If there are gaps in more than
three components of xI , we use (12.13.1) to select the three to be
used in splitting. However, instead of using w(Xi) in (12.13.1), we
use the width of the gap in Xi.

If there are fewer than three components with gaps of su¢ cient
width, we use those that occur, and split one or more other compo-
nents as described earlier in this section.

Note that we do not split a component Xi of xI if it already
satis�es the condition w(Xi) � "X and there are other components
that do not. However, if all components satisfy this condition, the
algorithm might need to continue splitting to satisfy the termination
condition w[f(xI)] � "f . Any splitting is done as described in Section
10.8.

12.14 THE ALGORITHM STEPS

In this section, we list the steps of our algorithm for solving the un-
constrained optimization problem. The algorithm computes guar-
anteed bounds on the globally minimum value f� of the objective
function f(x) and guaranteed bounds on the point(s) where f(x) is
a global minimum.

Assume a given box or boxes in which the solution is sought is
placed in a list L1 of boxes to be processed. Set wR = 0 (see Section

11.11). If a single box x(0) is given, set wI = w(xI
(0)). If more than

one box is given, set wI equal to the width of the largest one. If an
upper bound on the minimum value f� of f(x) is known, set f equal
to this value. Otherwise, set f = +1.

A box size tolerance "X and a function width tolerance "f must
be speci�ed as described in Section 12.9 by the user.

Let wH be de�ned as in Section 12.7 on page 318. The algorithm
sets the initial value of wH = +1: It also sets wR and wI .

We do the following steps in the order given except as indicated
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by branching. For each step, the current box is denoted by xI even
though it might be altered in one or more steps.

1. Evaluate f at (an approximation for) the center of each initial
box in L1 and use the result to update f as described in Section
12.5.

2. For each initial box xI in L1, evaluate f(xI). Denote the result
by [f(xI); f(xI)]: Delete any box for which f(xI) > f

3. If L1 is empty go to Step 36. Otherwise, �nd the box xI in
L1 for which f(xI) is smallest. Select this box as the one to
be processed next by the algorithm. For later reference denote

this box by xI(1). Delete xI(1) from L1.

4. If hull consistency has been applied (in Step 6 ) n times to the
relation f(x) � f without having done Step 9, go to Step 8.
(The integer n is the number of variables on which f depends.)

5. Apply hull consistency to the relation f(x) � f. If the result is
empty, delete xI and go to Step 3.

6. If w(xI) < "X and w[f(xI)] < "f , put xI in list L2 and go to
Step 3.

7. If the box was su¢ ciently reduced (as de�ned using (11.7.4))
in Step 5, put the result in L1 and go to Step 3.

8. If hull consistency has been applied (in Step 9) n times to the
components of the gradient without having applied a Newton
step (Step 21), go to Step 20.

9. Apply hull consistency to gi(x) = 0 (i = 1; � � � ; n) for each
component gi(x) of the gradient of f(x). In so doing, use the
procedure described in Section 10.10 to bound gi over the re-
sulting box for use in Step 11. If a result is empty, delete xI

and go to Step 3.
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10. Use the center of the bounds on gI i from Step 9 to do a line
search and update f as described in Section 12.6. If f is de-
creased, repeat Step 5.

11. Using the bounds on gi(xI) (i = 1; � � � ; n) obtained in Step 9,
apply the linear method of Section 12.5.3 to the relation f(x) �
f: If the result is empty, go to Step 3.

12. Repeat Step 6.

13. If the current box xI is a su¢ ciently reduced (using (11.7.4))

version of the box xI(1) de�ned in Step 3, put xI in list L1 and
go to Step 3.

14. If w(xI) < wH go to Step 18. (Note that wH is de�ned in
Section 12.7 on page 318.)

15. Apply hull consistency to the relation Hii(xI) � 0 for i =
1; � � � ; n. If the result is empty, go to Step 3. If Hii(xI) � 0

for all i = 1; � � � ; n (which implies that the result from hull
consistency is not empty), update wH as described in Section
10.7 and go to Step 19. [Note that updating wH is done as
follows: If wH = +1; simply replace wH by w(xI): Otherwise,
replace wH by the larger of wH and w(xI):]

16. Repeat Step 6.

17. Repeat Step 13.

18. Repeat Steps 5 through 17 using box consistency (as described
in Section 10.2) in place of hull consistency. However, skip
Steps 10 through 14. In Step 9, omit the process of obtaining
bounds on gi(xI):

19. If w(xI) > (wI + wR)=2, go to Step 33. See (11.11.1).
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20. Compute the Jacobian J(x;xI) of the gradient g: Order the
variables in each row of J (x;xI) so that it is the diagonal ele-
ment for which all arguments are intervals as described in Sec-
tion 12.7 (and Section 7.4). If a diagonal element of J (x;xI) is
strictly negative go to Step 3. Otherwise, delete any negative
part of any diagonal element of J (x;xI) : Compute an approx-
imate inverse B of the approximate center of J(x;xI) and the
matrix M(x;xI) = BJ(x;xI):

21. If the matrix M(x;xI) is regular, �nd the hull of the solution
set of the linear system determined in Step 20 as described
in Section 5.8. If M(x;xI) is irregular, apply one pass of the
Gauss-Seidel method to the linear system. See Section 5.7.
Update wI or wR as prescribed in Section 11.11. If the result of
the Newton step is empty, go to Step 3. If the interval Newton
step proves the existence of a solution in xI (see Proposition
11.15.5), record this information.

22. Repeat Step 6.

23. If the width of the box was reduced by a factor of at least 8 in
the Newton step (Step 21), go to Step 20.

24. Repeat Step 13.

25. Use the gradient value g(x) and the matrix B computed in
Step 20 to compute the point y = x�Bg(x): See Section 12.6.
Use the value of f(y) to update f.

26. Use the quadratic method of Section 12.5.4 to �solve�f (x) � f

27. Repeat Step 6.

28. Repeat Step 13.

29. Using the matrix B computed in Step 20, analytically deter-
mine the systemBg(x): Apply hull consistency to solve the i-th
component of Bg(x) for the i-th variable xi for i = 1; � � � ; n:
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If this procedure proves the existence of a solution in xI (as
discussed in Section 10.12), record this information. Note: If
the user prefers not to do analytic preconditioning, go to Step
36.

30. Repeat Step 6.

31. Repeat Step 13.

32. Apply box consistency to solve the i-th component of Bg(x)
(as determined in Step 29) for the i-th variable for i = 1; � � � ; n.

33. Repeat Step 6.

34. Merge any overlapping gaps in components of xI if any were
generated using hull consistency, box consistency, and/or the
Newton method.

35. Split the box xI as prescribed Section 12.13. If gaps that satisfy
(11.8.2) have been generated in any of these components, use
the gaps to do the splitting. Evaluate f at the center of each
new box and use the results to update f: Then go to Step
3. Note that if multiple processors are use, the number of
components to split might be more than three. See Section
11.8.

36. Delete any box xI from list L2 for which f(xI) > f. Denote

the remaining boxes by xI(1); � � � ;xI(s) where s is the number
of boxes remaining. Determine the lower bound for the global

minimum f� as F = min
1�i�s

f(xI(i)):

37. Terminate.

12.15 RESULTS FROMTHEALGORITHM

After termination, F � f� � f. Also, f(x)�f� � 2"f for every point
x in every remaining box. See Section 12.10. Also, w(xI) � "X for
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every remaining box.
A user might want a single point ex such that
jjex� x�jj � "1 (12.15.1)

and/or

f(ex)� f� � "2 (12.15.2)

for some "1 and "2. Recall that x� is a point such that f(x�) = f�

is the globally minimum value of the objective function f . Our
algorithm might or might not determine a point ex that fully satis�es
(12.15.1) and (12.15.2).

If ex is any point in any �nal box, then f(ex) � f� � 2"f . See
(12.10.6). Therefore, (12.15.2) can always be satis�ed by choosing
"f =

1
2"2:

If there is only one �nal box xI , the algorithm assures that it
contains x�: Therefore, we can choose ex to be any point in xI . Since
w(xI) � "X , (12.15.1) is satis�ed by choosing "X = "1: Also, f(ex)�
f� � "f for any ex 2 xI because of the termination condition (12.9.2).

If there is more than one �nal box, we cannot necessarily satisfy
equation (12.15.1). Let ex be any point in any �nal box. All we can
assure is that ex is no farther from x� than the maximum distance
from ex to any point in any �nal box. However, f(ex) � f� � 2"f
because this is true for every point in every �nal box. Decreasing "X
and "f and/or using higher precision arithmetic might improve the
bound on ex� x�:
12.16 DISCUSSIONOFTHEALGORITHM

The algorithm in Section 12.14 begins with procedures that involve
the least amount of computing. We use hull consistency �rst because
it does not require computation of derivatives (and because it is
e¤ective in reducing large boxes).
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For e¢ ciency, the best box xI to process is the one for which
f(xI) is smallest. This tends to quickly reduce the upper bound f.

Because it is important to reduce f as quickly as possible, the algo-
rithm returns to Step 3 frequently to determine the box to process
next.

We stop using the relations Hii(x) � 0 (i = 1; � � � ; n) when there
is evidence that the remaining boxes are in a region where f is con-
vex. See Step 14. Using a similar philosophy, we begin using the
Newton method more often when there is evidence that it will be
e¤ective. See Steps 19 and 23.

Note that the Jacobian J(x;xI) is the Hessian of the objec-
tive function f . Therefore, knowing J(x;xI) provides the means for
determining the second order Taylor expansion of f: The gradient
g(x) needed for this expansion is also computed when applying the
Newton method in Step 21.

Therefore, we have the data required to use the quadratic method
of Section 12.5.4 to �solve� the relation f(x) � f: See Step 26. If
these data are not already available, it might not be worth generating
them simply to solve f(x) � f using the quadratic method.

The algorithm avoids too many applications of hull consistency
before changing procedures. Step 4 can force application of hull
consistency to the gradient instead of to the inequality f � f. Step
8 can force change from applying hull consistency to the gradient, to
applying a Newton step. This takes precedence over our desire not
to apply a Newton step when it might not be e¢ cient.

We need occasional checks of e¢ ciency of the Newton method
because the current box might become so small that the Newton
method exhibits quadratic convergence and thus is more e¢ cient
than hull consistency. When we force a change from hull consistency,
we also force a change from box consistency. This occurs because
we do not apply the latter without having previously applied the
former.

Step 23 causes the Newton step to be repeated. If the Newton
method is exhibiting quadratic convergence, we want to take advan-
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tage of its ability to progress rapidly.
In a given pass through Step 23, the algorithm might have proved

the existence of a solution of the equation g(x) = 0. Such a �solu-
tion�can be a stationary point of f that is not a global minimum.
Suppose proof is obtained for some box xIE : If xIE does not contain
a global minimum, the entire box xIE might or might not be deleted
by the algorithm. If L2 (in Step 36) contains a single �nal box, it is
the one containing a zero of g.

12.17 A NUMERICAL EXAMPLE

We now consider a numerical example. The well-known Beale func-
tion can be found as problem #5 of Moré, Garbow, and Hillstrom
(1981). It also occurs as problem #2.1 of Schwefel (1981). The
problem is to minimize

f(x; y) = [1:5� x(1� y)]2

+ [2:25� x(1� y2)]2 + [2:625� x(1� y3)]2:

Van Hentenryck et al. (1997) solved this problem using their
algorithm Numerica. Their initial box was given by X = Y =

[�106; 106] and the stopping criterion was given by "X = 10�8. We
used these same parameters and chose "f large so that it did not af-
fect our stopping procedure. As a comparison criterion, we counted
the number of boxes generated by splitting. Numerica generated
356 boxes. The algorithm given in Section 12.14 generated 36 boxes.
This is not a de�nitive comparison because the computational e¤ort
per box is not compared.

Walster, Hansen, and Sengupta (1985) solved this problem be-
ginning with the much smaller box given by X = Y = [�4:5; 4:5] and
obtained a bounding box of width 10�11. This required 315 applica-
tions of the interval Newton method (as well as other procedures).
For the much larger initial box of width 2 � 106, the algorithm of
Section 12.14 needed only 18 Newton applications. Again, this is
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an incomplete comparison. However, it illustrates the virtue of hull
and box consistency when used together with the interval Newton
method.

12.18 MULTIPLE MINIMA

Interval algorithms are capable of �nding the global minimum of a
function with many local minima. Walster, Hansen, and Sengupta
(1985) used an earlier version of our algorithm to solve various opti-
mization problems. They report solving a ten dimensional problem
in a box containing 1010 local minima and a single global minimum.

A given objective function can have more than one point where it
takes on its globally minimum value. If they are well separated, each
global minimum is isolated and separately bounded by our algorithm.
Nearly coincident but distinct solution points are separately bounded
only if the prescribed error tolerances are su¢ ciently small and word
length of the computer is adequate.

A function can have a continuum of global solution points. If the
error tolerances are small, then, in this case, our algorithm computes
a large number of boxes covering the set of solution points. A user
might want such a result in which a solution region is mapped out
by small �pixels�. However, it is possible to avoid such a result
by bounding f� only, but not x�. We can modify the procedure in
Section 12.5 to eliminate points x for which f(x) > f � "f rather
f(x) > f: This causes all points in the initial box to be eliminated.
That is, we preclude the need to determine the large set of boxes
covering the continuum of solution points.

Using this option, we bound the global minimum f� by f� "f �
f� � f: Since the upper bound f is obtained at some point x, we
have a representative point where the value of f is within "f of f�.
Walster, Hansen and Sengupta (1985) discuss this option and provide
an example of its use.
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12.19 NONDIFFERENTIABLE PROBLEMS

Various procedures in the algorithm given in Section 12.14 require
some degree of continuous di¤erentiability of the objective function
f . If this is not the case certain procedures must be omitted. For
example, to apply box consistency or a Newton method to solve
g(x) = 0 (where g is the gradient of f), f must be twice contin-
uously di¤erentiable. Exceptions might occur if g exists but is not
di¤erentiable. In this case, it might be possible to expand g in slopes
rather than derivatives. See Section 7.7.

The algorithm solves the global optimization problem even if
f is not di¤erentiable. But, in this case the algorithm is slower.
Applying hull consistency to the relation f(x) � f does not require
di¤erentiability. This procedure alone (with box splitting) can solve
the problem. For an example in which this procedure performs well,
see Section 12.5.5.

Sometimes, a nondi¤erentiable objective function can be replaced
by one having di¤erentiability. See Section 18.1.

12.20 FINDINGALL STATIONARYPOINTS

There are applications in which one wants to �nd all stationary
points of a function. There are other applications in which one wants
to �nd all local minima whether they are global or not. In this sec-
tion, we discuss how our procedures can be applied to compute such
results.

Note that all stationary points of a function in a box can be found
by applying the procedure in Section 11.12 to solve the system of
equations formed by setting to zero the components of the gradient
of the given function. However, our optimization algorithm can also
be used for this purpose.

In Section 12.5, we discussed how an upper bound on the global
minimum can be used to delete local minima. If we omit the pro-
cedures of Section 12.5 from the algorithm of Section 12.14, the re-
sulting algorithm �nds all (global or local) minima of the objective
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function in the initial box.
If we wish to �nd all stationary points of the objective function,

we can do so by omitting an additional procedure. We also omit the
procedure described in Section 12.7 that deletes points of the box at
which the objective function is not convex.
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Chapter 13

CONSTRAINED
OPTIMIZATION

13.1 INTRODUCTION

In this chapter, we consider the constrained optimization problem

Minimize f(x) (13.1.1)

subject to pi(x) � 0 (i = 1; � � � ;m) ;

qi(x) = 0 (i = 1; � � � ; r) :

We assume f(x) is twice continuously di¤erentiable and that the
constraint functions pi(x) and qi(x) are continuously di¤erentiable.

As in the unconstrained case, we assume an initial box xI(0) is

given. We seek the global minimum of f(x) in xI(0) subject to the
given constraints. If an inequality constraint in (13.1.1) is of the

form a� xi � 0 or xi � b � 0, then this determines a side of xI(0).
Unless a side of xI(0) is explicitly prescribed to be an inequality

constraint, this particular bound is not regarded as a constraint.
Instead, it merely restricts the region of search. We assume the
box is su¢ ciently large to contain any global solution point of the
problem as given by (13.1.1).
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As in the unconstrained case, the initial box can generally be
chosen quite large without seriously degrading the performance of
the optimization algorithm. If no initial box is given, we assume
each of its components (not speci�ed by an inequality constraint)
is
�
�N; N

�
where N is the largest �nite number representable on the

computer used to solve the problem.
Our approach is the same as in the unconstrained case. We delete

subboxes of xI(0) that cannot contain the global solution. We stop
when the bounds on the location of the solution and the bounds on
the globally minimum value of f are small enough to satisfy user
speci�ed tolerances.

Our algorithms for constrained and unconstrained problems use
so many of the same subroutines that we use a single program to
solve both types of problem. We call those subroutines that are
relevant for a particular problem. However, for pedagogical reasons,
we describe separate algorithms for constrained and unconstrained
problems.

Robinson (1973) was the �rst to use interval arithmetic to bound
rounding errors in obtaining an approximate solution of (13.1.1).
However, he did not otherwise use interval methods to compute the
solution. He also did not attempt to �nd the global solution.

An important problem in interval analysis is that of bounding
the range of a function over a given box. We can cast this problem
as two optimization problems in which we want both the minimum
and maximum of the function subject to box constraints.

Methods for bounding the range of a function over a box can be
regarded as the �rst interval methods for global optimization. Thus,
it can be said that the e¤ort to use interval analysis to solve a global
optimization began with Moore (1966). However, this approach does
not include constraints.

A discussion of this special problem and methods for it can be
found in Ratschek and Rokne (1984). We do not discuss these meth-
ods. One reason is that there is no e¤ort to �nd the location of the
global solution. Only bounds on a function over a box are sought. A
more general discussion of interval methods for global optimization
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can be found in Ratshek and Rokne (1988). They discussed some
of the easily implemented procedures derived in Hansen (1980) that
su¢ ce for �nding a solution. However, they omitted other more e¤ec-
tive (but more complicated) procedures that enhance performance.

Hansen and Sengupta (1980) �rst used interval methods of the
kind considered herein to solve the inequality constrained problem.
See also Hansen and Walster (1992b). We discuss this special case in
Chapter 14. We discuss the equality constrained case in Chapter 15.
See also Hansen and Walster (1992a, b, c). For a more recent discus-
sion of global optimization with details on software implementation
of interval procedures, see Kearfott (1996).

13.2 THE JOHN CONDITIONS

In this section, we discuss the John conditions that necessarily hold
at a constrained (local or global) minimum. We use these conditions
in solving problem (13.1.1). We write the John conditions as

u0rf(x) +
mX
i=1

uirpi(x) +
rX
i=1

virqi(x) = 0; (13.2.1a)

uipi(x) = 0 (i = 1; � � � ;m) ; (13.2.1b)

qi(x) = 0 (i = 1; � � � ; r) ; (13.2.1c)

ui � 0 (i = 0; � � � ;m) (13.2.1d)

where u0; � � � ; um, v1; � � � ; vr are Lagrange multipliers.
The John conditions di¤er from the more commonly used Kuhn-

Tucker-Karush conditions because they include the Lagrange mul-
tiplier u0. If we set u0 = 1 and omit the normalization condition
(13.2.1f) or (13.2.1g) below, then we obtain the Kuhn-Tucker-Karush
conditions.

When the Kuhn-Tucker-Karush conditions are used, it is assumed
that the binding constraints are not linearly dependent at a mini-
mum. That is, constraint quali�cations are imposed. For de�nitions
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and discussion of these terms and concepts, see, for example, Bazaraa
and Shetty (1979).

We prefer not to restrict the set of problems considered by im-
posing constraint quali�cations. A problem with linearly dependent
binding constraints can arise in practice. If so, an optimization al-
gorithm (including ours) can fail to �nd the global minimum if it
assumes otherwise. We avoid such failure by using the John condi-
tions.

For a discussion of the Kuhn-Tucker-Karush conditions in an
interval context, see Mohd (1990).

The John conditions do not normally include a normalization
condition. Therefore, there are more variables than equations in
(13.2.1a) through (13.2.1d). One is free to remove the ambiguity
in whatever way desired. A normalization can be chosen arbitrar-
ily without changing the solution x of the John conditions. For
reasons given in Sections 13.3 and 13.5, we consider two separate
normalizations.

The �rst normalization is linear; but it is not as simple as one
might expect. As we discuss in the next section, we use

u0 + � � �+ um + E1v1 + � � �+ Ervr = 1 (13.2.1f)

where Ei = [1; 1 + "0] for all i = 1; � � � ; r: The constant "0 is the
smallest positive machine number such that in the number system
on the computer used, 1+"0 is represented as a number> 1. Actually
a slightly larger value for "0 can be used without error and without
seriously degrading sharpness.

The second normalization is

u0 + � � �+ um + v21 + � � �+ v2r = 1: (13.2.1g)

13.3 NORMALIZING LAGRANGEMULTI-
PLIERS

In this section, we discuss normalization of the Lagrange multipliers
and explain why the linear normalization (13.2.1f) takes the given
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form. The normalization is due to Hansen and Walster (1990a).
If no equality constraints are present in problem (13.1.1), the

normalization equation (13.2.1f) becomes

u0 + � � �+ um = 1:

Since the Lagrange multipliers ui (i = 0; � � � ;m) are nonnegative (see
(13.2.1d)), this assures that

0 � ui � 1 (i = 0; � � � ;m) :

These bounds on ui are useful in our algorithm.
The multipliers vi (i = 1; � � � ; r) can be positive or negative. There-

fore, we cannot use the normalization

u0 + � � �+ um + v1 + � � �+ vr = 1

since the left member might be zero for the solution to a given prob-
lem.

A possible alternative normalization is

u0 + � � �+ um + jv1j+ � � �+ jvrj = 1: (13.3.1)

However, we want a normalization equation that is continuously dif-
ferentiable so we can apply an interval Newton method to solve the
John conditions. Therefore, we reject this alternative normalization
and use (13.2.1f) or (13.2.1g).

To explain why the normalization (13.2.1f) has the form it does,
consider the sum

S = u0 + � � �+ um + v1 + � � �+ vr: (13.3.2)

We want to use the simple normalization S = 1: However, if
S = 0 (at a solution), we have a contradiction.

In Section 13.2, we de�ne the interval E = [1; 1 + "0] where the
constant "0 is the smallest positive machine number such that in the
number system of the computer, 1 + "0 is represented as a number
> 1.
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Even when S = 0, there are numbers ei 2 Ei = E (i = 1; � � � ; r)
such that

u0 + � � �+ um + e1v1 + � � �+ ervr = 1 (13.3.3)

after an appropriate renormalization of the Lagrange multipliers.
Since this equation is contained in the interval equation (13.2.1f),
the normalization (13.2.1f) is valid when S = 0. It is obviously valid
when S 6= 0.

Since Ei = E = [1; 1 + "0] for all i = 1; � � � ; r, one might be
tempted to write (13.2.1f) in the factored form

u0 + � � �+ um + E(v1 + � � �+ vr) = 1:

If both u0 + � � � + um = 0 and v1 + � � � + vr = 0, then there is no
e 2 E such that

u0 + � � �+ um + e(v1 + � � �+ vr) = 1:

Therefore, we must not use the factored form. By using the non-
factored form (13.2.1f), we use the fact that interval arithmetic is not
distributive. This is an example of the need to carefully distinguish
between interval variables that are independent and those that are
not. (See Chapter 4.)

Suppose we apply our optimization algorithm to a subbox xI

of the initial box xI(0). Suppose also that, for any solution in xI ,
the interval bounds uIi on ui (i = 0; � � � ;m) and bounds vIi on vi
(i = 1; � � � ; r) hold and that

0 =2 uI0 + � � �+ uIm + vI1 + � � �+ vIr :

Then we know that S 6= 0 for any solution point in xI . Therefore,
whenever considering xI or a subbox of xI , we replace the normal-
ization condition (13.2.1f) by the simpler condition S = 1.

The other normalization we consider is given by (13.2.1g). It has
value because it immediately provides useful bounds on the Lagrange
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multipliers. Since ui � 0 (i = 0; � � � ;m), (13.2.1g) yields the bounds

0 � ui � 1 (i = 0; � � � ;m) ;

�1 � vi � 1 (i = 1; � � � ; r) : (13.3.4)

The undesirable feature of this normalization is that it is not linear.
In Section 13.5, we show why this is a drawback. In Section 15.2, we
discuss another advantage of the linear normalization (13.2.1f).

For convenience, we express the two normalizations (13.2.1f) and
(13.2.1g) in terms of functions. Thus, we de�ne

R1(u;v) = u0 + � � �+ um + Ev1 + � � �+ Evr � 1 (13.3.5)

and

R2(u;v) = u0 + � � �+ um + v21 + � � �+ v2r � 1: (13.3.6)

We solve the John conditions using an interval Newton method.
See Section 13.5. When we do so, we linearize the equations to be
solved. The bounds (13.3.4) enable us to use a linearized version of
(13.2.1g) that we express using R2(u;v) as given by (13.3.6). Ex-
panding R2(u;v) using the Taylor expansion (7.3.6), we obtain

R2(u;v) 2 R2(u0;v0) + (u0 � u00) + � � �+ (um � u0m)

+ 2V1(v1 � v01) + � � �+ 2Vr(vr � v0r); (13.3.7)

which is valid for all u 2 uI and all v 2 vI where uI and vI are
interval vectors and Vi (i = 1; � � � ; n) is the i-th component of vI .
The real vectors u0 2 uI and v0 2 vI are �xed. Using the bounds
(13.3.4), we see that we can replace condition (13.2.1g) by its an
expansion in the form

R2(u
0;v0) + (u0 � u00) + � � �+ (um � u0m) + [�2; 2](v1 � v01) + � � �

+ [�2; 2](vr � v0r) = 0: (13.3.8)
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By now, readers have observed that it is far simpler to use the
normalization u0 = 1 than to normalize as we have done. This can be
done. It produces the Kuhn-Tucker-Karush conditions. It simpli�es
the formulation and slightly improves the e¢ ciency of the algorithm.
The only di¢ culty with using u0 = 1 is that we might fail to �nd the
global minimum in the rather rare case in which the constraints are
linearly dependent at the solution. Consistent with the promise of
or interval algorithms to never fail to produce bounds on the set of
all problem solutions, we choose not to risk failing to �nd the global
solution in this special circumstance. Consequently, we do not use
the normalization u0 = 1: Instead, we avoid this risk by performing
the extra computation required to use either (13.2.1f) or (13.2.1g).

There is another simple expedient. We can write the equality
constraints qi(x) = 0 (i = 0; � � � ; r) as two inequality constraints
qi(x) � 0 and �qi(x) � 0: Now all constraints are inequality con-
straints. Therefore, we can use the simple normalization

u0 + � � �+ us = 1

where s = m+2r and the initial bounds are 0 � ui � 1 (i = 1; � � � ; s).
We have not used this expedient because it introduces r extra La-
grange multipliers.

13.4 USE OF CONSTRAINTS

When we solve an optimization problem, we seek a solution x� in a
given box xI . When we do so, we apply hull consistency (see Chapter
10) to the constraints over the box xI . Therefore, xI is deleted in
the process of applying hull consistency if it is certainly infeasible.

Also, we might have found that pi(xI) < 0 for some inequality
constraint. If so, then pi(x) < 0 for all x 2 xI ; which implies that
this particular constraint cannot be active at any point x 2 xI .
Such a constraint can be ignored when trying to �nd a solution to
the optimization problem in xI : Whenever we discuss solving the
John conditions, we assume that such inequality constraints have
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been omitted. However, for simplicity, we still use the letter m to
denote the number of possibly active inequality constraints being
considered.

13.5 SOLVING THE JOHN CONDITIONS

We now consider use of an interval Newton method to solve the
portion of the John conditions given by Equations (13.2.1a) through
(13.2.1c). We include either (13.2.1f) or (13.2.1g). The remaining
conditions ui � 0 (i = 1; � � � ;m) are not part of this computation
since they are not equations. They are used after the equations are
solved. Our discussion parallels that of Hansen and Walster (1990b).

We specify whether the normalization is given by (13.2.1f) or
(13.2.1g), but only when it matters which normalization is used.

From the vectors x = (x1; � � � ; xn)T , u = (u0; � � � ; um)T , and
v = (v1; � � � ; vr)T ; we de�ne the partitioned vectors

w =

�
u
v

�
; t =

�
x
w

�
=

24 xu
v

35 :

We write the John conditions (13.2.1a) through (13.2.1c) and (13.2.1e)
in terms of the vector t:

To do so, we change the notation of the normalization functions
(13.3.5) or (13.3.6) from Rk (u;v) to Rk(t) (k = 1 or 2). Thus, we
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write the relevant John conditions (with k = 1 or 2) as

�(t) =

2666666666666664

Rk(t)

u0rf(x) +
mP
i=1
uirpi(x) +

rP
i=1
virqi(x)

u1p1(x)
...

umpm(x)
q1(x)
...

qr(x)

3777777777777775
(13.5.1)

Denote N = n + m + r + 1: Let tI be an N -dimensional box
containing the vector t. Let J(t; tI) denote the Jacobian of �(t). As
pointed out in Section 7.4, the elements of J(t; tI) can be expressed
as

Jij(t; t
I) =

@

@tj
�i(T1; :::Tj ; tj+1; � � � ; tN _) (13.5.2)

for i; j = 1; � � � ; N , where �i (t) is the i-th component of � (t). Note
that N � j of the arguments of Jij(t; tI) are real.

Suppose we use the linear normalization (13.2.1f) in de�ning
�(t). That is, suppose the �rst component of �(t) is R1(t) as given
by (13.3.5). By choosing the Lagrange multipliers to be the argu-
ments that are real in (13.5.2), we assure the elements of J(t; tI) do
not involve the Lagrange multipliers as intervals. Because of this
fact, no initial bounds for the Lagrange multipliers are needed to
solve the equation �(t) = 0: Note that such bounds are needed only
if an appropriate interval Newton method is used.

The Krawczyk and Gauss-Seidel interval Newton methods are
not appropriate because they require initial bounds on all (except
one) of the variables. See Section 11.2. Gaussian elimination or the
hull method of Section 5.8 is appropriate.
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An expansion using slopes (see Section 7.7) can also be obtained
in such a way that a variable occurring linearly in the function being
expanded does not occur as an interval in the �Jacobian�.

Alternatively, suppose we use the nonlinear normalization (13.2.1g).
Then the Lagrange multipliers occur as intervals in the Jacobian of
the John conditions. Every additional interval introduced into a sys-
tem of equations increases the chance that the Jacobian of the sys-
tem is irregular. When the Jacobian is irregular, an interval Newton
method is either unable to obtain a solution or is less e¢ cient. In
this case, it is more often necessary to split the components of the
box in some way. But, if we have to split the interval bounds on the
Lagrange multipliers as well as those of the other variables, a great
deal of extra computing might be necessary. Therefore, the linear
normalization is the better choice.

When the linear normalization is used, a step of an interval New-
ton method provides bounds on the Lagrange multipliers. See the
next section. Thereafter, any variant of an interval Newton method
can be used.

Assume the Jacobian elements are computed as de�ned in (13.5.2).
To avoid having the Lagrange multipliers occur as intervals in the
Jacobian, it is essential to order the variables so that the vector
variables u and v occur after x when de�ning t.

Consider boxes (of appropriate dimensions) xI ;uI ; and vI bound-
ing the vectors x;u; and v, respectively. They de�ne a box

tI =

24 xIuI
vI

35 :
We linearize �I as

�I(t0) + J(t0; t
I)(t� t0) = 0 (13.5.3)

where t0 is a real vector in tI and the Jacobian J(t0; tI) is given by
(13.5.2). A good choice for t0 is the center of tI .

Assume we use the linear normalization (13.2.1f). Suppose we
solve (13.5.3) using a Newton method from Chapter 11 for which
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Proposition 11.15.5 holds. Denote the result by tI 0: If tI 0 � tI , we
have proof of the existence of a solution of �(t) = 0 for t 2 tI 0:

This condition tI 0 � tI can be expressed as xI 0 � xI ; uI 0 � uI ;

and vI 0 � vI : However, we do not de�ne uI or vI when the linear
normalization (13.2.1f) is used as indicated.

We can assume that each component of vI is [�1;1] and there-
fore, the condition vI 0 � vI is satis�ed for any �nite vI 0. However,
the relation (13.2.1d), which is part of the John conditions, states
that ui � 0 for all i = 1; � � � ;m. Therefore, we must assume that
uI � 0. This implies that the condition uI 0 � 0 must be satis�ed to
prove existence of a solution of �(t) = 0:

On the other hand, if uI 0i < 0 for any i = 1; � � � ;m, there can be
no solution of �I(x) = 0 for t in tI . In this case, we can delete xI :
We obtain uI 0 from a Newton step no matter what normalization we
use for the Lagrange multipliers

If the Jacobian of �I contains a singular matrix (i.e., is not reg-
ular), then the solution set of (13.5.3) is unbounded. In this case,
Gaussian elimination or the hull method of Section 5.8 fails. If we
use the normalization (13.2.1g), the presence of interval bounds for
the Lagrange multipliers makes it more likely that the Jacobian is
irregular. This is yet another argument in favor of the linear normal-
ization (13.2.1f). On the other hand, when the Jacobian is irregular,
it is sometimes possible to improve the bounds on some of the com-
ponents of t using a Gauss-Seidel step. This is not possible without
bounds on the multipliers.

13.6 BOUNDING THE LAGRANGE MUL-
TIPLIERS

When we use the linear normalization condition (13.2.1f), then some
forms of the interval Newton method do not need initial bounds on
the Lagrange multipliers. However, there are three ways in which
computed bounds can be useful. First, suppose we obtain a bound
Ui on a Lagrange multiplier ui and �nd that Ui < 0. Then condition
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(13.2.1d) is violated for all ui 2 Ui; and there cannot be a solution
in whatever box xI is used to compute Ui. Such a result can be
obtained whether or not there are input bounds on the Lagrange
multipliers. Of course, if there are input bounds on u and v, there
are more such ways to prove nonexistence of a solution of the John
conditions.

Second, if we choose to apply hull consistency or box consistency
to the John conditions, we need bounds on the multipliers. In our
algorithm, we do not apply hull or box consistency to the John con-
ditions per se. However, we do apply them to constraint equations.
A user can choose to apply them to the John conditions.

Although we do not need bounds on the Lagrange multipliers to
apply some forms of Newton�s method to solve the John conditions,
we do need estimates. A third way to use bounds on the multipliers
is to use the midpoint of an interval bound of a multiplier as an
estimate for its value.

In this section, we show how such bounds can be computed. The
procedure is relevant only when the linear normalization is used.

When we compute bounds on the Lagrange multipliers, they are
valid for all points in a given box xI . Suppose that, later, we have a
box xI 0 that is a subbox of xI . Then the bounds on the multipliers
for points in xI are bounds for points in xI 0. Therefore, it is not
necessary to use the procedure of this section when processing xI 0.

We noted in Section 13.5 that by solving �(t) = 0 (as given by
(13.5.1)) using an interval Newton method, we can compute bounds
on the Lagrange multipliers. This requires that we successfully solve
the linearized Equation (13.5.3) when using Gaussian elimination or
the hull method. We now consider an alternative procedure due to
Hansen and Walster (1990) for computing such bounds. It involves
fewer equations than those in the relation �(t) = 0.

Instead of using all of equations (13.2.1a) through (13.2.1c) and
(13.2.1f) or (13.2.1g), we use only (13.2.1a) and (13.2.1f). Thus, the
number of equations is reduced from n + m + r + 1 to n + 1. We
assume that m+ r � n:

Assume we seek a solution of the minimization problem (13.1.1)
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in a subbox xI of the initial box xI(0): Let x be a point in xI . De�ne
the (n+ 1) by (m+ r + 1) matrix

A(x) =

�
1 1 � � � 1 E1 � � � Er

rf(x) rp1(x) � � � rpm(x) rq1(x) � � � rqr(x)

�
:

where Ei (i = 1; � � � ; r) is de�ned in Section 13.2. Equations (13.2.1f)
and (13.2.1a) can be written

A(x)w = e1 (13.6.1)

where e1 = (1; 0; � � � ; 0)T is a vector of n+ 1 components and

w =

�
u
v

�
has m+ r + 1 components.

Consider the set of vectors w satisfying (13.6.1) as x ranges over
xI . This set contains the vector of Lagrange multipliers that satisfy
the John conditions for any x 2 xI : We replace x by xI in (13.6.1)
and obtain

A(xI)w = e1: (13.6.2)

The solution of this equation provides the desired bounds on the
Lagrange multipliers.

We wish to apply Gaussian elimination to this equation to trans-
form the (nonsquare) coe¢ cient matrix into upper trapezoidal form.
To do so, we precondition the problem by multiplying by a real trans-
formation matrix as described for the square matrix case in Section
5.6.

LetAc denote the center ofA(xI): Using (real) Gaussian elimina-
tion with row interchanges, we determine a matrixB that transforms
Ac into upper trapezoidal form. We then apply interval Gaussian
elimination (without row interchanges) to the preconditioned equa-
tion

BA(xI)w = Be1
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to transform its coe¢ cient matrix into upper trapezoidal form.
This procedure can fail because of division by an interval contain-

ing zero. If so, we abandon the procedure. The main optimization
algorithm either reduces the size of the box xI or splits it into sub-
boxes. The current procedure might then succeed when applied to
one or more of the resulting subboxes.

If the elimination procedure is successful, it produces an equation
that we write in partitioned form as�

RI

0

�
w =

�
bI1
bI2

�
(13.6.3)

where RI is a square upper triangular matrix of order m + r + 1.
The vectors bI1 and bI2 have m+ r+ 1 and n�m� r components,
respectively. The zero block in the new coe¢ cient matrix has n �
m� r rows and m+ r + 1 columns. It is absent if m+ r = n.

Consider the case m+ r < n. From (13.6.3)

RIw = bI1 (13.6.4a)

0 = bI2: (13.6.4b)

If 0 =2 bI2, then (13.6.4b) is inconsistent. This implies that there is
no solution to the John conditions for any x 2 xI . Therefore, we
stop this procedure and delete xI .

If 0 2 bI2, there might be a solution for some x 2 xI . If so,
then bI2 = 0 for this point and we need only consider (13.6.4a) to
compute bounds on the corresponding Lagrange multipliers. This
equation can be solved by back substitution for interval bounds on
w. Thus, we obtain a box uI bounding u and a box vI bounding v.

The John conditions include the conditions ui � 0 for i = 0; � � � ;m.
Denote the components of uI by Ui = [ui; ui]: If ui < 0 for some
i = 0; � � � ;m, then (13.2.1d) is violated; and there is no solution of
the John conditions for any x 2 xI . Therefore, we delete xI .

Bounds on the Lagrange multipliers can sometimes be used to
simplify the John conditions (13.2.1b). Suppose that, for some box
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xI ; we compute an interval vector uI bounding u. Suppose that ui >
0 for some i = 1; � � � ;m: Then ui > 0 for any solution in xI ; and the
complementary slackness condition uipi(x) = 0 (see (13.2.1b)) can
be replaced by the simpler equation pi(x) = 0 for any box contained
in xI .

13.7 FIRST NUMERICAL EXAMPLE

In this section, we give a numerical example illustrating the ideas of
Section 13.6. Consider the problem

Minimize f(x) = x1 (13.7.1)

subject to p1(x) = x21 + x
2
2 � 1 � 0;

p2(x) = x
2
1 � x2 � 0:

The solution is at

x�1 = �
 
51=2 � 1
2

!1=2
+ �0:786;

x�2 =
51=2 � 1
2

+ 0:618:

Since there are no equality constraints, our normalization for the
Lagrange multipliers is

u0 + u1 + u2 = 1: (13.7.2)

The solution values for the Lagrange multipliers are

u�0 =
2x�1

2x�1 � 1
+ 0:611;

u�1 =
1

(1� 2x�1)[1 + 2(x�1)2]
+ 0:174;

u�2 = 1� u�0 � u�1 + 0:215:
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In this example, we use the normalization condition (13.7.2) to ex-
plicitly eliminate u0. the John conditions then become

1� u1 � u2 + 2x1(u1 + u2) = 0;

2x2u1 � u2 = 0; (13.7.3)

u1p1(x) = 0;

u2p2(x) = 0:

Consider the box xI with components X1 = [�0:8;�0:7] and
X2 = [0:6; 0:7] that contains the solution. In the absence of infor-
mation about the Lagrange multipliers, we guess they are all equal.
That is, we guess u0 = u1 = u2 = 1=3: One step of the interval
Newton method applied to equations (13.7.3) yields the bounding
intervals (recorded to only three digits)

U1 = [0:138; 0:201]; U2 = [0:179; 0:240]

for the Lagrange multipliers and the improved bounds

X 0
1 = [�0:799;�0:753]; X 0

2 = [0:600; 0:659]

for the components of the solution point.
Since X 0

1 � X1 and X 0
2 � X2; we have proved that a solution

exists in the new box X 0
1. See Proposition 11.15.5. To invoke this

proposition, we implicitly assume that the initial bounding interval
on each Lagrange multiplier is [0;1]:

In practice, we use other subroutines (see Chapter 14) to improve
bounds on the solution point and on the Lagrange multipliers. We
do not simply iterate the interval Newton method. However, if we
do continue iterating, three more steps bound the components of x�

and of u� to an accuracy of 10 digits past the decimal.
If a better approximation for u� is available, faster convergence

occurs. See Hansen and Walster (1990a).
This example shows how, given a box xI , we can not only improve

the bounds on a solution point in xI but also compute bounds on the
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Lagrange multipliers for any solution to the optimization problem
in xI : We need only very crude approximations for the Lagrange
multipliers.

The method of Section 13.6 does not require an approximation for
the Lagrange multipliers. Using the same initial box xI and solving
(13.6.2) by Gaussian elimination as described in Section 13.6, we
obtain

U1 = [0:160; 0:190]; U2 = [0:209; 0:244]:

No new bounds on the solution point are obtained by this procedure.
Therefore, we cannot improve the bounds on uI by iterating.

Next, consider the box xI with components X1 = [�0:9;�0:8]
and X2 = [0:5; 0:6]: This box does not contain a solution. Using the
good approximations u1 = 0:174 and u2 = 0:215 (and, implicitly,
u0 = 0:611); one interval Newton step yields a solution box disjoint
from xI . This proves that no solution of the optimization problem
(13.7.1) exists in xI .

We now consider a �nal case for this example. This time, we do
not eliminate u0 using the normalization condition. Consider the box
xI with components X1 = [�0:7;�0:6] and X2 = [0:7; 0:8]: This box
does not contain a solution of (13.7.1). Evaluating p2 over the box,
we obtain p2(xI) = [�0:44;�0:21]: Since p2(xI) < 0; the constraint
p2 � 0 is not active for any point in xI . However, 0 2 p1(x

I):

Dropping the inactive constraint, equation (13.6.2) becomes24 1 1
1 [�1:4;�1:2]
0 [1:4; 1:6]

35� u0
u1

�
=

24 10
0

35 :
Let us omit preconditioning. Using interval Gaussian elimination

to transform this coe¢ cient matrix into upper trapezoidal form, we
obtain24 1 1

0 [�2:4;�2:2]
0 0

35� u0
u1

�
=

24 1
1

[�0:728;�0:577]

35 :



GLOBAL OPTIMIZATION 357

The third component of the right member does not contain zero.
This proves that no solution of the optimization problem (13.7.1)
exists in xI :

13.8 SECOND NUMERICAL EXAMPLE

For a second example, we replace the inequality constraint p2(x) � 0
in problem (13.7.1) by an equality constraint using the same func-
tion. The problem becomes

Minimize f(x) = x1

subject to p(x) = x21 + x
2
2 � 1 � 0;

q(x) = x21 � x2 = 0:

We use the linear normalization (13.2.1f) for the Lagrange multipli-
ers.

The solution is

x�1 = �(x�2)1=2 + �0:786; x�2 =
51=2 � 1
2

+ 0:618

and the Lagrange multipliers for the solution are

u�0 =
2x�1

2x�1 � 1
+ 0:611;

u�1 =
1

(1� 2x�1)[1 + 2x�2]
+ 0:174;

v�1 = 2x
�
2u
�
1 + 0:215:

Equation (13.5.1), which expresses (part of) the John conditions,
becomes

�(t) =

266664
u0 + u1 + Ev1 � 1
u0 + 2u1x1 + 2v1x1
2u1x2 � v1
u1(x

2
1 + x

2
2 � 1)

x21 � x2

377775 = 0
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where t = (x1; x2; u0; u1; v1)T :
Let the box xI have components

X1 = [�0:8;�0:7]; X2 = [0:6; 0:7]:

Approximate the Lagrange multipliers by u0 = u1 = v1 = 1=3:

Linearizing �(t) as in (13.5.3), and solving by interval Gaussian
elimination, we obtain the interval vector

tI
0
=

266664
[�0:789;�0:783]
[0:611; 0:622]
[0:611; 0:627]
[0:142; 0:200]
[0:148; 0:226]

377775
containing the vector t for any solution with x� 2 xI . The �rst
two components of tI 0 are improved bounds for the solution point
x�. The last three components of tI 0 are bounds for the Lagrange
multipliers.

Since the last component of tI 0 bounds v1, we now know that
v1 > 0 (for any solution with x� 2 xI). Hence, we can replace E by
1 in the �rst component of �(t) for any subsequent iterations using
the new box (because it is contained in xI).

In this example, we started with bounds X1 and X2 and approx-
imations for the Lagrange multipliers. Using (13.5.1), we computed
improved bounds on x� while producing bounds on the Lagrange
multipliers. Iterating the procedure can produce sharper bounds on
all these quantities.

Next, we consider use of the method described in Section 13.6 for
the same problem using the same box xI . Now, we do not need the
approximations for the Lagrange multipliers. For this problem, the
coe¢ cient matrix A(xI) in equation (13.6.2) is square and (13.6.2)
becomes24 1 1 E

1 2X1 2X1
0 2X2 �1

35w =
24 10
0

35 :
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Substituting X1 = [�0:8;�0:7] and X2 = [0:6; 0:7] into this equa-
tion and solving by Gaussian elimination (without preconditioning),
we obtain

U0 = [0:582; 0:618];

U1 = [0:159; 0:190];

V1 = [0:208; 0:245]:

We have computed bounds on the Lagrange multipliers for any
solution to the optimization problem for which x� 2 xI . We can-
not iterate this step since the procedure does not provide improved
bounds on x�:

13.9 USING CONSISTENCY

Hull consistency and box consistency can be applied to the John
conditions. To do so, we need bounds on the Lagrange multipliers.
We have discussed how bounds can be computed.

However, we do not apply consistency methods to the John condi-
tions. In our optimization algorithms, we apply consistency methods
to each constraint individually. See the algorithms in Sections 14.8
and 15.12. Little is gained by also applying them to the equations
expressing the John conditions.
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Chapter 14

INEQUALITY
CONSTRAINED
OPTIMIZATION

14.1 INTRODUCTION

In Chapter 13 we dealt primarily with the John conditions and the
Lagrange multipliers that are introduced to provide conditions for a
solution. In Chapters 14 and 15, we discuss procedures for solving
constrained optimization problems.

For pedagogical reasons, we consider inequality and equality con-
strained problems separately. In this chapter, we discuss the opti-
mization problem in which only inequality constraints are present.
In the next chapter, we discuss the problem in which only equality
constraints occur.

By separating the cases, we hope to make clear which aspects
of the constrained problem are peculiar to the particular kind of
constraints. There is no di¢ culty in combining the algorithms for
the two cases into a single algorithm for problems in which both
kinds of constraints occur. We do so in Chapter 16.

Suppose that a given problem has inequality constraints but no
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equality constraints. Then it might be possible to show that a given
box is certainly strictly feasible. If so, we know that any minimum
in the box is a stationary point of the objective function. See Section
14.5. Thus, we can search for a minimum in of the box using the
algorithm for unconstrained optimization given in Chapter 12. This
algorithm uses e¤ective procedures that are generally not valid for
a constrained problem. This is one reason for separately discussing
equality and inequality constrained problems. These procedures are
not available for a problem having equality constraints because the
feasible region has no interior in which a box might be certainly
feasible.

When there are inequality constraints only, the optimization prob-
lem (13.1.1) becomes

Minimize f(x) (14.1.1)

subject to pi(x) � 0 (i = 1; � � � ;m) :

We assume that f is twice continuously di¤erentiable and that
pi (i = 1; � � � ;m) is continuously di¤erentiable. For cases in which
these conditions do not hold, see Section 14.12.

The �rst interval algorithm for this problem was given by Hansen
and Sengupta (1980). Our present approach is similar; and we use
some of the procedures from that paper. However, the algorithm we
give in Section 14.8 di¤ers in various ways.

We seek the solution to (14.1.1) in an initial box xI(0): If any
constraint prescribed in the problem statement has the form xi � ai
or xi � bi (i = 1; � � � ;m), we use it to determine the appropriate
endpoint of the i-th component of xI(0). We call such a constraint a
prescribed box constraint.

If the prescribed box constraints do not �x all 2n sides of a box,
the user of our algorithm must choose the remaining sides. Alter-
natively, default values can be used. An upper endpoint of a box
component can be chosen to be the largest positive number repre-
sentable in the number system of the computer. A lower endpoint

can be the smallest such negative number. Any sides of xI(0) that
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are not prescribed box constraints are called unprescribed box con-
straints.

We assume the unprescribed box constraints are chosen so that

xI(0) contains the global solution. Otherwise, the global solution is
not found. As we explain later in this section, if the global solution

is outside xI(0), we might not even �nd the best solution in xI(0).

Suppose xI(0) does not contain the global minimum but contains
at least one local minimum. Then our algorithm �nds either the

smallest of these local minima or else a point in xI(0) where f is
strictly smaller than the smallest of these local minima.

To ensure that the best solution in xI(0) is found in all cases, the
unprescribed constraints must be treated as if they are prescribed.
We do not do so in our algorithm. Instead, we rely on the user to

specify xI(0) to be su¢ ciently large to contain the global solution.
Our philosophy is that if we do not �nd the global solution, we might
as well be satis�ed with a solution that can be slightly suboptimal

in xI(0) as well.
A user who wants the solution that is global in xI(0) can simply

specify all sides of xI(0) as prescribed box constraints. However, this
causes introduction of an additional Lagrange multiplier in the John
conditions for each constraint that is changed from unprescribed to
prescribed. Therefore, the dimension of the problem is increased;
and more computing is generally required to obtain the solution.
See Section 14.2 or 14.8.

We now explain why the solution produced by our algorithm

might not be the best one in xI(0) if the global solution is not in

xI(0).
We introduced the John conditions in Section 13.2 and we spe-

cialize them for the inequality constrained problem in Section 14.2.

In our algorithm, we delete subboxes of xI(0) that we prove cannot
contain any point satisfying the John conditions.

Suppose the global solution in xI(0) occurs on an unprescribed
box constraint. The John conditions are not satis�ed at this point



364CHAPTER 14. INEQUALITY CONSTRAINEDOPTIMIZATION

unless f(x) is stationary there. Therefore, our algorithm is likely to
delete the point. This might occur when a Newton method is applied
to solve the John conditions. The point might also be deleted by the
procedure described in Section 12.4 that deletes points where the
gradient of the objective function is not zero.

Figure 14.1.1 is a simple illustration of the situation. In the �gure
there is a prescribed inequality constraint �6 � x, the upper bound
of the starting interval is 5, and this is an unprescribed constraint.
Values of x less than the sampled value can be deleted because f
is greater than at the sampled value. Values of x greater than the
sampled value can be deleted because none is a stationary point.
The end result is that the entire starting box can be deleted. The
sampled value is accepted as the minimum. To obtain the global
minimum, either the constraint x � 5 must be prescribed, or the
upper bound of the interval X must be increased to a point where
the slope of f is nonnegative.

In Section 12.5, we describe how to compute approximations for

the global solution by sampling values of f at points in xI(0): In
Section 14.3, we describe a similar sampling procedure for the in-

equality constrained case. If the global solution in xI(0) is deleted
as just described, the best result from sampling is available as an
approximate solution. This value can be less than the value of the

objective function at any stationary point in xI(0), but it might not
be the global minimum.

14.2 THE JOHN CONDITIONS

For the inequality constrained optimization problem, we normalize
the Lagrange multipliers using the linear relation

u0 + � � �+ um = 1: (14.2.1)
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See Sections 13.2 and 13.3. Therefore, the function given by (13.5.1),
which expresses (part of) the John conditions, becomes

�(t) =

2666664
u0 + � � �+ um � 1

u0rf(x) + u1rp1(x) + � � �+ umrpm(x)
u1p1(x)

...
umpm(x)

3777775 : (14.2.2)

The remaining part of the John conditions not in (14.2.2) is that
the Lagrange multipliers are nonnegative. (See (13.2.1d).) There-
fore, the normalization equation (14.2.1) provides the bounds

0 � ui � 1 (i = 0; � � � ;m): (14.2.3)

These bounds are useful when solving the John conditions using the
form of the interval Newton method in which the linearized equations
are solved by the Gauss-Seidel method.

Suppose we solve the linearized John conditions by Gaussian
elimination or by the �hull method� of Section 5.8. Then we do
not need bounds on the Lagrange multipliers. However, we do need
estimates. We can begin by letting ui = 1=(m+1) for all i = 0; � � � ;m
so that (14.2.1) is satis�ed. A successful step of a Newton method
provides interval bounds on the Lagrange multipliers. For the next
Newton step, the centers of these intervals can serve as the needed
estimates.

In our algorithm, we do not iterate the Newton procedure to
convergence. One reason for this is that we do not want to spend
e¤ort to get good bounds on a local (nonglobal) solution of the op-
timization problem. To prevent this, we use other procedures that
we list in Section 14.8. Another reason is that other procedures for
improving the bounds on a solution require less computing e¤ort,
and thus take precedence.
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14.3 AN UPPER BOUND ON THE MINI-
MUM

In Section 12.5, we discussed how to obtain and use an upper bound
f on the globally minimum value f� of the objective function f . We
do the same thing for the constrained case. We can delete any point
x where f(x) > f. To compute f, we evaluate f at various certainly
feasible points obtained by the algorithm; and we set f equal to the
smallest upper bound found in this way.

When constraints are present, we must assure that each point
used to update f is feasible. We must assure this feasibility despite
the fact that rounding makes the correct value of a constraint func-
tion uncertain. We do this by requiring that the point is certainly
feasible as de�ned in Section 6.1.

Having computed an upper bound f, we use it to delete subboxes

of xI(0) in the same way described in Section 12.5. Points deleted
in this way can be feasible or infeasible. The inequality f(x) � f

can also be added to the John conditions as if it were an ordinary
constraint.

We try to reduce f at various stages of the algorithm. Whenever

the algorithm produces a new subbox of xI(0) (see Section 14.8), we
check to see if the center of the box is certainly feasible. If so, we
evaluate f at this point and update f.

In our algorithm for the unconstrained problem, when the new
box is generated, we use a real Newton method to search for a point
in the new box that enables us to reduce f. This is facilitated by hav-
ing a real inverse matrix to use in the Newton process. See Section
12.6.

In the constrained case, we do not have such an inverse. However,
it is possible to obtain one. A procedure in our algorithm solves the
John conditions in the linearized form (13.5.3). This procedure com-
putes an approximate inverse of the center Jc of the Jacobian J(t; tI)
de�ned by (13.5.2). See Section 5.6. For our search, we want to ap-
proximate the inverse of the leading principal submatrix of J(t; tI)
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of order n. This can be obtained when computing an approximate
inverse of Jc. The matrix Jc must be partitioned appropriately. We
do not use such a procedure, so we omit the details.

There is no guarantee that such a point generated by such an
interval method is feasible. Therefore, it does not seem fruitful to
do all the work required to apply a Newton method when the e¤ort
might be wasted. We have not tried to do so. Moreover, we want to
update f even when we are not going to try to solve the John con-
ditions, and thus have no reason to compute a Jacobian. Therefore,
we use a simpler procedure. We describe it in the next section.

14.4 A LINE SEARCH

Suppose our algorithm has generated a subbox xI of the initial box

xI(0): (See Section 14.8 to see how this might be done.) Let x denote
the center of xI . Under appropriate conditions (to be given), we
search along a half-line beginning at x for an approximate solution
point of the optimization problem (14.1.1).

If we have already found a certainly feasible point in xI(0), we
have a �nite upper bound f on the globally minimum value f�. (See
Section 14.3.) Otherwise, f = +1: We perform the line search to
try to reduce f only if f(x) < f: This decision is made regardless of
whether x is a certainly feasible point or not.

Consider the half-line extending in the negative gradient direction
from x. If x is certainly feasible, we search on the segment of this
half-line between x and the point, say x0, where the half-line crosses
the boundary of xI . If the gradient is not zero at x, then f decreases
(locally) in the direction of x0 from x. If we can �nd a certainly
feasible point, say y, on this line segment where f(y) < f(x); then
we can reduce f since we assumed f(x) < f and hence f(y) < f:

If x is not certainly feasible, then it is possible that no point on
the line segment joining x and x0 is certainly feasible. To enhance
the possibility of �nding a certainly feasible point in xI , we search
in a direction in which we know there exists at least one certainly
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feasible point. The point x at which we computed the current value
of f is such a point, and is the one at which f has the smallest
currently known feasible value. A user might have provided a �nite
upper bound f without knowing a point x where f(x) = f . If no
point x is known and x is not certainly feasible, we do not do a line
search.

We search in this direction even though the value of f at x is
larger than at x. We can take the positive view that we are not
searching from x toward larger values of f , but we are searching
from the point x toward the point x where we know f is smaller.
The search is restricted to the box xI even though the point x need
not be in xI .

Certain conditions must be met before we do the line search.
Given a box xI , we determine its center x and compute f I(x). Be-
cause of rounding, we obtain an interval [f I(x); f I(x)]: If f I(x) < f,
we do the line search. Otherwise, we do not.

Also, if x in not certainly feasible and f = +1, we do not do the
search. The condition f = +1 indicates that no certainly feasible
point has yet been found. Therefore, we do not know a preferred
direction in which to search.

The point x need only be an approximation for the center of xI .
Therefore, it can be computed using rounded real arithmetic.

We now list the steps of such a line search. Unless otherwise
speci�ed by branching, the steps are done in the order given. The
initialization step contains the tests to decide if the procedure is to
be used or not.

In the procedure, y always denotes the certainly feasible point
where f takes the smallest value yet found. We do not use interval
arithmetic in the algorithm except in step 11 and when evaluating
the constraints to decide if a point is certainly feasible.

0. Initialize:

(a) If f(x) � f terminate.
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(b) If x is not certainly feasible and no certainly feasible point
is yet known, terminate.

(c) Set n = 0:

1. If x is certainly feasible, go to Step 3.

2. If a feasible point x is known where f(x) = f < +1, set y = x
and y0 = x: If no such point x is known, go to Step 12. Note
that x is the point where f(x) = f:

3. Determine the positive constant c such that x0 = x� cg(x) is
on the boundary of xI where g is the gradient of f: That is,

c = min
1�i�n

w(Xi)
2jgi(x)j :

4. Set y = x and y0 = x0: If f(x0) � f(x); go to Step 6.

5. If x0 is certainly feasible, replace y by x0 and y0 by x.

6. Compute y00 = 1
2(y + y

0): Replace n by n+ 1:

7. If f(y00) � maxff(y); f(y0)g; go to Step 11.

8. If f(y00) � f(y); replace y0 by y00 and go to Step 10.

9. If y00 is certainly feasible, replace y0 by y and then replace y
by y00:

10. If n < 4, go to Step 6.

11. Evaluate f(y) in interval arithmetic getting [f I(y); f I(y)]: Re-

place f by minff; f I(y)g:

12. Terminate.

Note that since the center x of xI is computed only approxi-
mately, it might be necessary to adjust x0 in Step 3 so that x0 2 xI :
Actually, all that is necessary is that x0 be in the initial box in which
the optimization algorithm is solved.
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To do this line search, the constraint functions are evaluated up
to �ve times. See Steps 5 and 9. If there are a large number of
constraints, this number can be reduced to save computation. This
can be done by reducing the bound on n in Step 10. If there are few
constraints, more iterations can be used to try to compute a better
bound on f. The procedure can also be modi�ed so the number of
iterations depends on progress in reducing f:

Note that a user might know an upper bound f < +1 on the
global minimum, but might not know a point x where f takes this
value. Also, a procedure in Chapter 16 uses this search algorithm
when f < +1 but x is not known. In this case, a search cannot be
made in the direction of x. See Step 2 of the algorithm.

14.5 CERTAINLY STRICT FEASIBILITY

Consider a certainly strictly feasible (as de�ned in Section 6.1) sub-

box xI of the initial box xI(0). If a minimum of f occurs in xI , it
must occur at a stationary point of f . When solving the constrained
problem in xI , we can treat the problem as if it were unconstrained.
Therefore, we are able to use procedures from our algorithm for
the unconstrained problem that are otherwise not valid for the con-
strained case.

Our algorithm for inequality constrained problems is given in
Section 14.8. Suppose it generates a subbox xI of the initial box

xI(0): We evaluate pi(xI) for i = 1; � � � ;m and obtain the inter-
val [p

i
(xI); pi(x

I)]: If pi(x
I) < 0 for some value of i, then the i-th

constraint can be ignored when considering the box xI because the
constraint cannot be active. If pi(x

I) < 0, for all i = 1; � � � ;m, then
xI is certainly strictly feasible. That is, no constraint is active in xI .

In this case, we can apply two of the �eliminating procedures�
of Chapter 12. First, since the gradient g of f must be zero at any
solution in xI , we can use procedures designed to solve g = 0. These
procedures include hull consistency, box consistency, and the interval
Newton method.
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Second, we can use the convexity condition Hii(x) � 0 (i =
1; � � � ; n) where Hii is the i-th diagonal element of the Hessian of f .
This relation can be �solved�using hull consistency, box consistency,
and the method of Section 6.2.

For any optimization problem (constrained or not), we can delete
points x where f(x) > f: This can be done using hull consistency or
box consistency. When xI is certainly strictly feasible, we can use
the real Newton method of Section 12.6 to try to reduce f. This
procedure generally �nds a smaller value of f than the line search
described in Section 14.4. However, we use the real Newton method
only when we intend to apply an interval Newton method to solve
g = 0: Otherwise, we avoid generating the real Jacobian needed to
apply the real Newton Steps. Instead, we use the simpler line search
procedure of Section 14.4.

Note that when we evaluate pi(xI) for some i = 1; � � � ;m, and
�nd that pi(x

I) < 0, we identify a constraint (the i-th) that is with-
out question not active for any solution in xI . This is the converse
of what is often done in noninterval optimization procedures when
the attempt is made to identify active constraints. See, for example,
Burke (1990).

14.6 USING THE CONSTRAINTS

Our optimization algorithm uses the inequality constraints to delete
points that are not feasible. One way is to apply hull consistency to
each constraint separately. As noted previously, we can apply hull
consistency to an inequality pi(x) � 0 by writing it as the equality
pi(x) = [�1; 0]: We can also apply box consistency to the latter
form.

We also use linearized forms of the constraints that enables us to
apply them as a system rather than one at a time. This provides a
better procedure for eliminating parts of boxes that are su¢ ciently
small that linearization provides a good approximation to the con-
straint functions. This resembles application of an interval Newton
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method to solve a system of nonlinear equations. We discuss lin-
earization in the remainder of this section.

Assume that we want to linearize the constraints over xI and
�solve� them by the method of Chapter 6. Before doing so, sup-
pose we evaluate pi(xI) and obtain [pi(x

I); pi(x
I)] for i = 1; � � � ;m.

If p
i
(xI) > 0 for any i; then xI is certainly infeasible and can be

deleted. Therefore, we can safely assume that p
i
(xI) � 0. At the

other extreme, suppose pi(x
I) � 0: In this case, the constraint can-

not serve to delete any points of xI ; and we omit it from current
considerations. Therefore, we assume p

i
(xI) � 0 < pi(xI):

In Section 6.4, we de�ned

si = pi(x
I)=[pi(x

I)� p
i
(xI)] (i = 1; � � � ;m) : (14.6.1)

From the above discussion, we see that the i-th constraint is not
violated in xI if si � 0; and there is no feasible point in xI if si > 1:
For small values of si the i-th constraint is only �slightly violated�by
points in xI and is likely to delete only a small part of xI : Therefore,
to reduce e¤ort, we use the i-th constraint only if

si > 0:25 (14.6.2)

We linearize the constraints for which (14.6.2) is satis�ed as de-
scribed in Section 6.3. We then �solve�the set of linear constraints
over xI as described in Chapter 6. This process generally deletes all
or part of xI .

There is an additional constraint that can possibly be used. If
f < +1, we can also include the inequality f(x) � f � 0: This
inequality must hold for any point x that is a candidate for a global
solution point. We include this inequality in the set to be linearized
and solved as if it is just another constraint whenever

f(xI)� f
f(xI)� f(xI)

> 0:25: (14.6.3)

When we linearize the constraints over a box xI as described in
Section 6.3, the resulting coe¢ cient matrix is an interval matrix.
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Assume that xI contains a local (or global) solution of the minimiza-
tion problem (14.1.1). Assume, also that the inequality f (x)� f � 0
has been introduced as an explicit constraint. Then the coe¢ cient
matrix contains a real (noninterval) matrix whose rows are linearly
dependent.

The existence of such a singular real matrix is assured by the
John conditions. They specify (in part) that some linear combination
of the gradients of the active constraints at a solution is opposite
in direction to the gradient of the objective function. This linear
dependence causes no di¢ culty with our algorithm.

Earlier in this section we stated that we evaluate pi(xI) (i = 1; � � � ;m)
to determine which constraints to linearize according to the criterion
(14.6.2). Rather than simply evaluating pi(xI), we actually do some-
thing somewhat di¤erent.

Assume we have applied hull consistency to the system of con-
straints. When doing so, we solve each constraint for each variable:
Assume that the last time we used the i-th constraint, we solved
it for xj for some j = 1; � � � ;m. To do so, we write pi(x) � 0 as
a(x)g(xj)� h(x) = [�1; 0] and compute

X 0
j = g

�1f(h(xI) + [�1; 0])=a(xI)g

In so doing, we obtain a(xI) and h(xI): Denote X 00
j = Xj \X 0

j . The
function g is chosen to be simple. Therefore, we can easily evaluate
g(X 00

j ): One extra subtraction and one extra multiplication yields

a(xI)g(X 00
j )�h(xI). This is an adequate approximation to pi(xI) for

the purpose of determining si as de�ned in (14.6.1). Therefore, we
save the work of evaluating pi(xI) (i = 1; � � � ;m).

Suppose that hull consistency is applied to another constraint
after it was last applied to the i-th. If so, the box can change and the
computed value for pi(xI) is not for the �nal box. However, when
we cycle through the constraints and through the variables when
applying hull consistency, most of the change in the box occurs in
the early stages. Therefore, we expect the value of pi(xI) (computed
as described) to be a reasonable approximation for the value pi over
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the �nal box.
Note that if pi(xI) < 0, hull consistency obtains xI

00 = xI . There-
fore, when we evaluate a(xI)g(X 00

j )�h(xI), we obtain pi(xI) and learn
that pi(xI) < 0: This can be useful information. For example, see
Step 11 of the algorithm in Section 14.8.

In Section 11.9, we analytically precondition a system of nonlin-
ear equations. This is done to make the i-th preconditioned equa-
tion strongly dependent on the i-th variable. We then solve the i-th
preconditioned equation for the i-th variable using both hull consis-
tency and box consistency. We (sometimes) apply a similar process
when solving systems of nonlinear inequalities. We now describe this
process.

Assume we have linearized the system of constraints and ob-
tained a linear system AIx � bI : Let AI be composed of m rows
and n columns. We described in Section 6.3 how we can gener-
ate a preconditioning matrix BI by operating on the center Ac of
AI : The elements of B must be nonnegative to avoid reversing the
sense of any inequality. We can analytically precondition the system
p(x) � 0 by multiplying by B and then solve the system Bp(x) � 0
using consistency methods.

To determine B, we use Gaussian elimination to zero elements of
Ac in positions (i; j) with i 6= j for i = 1; � � � ;m and j = 1; � � � ; r0.
The number r0 cannot generally exceed m and might be less than
m� 1 because the elements of B must be nonnegative. If r0 < n=2,
we assume that Bp(x) is not su¢ ciently di¤erent from p(x) and we
therefore do not generate Bp(x) and do not apply the consistency
methods.

Assume r0 � n=2: Then we apply the consistency methods to
solve the i-th inequality of Bp(x) � 0 for xi for i = 1; � � � ; r0. When
determining B, we also generate r0 inequalities corresponding to the
�secondary pivot rows� (see Section 6.5). We also solve the i-th of
these inequalities from Bp(x) � 0 for the i-th variable.

A user might want to assure that all the e¤orts to delete points
which do not satisfy the constraints are su¢ ciently successful. To
assure this, we assume that the user speci�es a tolerance "p: The
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algorithm assures that pi(x) � "p (i = 1; � � � ;m) for all x in every
box remaining after the minimization algorithm terminates. If there
is no desire to assure this condition, the tolerance "p can be set to
1:

The procedure to linearize and solve the system of inequality
constraints involves a substantial amount of work. We now discuss
whether it is worth doing. Assume the constraints are functions of
n variables; and we linearize the vector p(x) � 0 of m constraints
over a box about a point x0 in the box. We obtain a linear system
of the form

p(x0) + J(y � x0) � 0

where the matrix J is m by n: We discussed the possible choices of
real versus interval arguments of J in Section 7.3. We discussed how
to solve such a linear system of inequalities with interval coe¢ cients
in Chapter 6.

In practice, each constraint usually depends on only a few of the
n variables. Therefore, J is sparse. If we perform elimination on the
linear system, we can only eliminate m variables. In the process we
expect ��ll-in�to make the �nal matrix dense. If so, each equation
of the �nal system involves all n�m of the remaining variables. To
�solve�them, we can apply hull consistency.

For the sake of argument, assume each constraint is a function
of s variables (although di¤erent constraints are functions of a dif-
ferent set of s variables). If n �m > s; we are less likely to obtain
information from a transformed linear inequality of n�m variables
than from an original nonlinear constraint of s variables. Therefore,
there is little point in linearizing and solving the original nonlinear
system when n�m � s:

Let us rede�ne s to be the average number of variables upon
which a given inequality constraint depends. To use the procedure,
we must linearize the system of constraints, compute and apply the
preconditioning matrix, do the elimination in the interval system,
and solve the transformed system. See Chapter 6. This is a substan-
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tial amount of work. Moreover, we might not be able to complete
the last phase of elimination in the interval system because, at some
stage, there might not be a positive multiplier to do an elimination
step. Therefore, we might end up with more than n �m variables
in each inequality after elimination.

Because of the work to apply the procedure, we do not use it
unless n�m is substantially less than s: We have arbitrarily chosen
a condition. We use the procedure only if

n�m � s=2: (14.6.4)

14.7 USING TAYLOR EXPANSIONS

To apply a step of a Newton method requires quite a lot of com-
puting. When solving the John conditions, the interval Jacobian
of �(t) (as given by (14.2.2)) can contain a singular real matrix
(i.e., be irregular). If so, the Newton step (using the Gauss-Seidel
method) tends to make little progress. We want to apply such a
Newton step only when the Jacobian is regular. In Section 11.11,
we described a linearization test (11.11.1) for deciding whether or
not to apply a Newton step in an unconstrained problem. A Newton
step is bypassed if the criterion indicates that the step is likely to be
unsuccessful.

We now repeat our discussion of criterion (11.11.1) and then dis-
cuss similar criteria for deciding whether to apply other procedures
that involve linearization.

Assume that the Newton method has previously been applied to
the equation g(x) = 0 where g(x) is the gradient of the objective
function. Let wgI denote the width of the smallest box for which
the preconditioned Jacobian (computed in the Newton method) has
been found to be irregular. Let wgR denote the width of the largest
box for which the preconditioned Jacobian was found to be regular.
(We have introduced a superscript g to indicate that the Newton
method was applied to the gradient of the objective function.) We
apply the Newton method to a given box xI if w(xI) � (wgI +w

g
R)=2:
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For the constrained case, we use the same criterion for deciding
whether to apply the Newton method to the John conditions. That
is, we use the size of boxes for which the preconditioned Jacobian
of the John conditions is regular or irregular. Now we use corre-
sponding parameters wJI and w

J
R de�ned in the same way as w

g
I and

wgR, respectively. Thus, we apply the Newton method to the John
conditions only if

w(xI) � (wJI + wJR)=2: (14.7.1)

We want to use a similar criterion to decide whether to �solve�
the system of constraint inequalities by linearizing them as in Chap-
ter 6.Now, however, we do not have a square coe¢ cient matrix to
test for regularity.

We solve the constraints over a given box only if we expect to
make progress in reducing the box. A linearized version of a con-
straint function over a given box is generally a good approximation
for the function only if the box is �small�. Therefore linearizing and
solving the constraints tends to be useful only if the box is �small�.
Instead of using regularity of a matrix as a criterion for linearizing,
we linearize the constraints over a given box only if progress was
previously made when doing so for a box of similar size.

Suppose we solve the constraints over a box xI . In so doing,
the box might or might not be su¢ ciently reduced as de�ned using
(11.7.4). Let wpS denote the largest width of any su¢ ciently-reduced
box. Let wpI denote the smallest width of any box that was not
su¢ ciently reduced. In Chapter 11, we described how we linearize
a system of nonlinear constraints and use Gaussian elimination to
solve the derived linear system. (See also Section 14.5.) We use this
method to solve the inequality constraints only if the width of the
current box is � (wpS + w

p
I )=2:

Initially, we set wpS = 0 and wpI = w(xI(0)) where xI(0) is the
initial box in which the optimization problem is solved. After ap-
plying the procedure, we replace wpS by max

�
wpS ;w(x

I)
�
if xI was

su¢ ciently reduced (as de�ned using (11.7.4) by the procedure. If
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the procedure has not su¢ ciently reduced xI , we replace wpI by

min
�
wpI ;w(x

I)
�
:

We can solve the inequality f(x) � f by linearizing and using
the method of Section 6.2. We sometimes do so by including this
inequality in the set of constraint inequalities as described in Section
14.6. However, we sometimes solve this inequality by itself using
linearization. In this case, we decide whether to do so in the same
way just described for the system of constraints. Now, however,

we use separate width parameters wfS and w
f
I to make our decision

regarding the inequality f(x) � f:
The tests we have described in this section all serve to decide

whether to linearize particular nonlinear functions. Thus, we call
them �linearization tests�. Note that there are four of them. They
concern linearization of the gradient of the objective function, of the
John conditions, of the inequality constraints, and of the inequality
f(x) � f:

We use another similar test to decide whether to expand the
relation f(x) � f through second order (quadratic) terms. For this

test, we use parameters wSS and w
S
I corresponding to w

f
S and w

f
I ,

respectively.

14.8 THE ALGORITHM STEPS

In this section, we list the steps of our algorithm for computing the
global solution to the inequality constrained problem (14.1.1).

Generally, we seek a solution in a single box speci�ed by the
user. However, any number of boxes can by speci�ed. The boxes
can be disjoint or overlap. However, if they overlap, a minimum at
a point that is common to more than one box is separately found as
a solution in each box containing it. In this case, computing e¤ort
is wasted. If the user does not specify an initial box or boxes, we
use a default box as described in Section 12.3. The algorithm �nds
the global minimum in the set of points formed by the set of boxes.
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We assume these initial boxes are placed in a list L1 of boxes to be
processed.

Suppose the user of our algorithm knows a point x that is guar-
anteed to be feasible. If so, we use this point to compute an initial
upper bound f on the global minimum f�. If x cannot be represented
exactly on the computer, we input a representable interval vector xI

containing x. We evaluate f(xI) and obtain [f(xI); f(xI)]: Even if
rounding and/or dependence are such that xI cannot be numerically
proven to be certainly feasible, we rely upon the user and assume
that xI contains a feasible point. Therefore, we set f = f(xI):

Also the user might know an upper bound f on f� even though
he might not know where (or even if) f takes on such a value. If
so, we set f equal to this known bound. If the known bound is not
representable on the computer, we round the value up to a larger
value that is representable.

If no feasible point is known and no upper bound on f� is known,
we set f = +1.

To initialize our algorithm, we require that the user specify a
box size tolerance "X , a function width tolerance "f , a tolerance "p
bounding values of the inequality constraints (see Section 14.6), and
the initial box(es). The initial box(es) are placed in the list L1:

The algorithm initializes the parameters needed to perform the
linearization tests and the parameters to decide whether to expand
the relation f(x) � f through second order terms. (See Section 14.7.)
It sets wgR, w

J
R, w

p
S , w

f
S ; and w

S
S to zero and sets w

g
I , w

J
I , w

p
I , w

f
I ; and

wSI equal to w(x
I(0)): It also sets wH = 0 where wH is the width of

the largest box xI generated by the algorithm such that Hii(xI) � 0
for all i = 1; � � � ; n. See Section 12.7. It also sets a �ag F equal to
0. (The signi�cance of the �ag is discussed in Section 14.10.) In the
algorithm, the current box is always denoted by xI even though it
changes from step to step.

The steps of the algorithm are to be performed in the order given
except as indicated by branching.
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1. For each box in the list L1, apply hull consistency to each of
the inequality constraints as described in Section 10.5.

2. If f < +1, then for each box in L1, apply hull consistency to
the inequality f � f:

3. If L1 is empty, go to Step 45. Otherwise, select (for the next
box xI to be processed by the algorithm) the box in L1 for
which f(xI) is smallest. For later reference, denote this box by

xI(1). Delete xI from L1.

4. If xI is certainly feasible, go to 13

5. Skip this step if xI has not changed since Step 1. Apply
hull consistency over xI to each constraint inequality. If xI

is deleted, go to Step 3.

6. Compute an approximation x for the center m(xI) of xI and
an approximation f(x) for the value of f at x. If f(x) > f; go
to Step 8.

7. Do the constrained line search described in Section 14.4 to try
to reduce f: If f is not reduced, go to Step 10.

8. Apply hull consistency to the inequality f(x) � f. If xI is
deleted, go to Step 3.

9. If �ag F = 0; go to Step 9a. If �ag F = 1; go to Step 9b.

(a) If w(xI) � "X ; and w[f(xI)] � "f , put xI in list L2 and
go to Step 10. Otherwise, go to Step 9c

(b) If pi(xI) � "p for all i = 1; � � � ;m, put xI in list L2 and
go to Step 10. Otherwise, go to Step 9c.

(c) If xI is su¢ ciently reduced (as de�ned using (11.7.4)) rel-

ative to the box xI(1) de�ned in Step 3, put xI in list L1
and go to Step 3.
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10. Apply box consistency (as described in Section 10.2) to each
constraint inequality. If f < +1, also apply box consistency
to the inequality f(x) � f. If xI is deleted, go to Step 3.

11. If pi(x
I) � 0 for any i = 1; � � � ;m (i.e., if xI is not certainly

strictly feasible), go to Step 28.

12. Apply hull consistency to gi = 0 for i = 1; � � � ; n where g is
the gradient of the objective function f . See Section 12.4. If
the result for any i = 1; � � � ; n is empty, go to Step 3.

13. Evaluate f at the center of xI : That is F (m (xI)) : Use the
result to update f:

14. If f < +1, apply hull consistency to the relation f (x) � f: If
the result is empty, go to Step 3.

15. If w(xI) � wH , go to Step 20. Otherwise, apply hull consis-
tency to the relation Hii(x) � 0 for i = 1; � � � ; n where Hii is
an element of the Hessian of f . See Section 12.7. If the result
is empty, go to Step 3.

16. Repeat Step 9.

17. Apply box consistency to gi = 0 for i = 1; � � � ; n: If the result
is empty, go to Step 3.

18. Apply box consistency to Hii(x) � 0 for i = 1; � � � ; n. If the
result is empty, go to Step 3.

19. Repeat Step 9.

20. If w(xI) > (wgI + w
g
R)=2 (see Section 14.7), go to Step 28.

21. Generate the interval Jacobian J(x;xI) of the gradient g and
compute the approximate inverse B of the center of J(x;xI).
See Section 5.6. Compute M (x;xI) = BJ (x;xI) and rI (x) =
�Bf I (x) :Update wgI and w

g
R. (See Section 14.7.) Apply one
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step of an interval Newton method to solve g = 0. If the result
is empty, go to Step 3.

22. Repeat Step 9.

23. The user might wish to bypass use of analytic preconditioning
(see Section 11.9). If so, go to Step 27. To apply analytic
preconditioning, use the matrix B found in Step 21 to obtain
Bg in analytic form. Apply hull consistency to solve the i-th
equation of Bg = 0 for the i-th variable xi for i = 1; � � � ; n. If
the result is empty, go to Step 3.

24. Repeat Step 9.

25. Use box consistency to solve the i-th equation of Bg (as ob-
tained in Step 23). for the i-th variable for i = 1; � � � ; n. If the
result is empty, go to Step 3.

26. Repeat Step 9.

27. Use the matrix B found in Step 21 in the search method of
Section 12.6 to try to reduce the upper bound f:

28. Compute an approximation x for the center m(xI) of xI and
an approximate value of f(x): If f(x) > f, go to Step 30.

29. Skip this step and go to Step 36 if xI is the same box for which
a line search was done in Step 7. Otherwise, do the line search
described in Section 14.4 to try to reduce f: If f is not reduced,
go to Step 36.

30. If w(xI) > (wfI + w
f
S)=2 (see Section 14.7), go to Step 36.

31. Use the linear method of Section 12.5.3 to try to reduce xI using

the inequality f(x) � f. Update wfI and w
f
S : If x

I is deleted, go
to Step 3. Otherwise, if this application of the linear method
does not su¢ ciently reduce (as de�ned using (11.7.4)) the box
considered in Step 30, go to Step 35.



GLOBAL OPTIMIZATION 383

32. Repeat Step 9.

33. If w(xI) > (wSI + w
S
S)=2 (see Section 14.7.) go to Step 36.

34. Use the quadratic method of Section 12.5.4, to try to reduce xI

using the inequality f(x) � f. Update wSI and wSS (see Section
14.7.) If xI is deleted, go to Step 3.

35. Repeat Step 9.

36. If w(xI) > (wpI + w
p
S)=2 (see Section 14.7), go to Step 43.

37. If inequality (14.6.4) is not satis�ed, go to Step 43. Other-
wise, using the selection process of Section 14.6, choose the
constraints to be solved in linearized form by the method in
Chapter 6. Add to this set the inequality f(x) � f if (14.6.3)
is satis�ed. If no inequalities pass the selection tests, go to
Step 43. Otherwise, linearize the resulting set of inequalities
using the expansion given in Section 7.3. (See also Section 6.2).
Solve the resulting set of linear inequalities by the method of
Chapter 6. Update wpI and w

p
S : If the solution set is empty, go

to Step 3.

38. Repeat Step 9.

39. In Step 37, the procedure of Chapter 6 generates a precondi-
tioning matrix B: Also, in Step 37, the procedure in Section
14.6 determines an integer r0. If r0 � n=2, use B to analytically
precondition the set of inequalities that were selected for use in
Step 37. Use hull consistency to solve each of the 2r0 inequal-
ities described in Section 14.6. In so doing, each inequality is
solved for the same (single) variable for which the linearized
inequality was solved in Step 37.

40. Repeat Step 9.

41. Use box consistency to solve the same inequalities for the same
variables as in Step 39.
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42. Repeat Step 9.

43. If w(xI) > (wJI + w
J
R)=2 go to Step 46.

44. Modify the John conditions by omitting those constraints pi
for which pi(xI) < 0 (since they are not active in xI). Apply
one pass of the interval Newton method of Section 11.14 to the
(modi�ed) John conditions. Update wJI and w

J
R: If the result

is empty, go to Step 3.

45. Repeat Step 9.

46. In various previous steps, gaps might have been generated in
components of xI : If so, merge any of these gaps that overlap.
Use the procedure described in Section 11.8 to split xI . Note
that the vector of functions use in de�ning the Jacobian in
Section 11.8 is now the gradient. Note also that when the
Newton method has been used, the Jacobian elements needed
in (11.8.1), will have been determined in Step 21 or Step 44.

Put the generated subboxes in L1 and go to Step 3.

47. If �ag F = 1; go to Step 51. Otherwise, set F = 1.

48. For each box xI in list L2, do the following: If pi(xI) � "p for
any i = 1; � � � ;m, put xI in list L1:

49. If any box was put in list L1 in Step 48, go to Step 3.

50. If f < +1, apply hull consistency to f(x) � f for each box in
the list L2. Denote those that remain by xI

(1),...,xI(s) where s
is the number of boxes remaining. Determine

F = min
1�i�s

f(xI
(i)
) and F = max

1�i�s
f(xI

(i)
):

51. Terminate.
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14.9 RESULTS FROM THE ALGORITHM

After termination, w(xI) < "X and w[f(xI)] < "f for each remaining

box xI . Also, F � f(x) � F for every point x in all remaining boxes.
If, after termination, f < +1, we know there is a feasible point in
the initial box(es). Therefore, we know that

F � f� � minff; Fg:

If, after termination, f = +1, then we have not found a certainly
feasible point. There might or might not be one in xI(0). However,

we know that if a feasible point does exist in xI(0), then

F � f� � F :

Suppose a feasible point exists. If our algorithm fails to �nd a
certainly feasible point, then it does not produce an upper bound
f and cannot use the relation f � f: In particular, it cannot delete
local minima where f(x) > f�. In this case, all local minima are
contained in the output boxes.

If all of the initial box xI(0) is deleted by our algorithm, then

we have proved that every point in xI(0) is infeasible. Suppose that

every point in xI(0) is infeasible. Our algorithm might prove this to

be the case. However, we delete a subbox of xI(0) only if it is cer-
tainly infeasible. Rounding errors and/or dependence can prevent us
from proving certain infeasibility of an infeasible subbox. Increased
wordlength can reduce rounding errors and decreasing "X can reduce
the e¤ect of dependence by causing subboxes to eventually become
smaller. However, neither e¤ect can be removed.

Suppose f = +1 after termination and xI(0) has not been entirely
eliminated. It might still be possible either to compute f < +1 or to

delete all of xI(0) by reducing the values of "X and "f and continuing
to apply the algorithm. To try to do so, we need only to reduce
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these tolerances and move the boxes from list L2 to list L1. We can
then restart the algorithm from the beginning with or without use
of increased precision.

A user might want a single feasible point ex such that
jjex� x�jj � "1 (14.9.1)

and/or

f(ex)� f� � "2 (14.9.2)

for some "1 and "2. Recall that x� is a (feasible) point such that
f(x�) = f� is the globally minimum value of the objective function
f . Our algorithm might or might not fully provide such a point. We
distinguish four cases.

Case 1. There is only one �nal box xI and x 2 xI and f < +1:
(Recall that x is the feasible point where the smallest upper
bound f = f(x) on f� was determined by the algorithm.)

Since x� is never deleted by the algorithm, it must be in the
single remaining box xI : We can choose ex = x: Then the stopping
criteria (see Step 9 of the algorithm) assure that

jjex� x�jj � "X and

f(ex)� f� � "f :

Case 2. There is only one �nal box xI and x =2 xI and f < +1:

In this case, we know that a feasible point (i.e., x) exists in the
initial box because f < +1. Therefore, the �nal box xI contains
a feasible point because f� has not been deleted. If we can �nd a
certainly feasible point in xI , it will serve as the desired point ex. We
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might be able to �nd such a point by using some search procedure.
If so, we have case 1. However, it might not be possible to �nd a
feasible point in xI . For example, the part of the feasible region
remaining in the �nal box when the procedure terminates might be
a single feasible point that cannot be certainly feasible.

An alternative is to accept a point ex as feasible if
pi(ex) � "p for all i = 1; � � � ;m (14.9.3)

for some "p > 0: We do not (and should not) use (14.9.3) to delete
points in the optimization algorithm. However, we can add a con-
vergence condition of this kind to the algorithm without altering the
correctness of the algorithm. The condition can be useful for the
present purpose of �nding a suitable point ex near x�. The conver-
gence condition that we can use is

pi(x
I) � "p for all i = 1; � � � ;m: (14.9.4)

We add this condition to the convergence conditions w(xI) < "X
and w[f(xI)] < "f in Step 9 of the algorithm in Section 14.8. When
determining ex; we assume that a �nal box is �feasible�if it satis�es
(14.9.4). However, if we can determine a suitable point ex that is
certainly feasible, we do so.

Note that rather than simply testing whether (14.9.4) is true,
we should apply hull consistency to the inequalities as discussed in
Section 10.10. This might reduce the box being tested whenever
Step 9 is used.

Case 3. There is more than one �nal box and f < +1:

In this case, x� can be anywhere in any �nal box If x is in a �nal
box, we can let ex = x. Then f(ex) � f� � 2"f : If x is not in a �nal
box, we can assure (14.9.4) holds and use the argument in Case 2.

Case 4. f = +1:
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In this case, we do not know if there is any feasible point in the
initial box in which the algorithm began its search. However, if we
assure that (14.9.4) is satis�ed and accept a point as feasible when
it is satis�ed, then any point in any �nal box is �feasible�and the
condition f(ex)�f� � "f is satis�ed for any point ex in any �nal box.
14.10 DISCUSSIONOFTHEALGORITHM

It is possible that, for a given problem, the feasible region does not
have an interior. In this case, the algorithm will probably not �nd a
certainly feasible point. As a result, the algorithm will not be able
to delete local minima. In this case, we can proceed as follows.

Let xI be a �nal �solution�box produced by the algorithm. Eval-
uate the constraints over xI :We will not �nd that pi(xI) > 0 for any
i = 1; � � � ;m because otherwise, the box would have been deleted
by the algorithm. If pi(xI) < 0 (i = 1; � � � ;m) the i-th constraint is
disregarded in what follows (while we are considering the box xI).
The remaining constraints probably pass through xI and the stop-
ping criteria assure that xI is small: Therefore, there is a reasonable
chance that the remaining constraints have a common point in xI .

We now try to prove that there is a point in xI satisfying the
remaining constraints written as equalities. A procedure for doing so
is given in Sections 15.4 through 15.6. If this procedure is successful,
it proves existence of a solution in a box xI 0 contained in xI . Now
f(xI 0) is an upper bound on the global minimum. If we do this process
for each of the boxes that remains after the optimization algorithm
terminates, we are likely to obtain an upper bound on the global
minimum in at least one of the �nal boxes.

The stopping criteria in Step 9 require that a box xI satisfy
w(xI) � "X , w (f(xI)) � "f , and pi(xI) � "p (i = 1; � � � ;m). It
would be possible to check that all three condition are satis�ed each
time Step 9 is used. However, if there are several (or many) inequal-
ity constraints, the �rst two conditions require less work to check
than the third. A box that satis�es the �rst two conditions might
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eventually be deleted using a procedure such as that in Section 14.3.
Therefore we do not use the third criterion until near the end of the
algorithm. The �ag F enables us to postpone use of the criterion.
Note that when F = 1; the �rst two conditions are satis�ed so it is
not necessary to check them in Step 9. Note that Steps 12 through 27
are essentially the same as corresponding steps in the algorithm for
unconstrained optimization in Section 12.14. This is because these
steps are applied to a box that is certainly feasible.

In our algorithm, we avoid using more complicated procedures
until the simpler ones no longer make su¢ cient progress in reducing
the current box. For example, we delay use of the John conditions
until all other procedures have been used.

We avoid using procedures that use Taylor expansions until we
have evidence that expanded forms provide su¢ ciently accurate ap-
proximations to functions. See steps 20, 30, 33, 36, and 43.

Inequality constraints are often simple relations of the form xi �
bi or xi � ai: Such constraints serve to determine the initial box xI(0).
Therefore, they are satis�ed throughout xI(0). Such constraints are
omitted when applying any procedure designed to eliminate infeasi-
ble points. See Steps 1, 5, 10, and 37.

In Step 7, we use a line search to try to reduce f. This involves
evaluating the gradient of f . We can avoid this evaluation by simply
checking if the midpoint x of the box is feasible and, if so, using f(x)
as a candidate value for f: However, it helps to have a �nite value of
f early, so the line search is worth doing when f = +1. Step 29 also
uses a line search. It is less important here because a �nite value of
f is likely to be computed in Step 7. If there are a large number of
constraints, then evaluating the gradient is not a dominant part of
the work to do the line search.

Experience has shown that e¢ ciency is enhanced if the subbox
xI to be processed is chosen to be the one for which f(xI) is smallest
among all candidate subboxes. This tends to cause a smaller value
of f to be computed sooner. Therefore, we return to Step 3 to choose
a new subbox whenever the current box has changed substantially.
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Suppose we �nd that pi(xI) � 0 for some value of i and some box
xI : Then pi(xI

0) � 0 for any xI 0 � xI : Therefore, we can record the
fact that pi(xI) � 0 so that we need not evaluate pi(xI 0):

It is possible that the procedures in Step 21, 23, 25 or 44 prove
the existence of a solution to the optimization problem. If so, the
user can be informed of this fact. Such a solution can be local or
global.

The splitting procedure called in Step 46 uses a measure of change
in the gradient of the objective function to determine how to split
a box. If the global minimum of f does not occur at a stationary
point of f , the change in the gradient is not directly signi�cant.
Nevertheless, it is a useful measure in splitting.

14.11 PEELING

The inequality constrained problem can be solved in a di¤erent way.
We can use peeling. To do so, we �rst solve an equality constrained
problem. Then we solve an inequality constrained problem in which
the solution must occur at a stationary point of the objective func-
tion. In this second problem, the gradient of f must be zero at a
solution and the Hessian must be positive semide�nite. This allows
us to use Steps 12 through 27 of the algorithm for any box regardless
of whether it is feasible or not. In e¤ect, we solve the problem as if
it is unconstrained; but we use the inequality constraints to delete
certainly infeasible points.

The term peeling was introduced in Kearfott (1992) and the pro-
cedure is discussed in Kearfott (1996). It is the same as a method
outlined by Moore (1966). The purpose is to simplify problems
in which the constraints are simple bound constraints of the form
xi � ai and xi � bi (i = 1; � � � ; n). An optimization problem is
solved on each face of the box formed by these constraints with the
edges remove. Other problems are solved on each edge with the
corners removed and for each corner of the box. Finally, an uncon-
strained problem is solved to �nd any solution in the interior of the
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box. Thus 3n simple problems in reduced dimensions are solved.
The smallest solution to all these problems is the desired solution to
the original problem.

This approach is e¢ cient only for problems of very small dimen-
sion. We now describe an alternative procedure that requires solv-
ing only two optimization problems. Also, we remove the condition
used by Moore and Kearfott that the constraints pi(x) � 0 be simple
bounds.

In the �rst of our two optimization problems, the solution occurs
in the interior of the feasible region. In this case, the solution occurs
at a stationary point of the objective function. This fact permits
application of powerful procedures that are not generally applicable
for a constrained problem. The solution to the second of the two
optimization problems occurs on the boundary of the feasible region.
This fact enables the algorithm to delete subboxes in the interior of
the feasible region and quickly narrow the region of search.

The solution to the original problem (14.1.1), is the smaller of
the solutions of the two problems that we introduce. Note that the
feasible region might not have an interior. In this case, the �rst
problem has no solution.

To �nd a problem whose solution is in the interior of the feasible
region, we can simply replace the inequality constraints in problem
(14.1.1) by strict inequalities. However, there is no need to do so
because it does not matter if a solution of the �rst problem occurs
on the boundary of the feasible region rather than in the interior.

The point is that the solution now occurs at a stationary point
of f(x). Therefore, the gradient g(x) of f(x) must be zero and the
Hessian H(x) must be positive semide�nite. These facts provide
powerful procedures for computing the desired minimum of f(x):
See Sections 12.4 and 12.7. Also, see Steps 12 through 25 of the
algorithm in Section 14.8. Note that these conditions on g(x) and
H(x) replace the more complicated John conditions.
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We can express the �rst optimization problem as

minimize f(x) (14.11.1)

subject to: the solution point x� is a stationary point of f(x) and

pi(x) � 0 (i = 1; � � � ;m) :

However, there is no need to express the stationarity condition as a
constraint; but it is convenient to do so.

We now derive the second new optimization problem. In an in-
equality constrained optimization problem, constraints pi (x) are im-
posed. These are called prescribed constraints. If they do not fully

de�ne the initial box xI(0), we implicitly add enough simple bound

constraints to de�ne xI(0):
De�ne the function

q(x) =

mY
i=1

pi(x):

where only prescribed constraints pi are included in q. Consider the
optimization problem

minimize f(x) (14.11.2)

subject to q(x) = 0:

The solution to this problem must occur where at least one of the
constraint functions is equal to zero. If the constraints are all simple
bound constraints, this solution occurs on the boundary of the fea-
sible region (which in this case is the initial box). The problem can
be solved by the algorithm given in Section 15.12.

Suppose that at least one prescribed constraint is not a simple
bound constraint. Then a minimum on one constraint might not
satisfy another constraint. Therefore, we formulate the problem as
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minimize f(x) (14.11.3)

subject to pi(x) � 0 (i = 1; � � � ;m) ;

q(x) = 0:

Let S denote the region satisfying all the prescribed inequality
constraints pi(x) � 0: This is the feasible region of the original prob-
lem (14.1.1). Adding the constraint q(x) = 0 prevents the solution
of (14.11.3) from occurring in the interior of S. Therefore, the region
of search is reduced more quickly for (14.11.3) than for (14.1.1).

The global minimum is the smaller of the solutions of (14.11.1)
and (14.11.3). We can solve for either of these values �rst. How-
ever, it is best to solve (14.11.1) �rst. The reason is as follows.
When solving either problem, the applied procedure can use an up-
per bound f on the global minimum found when solving the other
problem. See Section 12.5. As will be seen in Chapter 15, it is more
di¢ cult to compute a bound when the problem contains equality
constraints. Since (14.11.1) has no equality constraints, an upper
bound f is more easily computed. Consequently, we solve (14.11.1)
before solving (14.11.3).

Suppose that when solving problem (14.11.2) or (14.11.3), the
current box xI is such that pi(xI) < 0 for some value of i. Then we
can drop the factor pi(x) from the function q(x).

A precaution is taken when generating the John condition for
problem (14.11.2) or (14.11.3) to enhance the chance that the interval
Jacobian does not contain a singular matrix. The John conditions
for (14.11.2) are

rf(x) + vrq(x) = 0;

q(x) = 0

where v is a Lagrange multiplier. A column of the Jacobian of these
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equations generated by di¤erentiation with respect to v is�
rq
0

�
(14.11.4)

For simplicity, assume there are only two inequality constraints
so that q = p1p2. Then

rq = p1rp2 + p2rp1:

We noted above that, for a given box xI , a factor pi does not occur
in q if pi(xI) < 0 and the box is infeasible if pi(xI) > 0: Therefore 0 2
rq(xI) and the column of the Jacobian given by (14.11.4) contains
the zero vector. That is, the Jacobian is singular.

To avoid this, we can expand the John conditions in such a way
that rq is not evaluated over the entire box. We can do so by using
the sequential expansion of Section 7.3 and choosing the Lagrange
multiplier v to be the last variable in the sequence. As a result,
rq in (14.11.4) is still evaluated using interval arithmetic, but with
real (noninterval) arguments. This enhances the chance that the
resulting interval Jacobian does not contain a singular matrix.

This procedure is followed whenever q contains two or more fac-
tors

14.12 PILLOW FUNCTIONS

A recurring problem in interval analysis is that of bounding the range
of a scalar function f of a vector x = (x1; � � �xn)T over a box xI spec-
i�ed by ai � xi � bi (i = 1; � � � ; n). In particular, this problem arises
as a subproblem when solving systems of equations or in constrained
or unconstrained optimization. The problem is solved if we solve the
two inequality constrained problems

minimize f(x) (14.12.1)

subject to ai � xi � bi (i = 1; � � � ; n)
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and

maximize f(x) (14.12.2)

subject to ai � xi � bi (i = 1; � � � ; n) :

Frequently, we want only crude bounds on the range of f over
the box xI . Simply evaluating the function over the box provides
bounds. (This follows from the fundamental theorem of interval
analysis.) However, such bounds are often too far from sharp because
of dependence. Beginning with Moore (1966), methods have been
sought that are better than simple evaluation but less work than
obtaining sharp bounds. Various methods of this kind can be found
in Ratschek and Rokne (1984). Recently, methods using Bernstein
polynomials have been studied. For example, see Garlo¤, J. and
Smith, A. P. (2000).

In this section, we provide a method of the �crude bound type�
which can be regarded as a simpli�cation of peeling. It generally
provides sharper bounds than most �crude bound methods�; but falls
short of providing sharp bounds. Pillow functions are particularly
helpful in providing an e¢ cient method for performing crude range
tests (CRTs). See Walster and Hansen (2004)1. It is not yet known
how much impact on the speed of interval algorithms can be achieved
using CRTs.

Given a box xI de�ned by ai � xi � bi (i = 1; � � � ; n), its center
is (c1; � � � ; cn) where ci = (ai + bi)=2 (i = 1; � � � ; n); and the half-
width of the i-th component is ui = (bi � ai)=2: For any integer

1There is a mistake in the cited paper: In the second set of optimization
problems, the objective function should have a negative sign. Text surrounding
equation (25) should be corrected to read:

By simply reversing the signs in (17) of the objective function and
the functions in the inequality constraints, these optimization prob-
lems can be converted into:

minimize
x2xI

�f (x) (25)

subject to
�
c) � f (x) � 0
d) � f (x) < 0 :
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m = 1; 2; � � � , the box xI is contained in the region speci�ed by
p(x) � 0 where

p(x) =

�
x1 � c1
u1

�2m
+ � � �+

�
xn � cn
un

�2m
� n:

Note that the graph of p(x) = 0 passes through all the corners of
the box and otherwise is outside the box.

For m = 1, the equation p(x) = 0 de�nes an ellipsoid. For higher
values of m, it approximates the box more closely. Because of the
vague resemblance of the graph of p(x) = 0 to a pillow, we call p(x)
a pillow function.

Because any point x 2 xI satis�es p(x) � 0, the range of f(x)
for x 2 xI is contained in the range of f(x) as x varies such that
p(x) � 0: That is, we can bound the range of f(x) over xI by solving
the problems

minimize f(x) (14.12.3)

subject to p(x) � 0

and

maximize f(x) (14.12.4)

subject to p(x) � 0:

Problems (14.12.1) and (14.12.2) each have 2n constraints; but
problems (14.12.3) and (14.12.4) involve only a single constraint.
The former problems can be reformulated using peeling (see Sec-
tion 14.11); but the constraints in the peeling formulation are more

These optimization problems are identical to:

maximize
x2xI

f (x)

subject to
�
c) f (x) � 0
d) f (x) > 0

:
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complicated than the constraint p(x) � 0. The price paid for the
simpli�cation o¤ered by (14.12.3) and (14.12.4) is possible loss of
sharpness. However, the larger the integer m is chosen, the sharper
the bounds on the range because the pillow function more sharply
approximates the box xI .

Note that the inf and sup of f inside a pillow function might
actually occur in the box it surrounds. In this case, no sharpness is
lost by replacing the box by the pillow.

As an example, suppose we bound the range of the function

f(x1; x2) = x
3
1 � x1x22 + x21 � x1x2 � x22

over the box given by �5 � x1 � 5 and �3 � x2 � 3: This function
was studied by Neumaier (1988).

The range of f(x1; x2) over the box is approximately [�101:6; 151:1]:
For m = 4,

p(x1; x2) =
�x1
5

�8
+
�x2
3

�8
� 2:

Solving (14.12.3) and (14.12.4) by the method of this chapter, we
�nd that the range of f(x1; x2) for p(x1; x2) � 0 is approximately
[�132:4; 191:9]. Form = 10, it is [�112:0; 165:5]: If we evaluate f(xI)
directly, we obtain [�194; 210].

There is an added virtue to this method for getting crude bounds
on the range. Suppose we are solving (14.12.3) for the minimum of f
over the prescribed region. Using the method of Section 14.8 to solve
this problem, we obtain sampled values of the objective function
(at feasible points). We also obtain a lower bound on the global
minimum over the remaining search regions at any given stage of
the solution process. When these values di¤er by a su¢ ciently small
amount, we can terminate the procedure and accept the current
crude bounds. Thus, the procedure can be shortened so that results
conform to current needs for sharpness.

Pillow functions have other uses. For example, consider problems
such as the assignment problem. For an n-variable assignment prob-
lem, the constraints xi = 0 or 1 (i = 1; :::; n) are imposed. That is,
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the solution must occur on a corner of the box xI with sides given by
Xi = [0; 1]. These constraints can be replaced by the two conditions
such as

nX
i=1

(xi �
1

2
)2 =

n

4

nX
i=1

(xi �
1

2
)4 =

n

16

These functions each pass through the corners of xI ; but do not inter-
sect elsewhere. The problem is now expressed in terms of continuous
rather than discrete variables.

14.13 NONDIFFERENTIABLE FUNCTIONS

In this chapter, we have assumed that the constraint functions are
continuously di¤erentiable and that the objective function is twice
continuously di¤erentiable. In this section, we brie�y consider how
the algorithm of Section 14.8 must be altered to solve problems in
which these assumptions are not satis�ed.

If the objective function is not twice continuously di¤erentiable,
we cannot use the Newton method to solve g = 0 nor to solve the
John conditions. Also, we cannot use box consistency to solve g = 0.
If the objective function is not continuously di¤erentiable, we cannot
use g to de�ne a line search.

If the constraints are not continuously di¤erentiable, we cannot
use box consistency to solve them. Also, we cannot linearize them
to solve them as a system.

The resulting algorithm (without the indicated procedures) is, of
course, not as e¢ cient as the full algorithm. Nevertheless, it solves
the inequality constrained optimization problem.

We noted in Section 7.11 that slopes can be de�ned for certain
nondi¤erentiable functions. This can sometimes provide the neces-
sary expansions when di¤erentiability is lacking.
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For an example of a nondi¤erentiable problem solved by interval
methods, see Moore, Hansen, and Leclerc (1991).

Some nondi¤erentiable functions can be replaced by di¤erentiable
ones (plus constraints). See Chapter 17.
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Figure 14.1.1: Deleting All Boxes in a Constrained Problem
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Chapter 15

EQUALITY
CONSTRAINED
OPTIMIZATION

15.1 INTRODUCTION

In this chapter, we discuss the global optimization problem in which
the only constraints are equality constraints. In this case, problem
(13.1.1) becomes

Minimize (globally) f(x) (15.1.1)

subject to qi(x) = 0 (i = 1; � � � ; r) :

We assume f is twice continuously di¤erentiable and that qi (i = 1; � � � ; r)
is continuously di¤erentiable. For cases in which these conditions do
not hold, see Section 15.15.

We assume an initial box xI(0) is given as in Section 12.3; and we

seek the global solution of (15.1.1) in xI(0). Thus, in e¤ect, we are
solving a problem in which inequality constraints occur. However,
we ignore these constraints when seeking a solution. The box merely

serves to restrict the area of search. We assume xI(0) is su¢ ciently
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large that it contains the solution to (15.1.1) in its interior.

15.2 THE JOHN CONDITIONS

For problem (15.1.1), the function �(t) given by (13.5.1) used to
express (part of) the John conditions becomes

�(t) =

2666664
R(u0; v)

u0rf(x) + v1rq1(x) + � � �+ vrrqr(x)
q1(x)
...

qr(x)

3777775 (15.2.1)

where

R(u0; v) = u0 + E1v1 + � � �+ Ervr � 1 (15.2.2)

if the linear normalization (13.2.1f) is used and

R(u0; v) = u0 + v
2
1 + � � �+ v2r � 1 (15.2.3)

if the quadratic normalization (13.2.1g) is used.
If the latter normalization is used, we have the initial bounds 0 �

u0 � 1 and �1 � vi � 1 (i = 1; � � � ; r) for the Lagrange multipliers.
In the algorithm for the equality constrained optimization prob-

lem given in Section 15.12, we apply hull consistency and box con-
sistency to each individual equality constraint to eliminate points
of a box that are certainly infeasible. We could also apply these
procedures to the component equations of

u0rf(x) + v1rq1(x) + � � �+ vrrqr(x) = 0 (15.2.4)

from the John conditions. However, we do not. To do so requires
that we have bounds on the Lagrange multipliers. If these bounds
are far from sharp, the consistency procedures are not likely to be
very e¤ective when applied to (15.2.4).
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It is likely that bounds on the multipliers are reasonably sharp
only when the current box xI is reasonably small. In this case, a
Newton method is likely to be e¤ective in �nding any solution in xI .
Therefore, there is no need for consistency methods.

Suppose we use the nonlinear normalization (13.2.1g) of the La-
grange multipliers when expressing the John conditions. To solve
the resulting system of equations using an interval Newton method,
we need bounds on the Lagrange multipliers. Since we choose not to
apply consistency methods to the John conditions, we have no other
need for such bounds. Therefore, we use the linear normalization
(13.2.1f) so that no bounds are needed for any procedure.

Suppose we use an interval Newton method to solve the John
conditions. To do so, we must solve a linearized form of (15.2.1).
If we use the Gauss-Seidel method, we require initial bounds on the
Lagrange multipliers. If we use Gaussian elimination or the �hull
method�of Section 5.8, we do not. Using the normalization (13.2.1f)
precludes the use of the Gauss-Seidel method until the Newton step
has produced bounds on the multipliers.

In the initial stages of solving an equality constrained optimiza-
tion problem, a box over which the John conditions are to be solved
will tend to be large. As a result, the coe¢ cient matrix of the
linearized John conditions will tend to be irregular. In this case,
Gaussian elimination and the hull method will fail to solve the lin-
earized equations. One can hope to make progress by using the
Gauss-Seidel method. Otherwise, it is necessary to split the box.

For the Gauss-Seidel method, we need bounds on the Lagrange
multipliers. A reasonable procedure is the following. In the early
stages of solving an equality constrained problem, use the nonlinear
normalization (15.2.3). This provides crude bounds on the multi-
pliers so that the Gauss-Seidel method can be used. Later in the
solution process when the box is smaller (so that the hull method
does not fail), we can switch to the linear normalization (15.2.2).
This switch cannot cause a zero of � (t) to be lost. That is, no
minimum of � (t) is lost.

Although we do not need bounds on the Lagrange multipliers
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(when using (15.2.1)), we do need estimates of their values. We
can begin with u0 = 1 and vi = 0 (i = 1; � � � ; r), for example. A
successful step of a Newton method provides interval bounds on the
Lagrange multipliers. For the next Newton step, the centers of these
intervals can serve as the needed estimates.

In our algorithm, we do not iterate the Newton procedure to
convergence. Instead, we alternate its use with other procedures.
One reason for this is that we do not want to spend e¤ort to get
narrow bounds on a local (nonglobal) solution of the optimization
problem. Another reason is that other procedures for improving the
bounds on a solution require less computing e¤ort, and thus take
precedence.

15.3 BOUNDING THE MINIMUM

When considering the unconstrained optimization problem, we dis-
cussed (in Section 12.5) how to use an upper bound f on the globally
minimum value of the objective function f(x): This bound allows

us to delete subboxes of the original box xI(0) in which the global
solution cannot occur. We also apply this procedure in the equality
constrained case.

Now, it is a much more important procedure. In the uncon-
strained case, we have other procedures for deleting points that can-
not be the solution point. We use the gradient (see Section 12.4) and
nonconvexity (see Section 12.7). These procedures are not available
for the equality constrained problem. In a sense, these conditions are
replaced by the equality constraints. However, there are generally
fewer constraint equations than gradient components (which must
be zero in the unconstrained case) and no nonconvexity inequalities.

This is one reason the upper bound f is more important in the
equality constrained case. Another reason is that computing narrow
bounds on the location and value of the global minimum requires
an upper bound f that is near the minimum solution value f�. We
discuss this issue in Section 15.14.
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In an unconstrained problem, we can compute f by evaluating f
at any point x. In a constrained problem, we must prove that x is
feasible to assure that f(x) is an upper bound on f�. In an inequality
constrained problem, we can prove that x is feasible by numerically
verifying that it is certainly feasible (as de�ned in Section 6.1).

Generally, no point can be certainly feasible for the equality con-
strained problem because of uncertainty caused by rounding. Con-
sider a point x. If we make a single rounding error in evaluating
qi(x) for any i = 1; � � � ; r, then we do not know whether qi(x) is
precisely zero even if it is. That is, we do not know whether x is
feasible or not.

The user might know a �nite upper bound for the global min-
imum. If so, this value can be input as the initial upper bound f:
Failing this, there are three ways to compute an upper bound. Each
depends upon use of an existence theorem. We discuss one of the
methods in this section; and we discuss the others in Sections 15.4
through 15.6.

Assume we use an interval Newton method for which Proposi-
tion 11.15.5 holds. This proposition says the following: Suppose we
perform a step of the interval Newton method by applying it to a
system of nonlinear equations over a box xI ; and it produces a new
box xI 0: If xI 0 � xI , then there exists a solution of the system of
equations in xI 0.

Suppose we apply a step of such an interval Newton method to
the John conditions. Suppose that the new box produced by this
step is contained in the original box. Then we have proved existence
of a (simple) solution of the John conditions in the new box. Let xI 0

denote the new box.
Since we have proved the existence of a solution of the John

conditions, there exists a feasible point in xI 0. If we evaluate the
objective function over xI 0 and obtain f(xI 0) = [f(xI 0); f(xI 0)], then

f(xI 0) is an upper bound on f at this feasible point in xI 0 and, hence,
is an upper bound on the global minimum f� of f .

When attempting to prove existence in this way, it is best to use
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the linear normalization condition (13.2.1f) rather than a nonlinear
one such as (13.2.1g). The reason is as follows. Suppose we use a
nonlinear normalization. Then part of the input data to the Newton
method consists of bounds on the Lagrange multipliers. To prove
existence, the new computed interval bounds on the multipliers must
be contained in the corresponding input intervals.

But, if the linear normalization is used, no such input bounds on
the multipliers are needed. They can implicitly be assumed to be
arbitrarily wide. Therefore, the multipliers play no part in proving
existence. This makes it easier to obtain a proof of existence of a
solution to the John conditions. Note, however, that the accuracy of
the estimates of the multipliers a¤ects the sharpness of the bounds
computed (by the Newton step) for the components of x.

Applying a Newton method to the John conditions requires quite
a lot of computing. We do so only if other methods for isolating the
global solution are too ine¢ cient. We do not apply this method
merely for the sole purpose of �nding a bound f on f�. However, if
a bound is needed in the main program and a Newton step applied
to the John conditions provides such a bound, we, of course, use it.

15.4 USING CONSTRAINTS TO BOUND
THE MINIMUM

In this section, we describe two other procedures for computing an
upper bound f on the global minimum f�: Both procedures are based
on one due to Hansen and Walster (1990c). For a discussion of other
variations, see Kearfott (1996). As in Section 15.3, the procedures
�nd a box guaranteed to contain a feasible point and it bounds f
over the box. A guarantee that a box contains a feasible point is
obtained by proving existence using Proposition 11.15.5.

Recently a method using the topological index has been devel-
oped to prove existence of a solution of a system of equations. See
Kearfott and Dian (2000). We shall not discuss this subject.

Suppose we have proved that a feasible point exists in a box
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xI . We evaluate f(xI) getting [f(xI); f(xI)]: Then f(xI) is an upper
bound for the global minimum f�. Each time we obtain such an
upper bound, we update our best upper bound, replacing it with
min

�
f; f(xI)

�
.

In most (but not all) problems, the number r of equality con-
straints is less than the number n of variables. Otherwise, it is gener-
ally possible for the constraints themselves to determine the solution
point(s) with no variability remaining to minimize f . Therefore, we
assume r < n:

Suppose we wish to determine whether there is a feasible point
in a given box xI . In Section 15.12, we describe how such a box is
produced by the main program. Let x denote a variable point in xI ,
and let c be the center of xI . We �x n�r of the variable components
of x: For now, assume we set xi = ci for i = r+1; � � � ; n. In Section
15.5, we make a speci�c choice of which variables to �x.

De�ne the r-vector z = (x1; � � � ; xr)T . Consider the equation

h(z) = 0 (15.4.1)

where

hi(z) = qi(x1; � � � ; xr; cr+1; � � � ; cn) (i = 1; � � � ; r)

and qi is a constraint function from problem (15.1.1). This is a
system of r equations in r unknowns. Let zI denote the r-dimensional
box with components Zi = Xi (i = 1; � � � ; r).

If there exists a solution of (15.4.1) in zI , then it provides a
feasible point for problem (15.1.1). We describe two ways in which
we can try to prove the existence of a solution in zI .

15.4.1 First Method

One way is to apply a step of an interval Newton method to solve
(15.4.1). We can use any variant of the method for which Proposition
11.15.5 is true. Let zI 0 denote the solution box. If zI 0 � zI , then there
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exists a solution of h(z) = 0 in zI 0: Therefore, there exists a feasible
point in the n-dimensional box

xI
0
= (Z 01; � � � ; Z 0r; cr+1; � � � ; cn)T ;

which is a (partially degenerate) subbox of xI .
If zI 0 � zI ; the interval Newton step can be iterated to reduce the

size of the box bounding the feasible point. The smaller the box, the
(generally) smaller the upper bound on f we compute by evaluating
f over the box. Thus, we can iterate as long as su¢ cient progress is
made reducing the current box. However, f might be much smaller
at a feasible point in a box yet to be processed. Therefore, we do
not want to spend too much e¤ort to sharply bound a given feasible
point.

Suppose we have proved existence of a feasible point in a given
box. If we iterate the Newton method, the feasible point is in each
computed subbox. See Theorem 11.15.1. Therefore, we do not need
proof of existence in subsequent iterations. Note however, that this is
true only if we do not change the values of the constants cr+1; � � � ; cn:

Assume we have not proved that zI contains a feasible point and
that zI 0 is not contained in zI . If there is a feasible point in zI , it
must be in zI 00 = zI \ zI 0: If we choose to repeat the procedure we
use the box

xI
0
= (Z 001 ; � � � ; Z 00r ; cr+1; � � � ; cn):

We choose zI 00 to have the same center and shape as zI \ zI 0, but we
reduce the width. See below.

A large portion of the original box can often be deleted using the
condition f(x) � f (see Sections 12.5 and 14.3) even if f is not very
close to f�. Therefore, we try to prove existence of a feasible point
in an early stage of the solution of the optimization problem while
the current box is large. This provides a �nite value for f: As we
point out in Section 15.14, it is important to know whether there is
at least one feasible point in the original box. Therefore, we make a
special e¤ort to obtain an initial �nite value of f:
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If there are a large number of constraints, our procedure for
bounding a feasible point is costly in computing e¤ort. Therefore, if
we already have a �nite value of f; we make less e¤ort to prove exis-
tence of a feasible point in a given box. Also, we do not try to prove
existence of a feasible point in a given box xI unless f [m(xI)] < f

where m(xI) is the center of xI :

We now consider criteria for deciding how much e¤ort to expend
in seeking a bound on a feasible point.

When we try to prove existence of a feasible point in a given box,
we want the size of the box to be such that there is a high likelihood
of success. If we choose it too small, it is not likely to contain a
feasible point. If we choose it too large, the linearized form of the
system h(z) = 0 given by (15.4.1) is likely to contain a singular
matrix and we cannot prove existence of a feasible point. We choose
a box size based on previous results. We now derive our procedure.

When we use an interval Newton method to solve the system
(15.4.1), we precondition the Jacobian (see Section 5.6) to obtain a
coe¢ cient matrix that we now denote byM. We can prove existence
of a feasible point only if M is regular.

Suppose we have tried to prove existence in one or more boxes.
Let wqR denote the width of the largest box for which M is regular.
Let wqI denote the width of the smallest box for whichM is irregular.

Initially, set wqR = 0 and w
q
I = w(x

I(0)) where xI(0) is the initial box
in which the minimization problem is to be solved. When we try
to prove existence, we choose the width of the beginning box to be

wave =
1

2
(wqR +w

q
I). This strikes a balance between too big and too

small a box.

We now list the steps we use to update wqR and w
q
I and to make

our decision whether to try to prove existence of a feasible point.
Let m(xI) denote the center of the current box xI . When we say
we �shrink�a box, we mean we replace it by another with the same
center and the same relative dimensions but of width reduced by
some factor.
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At any stage in the following steps, we call the current box xI

even though it can change as we proceed through the steps.

1. If f [m(xI)] > f terminate this procedure

2. If f = +1, set MAXCOUNT = 8. If f < +1, set MAX-
COUNT = 4:

3. Set COUNT = 0:

4. If w(xI) > wave, shrink xI so that it has width wave:

5. If COUNT = MAXCOUNT, terminate the procedure.

6. Replace COUNT by COUNT + 1.

7. Apply a Newton step to try to solve (15.4.1) for z: (Note that
the r components of z are generally not the �rst r of com-
ponents of x: See Section 15.5.) If successful (because M is
regular), go to Step 9. Note: Use the hull method of Section
5.8 to solve the preconditioned equations in the Newton step.

8. Update wqI . Shrink x
I to one eighth its size. Go to Step 5.

9. Update wqR. Denote the result of the Newton step by x
I 0. If

xI \ xI 0 is empty, terminate the procedure.

10. If xI 0 � xI (so that we have proved existence), update f:

11. If f [m(xI)] < f, go to Step 5.

12. Terminate the procedure.

Kearfott (1996) reports that a method similar to this works well in
practice.

We could use epsilon-in�ation to try to prove existence of a fea-
sible point. This procedure was introduced by Rump (1980) and
discussed in detail by Mayer (1995). See, also, Kearfott (1996). A
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�rst step in the procedure is designed to prove existence of a solu-
tion of a system of equations at or near a tentative solution found
by a noninterval algorithm. Thus, it is an intensive e¤ort to prove
existence of a point that is reasonably certain to exist. Our case
is di¤erent. We try to prove existence in many boxes that might
or might not contain a solution. Therefore we use a simpler proce-
dure. By applying our relatively simple procedure to many boxes,
we increase the likelihood of success.

15.4.2 Second Method

Our remaining method for trying to prove existence of a feasible
point uses essentially the same procedure as the one we have just
described. Now, however, we use hull consistency (see Chapter 10)
instead of a Newton method. Proof of existence is obtained using
Theorem 10.12.1.

The Newton method can be e¤ective in proving existence because
it asymptotically converges quadratically (to simple solutions). In
this case, the box zI 0 described above tends to be much smaller than
zI : This enhances the chances that zI 0 � zI as required to prove ex-
istence. Hull consistency cannot be expected to have quadratic con-
vergence in the multidimensional case because it is a one-dimensional
procedure. Normally, we make no special e¤ort to try to prove exis-
tence using it. However, in the algorithm in Section 15.12, we apply
hull consistency to a preconditioned system of equations. For this
step, it can be advantageous to implement hull consistency so that it
has quadratic convergence as a one dimensional process. See Section
10.6.

In the next two sections, we discuss ways to increase the likeli-
hood of proving that a box contains a feasible point.

15.5 CHOICE OF VARIABLES

For simplicity, we assumed in the previous section that we �xed
xi = ci for the indices i = r + 1; � � � ; n. By appropriately choosing
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which n�r variables to �x, we can enhance the chance of being able
to prove the existence of a feasible point in a given box. We now
consider how this can be done.

We �rst note that we might be able to reduce the number of
constraints by �xing appropriate variables. As an example, consider
problem 61 of Hock and Schittkowski (1981). This is a problem in
three variables with two constraints of the form

q1(x) = 3x1 � 2x22 � 7 = 0;

q2(x) = 4x1 � x23 � 11 = 0:

If we �x any one of the three variables, we can solve the constraint

equations for the other two
�
provided x � 11

4

�
. That is, we can

determine a feasible point directly.
For other problems, we might be able to determine a subset of

the variables by �xing one or more appropriate variables. This re-
duces the number of remaining constraints. However, to simplify the
discussion,we assume all the constraints remain.

We now consider an illustrative example to show that care must
be taken in choosing which variables to �x. Consider a two-dimensional
problem in which there is a single constraint

q(x1; x2) = x2 � 1 (15.5.1)

that is independent of x1. Let a box xI have components X1 = X2 =
[�1; 1]. If we �x the second variable (to be the midpoint of X2), we
set x2 = 0: In the procedure described in Section 15.4, we try to
bound a point of the form (x1; 0)

T satisfying (15.5.1). But, there is
no such point.

However, suppose we �x the �rst variable to be the center x1 = 0
of X1. Now we wish to �nd a point of the form (0; x2)

T satisfying
(15.5.1). This is easily done.

We now consider a procedure designed to exploit the idea implicit
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in this example. Consider the r by n matrix with elements

Mij(x) =
@qi(x)

@xj
(i = 1; � � � ; r; j = 1; � � � ; n): (15.5.2)

We linearize q about the center x of a box xI . When we do so, some
of the arguments of Mi;j can be real as described in Section 7.3.
However, for the immediate purpose, they can all be real. Denote
the resulting r by n coe¢ cient matrix byM(x;xI) and the linearized
system by q(x) +M (x;xI) (y � x) = 0:

To solve such a system of linear interval equations when it is
square, we precondition the system by multiplying by an approx-
imate inverse of the center of the coe¢ cient matrix. (See Section
5.6). We do a similar preconditioning in this nonsquare case.

LetMc denote the center of the interval matrixM(x;xI):We use
Gaussian elimination with both row and column pivot searching to
transform Mc into a matrix M0 in upper trapezoidal form. It is the
column interchanges for pivot selection that �chooses�the variables
to �x. That is, M 0

ij = 0 for all i > j (i = 2; � � � ; r; j = 1; � � � ; i� 1).
We make a �nal column interchange (if necessary) so that the �nal
element in position (r; r) has the largest magnitude of any element
in row r of the �nal matrix.

Suppose that, in addition to the elements deliberately zeroed, the
elements M 0

ij ofM
0 are zero for all i > m for some m < r. Then the

rows of Mc are (at least approximately) linearly dependent. In this
case, we abandon our e¤ort to �nd a feasible point in the current
subbox of the initial box. We hope to be successful with the next
subbox generated by the main algorithm.

However, if M0 has a nonzero element M 0
ii for all i = 1; � � � ; r;

then we proceed. If no column interchanges are made in doing
Gaussian elimination to produce M0, then it is the last n � r vari-
ables that we �x. That is, we set xi = m(Xi) for i = r + 1; � � � ; n.
If column interchanges are made, we �x the variables corresponding
to the columns that are interchanged into the last n� r positions.

Note that if none of the constraints depend on the variable xj for
a particular index j = 1; � � � ; r, then Mij = 0 for all i = 1; � � � ; r. In
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this case, the elimination process interchanges the j-th column (all
of whose elements are zero) into one of the last n� r columns. This
assures that xj is �xed and set equal to m(Xj). That is, only the
relevant variables are used when trying to �nd a feasible point.

If all the constraints are independent of xj , then f cannot be.
Otherwise the problem does not involve xj . Our process for �nding
a feasible point (when successful) �nds a box xI known to contain a
feasible point. This box has n � r degenerate components; and the
j-th, is one of them. The (degenerate) j-th component of xI can be
chosen to have any value in the j-th component of the initial box

xI(0):

As pointed out in Section 15.4, if there is a feasible point in
xI , then f(xI) is an upper bound for f�. We are free to try to
minimize f(xI) by choosing xj (and any other variables of which the

constraints are independent) as best we can in xI(0). However, one
can simply set xj equal to the center of the j-th component of the
current box.

After we have decided which variables to �x, we again do the lin-
earization. The reason is as follow. The derivatives that determine
the linearized equations are narrower after �xing some variables as
point values than before. Therefore, a Newton step using the lin-
earized equations has a better chance of proving existence of a solu-
tion. The extra e¤ort is warranted because it is important to obtain
proof of existence. Note that when we linearize this time, we want
to use the kind of expansion described in Section 7.3 so that some
of the arguments of the elements of the coe¢ cient matrix are real
rather than interval. We want the widths of the elements as small
as possible to enhance the chance that the Newton method will be
able to prove existence.

In Section 15.4.1, we considered a box zI 0 obtained from a Newton
step applied to a box zI . We might �nd that zI 0 \ zI is empty. This
does not prove that there is no feasible point in xI . It merely means
that there is no feasible point in xI having the values of the �xed
variables. Nevertheless, if zI 0 \ zI is empty, we abandon our e¤ort to
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�nd a feasible point in xI .
Even if there is a feasible point in xI , the interval Newton method

is not guaranteed to prove this is, in fact, the case. To prove exis-
tence, we must have zI 0 � zI . This condition never holds if the
solution sought is a singular solution (in the variables not �xed).
This possibility is reduced by the way we choose which variables to
�x.

The condition zI 0 � zI can fail to be satis�ed even when the
solution is simple and well conditioned. This is more likely when
the solution is on or near the boundary of xI . If we have not proved
existence of a feasible point in a �nal box, we can take steps to try
to avoid this di¢ culty by choosing a di¤erent box.

For example suppose Zi = [a; b] and Z 0i = [c; d] and a < c < b < d.
We can extend Zi \ Z 0i = [c; b] by replacing the upper endpoint b by
b + �(b � c) for some value of � such as 0:1. It doesn�t matter
whether the feasible point is in zI or not. We only require that the

box be in the initial box xI(0): By extending Z 0i in this way for each
i = 1; � � � ; r, the next iteration has a better chance of getting a new
box, say zI 00 in the extended version of Zi \ Z 0i:

15.6 SATISFYING THE HYPOTHESIS

We must have zI 0 � zI to prove existence of a feasible point. There-
fore, it behooves us to try to assure that this condition is satis�ed
when possible. One way to enhance the chance of satisfying this
condition is to make zI 0 as small as possible relative to zI :

To apply an interval Newton method to solve an equation h(z) =
0, we linearize h(z) by expanding about a point, say z0 in zI . The
interval coe¢ cients in the expansion are narrower if slopes, rather
than derivatives, are used to obtain the expansion. This causes zI 0

to be smaller.
Also, the closer the expansion point z0 point is to a solution, the

smaller zI 0 will be. Therefore, we insert a step into the procedure
described in Section 15.4. We try to �nd a good approximation for
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a zero in zI before we apply the interval Newton method. We then
choose z0 to be this approximate point.

The procedure we use to compute the approximation is the non-
interval Newton method described in Section 11.4. In this procedure,
we use an approximate inverse of the Jacobian of h. This Jacobian
is the one (in slope or derivative form) that we use next in applying
the interval Newton step to try to prove the existence of a feasible
point as described in Section 15.3. The approximate inverse of the
center of the Jacobian is found while doing the elimination process
described in Section 15.5. Note the similarity to the preconditioning
process in Section 11.2.

Recall that, in Section 15.5, we used Gaussian elimination to
transform the matrix Mc into trapezoidal form. To compute the
approximate inverse, we also perform the elimination operations on
the matrix that begins as the identity matrix of order r. When
doing these operations (but not when operating on Mc), we can
ignore any column interchanges. When Mc has been transformed
into trapezoidal form, we have transformed the identity matrix into
a matrix we call B0.

We can now drop the last n � r columns of the modi�ed form
of Mc. We then do the remaining elimination operations to trans-
form the resulting matrix of order r into the identity matrix. Doing
these operations on B0 yields the matrix B; which is the (approx-
imate) inverse of the center of the retained submatrix of Mc: We
use this noninterval matrix B as described in Section 11.4 to �nd an
approximate solution z0 to h(z) = 0:

15.7 A NUMERICAL EXAMPLE

In this section, we discuss a numerical example illustrating the ideas
of the previous two sections. Problem 39 of Hock and Schittkowski
(1981) is
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Minimize f(x) = �x1

subject to q1(x) = x31 � x2 + x23 = 0;

q2(x) = x
2
1 � x2 � x24 = 0:

(We ignore the fact that if we �x x1 and x2, we can solve for x3
and x4.) The matrix given by (15.5.2) is

M(x) =

�
3x21 �1 2x3 0
2x1 �1 0 �2x4

�
:

Suppose the current box has components X1 = [�1:1;�0:7];
X2 = [�1:2; 1]; X3 = [0; 2], and X4 = [0; 1:6]. The center of this
box is x = (�0:9;�0:1; 1; 0:8)T . We �nd the center of M(xI) to be

Mc =

�
2:55 �1 2 0
�1:8 �1 0 �1:6

�
:

Using Gaussian elimination to produce a zero in position (2; 1)
of the matrix, we obtain (approximately)

M
0
=

�
2:55 �1 2 0
0 �1:706 1:412 �1:6

�
:

Since no column interchanges were used, we �x the last two variables.
Thus, c3 = m(X3) = 1 and c4 = m(X4) = 0:8:

We now use an interval Newton method to solve the equations

hi(z1; z2) = qi(z1; z2; c3; c4) (i = 1; 2):

That is,

h1(z) = z
3
1 � z2 + 1 = 0; h2(z) = z21 � z2 � 0:64 = 0 (15.7.1)
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The Jacobian of h(z) is

J(z) =

�
3z21 �1
2z1 �1

�
:

The components of the box zI are Z1 = X1 = [�1:1;�0:7] and
Z2 = X2 = [�1:2; 1]. The center of zI has components z1 = �0:9
and z2 = �0:1. Using (7.3.6), we expand h about the center of zI
and obtain�

z31 � z2 + 1
z21 � z2 � 0:64

�
+

�
3Z21 �1
2Z1 �1

� �
z01 � z1
z02 � z2

�
= 0:

Substituting the appropriate numerical quantities into this equation,
we obtain�

0:371
0:27

�
+

�
[1:47; 3:63] �1
[�2:2;�1:4] �1

� �
z01 + 0:9
z02 + 0:1

�
= 0: (15.7.2)

The �rst two columns of the matrix Mc form the matrix�
2:55 �1
�1:8 �1

�
:

For use in the interval Newton method, we want an approximate
inverse B of this matrix. The operation to get Mc from M is a
�rst step in computing B: Completing the process and using B as
a preconditioner when applying the interval Newton method, we
obtain

zI
0
=

�
[�0:9352;�0:9173]
[0:1856; 0:2380]

�
:

We indicate this result using four signi�cant decimal digits. Higher
precision was used in the computations.

Since zI 0 � zI ; there exists (by Proposition 11.15.5) a solution of
(15.7.1) in zI 0: That is, there is a feasible point x with �0:9352 �
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x1 � �0:9173, 0:1856 � x2 � 0:2380, x3 = 1, and x4 = 0:8. The
actual feasible point in xI with x3 = 1 and x4 = 0:8 is at (approxi-
mately) x1 = �0:9234 and x2 = 0:2126.

Since the objective function is f(x) = �x1, and since we know
there is a feasible point with x1 2 [�0:9352;�0:9173], we now have
the upper bound f = 0:9352 on the global minimum f�.

If we use the inner iteration of Section 11.4 to get a better point
about which to expand h; and if we use slopes instead of derivatives
to do the expansion, we obtain f = 0:9234; which is correct to four
digits.

The best feasible value of f in the test box is 0:7 at x1 = 0:7,
x2 = 0:49, x3 = (0:833)1=2, and x4 = 0. We have not found this best
value because we �xed x3 and x4 to have values at the centers of their
interval bounds; and this is not where the best feasible point occurs
in the box. However, the test box does not contain the solution point
x� so we must be satis�ed with a suboptimal value of f, anyway.

The global minimum for this problem is f� = �1; which occurs at
x = (1; 1; 0; 0)T . Our upper bound on f� is far from sharp. However,
when solving a problem by the algorithm given in Section 15.12,
the process for getting an upper bound on f� is applied for smaller
and smaller subboxes of the initial box. Thus, the upper bound is
successively improved.

15.8 USING THE UPPER BOUND

Assume we have computed an upper bound f on the global minimum
as described sections 15.4 and 15.5. Alternatively, we might be given
a �nite upper bound by the user. In either case, we can now eliminate
any (feasible or infeasible) point x for which f(x) > f.

Given a box xI , we can evaluate f(xI) and if f(xI) > f, we can
eliminate xI . However, there is a better alternative. As noted in Sec-
tion 10.10, for essentially the same amount of computing needed to
evaluate f(xI), we can apply hull consistency to the relation f(x) � f:
This also eliminates xI if f(xI) > f: For the same e¤ort, hull consis-
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tency might eliminate part of xI . We can also apply box consistency
to this inequality.

15.9 USING THE CONSTRAINTS

The main program for solving the equality constrained optimization
problem, generates a sequence of subboxes of the initial box. We can
apply hull and box consistencies to each constraint equations qi(x) =
0 (i = 1; � � � ; r) to delete infeasible points from such a subbox. We
can also linearize and �solve� the constraint equations in the same
way as described in Section 15.4.1. In that procedure, we try to prove
existence of a feasible point in a box. Here we use the procedure to
try to eliminate infeasible points from a box. To do so, we �x n� r
of the n variables so that we have the same number r of variables
as constraints. In that procedure, the variables chosen to be �xed
are given point values. Now, however, we �x them by replacing
them by their interval bounds. This causes a slight change in the
procedure. When we replace variables by points, it can be worth
while to repeat the process of expanding the constraint equations.
This is because the derivatives de�ning the expansion are narrowed
by the replacement. If we replace variables by their interval bounds,
this narrowing does not occur. Therefore, re-expanding is of no
value.

Before continuing, we explain why we do not use a rather obvious
alternative way of choosing which variables to �x. Suppose we have
expanded the equality constraints with respect to all the variables.
Then we have the information needed to (roughly) determine which
variables cause a given constraint to change the most (or least) over
the current box. See Section 11.8. We might choose to �x those
variables that cause little change.

However, the procedure in Section 15.4.1 is designed to cause a
Newton step to make a larger reduction of a box irrespective of how
much change is made in the range of the constraints. We consider
the former aspect to be of more value than the latter

Another topic deserves mention. Suppose we �x some variables
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before we linearize the constraints. Then we have fewer derivatives to
determine; and we thus save some work. However, we do not linearize
the constraints unless there is reason to believe that the box is so
small that a linearized form will yield sharper bounds on the range
over the box than the original unexpanded form. See Section 14.7.
In this case, the extra e¤ort should provide greater reduction of the
box used.

We now repeat some of the discussion from Sections 15.4 and
15.5 that is relevant to the current discussion of use of constraints.
From Section 7.3, we can expand a constraint in the form

qi(y) = qi(x) +

nX
j=1

Jij(x;x
I)(yj � xj) (i = 1; � � � ; r) (15.9.1)

where

Jij(x;x
I) =

@

@xj
qi(X1; � � � ; Xi; xi+1; � � � ; xr) (15.9.2)

Note that, in theory, the choice of which variables are real in (15.9.2)
could be related to our present question of which variables to �x.
However, we do not know which variables to �x until after we have
obtained the expansion (15.9.1). We do the following steps. Compare
the algorithm in Section 11.12.

1. Compute a real matrix Jc, which is the approximate center of
the r by n matrix J(x;xI):

2. Do Gaussian elimination on Jc using both row and column piv-
oting to transform it into a form in which elements in positions
(i; j) are zero for 1 � i � r and 1 � j � r except for i = j:
In the process, do the �nal column pivoting so that the �nal
element in position (r; r) is largest in magnitude among the
elements in positions (r; j) for j = r; � � � ; n:

3. Choose the variables corresponding to those now in the �-
nal columns r + 1; :::n to be those to replace by their interval
bounds.
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Assume we have done these three steps. For simplicity, assume
it is variables with indices r+1; � � � ; n that we �x. After �xing these
variables, the constraint equations become

Qi +

rX
j=1

Jij(x;x
I)(yj � xj) = 0 (i = 1; � � � ; r) (15.9.3)

where
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Qi = qi(x) +
nX

j=r+1

Jij(x;x
I)(Xj � xj) (i = 1; � � � ; r) : (15.9.4)

Equations (15.9.3) are r equations in r unknowns. We solve them
using our standard procedure for solving square systems. The �rst
step in doing so is to precondition the system as described in Section
5.6. Note if we apply the steps of the elimination procedure in Step
2 above to an identity matrix, we obtain the desired precondition-
ing matrix. The second and �nal step is to solve the preconditioned
equations by either the hull method, Gaussian elimination, or the
Gauss-Seidel method. If the preconditioned coe¢ cient matrix is reg-
ular, we �nd the hull as described in Section 5.8. If it is not regular,
we apply a step of the Gauss-Seidel method of Section 5.7.

To obtain equations (15.9.3), we linearized the constraint equa-
tions over a box. We noted in Section 12.8 (and elsewhere) that
trying to solve such a system can be unsuccessful when the box is
large. Since the processes of linearizing and solving are expensive in
computing e¤ort, we want to bypass the procedure when the box is
�too large�.

In Section 11.11, we described a linearization test for deciding
whether to bypass such a procedure or not. We use the same pro-
cedure to decide whether to generate and solve (15.9.4). This deci-
sion is made independently of any decision of whether to use other
procedures that entail linear expansions. For example, we make a
separate decision whether or not to try to solve the John conditions
by a Newton method.

The procedure to linearize and solve the equality constraints in-
volves a considerable amount of work. The question arises whether
it is worth the e¤ort. In Sections 14.6 and 14.7, we discussed similar
questions for systems of inequality constraints. We gave a criterion
to decide whether to do the linearization procedure in various cases.

After variables have been �xed in the current procedure, we have
a square coe¢ cient matrix. The linearization test could be based on



424CHAPTER 15. EQUALITY CONSTRAINEDOPTIMIZATION

whether this matrix is regular or not (as in Section 11.11). However,
suppose the number of constraints is small relative to the number
of variables. Then, even when the matrix is regular, there might be
little progress in reducing the box.

Therefore we use a linearization test based on whether su¢ cient
reduction (as de�ned using (11.7.4)) of a box by the procedure is
made or not. See Section 14.7 where the same criterion is used to
decide whether to solve the inequality constraints.

15.10 INFORMATIONABOUTA SOLUTION

The quality of the information we gain about the solution of an
equality constrained problem depends on how successful we are at
proving the existence of feasible points in the initial box. We discuss
this aspect in this section.

Suppose we are unable to prove the existence of any point at
which the equality constraints are satis�ed. Then we do not know if
the problem has a solution. Suppose we do prove the existence of a
feasible point at which f is much greater than its minimum value f�;
but we are unable to prove existence of any feasible point where f is
at or near its (feasible) minimum. Then we know a solution exists;
but if the algorithm terminates with several boxes remaining, we do
not know which one(s) contain the global solution.

Let f denote the �nal value of the upper bound on f� after ter-
mination of our algorithm. If the procedures described earlier in this
chapter succeed in �nding such a quantity, then it is �nite. Other-
wise, it retains its initial value (which is 1).

If our algorithm deletes all of the original box xI(0), then we

know there is no feasible point in xI(0). Suppose it deletes all of xI(0)

except for a single box xI ; but we have not proven the existence of
a feasible point. Then we do not know if there exists a solution; but
we know that if one exists, it must be in xI .

Suppose that our algorithm ends up with two boxes X1 and
X2 that satisfy whatever convergence criteria we impose; and that
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f(X1) < f(X2) < f < +1. Even though f(X1) < f(X2), the global
solution can be in X2 because X1 might not contain a feasible point.
The situation is obviously more uncertain if there are more than two
such boxes.

Some authors suggest that we accept a point ex as feasible if
jqi(ex)j < " for all i = 1; � � � ; r (for some " > 0). This can cause
di¢ culty. Suppose we accept such a point ex as feasible when it is
not, and suppose that f(ex) < f�. We could then delete the solution
point x� because we would have f(x�) > f(ex). Therefore, we must
not use the relation f(x) > f(ex) to eliminate a point x.

Even if we do not prove that a feasible point exists, we can assure
that the constraints are �nearly�satis�ed at every point in the �nal
box(es). Denote

jqi(xI)j � "q (i = 1; � � � ; r) (15.10.1)

In our algorithms for unconstrained or for inequality constrained
optimization, we require that for any �nal box xI , the conditions
w(xI) � "X and w[f(xI)] � "f hold. For the equality constrained
problem, we add the condition that (15.10.1) hold for every �nal
box xI . However, we do not assume that xI contains a feasible point
simply because (15.10.1) holds.

Despite the possible uncertainties concerning the computed solu-
tion to the equality constrained case, we have much more certainty
than for non-interval algorithms. The �nal box(es) are always small
if the tolerance "X is small; and any global solution is guaranteed
to be in one of them. In most cases, we have very good bounds on
x� and f� and they are guaranteed to be correct. In other cases,
the small boxes contain both local and global solutions. A �nal box
might not contain a minimum. Use of smaller error tolerances or
higher precision arithmetic might determine this to be the case.

We have pointed out that information we gain about the global
minimum depends strongly on how close the �nal bound f is to the
globally minimum value f�. We now note that there are reasons to
expect that this bound is generally quite satisfactory.
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One danger in trying to prove existence of a feasible point in a
given box is that the methods for doing so fail if the point is not
a simple zero of the equations being solved. This is not a crucial
fact because our algorithm seeks a feasible point in various di¤erent
boxes and �xes di¤erent subsets of the variables. We can expect that
all or most of the various feasible points sought are simple solutions
of the equations to be solved.

If a box is large, a Newton step or an application of hull con-
sistency is unlikely to prove existence of a solution of a system of
equations in the box. These methods are more likely to prove exis-
tence if the box is small and the feasible point is near the center of
the box. However, as our algorithm proceeds, it deletes points that
are not feasible. Consequently it concentrates the search on progres-
sively smaller boxes that are more and more likely to contain feasible
points near their centers and hence increase the chance of proving
existence. Thus, we are likely to prove existence of a feasible point
near the global minimum point.

15.11 USING THE JOHN CONDITIONS

To apply a step of a Newton method requires quite a lot of com-
puting. When the Jacobian of the John condition function �(t) (as
given by (15.2.1)) contains a singular real matrix, the Newton step
can be completed only by using a Gauss-Seidel step. To do so re-
quires bounds on the Lagrange multipliers. We are unlikely to obtain
useful bounds unless the box is small. Therefore computations are
wasted. In Section 11.11, we derive a criterion (11.11.1) for decid-
ing whether or not to apply a Newton step to a system of nonlinear
equations. In Section 14.7, we used the same criterion to decide
whether to apply a Newton method to the John conditions for an
inequality constrained problem. A Newton step is bypassed if the
criterion indicates that the step is likely to be unsuccessful. We use
the same criterion when solving the equality constrained problem.
That is, we apply the Newton method to the John conditions over a
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box xI only if

w(xI) � 1

2
(wJI + w

J
R) (15.11.1)

where wJI and w
J
R are de�ned as in Section 14.7 (see (14.7.1)).

We also use a Newton method when trying to prove the existence
of a feasible point. See Section 15.4. However, this procedure reduces
the size of the box when necessary so there is no need to decide
whether the box in which the procedure is applied is large or not.

As explained in Section 14.7, we avoid using linearization when
the box is so large that linearization is not e¤ective. Thus, besides
avoiding the Newton method when the box xI is large, we also avoid
other linearizations. As in Section 14.7, we linearize f(x) � f only if

w(xI) � 1

2
(wfI + w

f
S): (15.11.2)

We linearize the constraints only if

w(xI) � 1

2
(wqI + w

q
S): (15.11.3)

This relation is de�ned in Section 14.7 for inequality constraints.
Now the constraints are equalities. Similarly, when the box is large,
we avoid using the method of Section 12.5.4, which involves a Taylor
expansion of the relation f(x) � f through quadratic terms.

15.12 THE ALGORITHM STEPS

In this section, we list the steps of our algorithm for computing
global solution(s) to the equality constrained optimization problem
(15.1.1).

Generally, we seek a solution in a single box speci�ed by the
user. However, any number of boxes, can be speci�ed. The boxes
can be disjoint or overlap. However, if they overlap, a minimum at
a point that is common to more than one box is separately found as
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a solution in each box containing it. In this case, computing e¤ort
is wasted.

If the user does not specify an initial box or boxes, we use a
default box described in Section 11.10. We assume the box(es) are
placed in a list L1 of boxes to be processed.

Suppose the user of our algorithm knows a point x that is guar-
anteed to be feasible. If so, we use this point to compute an initial
upper bound f on the global minimum f�: If x cannot be represented
exactly in the computer�s number system, we input a representable
box xI containing x: We evaluate f(xI) and obtain [f(xI); f(xI)]:

We set f = f(xI); which is guaranteed to be an upper bound on the
global minimum f�. If no feasible point is known we set f = +1 as
our upper bound for f�.

The user might know an upper bound f on f� even though he
might not know where (or if) f takes on such a value. If so, we set f
equal to this known bound. If the bound is not representable in the
computer�s number system, we set f equal to some machine number
at least as large as the known bound.

We assume the user has speci�ed a box size tolerance "X , and
an objective function width tolerance "f and tolerance "q on the
width of the constraint functions over a �nal box. At termination,
the conditions w(xI) � "X and w[f(xI)] � "f and jqi(xI)j � "q
(i = 1; � � � ; r) hold for each �nal box xI .

Thus, to initialize our algorithm, the user speci�es "X ; "f , and "q,
and the initial box(es). The box(es) are placed in list L1: In addition,
we specify (or compute from x as just described) a bound f when one
is known. The system initializes the parameters de�ned in Section

15.11. Let xI(0) denote the box of largest width put into the list L1 by

the initialization process. The system sets wJR = w
f
S = w

q
S = w

Q
S = 0

and wJI = wfI = wqI = wQI = w(xI(0)): The system also sets �ag F
equal to zero.

The steps of the algorithm are performed in the order given ex-
cept as indicated by branching. A box xI can be changed in a given
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step of the algorithm. If so, we continue to call it by the same name,
xI : In various steps of the algorithm, we use such a box xI to com-
pute a new box (say xI 0). When we refer to the �result� of such a
computation, we mean the intersection xI \ xI 0.

1. For each initial box xI in the list L1, evaluate f(xI): Denote
the result by [f(xI); f(xI)].

2. If f < +1; delete any box xI from L1 for which f(xI) > f.
This can be done while applying hull consistency. See Section
10.10.

3. If L1 is empty, go to Step 47. Otherwise, �nd the box xI in
L1 for which f(xI) is smallest. For later reference, call this

box xI(1). This box is processed next by the algorithm. Delete

xI(1) from L1.

4. If �ag F = 0; go to Step 4(a). If �ag F = 1, go to Step 4(b).

(a) If w(xI) � "x and w[f(xI)] � "f , put xI in list L2 and go
to Step 3. Otherwise, go to the next step. Note that Step
4 is repeated elsewhere in the algorithm. If it is called in
Step k, then �next step�refers to step k + 1: When it is
actually called as Step 4, �next step�is Step 5, but when
it is called in Step 12, for example, the next step is Step
13.

(b) If jqi(xI)j � "q for all i = 1; :::; r, put xI in list L2 and go
to Step 3.

5. Apply hull consistency (see Chapter 10) to the constraint equa-
tions qi(x) = 0 for i = 1; � � � ; r. If it is proved that there is no
point in xI that satis�es any one of the constraints, go to Step
3.

6. Repeat Step 4.
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7. If xI(1) (as de�ned in Step 3) has been su¢ ciently reduced (as
de�ned using (11.7.4)), put xI in the list L1 and go to Step 3.

8. If f < +1; apply hull consistency to the relation f(x) � f: If
the result is empty, go to Step 3.

9. Compute an approximate center x of xI and an approximate
value of f(x): If f(x) � f , go to Step 12.

10. For later reference call the current box xI(2). Use the procedure
described in Sections 15.4 through 15.6 to try to reduce the
upper bound f:

11. If f was not changed in Step 10, go to Step 13. Otherwise,
apply hull consistency (See Chapter 10) to the relation f(x) �
f. If the result is empty, go to Step 3.

12. Repeat Step 4.

13. If xI(1) (as de�ned in Step 3) has been su¢ ciently reduced (as
de�ned using (11.7.4)), put xI in L1 and go to Step 3.

14. Apply box consistency (see Section 10.2) to the constraint
equations qi(x) = 0 for i = 1; � � � ; r. If it is proved that there
is no point in xI that satis�es any one of the constraints, go to
Step 3.

15. Compute an approximate center x of xI and an approximate
value of f(x): If f(x) � f , go to Step 18.

16. If the current box is the same box xI(2) de�ned in Step 10, go
to Step 18.

17. Use the procedure described in Section 15.4 through 15.6 to
try to reduce the upper bound f:

18. If f(xI) � f, go to Step 20.
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19. Apply box consistency to the relation f(x) � f. If the result is
empty, go to Step 3.

20. Repeat Step 4.

21. If xI(1) (as de�ned in Step 3) has been su¢ ciently reduced, put
xI in the list L1 and go to Step 3.

22. If f [m(xI)] < f, go to Step 29.

23. If w(xI) >
1

2
(wfS + w

f
I ); go to Step 27. (See Section 15.11.)

24. Denote the current box by xI(3). Apply the linear method of

Section 12.5.3 to try to reduce xI(3) using f(x) � f. Update

wfS and w
f
I as described in Section 14.7. If the result is empty,

go to Step 3.

25. Repeat Step 4.

26. If xI(3) (as de�ned in Step 24) was su¢ ciently reduced (as
de�ned using (11.7.4)) in the single Step 24, go to Step 30.
Otherwise, go to Step 32.

27. If w(x) >
1

2
(wQS + w

Q
I ), go to Step 30. (See Section 15.11.)

28. Apply the quadratic method of Section 12.5.4 to try to reduce

the current box using f(x) � f. Update wQS and wQI as de-
scribed in Section 14.7. If the result is empty, go to Step 3.

29. Repeat Step 4.

30. If xI(1) (as de�ned in Step 3) has been su¢ ciently reduced, put
xI in L1 and go to Step 3.

31. If w(xI) >
1

2
(wqS + w

q
I), go to Step 43. (See Section 15.11.)
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32. If condition (14.6.4) is not satis�ed, go to Step 40. Otherwise,
do the following as described in Section 15.9. Replace n � r
of the variables by their interval bounds and �nd the precon-
ditioning matrix B for the system involving the remaining r
variables.

33. Precondition the linearized system. If the preconditioned co-
e¢ cient matrix is regular (see Theorem 5.8.1), �nd the hull
of the linearized system by the method of Section 5.8. If the
matrix is not regular, solve the system by the Gauss-Seidel
method (see Section 5.7). Update wqS and w

q
I as described in

Section 14.7. If the result is empty, go to Step 3.

34. Repeat Step 4.

35. The user might wish to bypass analytic preconditioning (see
Section 11.9). If so go to Step 40. If analytic preconditioning
is to be used, analytically multiply the nonlinear system of
constraint equations by the matrix B computed in Step 32. Do
so without replacing any variables by their interval bounds (so
that appropriate combinations and cancellations can be made).
After the analytic multiplication is complete, replace the �xed
variables (as chosen in Step 32) by their interval bounds.

36. Repeat Step 4.

37. Apply hull consistency to solve the i-th nonlinear equation of
the preconditioned nonlinear system for the i-th (renamed)
variable for i = 1; � � � ; r. If the result is empty, go to Step
3. If the existence of a feasible point is proved (see Section
10.12), use the result to update f (see Section 15.4).

38. Repeat Step 4.

39. Apply box consistency to solve the i-th nonlinear equation of
the preconditioned nonlinear system for the i-th (renamed)
variable for i = 1; � � � ; r. If the result is empty, go to Step
3.
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40. Repeat Step 4.

41. If w(xI) >
1

2
(wJR + w

J
I ); go to Step 43. (See Section 15.11.1.)

Note that the vector function used to determine the Jacobian
in (11.8.1) is the gradient of the objective function.

42. Apply one step of the interval Newton method of Section 11.14
for solving the John conditions (15.2.1). Update wJR and w

J
I as

described in Section 14.7, If the result is empty, go to Step 3.
If the existence of a solution of the John conditions is proved
as discussed in Section 15.3, then update f (as discussed in
Section 15.3).

43. If the box xI(1) (as de�ned in Step 3) has been su¢ ciently
reduced, put xI in L1 and go to Step 3.

44. Any previous step that used hull consistency, a Newton step,
or a Gauss-Seidel step might have generated gaps in the in-
terval components of xI . Merge any such gaps when possible.
Split the box as described in Section 11.8. This might involve
deleting gaps. Place the subboxes (generated by splitting) in
the list L1 and go to Step 3.

45. If the list L2 is empty, print �There is no feasible point in xI
(0)�

and go to Step 52.

46. If �ag F = 1, go to Step 48. Otherwise, set F = 1.

47. For each box xI in list L2 do the following. If jqi(xI)j > "q for
any i = 1; � � � ; r, put the box in list L1.

48. If any box was put in list L1 in Step 46, go to Step 3.

49. If f < +1 and there is only one box in L2; go to Step 52.

50. For each box xI in L2, if f [m(xI)] < f, try to prove existence
of a feasible point using the method described in Sections 15.4
through 15.6. Use the results to update f:
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51. Delete any box xI from L2 for which f(xI) > f.

52. Denote the remaining boxes by xI(1); � � � ;xI(s) where s is the
number of boxes remaining. Determine

F = min
1�i�s

f(xI
(i)
) and F = max

1�i�s
f(xI

(i)
):

53. Terminate.

15.13 RESULTS FROMTHEALGORITHM

At termination, if the list L2 is empty, then all of the initial box xI
(0)

has been eliminated. This provides proof that the initial box xI(0)

does not contain a feasible point.
Assume that at least one box remains in the list L2: What we

have proved in this case depends on the �nal value of f. If f < +1,
then we know that a feasible point exists in the initial box xI(0). If

f = +1; there might or might not be a feasible point in xI(0).
Consider the case f < +1: No matter how poor the bound f on

f�; we know that a global solution exists in xI(0); and it is in one of
the remaining boxes. Also, we know that

F � f� � F :

If only one box xI remains, then it must contain the global solution.
In this case,

f(xI) � f� � minff(xI); fg and f(xI)� f(xI) � "f :

Therefore,

f(x)� f� � "f
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for every point x in the box. Also,

x�i �Xi � "X and Xi � x�i � "X (i = 1; � � � ; n):

If more than one box remains, it is possible that one contains a
local solution at which f is less than our upper bound f. Also, there
might be more than one global solution occurring in separate boxes.
We know only that

F � f� � minff; Fg

and that the global minimum point(s) are in the remaining boxes.

If the �nal value of f is 1 and xI(0) is not entirely deleted, then

xI(0) might or might not contain a feasible point. We do not know. It
is highly probable that a solution exists since, otherwise, we expect

all of xI(0) to be deleted. However, we do know that if a feasible

point does exist in xI(0), then,

F � f� � F

and x� is somewhere in the remaining box(es). All local solutions in
the initial box are contained in the �nal solution box(es).

It is possible that every point in the initial box xI(0) is infeasible.

However, our algorithm can delete all of xI(0) (and thus prove there

is no solution) only if every point in xI(0) is proved to be feasible

(i.e., is certainly infeasible). Even if every point in xI(0) is certainly

infeasible, our algorithm can still fail to delete all of xI(0). This is
because it operates on boxes rather than points and this generally
introduces dependence. The probability of deleting the entire box in
this case is greater when the box size tolerance "X is smaller.

Thus, we might prove there is no feasible point in xI(0), but we
do not guarantee doing so when this is, in fact, the case.

Regardless of what procedure is used to delete a part of xI(0), we
know that the deleted part cannot contain a solution.
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A user might want a single feasible point ex such that
jjex� x�jj � "1 (15.13.1)

and/or

f(ex)� f� � "2 (15.13.2)

for some "1 and "2. Recall that x� is a (feasible) point such that
f(x�) = f� is the globally minimum value of the objective function
f .

Generally, no algorithm can assure that a single point is cer-
tainly feasible because of rounding errors in evaluating the equality
constraints. Therefore, we cannot provide a point ex that is guaran-
teed to be feasible. In Section 15.3, we described how we could prove
that some (unknown) feasible point exists in a given box. However,
we can assure that for a given point ex the equality constraints satisfy

jqi(ex)j � "q (15.13.3)

for some "q > 0 and all i = 1; � � � ; r: In the algorithm, we attempt
to assure this by requiring that

jqi(xI)j � "q (i = 1; � � � ; r) (15.13.4)

for an entire box xI . See Step 4 of the algorithm in Section 15.12.
See, also, Steps 12, 20, 25, 29, 34, 38, 40, and 41.

Note that rather than simply testing whether (14.9.4) is true,
we should apply hull consistency to the inequalities as discussed in
Section 10.10. This might reduce the box xI being tested.

In Section 15.10, we noted that a condition such as (15.13.4)
should not be used to delete points. However, it can be used as a
condition for convergence.
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In our algorithm in Section 15.12, we assure that (15.13.1), (15.13.2),
and (15.13.3) are all satis�ed. However, we do not impose condition
(15.13.4) until near the end of the algorithm. This is because it
requires more work to apply than (15.13.1) and (15.13.2).

We now distinguish the following cases.

Case 1. There is only one �nal box xI and f < +1:

Since f < +1; we know that a feasible point exists in the initial
box. Since x� is never deleted by the algorithm, it must be in the
single remaining box xI :We can choose ex to be any point in xI : Then
the stopping criteria of the algorithm assure that

jjex� x�jj � "X ;

f(ex)� f� � "f ; and

jqi(ex)j � "q (i = 1; � � � ; r) :

Case 2. There is more than one �nal box and f < +1:

Since f < +1, we know that a feasible point exists in at least
one of the �nal boxes; but we do not know which one(s). All or part
of the box in which we proved the existence of a feasible point and
obtained the �nal value of f might have been deleted. A given point
in a �nal box might be far from x� because x� is in another box.
However, any such point ex satis�es jqi(ex)j � "q (i = 1; � � � ; r) so it
must be �almost feasible�. Suppose we pick ex to be an arbitrary
point in an arbitrary �nal box. From Step 53 of the algorithm, we
have F � f(ex) � F:
Case 3. f = +1:

In this case, we do not know if there is any feasible point in the
initial box in which the algorithm began its search. However, if there
is, then Case 1 or Case 2 apply.
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15.14 DISCUSSIONOFTHEALGORITHM

A given problem will often have several or many equality constraints
qi(x) = 0 (i = 1; � � � ; r). In our algorithm, we assure that

jqi(xI)j � "q (i = 1; � � � ; r) (15.14.1)

for every �nal box xI .
We do not check that this condition is satis�ed until near the end

of the algorithm. We �rst assure that

w(xI) � "X and w (f(xI)) � "f ; (15.14.2)

for every remaining box. We do so because it generally takes much
less computing to check these condition than to check (15.14.1).

Checking is done in Step 4 (which is repeated in Steps 12, 20, 25,
29, 34, 38, 40, and 41). To check (15.14.2), we do Step 4a. When we
check (15.13.4) in Step 4b, (15.14.2) is already satis�ed (as veri�ed
using �ag F); so it is not necessary to check it again.

In Step 42, we complete the Newton step only if the precondi-
tioned coe¢ cient matrix is regular. To do so requires bounds on
the Lagrange multipliers. We do not have such bounds if the linear
normalization (13.2.1f) is used. If (13.2.1g) is used, instead, we can
complete the Newton step by using Gauss-Seidel to �solve�the pre-
conditioned equations. This might or might not improve the bounds
on the solution.

For a point x to be a solution of the optimization problem (15.1.1),
each equality constraint must be zero at x. Our algorithm assures
the computed (perhaps non-sharp) value of qi(xI) contains zero for
all i = 1; � � � ; r and for each remaining box xI . A user might want
to assure that jqi(xI)j < "q (i = 1; � � � ; r) for some "q > 0: Note
that when we apply hull consistency (see Step 5 of the algorithm)
to the constraints, we have the data necessary to evaluate qi(xI) for
the box xI in use at that time. These data are used to assure that
jqi(xI)j < "q with almost no extra computing.
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The evaluation of m(xI) and f (m(xI)) used in Steps 7, 10, 12,
15, 18, and 22 can be done in real arithmetic. Only an approximate
value is needed.

Consider a function F that can be either the objective function
f or a constraint function qi (i = 1; � � � ; r). When we apply hull
consistency to such a function, we express it as F (x) = g(xj)� h(x)
and solve for xj for some j = 1; � � � ; n. If h(x) is independent of xj
then box consistency cannot improve on the bound for xj computed
using hull consistency. When applying box consistency, we solve a
given function F for a given variable xj only if h(x) is a function of
xj .

Our overall strategy is to use those procedures �rst that require
the least computing. We continue to use the simplest procedures
as long as they make adequate progress. Thus, solving the John
conditions is done only as a last resort because it requires more
computing than the other procedures. In practice, this step might
not be needed at all to solve some problems.

We prefer not to use Taylor expansions until the current box is
su¢ ciently small that this form yields sharper bounds on the range
of a function than direct evaluation. See Section 15.11. This is why
we included Steps 23, 27, 31, and 41.

We use procedures that require expansions only when hull con-
sistency and box consistency do not make su¢ cient progress. This
implies that hull consistency is relied upon when a box is large.
Therefore, hull consistency should be implemented to be e¢ cient at
reducing large boxes.

We use expansions when trying to prove existence of a feasible
point. See Steps 10 and 17. However, we have designed the proce-
dure for proving existence so that it generates a small box in which
expansions are likely to be useful. See Section 15.4.1. Therefore, we
never bypass the e¤ort to prove existence of a feasible point.

Choosing which box xI from the list L1 to process can be done in
many ways. Experience has shown that choosing the box for which
f(xI) is least is better than choosing the smallest box or basing the
choice on �age�. See Step 3. When a box is reduced, the value of
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f(xI) can change. Therefore, whenever a box has been su¢ ciently
reduced, we check to see if it is still the one with smallest f(xI):

It is helpful to have as small a value of f as possible. However,
the work required to try to determine bounds on a feasible point is
not trivial; and it might be wasted. Therefore, we try to reduce f
only if f [m(xI)] < f: See Steps 10 and 15. This condition indicates
the existence of point(s) x 2 xI where f(x) < f independent of their
feasibility.

The nearer the upper bound f is to the minimum f�, the more
information we get about the solution. See the comments in Section
15.10. Therefore, near the end of the algorithm, we make a last
e¤ort to reduce f. See Step 49. This procedure might have already
been applied to some or all of the boxes in list L2. If so, the process
should not be repeated. However, if a feasible point is not found in
such a box, the procedure for proving existence of a feasible point
can be modi�ed. For example, the choice of variables to �x can be
altered. See Section 15.5.

Applying hull consistency to the constraint equations can elim-
inate many infeasible points. Therefore, we apply it before trying
to �nd a feasible point. We could also apply box consistency before
trying to �nd a feasible point. However, box consistency performs a
function much like that of hull consistency (with more computing).
We try to reduce f to a �nite value before applying box consistency
to the constraints. If we do so, we can apply hull consistency to
the relation f (xI) � f before applying the more work intensive box
consistency to any relations.

Suppose we apply a Newton step to the John conditions and suc-
ceed in computing a solution (because the preconditioned coe¢ cient
matrix is regular). Then we obtain bounds on the Lagrange multi-
pliers. The midpoints of these interval bounds are used as estimates
for Lagrange multiplier values in successive attempts to solve the
John conditions. These estimates are saved for use when the New-
ton step is applied to a subbox of the one for which the bounds were
computed. Such estimates can be used even if the current box is not
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a subbox of one for which estimates were originally computed.
The splitting procedure called in Step 41 uses a measure of change

in the gradient of the objective function to determine how to split
a box. The change in the gradient is not directly signi�cant in an
equality constrained problem as it is a change in the function in
Section 11.8. Nevertheless, it is a useful measure in splitting.

15.15 NONDIFFERENTIABLE FUNCTIONS

So far in this chapter, we have assumed that the objective function
and the equality constraint functions are twice continuously di¤er-
entiable. We now consider how the algorithm in Section 15.12 must
be altered when these assumptions do not hold.

If the constraints are not continuously di¤erentiable, then Steps
10 and 17 of the algorithm in Section 15.12 cannot be used. That is,
we cannot guarantee the existence of a feasible point as discussed in
Section 15.3 and 15.4.1.

An alternative might be to assume a point x is feasible if all the
constraints are satis�ed to within some error tolerance. We discussed
this possibility in Section 15.10. This would not produce guaranteed
bounds on the solution. If the constraints are continuous, it is pos-
sible to prove existence of a feasible point using hull consistency as
discussed in Section 15.4.2. If hull consistency is used for this pur-
pose, the quadratically converging implementation should be applied
in Step 39.

If the objective function is not twice continuously di¤erentiable,
we cannot apply a Newton method to solve the John conditions.
Therefore, Step 44 of the algorithm cannot be used.

Dropping procedures such as Newton�s method that require dif-
ferentiability degrades the performance of the algorithm. However,
the algorithm solves the optimization problem even when continuity
is lacking. Hull consistency provides the means.

Some nondi¤erentiable functions can be replaced by di¤erentiable
functions (plus constraints). See Chapter 18. This can resolve the
di¢ culty and facilitate proving existence of a feasible point.
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It is always better to use expansions in slopes rather than deriv-
atives because slopes produce sharper bounds. We noted in Section
7.11 that some nondi¤erentiable functions have slope expansions.
This can obviate concerns regarding di¤erentiability.
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Chapter 16

THE FULL MONTY

16.1 INTRODUCTION

We discuss inequality and equality constrained optimization sepa-
rately in Chapters 14 and 15. Separating the cases was done for
pedagogical reasons. In this chapter, we discuss the case in which
there are both inequality and equality constraints. We give an algo-
rithm for this case is Section 16.4. Before doing so, we consider some
modi�cations to some previously discussed algorithms. In Section
16.2, we discuss solving linear systems with interval coe¢ cients in
which some of the relations of the system are inequalities and some
are equalities. In Section 16.3, we discuss an extension of the proce-
dure in Section 15.4.1 for proving the existence of a feasible point in
a given box.

16.2 LINEAR SYSTEMS WITH BOTH IN-
EQUALITIES AND EQUATIONS

In Chapter 6, we described a method for solving linear systems of
inequalities with interval coe¢ cients. We now consider how this
procedure can be extended to include equalities (or equations) as
well as inequalities.
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Recall that to perform a step of Gaussian elimination for the case
of inequalities, the multiplier must be positive so as not to change
the sense of the inequality. For equalities, this is not the case. If we
use an equation as the pivotal row of the system, we can eliminate a
coe¢ cient of either an equation or of an inequality using a multiplier
that is either positive or negative.

As in Chapter 6, the �rst phase in solving the system involves
�nding a preconditioning matrix. This entails elimination for the
noninterval case.

Suppose there are r equalities and m inequalities in n unknowns
with r +m � n. Let us write the system in matrix form in which
the equalities occur �rst and the inequalities last. We then have a
system of the form

AIz = uI (16.2.1a)

BIz � vI (16.2.1b)

where AI is r by n and BI is m by n. Because the linear system is
generally a linearized version of a nonlinear system, the vector z will
generally be of the form z = y � x where x is �xed and y is sought
as the solution vector.

Since the inequalities can be of little help in solving the equalities,
we precondition and solve the system of interval equalities �rst. We
do so using the procedure in Section 15.9. If the procedure for solv-
ing the equalities reduces the box su¢ ciently (as determined using
(11.7.4)), it can be repeated before solving the inequalities.

We now list the steps used to solve the combined system of rela-
tions. We describe the procedure as if the equalities and inequalities
are solved simultaneously instead of one after the other. This sim-
pli�es the discussion of how the equalities are used to aid in solving
the inequalities.

1. If the equalities are nonlinear, linearize them to obtain the
system in (16.2.1a).
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2. If the inequalities are nonlinear, linearize them to obtain the

system in (16.2.1b). Denote RI =

�
AI

BI

�
3. Compute the approximate center Rc of RI :

4. Apply Gaussian elimination with both row and column piv-
oting to Rc to produce zeros in columns 1; � � � ; r except for
elements in positions (i; j) with i = j. Select pivot elements
from row 1; � � � ; r and columns 1; � � � ; n. To simplify the dis-
cussion, assume that no column interchanges are needed. Do
the �rst stage of generating a preconditioning matrix by doing
the same elimination steps to an identity matrix of order n.

5. Apply Gaussian elimination as described in Section 6.3 through
6.6. to produce zeros (where possible using positive multipli-
ers) in rows and columns r+1; � � � ; r+m except for elements in
positions (i; j) for i = j: Generate secondary pivot rows as de-
scribed in Section 6.5. Denote the number of secondary pivot
rows generated by m0: Select pivots from rows r+1; � � � ; r+m
and columns r + 1; � � � ; n. To simplify the discussion,assume
that no column interchanges are required. Complete the gen-
eration of the preconditioning matrix begun in Step 4. Denote
the �nal preconditioning matrix by P.

6. Replace zr+1; � � � ; zn by their interval bounds. Note that if
column interchanges were made in Step 4 or Step 5, di¤erent
variables are replaced by their interval bounds.

7. Precondition the interval system by multiplying by P to obtain
PRIz = PwI . Apply an interval version of Gaussian elimina-
tion to this system without either row or column pivoting to
zero the elements in positions (i; j) with i = m+1; � � � ;m+m0

and j = r + 1; � � � ; r +m:

8. Solve the m preconditioned equalities as follows

(a) Replace variables zm+1; � � � ; zm+r by their interval bounds.
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(b) Solve the resulting m equalities in m variables by the hull
method of Section 5.8. If the hull method fails, use the
Gauss-Seidel method of Section 5.7.

9. Solve the m + m0 interval inequalities (which involve n � m
variables) by the method of Section 6.8.

In practice, we should solve the equalities before even linearizing
the inequalities in Step 2. This produces narrower interval coe¢ -
cients in the linearized inequalities. This approach requires that we
save the linear operation used in Step 4 and 7 for use in eliminating
variables from the linear inequalities. We omit the somewhat messy
details.

When solving a system of nonlinear equalities and inequalities,
we use the procedure described in this section only if the width of
the current box satis�es a �linearization condition�as described in
Section 14.7 and discussed in Section 15.11. We use parameters wCI
and wCR de�ned and used similarly to w

g
I and w

g
R in Section 14.7.

16.3 EXISTENCE OF A FEASIBLE POINT

When solving a global optimization problem, an upper bound on the
global minimum can be used to eliminate local minima of value larger
than the upper bound. In Section 15.4.1, we discuss the problem of
proving the existence of a feasible point for the equality constrained
problem. It is necessary to prove existence to obtain an upper bound
on the global minimum. We seek to prove existence by applying
a Newton method to the constraint equalities over a box xI . If a
Newton step applied to xI produces a new box xI 0 that is contained
in xI , this proves that a feasible point exists in xI 0: See Theorem
11.15.7. Therefore, f(xI 0) is an upper bound on the global minimum
of f .

When inequality constraints also occur, we must prove that the
solution point also satis�es the inequalities. When there are equal-
ity constraints, we generally do not know a single point that satis�es
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them. We only know that the point proven to exist by the New-
ton method lies in a box xI 0. We must verify that the inequality
constraints are satis�ed over the entire box xI 0: When there are no
equality constraints, this veri�cation can be done at a single point.
See Section 14.3.

Sometimes it is possible to determine some or all of the compo-
nents of a point that satis�es the equality constraints. This is done
by �xing one or more of the variables and solving for others. We
gave an example in Section 15.5. We now consider three cases. In
the �rst case all of the variables can be determined by �xing a subset
of them. In the second case, some, but not all, of the variables can
be determined in this way. In the third case, no variables can be
determined in this way.

Assume that we are solving the optimization problem in a given

box xI(0) and denote the current subbox of interest by xI :

16.3.1 Case 1

Assume that we �x a number k of the variables and are able to
determine all of the others from the equality constraints. To do
so, we choose these k variables to have their values at the center
of xI : This serves to determine a partially prescribed and partially
computed point ex. However, it might be necessary to make rounding
errors in computing the unprescribed variables so, in practice, the
�point�might have interval components. To emphasize this fact, we
denote it by exI . If exI satis�es the inequality constraints, then any
point ex 2 exI is a feasible point. Therefore, f( exI) is an upper bound
on the global minimum f�:

Note that exI might not be in the current box xI . We consider
this to be irrelevant. We are searching for any point that gives a
good upper bound on the global minimum. The current box merely
serves to begin the determination of exI : Note also that exI might not
be in the initial box exI(0): If not, we temporarily abandon our e¤ort
to prove the existence of a feasible point. When the main program
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chooses a new box, we try again.

16.3.2 Case 2

We now consider the case in which we �x a number k of the vari-
ables and determine some, but not all, of the others so that a num-
ber s < n of the variables is either prescribed or computed. For
simplicity, assume they are the �rst s components. Thus, we know
the components X1; � � � ; Xs of some �point�. The computed com-
ponents might be intervals (to bound rounding errors) so we denote

(all of) them as intervals with capital letters. If Xi * X
(0)
i for some

i = 1; � � � ; s, we abandon our e¤ort to bound a feasible point when
starting from the current box. It might happen that no point with
components X1; � � � ; Xs intersects the current box. We consider this
to be irrelevant.

Note that after �xing certain variables and solving for others, a
subset of the equality constraints is satis�ed. Our e¤ort to prove
existence of a feasible point now involves fewer variables and fewer
equality constraints than originally occurred. We substitute the val-
ues of the �xed variables into the remaining constraints. We then
use these constraints to try to prove existence of a point that satis�es
them. We use the procedure in Sections 15.4 through 15.6. Some of
the variables are �xed as just described. The procedure in Section
15.5 �xes others.

The procedure in Section 15.4.1 generates a box in which to try
to prove existence. We choose this box so that its un�xed compo-
nents have the same relative widths as the current box xI : This is
reasonable because the widths of the components of the current box
more likely to re�ect the relative scaling of variables in the problem
than an arbitrarily chosen box.

Assume the Newton step discussed in Section 15.4 proves exis-
tence of a point satisfying the equality constraints in a box xI 0: If
this box satis�es the inequality constraints, then f(xI 0) is an upper
bound on the global minimum. If the box does not satisfy the in-
equality constraints, we abandon our e¤ort to bound a feasible point
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when starting from the current box.

16.3.3 Case 3

In our �nal case, no variables are �xed and no equality constraints
are satis�ed before we try to prove existence of a feasible point.
Now we reverse the order in which the equality and inequality con-
straints are used. It is generally easier to check whether the inequal-
ity constraints are satis�ed than to try to prove existence of a point
satisfying the equality constraints. Therefore, we �rst �nd a point
satisfying the inequality constraints; and try to prove existence of
a point satisfying the equality constraints in a box centered at this
point. If there are few equality constraints and many inequality con-
straints, it might be more economical to reverse the order as in the
two previous cases. We shall not do so.

When the main program generates a new box, we do a line search
proceeding from the center of the box in the direction of the negative
gradient of the objective function as described in Section 14.4. The
purpose of the line search is to �nd a point in the box satisfying the
inequality constraints where the objective function is smaller than
at the center of the box.

We generate a new box with this point as center but otherwise
as described in Section 15.4.1. We require that the box be in the

initial box xI(0): Therefore, the center of the box (which is the point

found by the line search) must be an interior point of xI(0):When the
algorithm in Section 14.4 succeeds in �nding a point satisfying the
inequality constraints, the algorithm denotes it by y: It also obtains
a point, which it denotes by y0, which might or might not satisfy

the inequality constraints. If y is on the boundary of xI(0), then y0

is not. In this case, y0 can be chosen as the center of the box to be
generated if y0 satis�es the inequality constraints.

We ignore the fact that the objective function is smaller at y than
at y0. If y0 does not satisfy the inequality constraints, the algorithm

in Section 14.4, can be continued to obtain an interior point of xI(0)

satisfying the inequality constraints. If no such point in the interior
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of xI(0) is found after a few steps, the procedure to prove existence
of a feasible point when starting from xI can be abandoned.

Let y denote the point that the line search �nds and that satis-
�es the inequality constraints. We assume the line search has been

modi�ed as just described so that y is an interior point of xI(0): We
now do the following steps. In these steps, the box zI changes from
step to step.

1. Generate a box zI with center y having the same relative widths
of components as the current box xI : Choose zI to have width
1
2(w

q
R + w

q
I) where w

q
R and w

q
I are de�ned in Section 15.4.1.

2. If zI extends beyond the boundaries of the initial box xI(0),
shrink it as described in Section 15.4.1 until it is contained in
xI(0):

3. If zI satis�es the inequality constraints, go to Step 8.

4. Set n = 0:

5. Replace n by n+ 1: Shrink zI by a factor of eight.

6. If zI satis�es the inequality constraints, go to Step 8.

7. If n < 8; go to Step 5. Otherwise, abandon the e¤ort to try to
�nd a feasible point.

8. Use the procedure in Sections 15.4 through 15.6 to try to prove
that there exists a point in zI that satis�es the equality con-
straints.

Note that, for a given problem, it might not be possible to �nd a
nondegenerate box that satis�es the inequality constraints. For ex-
ample, there might be only a single point satisfying them. In Section
14.9, we discuss how to treat this situation when there are no equality
constraints. We treat a subset of the inequality constraints as equal-
ities. In the current case, we simply add the equality constraints to
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the set of inequality constraints that are treated as equalities. We
then try to prove existence of the combined set of equalities using
the procedure discussed in Sections 15.4 through 15.6.

16.4 THE ALGORITHM STEPS

We now give the steps of the algorithm for the case in which both
inequality and equality constraints occur.

To initialize, we require that the user specify a box size toler-
ance "X , a function width tolerance "f , an inequality function width
tolerance "p, an equality function width tolerance "q, and the initial
box(es). Any tolerance not speci�ed is set to +1 by the program.
However, a �nite value must be speci�ed for at least one of them.
The initial box(es) are put in list L1: The algorithm provides the
parameters needed to perform any linearization test. (See Section

14.7.) It sets wfS ; w
S
S ; w

C
S , w

q
R and w

J
R to zero and sets w

f
I ; w

S
I ; w

C
I ,

wqI and w
J
I equal to w(x

I(0)): It also sets the �ag F = 0.
The steps of the algorithm are to be performed in the order given

except as indicated by branching. The current box is denoted by xI

throughout the algorithm even though it changes from step to step.

1. For each initial box xI in the list L1; evaluate f(xI). Denote
the result by [f(xI); f(xI)]:

2. If f < +1, delete any box xI from L1 for which f(xI) > f:

3. If L1 is empty, go to Step 47. Otherwise, �nd the box in L1 for

which f(xI) is smallest. For later reference, call this box xI(1):

This box is processed next by the algorithm. Delete xI(1) from
L1:

4. If �ag F = 0; go to Step 4a. If �ag F = 1, go to Step 4b.

(a) If w(xI) � "X and w[f(xI)] � "f , put xI in list L2 and go
to Step 3. Otherwise, go to the next step. Note that Step
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4 is repeated elsewhere in the algorithm. If it is called in
Step k, then �next step�refers to Step k+1: For example,
when it is actually called as Step 4, the next step is Step
5; but when it is called in Step 14, for example, the next
step is Step 15.

(b) If jpi(xI)j � "p for all i = 1; � � � ;m and jqi(xI)j � "q for
all i = 1; � � � ; r, put xI in list L2 and go to Step 3.

5. Apply hull consistency to the constraint equalities qi(x) = 0

for i = 1; � � � ; r. If it is proved that no point in xI satis�es any
one of the constraints, go to Step 3.

6. Apply hull consistency to the constraint inequalities pi(x) � 0
for i = 1; � � � ;m. If it is proved that no point in xI satis�es
any one of the constraints, go to Step 3.

7. Repeat Step 4.

8. If xI(1) (as de�ned in Step 3) has been su¢ ciently reduced (as
de�ned using (11.7.4)), put xI in list L1 and go to Step 3.

9. Compute an approximation x for the center of xI and an ap-
proximation for f(x):

10. If f(x) � f , go to Step 13.

11. For later reference, call the current box xI(2): Use the procedure
described in Section 16.3 to try to reduce the upper bound f .
Note: The box xI could be the same one used the last time
this step was used. If so, do not repeat the procedure.

12. Compute an approximate center x of xI and an approximate
value of f(x): If f(x) � f , go to Step 14.

13. Apply hull consistency (see Chapter 10) to the relation f(x) �
f . If the result is empty, go to Step 3.
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14. Repeat Step 4.

15. If xI(1) (as de�ned in Step 3) has been su¢ ciently reduced (as
de�ned using (11.7.4)), put xI in list L1 and go to Step 3.

16. Apply box consistency to the equality constraints qi(x) = 0 for
i = 1; � � � ; r and then to the inequality constraint pi(x) � 0 for
i = 1; � � � ;m. If it is proved that no point in xI satis�es any
one of the constraints, go to Step 3.

17. Compute an approximate center x of xI and an approximate
value of f(x): If f(x) � f , go to Step 20.

18. If the current box is the same box xI(2) de�ned in Step 11, go
to Step 20.

19. Use the procedure described in Section 16.3 to try to reduce
the upper bound f:

20. If f [m(xI)] � f , go to Step 22.

21. Apply box consistency to the relation f(x) � f: If the result
is empty, go to Step 3.

22. Repeat Step 4.

23. If xI(1) (as de�ned in Step 3) has been su¢ ciently reduced, put
xI in the list L1 and go to Step 3.

24. Compute an approximate center x of xI and an approximate
value of f(x): If f(x) < f , go to Step 32.

25. If w(xI) > 1
2(w

f
S + w

f
I ), go to Step 29. (See Section 15.11).

26. For later reference, denote the current box by xI(3). Apply

the linear method of Section 12.5.3 to try to reduce xI(3) using

f(x) � f: Update wfS and w
f
I : If the result is empty, go to Step

3.
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27. Repeat Step 4.

28. If xI(3) (de�ned in Step 26) was su¢ ciently reduced (as de�ned
using 11.7.4), in the single Step 26, go to Step 32. Otherwise,
go to Step 33.

29. If w(xI) > 1
2(w

S
S + w

S
I ), go to Step 33. See Section 14.7.

30. Apply the quadratic method of Section 12.5.4 to try to reduce
the current box using f(x) � f . Update wSS and w

S
I . If the

result is empty, go to Step 3.

31. Repeat Step 4.

32. If xI(1) (as de�ned in Step 3) has been su¢ ciently reduced (as
de�ned using (11.7.4)), put xI in L1 and go to Step 3.

33. If w(xI) > 1
2(w

C
S + w

C
I ), go to Step 42. (See Section 15.11.)

34. Linearize and solve the system of equality constraints as de-
scribed in Section 16.2.

35. Linearize those inequality constraints that satisfy (14.6.2). If
(14.6.2) is satis�ed, include the inequality f(x) � f . Solve
them by the method of Section 16.2, which also uses the equal-
ity constraints. Update wCS and wCI as described in Section
16.2.

36. Repeat Step 4.

37. The user might wish to bypass analytic preconditioning (see
Section 11.9). If so, go to Step 42. If analytic precondition-
ing is to be used, analytically multiply the nonlinear system
of equality and inequality constraints by the preconditioning
matrix described in Section 16.2 and computed in the com-
bined Steps 34 and 35. Do so without replacing any variables
by their interval bounds so that appropriate combinations and
cancellations can be made. After the analytic preconditioning



GLOBAL OPTIMIZATION 455

is complete, replace variables by their interval bounds as in
Steps 34 and 35.

38. Apply hull consistency to the relations derived in Step 37.
Solve the equalities only for the variables that were solved for
in Step 34. Solve the inequalities only for the variables that
were solved for in Step 35. If the result is empty, go to Step 3.

39. Repeat Step 4.

40. Apply box consistency to the relations derived in Step 37.
Solve the equalities only for the variables that were solve for in
Step 34. Solve the inequalities only for the variables that were
solved for in Step 35. If the result is empty, go to Step 3.

41. Repeat Step 4.

42. If w(xI) > 1
2(w

J
R + w

J
I ), go to Step 45, (where w

J
R and w

J
I are

de�ned as in Section 14.7 (see 14.7.1)).

43. Apply one step of the interval Newton method of Section 11.14
for solving the John conditions (13.5.1). Update wJR and w

J
I . If

the result is empty, go to Step 3. If the existence of a solution
of the John conditions is proved as discussed in Section 15.3,
then update f (as discussed in Section 15.3).

44. If xI(1) (as de�ned in Step 3) has been su¢ ciently reduced, put
xI in L1 and go to Step 3.

45. Any previous step that used hull consistency, a Newton step,
or a Gauss-Seidel step might have generated gaps in the in-
terval components of xI . Merge any such gaps when possible.
Split the box as described in Section 11.8. This might involve
deleting gaps. Place the subboxes (generated by splitting) in
the list L1 and go to Step 3.

46. If the list L2 is empty, print �There is no feasible point in xI
(0)"

and go to Step 54.
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47. If �ag F = 1, go to Step 50. Otherwise, set F = 1.

48. For each box xI in list L2 do the following. If p(xI) > "p for
any i = 1; � � � ;m or if jqi(xI)j > "q for any i = 1; � � � ; r, put
the box in list L1.

49. If any box was put in list L1 in Step 48, go to Step 3.

50. If f < +1 and there is only one box in L2; go to Step 54.

51. For each box xI in L2, if f [m(xI)] < +1, try to prove existence
of a feasible point using the method describe in Section 16.3.
Use the results to update f .

52. Delete any box xI from L2 for which f(xI) > f .

53. Denote the boxes in L2 by xI
(1); � � � ;xI(s). where s is the num-

ber of boxes in L2: Determine

F = min
1�i�s

f(xI
(i)
) and F = max

1�i�s
f(xI

(i)
):

54. Terminate.

What we learn about the solution to a problem depends on
whether or not we obtain an upper bound on the global minimum
using the procedure in Section 16.3. It also depends on whether the
output of the algorithm is one box or more than one box. What we
learn for a problem with both equality and inequality constraints is
essentially the same as for a problem with equality constraints only.
Thus, the comments following the algorithm in Section 15.12 are ap-
propriate for the algorithm of this section. There is no need repeat
them.
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Chapter 17

PERTURBED
PROBLEMS AND
SENSITIVITY
ANALYSIS

17.1 INTRODUCTION

In practice, optimization problems often involve parameters that are
uncertain. In other problems, parameters can be known exactly,
but it is of interest to know how much the solution to the problem
changes as the parameters change. In this chapter, we discuss meth-
ods for bounding the change in the solution when parameters vary
over intervals.

Perturbed problems arise, for example, when the parameters are
measured quantities and the measurements are subject to error. For
such problems, we assume bounds on the errors are known. That
is, we assume intervals are known that contain the values of the
parameters.

Small errors in data also occur because of roundo¤. For example,
the number � cannot be represented exactly. Instead we represent it
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by an interval containing its correct value and whose endpoints are
machine numbers. Such small errors do not require the methods of
this chapter.

In this chapter, we consider perturbed problems in which para-
meters are speci�ed as intervals. The intervals can be bounds on
uncertain parameters or the range over which a sensitivity analysis
is desired. We discuss how the interval optimization algorithms dis-
cussed earlier can be used to compute bounds on the set of solutions
that result when the parameters vary over the given intervals.

For other discussions of the use of interval analysis for perturbed
problems and sensitivity analysis in optimization, see Dinkel and
Tretter (1987), Dinkel, Tretter and Wong (1988), Hansen (1984),
and Ratschek and Rokne (1988).

In noninterval algorithms, a sensitivity analysis might be done by
linearizing about a nominal solution. The resulting approximation
to the problem can be poor if large changes in the parameters are
allowed. It can also be poor if small changes in a parameter produce
large changes in the solution. Moreover, the cost of linearization is
added in the form of both extra analysis and extra computing.

Our interval approach is di¤erent. To perform a sensitivity analy-
sis, we replace parameters by intervals over which the parameters are
chosen to vary. We then solve the problem in the same way as dis-
cussed in earlier chapters without changing the algorithms.

In Section 17.5, we show how to compute bounds on the set of
solution values and solution points by solving modi�ed problems.
Some extra analysis of a simple kind is required, but no additional
algorithm is needed to compute the bounds.

Consider an unperturbed problem in which the objective func-
tion and/or constraints depend on a vector c of parameters that are
independent of the variable x. To emphasize the dependence on c,
we write the problem as

minimize (globally) f(x; c) (17.1.1)

subject to
�
pi(x; c) � 0 (i = 1; :::;m)
qi(x; c) = 0 (i = 1; :::; r):



GLOBAL OPTIMIZATION 459

To exhibit dependence of the solution on c, we write the solu-
tion value as f�(c) and the solution point(s) as x�(c). Note that
f(x�(c); c) = f�(c):

In the perturbed case, we allow c to vary over an interval vector
cI . As c varies over cI , we obtain a set of solution values

f�(cI) = ff�(c) : c 2 cIg (17.1.2)

and a set of solution points

x�(cI) = fx�(c) : c 2 cIg: (17.1.3)

We wish to bound f�(cI) and x�(cI): The width of the interval
f�(cI) is a measure of the sensitivity of the problem to variation of
c over cI .

The solution set x�(cI) contains the global minimum for every
speci�c (real) choice of the parameters c satisfying the interval bounds
c 2 cI . The size of the set is a measure of the sensitivity of the solu-
tion point to variation of the parameters within their interval bounds.
Therefore, either or both of f�(cI) and x�(cI) are of interest in sen-
sitivity analysis.

If the intervals bounding the parameters are narrow, and if the
problem is not especially sensitive to perturbation, the solution set
x�(cI) is small. Therefore, it can be covered by a small number of
boxes whose width is less than the tolerance "X used in a termination
process.

As we point out in the next section, the optimization algorithms
given in previous chapters all solve perturbed problems. They pro-
duce a box or set of boxes containing the solution whether it is a
single point or an extended set.

If the perturbations are large, it can require many boxes to cover
the solution set, especially if the box size tolerance is small. In this
case, the number of boxes (and the computing time) can be excessive.

In low dimensional problems, we might want to cover the solution
set by small �pixel� boxes to obtain a kind of map of the solution
region. In fact, we might want to subdivide the intervals containing
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the parameter to sharpen the �map� of the region. The �pixel�
size of the covering boxes can be determined by specifying the box
size tolerance "X appropriately. Dependence resulting from multiple
occurrences of a parameter can cause loss of sharpness in de�ning the
boundary of the solution set. In this case, it can be desirable to split
the parameter interval into small subintervals and repeatedly solve
the optimization problem using each subinterval of the parameter.

However, a primary purpose of this chapter is to show how we can
bound the solution set without covering it by a large number of small
boxes. Instead, we compute a single box bounding the solution set
x�(cI). In addition, we bound the interval f�(cI): See Section 17.5.
The procedure is the same as the one described by Hansen (1991).

Note that the solution set x�(cI) of a perturbed problem is gen-
erally complicated in shape. In particular, it is not a box, in general.
For example, see the solution set of the linear algebraic equation,
AIx = bI in Figure 5.3.1. In this equation, the coe¢ cient matrix AI

and the right hand side vector bI are interval quantities.

The solution to this system is the same as the solution to the
problem of minimizing the function

f(x) = (AIx� bI)T (AIx� bI):

That is, the solution to this perturbed minimization problem is a
complicated set.

The algorithms in previous chapters produce a set of boxes cov-
ering such a solution set. However, either the solution set itself or
the set of boxes covering it might be inconvenient to work with, in
general. If so, a simpler indication of the sensitivity is the size of the
smallest box containing the solution set.

Thus, we introduce convenience and reduce the e¤ort by comput-
ing the smallest box containing the solution set rather than covering
the solution set with small boxes. In Section 17.5, we describe a
procedure for bounding such a box.
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17.2 THE BASIC ALGORITHMS

The global optimization algorithms described in Sections 12.14, 14.8,
and 15.12 do all the essential computations in interval arithmetic. It
is irrelevant (to the algorithms) whether parameters in the problem
are intervals or real numbers that are treated as degenerate intervals.
In this sense, all problems are perturbed problems when solved by
an interval algorithm. This argument was made in detail by Hansen
(1984).

For a perturbed problem, we replace each parameter to be per-
turbed by an interval that bounds it. The optimization algorithm
solves this problem without being modi�ed an any way.

17.3 TOLERANCES

For termination, the optimization algorithms require that the width
of each output box be less than a tolerance "X . Also, the width of
the range of the objective function over each box must not be greater
than a function width tolerance "f . The latter tolerance assures that
the �nal bound on the minimum value of the objective function is in
error by no more than "f .

A question of signi�cance is how to choose these tolerances when
solving perturbed problems. If the intervals bounding the parame-
ters are narrow and the problem is not too sensitive to parameter
changes, the solution set is small and the choice of tolerances can
essentially be made as if the problem is unperturbed. If the toler-
ances are small and the solution set is large, the solution set can be
covered by a large number of small boxes. Obtaining such a result
can be expensive in computer time and di¢ cult to interpret in more
than a few dimensions.

If the tolerances are too large, the solution set x�(cI) is poorly
de�ned and the bounds on the interval f�(cI) of solution values are
far from sharp.

We do not have a suitable procedure for choosing the tolerances.
In practice, we often use human intervention. When doing so, we
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choose the tolerance "f on the objective function be large and let
the box size tolerance "X drive the stopping criteria. We �rst solve
the problem with "X relatively large. If desired, we then continue
the solution process with a smaller value of "X , depending on how
important it is to accurately map the solution set.

When continuing with a smaller tolerance, it is not necessary
to start over with the original box. We simply place the output
boxes from the previous run in the list of boxes to be processed by
the algorithm. We then proceed as if we are starting over. The
algorithm does not repeat previous work.

A suitable stopping procedure can undoubtedly be incorporated
in our algorithm to handle perturbed problems both e¢ ciently and
automatically. We have spent little e¤ort trying to determine how
to do so.

17.4 DISJOINT SOLUTION SETS

As parameter values change, the location of the global minimum can
change discontinuously. This can happen when a local minimum
becomes global while the global minimum becomes local. Examples
are given in Sections 17.7 and 17.8.

A virtue of the interval algorithms given in the previous chapters
is that such a case does not a¤ect their behavior. Any point that
is a global solution for any values of the parameters within their
bounding intervals is contained in the solution set. The solution set
can be composed of disjoint subsets.

17.5 SHARP BOUNDS FOR PERTURBED
OPTIMIZATION PROBLEMS

Two di¢ culties arise in our optimization algorithm when the prob-
lem is perturbed. In this section, we describe these di¢ culties and
then show how they can be avoided by modifying our de�nition of a
solution.
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The �rst di¢ culty is that when parameters in the objective func-
tion enter as intervals, dependence (see Section 2.4) can cause loss
of sharpness in a computed value of the objective function. This, in
turn, can cause the computed solution set to be larger than the true
solution set.

The second di¢ culty has already been mentioned. If the box size
tolerance is small, a large number of boxes is generally required to
cover the solution set of a perturbed problem.

Rather than computing many small boxes to cover the solution
set, we can simply compute the smallest box containing it. In this
section, we consider how to compute sharp bounds on such a box.
We also consider how to sharply bound the set of solution values
f�(cI) de�ned by (17.1.2).

By modifying the de�nition of a solution, we are able to replace
the perturbed problem by a set of unperturbed problems. In appro-
priate cases (described below), this enables us to solve the modi�ed
problem as sharply as arithmetic precision permits.

We separate the solution procedure into two phases. In the �rst
phase, we solve the original problem (17.1.1) with the real vector c
replaced by the interval vector cI bounding it.

When doing so, we use relatively large values of the stopping
tolerances "X and "f . As a result, the output is a small number of
relatively large boxes covering the solution set x�(cI): That is, we
do not do the excessive amount of computing required to cover the
solution set by a large number of small boxes. The price we pay
is that the solution set x�(cI) is poorly de�ned because the output
boxes contain a relatively large set of points that are not in x�(cI).
In addition, the interval f�(cI) is only loosely bounded.

Let xI 0 denote the smallest box containing the set of boxes com-
puted as output of the �rst phase. Generally, xI 0 is much smaller

than the original box xI(0) over which the problem is to be solved.
In the second phase, we compute sharp bounds on f�(cI) and on

the smallest box xI�(cI) containing x�(cI). In doing so, we restrict
our search to the box xI 0. Since xI 0 is relatively small, the search is



464 CHAPTER 17. PERTURBATIONS AND SENSITIVITIES

rapid.
The second phase involves solving separate problems for a lower

and for an upper bound on f�(cI): It also involves separate problems
for each lower and each upper bound on each component of x�(cI):
Thus, we solve 2n+2 problems in the second phase if we want all the
components of x�(cI) and both lower and upper bounds on f�(cI).

We now consider that part of the second phase in which we bound
f�(cI). A lower bound on the set of values of f� can be obtained by
solving the problem

Minimize
x;c

(globally) f(x; c)

subject to

8<:
pi(x; c) � 0 (i = 1; :::;m)
qi(x; c) = 0 (i = 1; :::; r)

c 2 cI ; x 2 xI 0

This problem di¤ers from the original problem (17.1.1) in that
the components of c have become independent variables. In addition,
the constraint c 2 cI has been added. The globally minimum value
of f for this problem is obviously the desired lower bound on f�(cI):
Since this new problem is not a perturbed one, it can be solved as
accurately as desired subject only to rounding error limitations.

As noted earlier, we solve this problem over the box xI 0, which
crudely bounds x�(cI) and is a relatively small box. Also, the box
cI is relatively small in general. Therefore, while the new problem is
in higher dimension than the original one (17.1.1), we can expect it
to be quickly solved.

Obtaining an upper bound on f�(cI) is a more complicated prob-
lem. We want the global solution to

Maximize
c2cI

minimum
x2xI 0

f(x; c) (17.5.1)

subject to
�
pi(x; c) � 0 (i = 1; :::;m);
qi(x; c) = 0 (i = 1; :::; r):
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The box xI 0 computed in the �rst phase of our procedure contains
the global solution to problem (17.1.1) for every c 2 cI . Assume that
xI 0 does not also contain a local (i.e., nonglobal) solution of (17.1.1)
for any c 2 cI .

A solution of (17.1.1) satis�es the John conditions �(t) = 0

where �(t) is given by (13.5.1) and

t =

0@ x
u
v

1A
where u and v are vectors of Lagrange multipliers. To emphasize
that our problem now depends on the parameter vector c, we now
write the John conditions as �(t; c) = 0. We call a point satisfying
�(t; c) = 0 a John point.

We make use of the following assumption:

Assumption 17.5.1 For any given c 2 cI ; any point in xI 0 that is
a John point is a global solution of (17.1.1).

In Section 17.6, we demonstrate how we can show this assump-
tion is true using cases described therein. As we also demonstrate,
Assumption 17.5 cannot generally be validated if the global solution
point changes discontinuously as c varies over cI .

If Assumption 17.5 is valid, we can compute an upper bound on
f�(cI) by solving the following problem:

Maximize
t;c

(globally) f(x; c) (17.5.2)

subject to
�
�(t; c) = 0
c 2 cI :

When solving this problem, we restrict the search to points x 2 xI 0:
If Assumption 17.5 is not valid, the solution to this problem is

for a John point that is a local (nonglobal) solution. Therefore, the
solution to (17.5.2) yields an unsharp upper bound on f�(cI).
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When Assumption 17.5 is valid, we can formulate unperturbed
problems to compute the smallest box xI�(cI) containing the solution
set of the perturbed problem. To compute the left endpoint of a
component of xI�i (c

I) (i = 1; :::; n) of xI�(cI), we solve

Minimize
t;c

(globally) xi (17.5.3)

subject to

8>><>>:
pi(x; c) � 0 (i = 1; :::;m)
qi(x; c) = 0 (i = 1; :::; r)
�(t; c) = 0
c 2 cI :

To compute the right endpoint of xI�i (c
I); we solve

Maximize
t;c

(globally) xi (17.5.4)

subject to

8>><>>:
pi(x; c) � 0 (i = 1; :::;m)
qi(x; c) = 0 (i = 1; :::; r)
�(t; c) = 0
c 2 cI :

The solutions to problems (17.5.3) and (17.5.4) yield lower and upper
bounds on xI�i (c

I); respectively. However, if Assumption 17.5 is not
valid, these bounds might not be sharp.

Note that to compute both endpoints of components xI�i (c
I) for

all i = 1; :::; n, we must solve 2n problems. However, each problem is
relatively easy to solve because the search for a solution is restricted
to the small region xI 0:

Note, also, that since xI 0 is small, it is unlikely that there is a
local (nonglobal) minimum for the initial problem (17.1.1) in xI 0.
That is, Assumption 17.5 is likely to be valid for most problems in
practice. However, we give examples in Sections 17.7 and 17.8 for
which Assumption 17.5 is not valid. In Section 17.6, we show how
Assumption 17.5 can sometimes be validated in practice.

When doing a sensitivity analysis of a particular problem, we
might not want to allow all the components of c to vary simulta-
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neously. Instead, we might wish to perturb various subsets of the
components of c. In this case, we can proceed as follows.

First, choose cI so that it contains all perturbations of all the
�interesting� components of c. Do the �rst phase of the algorithm
as described above. Let xI 0 denote the smallest single box containing
the output box(es) of the �rst phase.

For each perturbed problem involving subsets of c, the box con-
taining the perturbed parameters is contained in cI . Hence, the set
of output boxes for each subproblem is contained in xI 0. Therefore,
for each subproblem, the search in the �rst phase can be restricted to
xI 0. Since xI 0 is generally smaller than the original region of search,
this can save a considerable amount to computing.

17.6 VALIDATING ASSUMPTION 17.5

For some problems, we can validate Assumption 17.5. In this section,
we show how this can be done. We �rst note that in certain cases
our validation procedure cannot be successful.

Suppose we solve a given perturbed problem. That is, we replace
c by the box cI and solve the optimization problem using an interval
method from Section 12.14, 14.8, 15.12, or 16.4. Suppose the output
boxes from this phase can be separated into two (or more) subsets
S and S0 that are strictly disjoint. That is, no box in S touches
any box in S0: Then it is possible that, as c varies over cI , a global
minimum jumps discontinuously from a point in S to a point in S0

while the point in S becomes a local minimum. In such a case, the
output boxes from the �rst phase contain John points that are not
global minima for all c 2 cI :

In the second phase of our algorithm to bound f�(cI) and xI�(cI),
we solve the problems in Section 17.5. In the case we are considering,
these problems do not yield sharp bounds on either f�(cI) or xI�(cI).
This remains true even if the problems are solved separately over
each component of the disjoint sets of boxes that are output in the
�rst phase of our algorithm.
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Suppose the output of the �rst phase is composed of disjoint sets
of boxes. It is quite possible that the John points in all the output
boxes are global minima. Unfortunately, however, there seems to be
no way to determine whether this is the case or whether some of the
John points are local minima.

Therefore, in this case, it seems we must use one of two options,
First, we can use the second phase and accept the fact that the
bounds computed for f�(cI) and xI�(cI) might not be sharp. Sec-
ond, we can continue with the �rst phase using smaller termination
tolerances and cover the solution set of the original problem (17.1.1)
by a large number of small boxes.

We now consider the favorable case in which the box(es) com-
puted in the �rst phase do not form strictly disjoint subsets. We
are sometimes able to prove that the solutions to the problems in
Section 17.5 yield sharp bounds on f�(cI) and xI�(cI). The proof
relies on the following theorem.

Theorem 17.6.1 Let f(x) be a continuously di¤erentiable vector
function. Let J(x) be the Jacobian of f(x). Suppose we evaluate the
Jacobian over a box xI. Assume J(xI) does not contain a singular
matrix. Then the equation f(x) = 0 can have no more than one
solution in xI.

Proof. Assume there are two solutions, x and y, of f(x) = 0.
From Section 7.3 or 7.4,

f(y) 2 f(x) + J(xI)(y � x):

Let J0 be a matrix in J(xI) such that equality holds in this relation.
Since x and y are zeros of f ,

J0(y � x) = 0:

Since every matrix (including J0) in J(xI) is nonsingular, it follows
that y = x. That is, any zero of f in xI is unique.

We use the following corollary of this theorem.
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Corollary 17.6.2 Suppose the function f in Theorem 17.6.1 de-
pends on a vector c of parameters. Suppose we replace c in f and in
J by a box cI containing c. If J(xI ; cI) does not contain a singular
matrix, then any zero of f(x; c) in xI is unique for each c 2 cI :

Proof. Note that J(xI ; c) 2 J(xI ; cI) for any c 2 cI : Therefore,
if J(xI ; cI) does not contain a singular matrix, neither does J(xI ; c)
for any c 2 cI : Hence, Corollary 17.6.2 follows from Theorem 17.6.1.

We now consider how we can prove that J(xI ; cI) does not contain
a singular matrix. As when preconditioning a linear system (see
Section 5.6), we multiply J(xI ; cI) by an approximate inverse B of
its center. We obtain M(xI ; cI) = BJ(xI ; cI): If M(xI ; cI) does not
contain a singular matrix (i.e., is regular), then neither does J(xI ; cI).
Therefore, we can check the validity of Corollary 17.6.2 by using
M(xI ; cI) rather than J(xI ; cI).

If B andM(xI ; cI) are exact, the center ofM(xI ; cI) is the iden-
tity matrix and the o¤-diagonal elements are centered about zero.
As a result, M(xI ; cI) tends to be diagonally dominant. A simple
su¢ cient test for regularity of M(xI ; cI) is to check for diagonally
dominance. A necessary and su¢ cient but more computationally
intense test is given by Theorem 5.8.1. See Section 5.8.2 for a dis-
cussion of how to use Theorem 5.8.1 in practice.

If M(xI ; cI) is regular, then from Corollary 17.6.2, there is at
most one solution of f(xI ; cI) = 0 in xI for each c 2 cI :

We now apply this analysis to the question of whether a John
point in a given box is unique. If so, we are sometimes able to prove
that any John point in a box of interest is a global minimum for
some value of c 2 cI : We are successful if the result of the Newton
step is contained in the input box. See Proposition 11.15.5.

Again let xI 0 denote the smallest box containing the output box(es)
from the �rst phase of our minimization algorithm applied to a per-
turbed problem.

Let �(t; c) denote the John function given by (13.5.1) and dis-
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cussed in Section 17.5. Recall that

t =

0@ x
u
v

1A
where u and v are vectors of Lagrange multipliers. The variable
t takes the place of the variable x used when discussing Corollary
17.6.2. Let J(t; c) denote the Jacobian of f(t; c) as a function of t.
We can use this Jacobian as described above to prove that any John
point in xI 0 is a global minimum for some c 2 cI . Proof is obtained
only if the result of the Newton step is contained in the input box.
See Proposition 11.15.5.

Note that a subroutine is available for evaluating the Jacobian
(and multiplying by an approximate inverse of its center) when doing
the �rst stage of the algorithm in Section 17.5. Therefore, only a
small amount of coding is needed to test the hypothesis of Corollary
17.6.2.

17.7 FIRST NUMERICAL EXAMPLE

In this and the next two section, we discuss examples that illustrate
our method for solving perturbed problems.

As a �rst example, we consider the unconstrained minimization
problem with objective function

f(x1; x2) = 12x
2
1 � 6:3x41 + cx61 + 6x1x2 + 6x22:

For c = 1, this is (the negative of) the so-called three hump camel
function. See (for example) Dixon and Szegö (1975).

Let the coe¢ cient (i.e., parameter) c vary over the interval [0:9; 1]:
For all c for which 0:945 < c � 1, the global minimum is the single
point at the origin; and f� = 0 at this point. For c = 0:945, there
are three global minima. One is at the origin. The others are at
�(a;�a=2) where a = (10=3)1=2:
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For c < 0:945, there are two global minima at �(b;�b=2) where

b =

"
4:2 + (17:64� 14c)1=2

2c

#1=2
: (17.7.1)

At these points, f takes the negative (minimal) value

f� =
22:05c� 18:522 + (3:5c� 4:41)(17:64� 14c)1=2

c2
: (17.7.2)

The smallest value of f� for c 2 [0:9; 1] occurs for c = 0:9 for which
f� = �1:8589, approximately.

Consider perturbing the problem continuously by letting c in-
crease from an initial value of 0:9. Initially, there are two global so-
lution points that move along (separate) straight lines in the x1; x2
plane until c = 0:945: As c passes through this value, the global
minimum jumps to the origin and remains there for all c 2 [0:945; 1]:

A traditional perturbation analysis can detect the changes in the
global minimum as c increases slightly from c = 0:9 (say). However,
an expansion about this point cannot reveal the nature of the dis-
continuous change in position of the global minimum as c varies at
and near the value 0:945:

The algorithm in Section 12.14 solves this problem without di¢ -
culty. Unfortunately, if termination tolerances are small, the output
consists of an undesirably large number of boxes.

For cI = [0:9; 1], the set x�(cI) of solution points consists of three
parts. One part is the origin. Another is the line segment joining
the two points of the form (y;�y=2) where y = (10=3)1=2 at one

endpoint and y = f[21 + (126)1=2]=9g1=2 at the other endpoint. The
third part of the set is the re�ection of this line segment in the origin.

The interval algorithm does not reveal the value of c at which the
global point jumps discontinuously. However, it bounds the solution
set for all c 2 [0:9; 1] as closely as prescribed by the tolerances.

We ran this problem with c replaced by [0:9; 1]. The initial box

had componentsX(0)
1 = X

(0)
2 = [�2; 4]: The function width tolerance



472 CHAPTER 17. PERTURBATIONS AND SENSITIVITIES

"f was chosen to be large so that termination was determined by the
box size tolerance "X . Thus, we chose "f = 105:

We chose "X to have the relatively large value 0:1 so that only a
few boxes were needed to cover the solution set. As is generally de-
sired for the �rst stage of the two-stage process described in Section
17.5, we obtained rather crude bounds on the solution set.

The data for this example were computed using an algorithm
similar to but less sophisticated than the one in Section 12.14. The
algorithm produced a set of 11 boxes covering the solution set. The
smallest box covering one subset of the exact solution is�

[1:825; 1:893]
0:9128; 0:9462]

�
: (17.7.3)

This solution set was covered by �ve �solution�boxes. The smallest
box containing these �ve boxes is�

[1:739; 1:896]
0:856; 0:968]

�
:

The interval components of this box are too large by roughly the size
of the tolerance "X .

The re�ection (in the origin) of the exact solution set (17.7.3) is
also a solution set. It was covered by �ve �solution�boxes in much
the same way.

The third subset of the exact solution is the origin. It remains an
isolated solution point as c varies. It is a global solution for all c 2
[0:945:1]. Its location was computed precisely and is guaranteed to
be exact because the bounding interval components are degenerate.

The bounds on the set of values of f� were computed to be the
interval [�4:781; 0]: The correct interval is [�1:859; 0]: Since we chose
"f = 10

5, the algorithm was not con�gured to produce good bounds
on the interval f�(cI): The more stringent box size tolerance "X = 0:1
kept the bounds on f�(cI) from being even worse. When we choose
"X smaller, we incidentally bound f�(cI) more sharply.
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With a smaller value of "X , the algorithm produces a larger num-
ber of smaller boxes covering the solution set more accurately and
produces a narrower bound on f�(cI).

Note that even with the loose tolerances used, the algorithm cor-
rectly computed three disjoint sets covering the three correct solution
sets.

Since the set of output boxes formed strictly disjoint subsets, we
must allow for the possibility that the global solution points move
discontinuously as c varies. This implies that the John points in the
output boxes can correspond to local (nonglobal) minima for some
values of c 2 cI : For this example, we know that this is, in fact,
the case. Generally, however, we do not know the nature of such a
solution.

If we apply the method of Section 17.5 to bound f�(cI) for each
of the three �solution� regions separately, we obtain the approx-
imate bounding interval [�1:8589; 5:4359]. Outwardly rounded to
�ve decimal digits, the correct interval is [�1:8589; 0]. To compute
a reasonably accurate result, "X must be considerably smaller than
the 0:1 value used above. Alternatively, "f can be chosen smaller.

17.8 SECOND NUMERICAL EXAMPLE

We now consider a second example. It adds little to our under-
standing of the subject of this chapter. However, it is another easily
analyzed example with which to research global optimization algo-
rithms.

Our example is an inequality constrained minimization problem.
The objective function is

f(x1; x2) = 12x
2
1 � 6:3x41 + cx61 + 6x1x2 + 6x22
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as in Section 17.7. We impose the constraints

p1(x) = 1� 16x21 � 25x22 � 0;

p2(x) = 13x
3
1 � 145x1 + 85x2 � 400 � 0;

p3(x) = x1x2 � 4 � 0:

As in Section 17.7, we replace c by the interval [0:9; 1].
For this problem, the position of the global minimum again jumps

discontinuously as c varies. The jump occurs at c = c0 where c0 =
0:95044391;approximately.

For c0 � c < 1, the global minimum occurs at two points on the
boundary of the feasible region where p1(x) = 0. For c = c0, these
two points are still global, and there are two other global minima
in the interior of the feasible region. For 0:9 � c < c0; only the two
minima in the interior are global.

The minima in the interior are at �(b;�b=2) where b is given by
(17.7.1). The value of the objective function at these points is given
by (17.7.2).

It can be shown that the minima on the boundary of the feasible
region where p1(x) = 0 are at �(x1; x2) where x1 satis�es

(81:6x1 � 126x31 + 30cx51)(1� 16x21)1=2 � 6 + 192x21 = 0

and

x2 = �(1� 16x21)=5:

The value of the minimum at these points depends very little on
c. For c = 0:9; the global minimum is f� = 0:199035280 and for
c = 1, f� = 0:199035288 approximately. The value of x1 for c = c0

is 0:06604161 and for c = 1 it is 0:066041626 approximately.
The smallest boxes containing the set of points of global mini-

mum as c varies over [0:9; 1] are (when outwardly rounded)

�
�
[0:0660416; 0:0660417]
[�0:192896;�0:192895]

�
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and

�
�

[1:81787; 1:89224]
[�0:946118;�0:908935]

�
:

We solved this problem by an algorithm that di¤ers somewhat
from the one given in Section 14.8. For reasons given in Section 17.3,
we want "f to be large. We chose "f = 105: We again regard the
computations to be the �rst stage of the two stage process given in
Section 17.5. For such a computation, we want "X to be relatively
large. We chose "X = 0:05:

The algorithm produced a set of 92 boxes as the solution. One
isolated box is approximately�

[0:0625; 0:0750]
[�0:2040;�0:1779]

�
:

Another isolated box is approximately the negative of this one. They
contain the minima on the boundary of the feasible region.

One set of 76 contiguous boxes is isolated from all the other out-
put boxes. The smallest box containing all of them, when outwardly
rounded is

yI =

�
[1:7472; 1:8923]

[�0:9611;�0:8679]

�
:

The remaining set of 14 boxes is contained in a single box that is
approximately the negative of this one.

Because of the loose tolerances used, the results do not bound the
solution sets very tightly. The �rst output box above bounds a solu-
tion that is insensitive to perturbation of c: Therefore the computed
result can be greatly improved by making the tolerance smaller.

Let yI denote the box containing the 76 contiguous output boxes
as given above. This box bounds a solution that is more sensitive
to c�s perturbation. The width of yI is 0:1451, while the correct
solution can be bounded by a box of width 0:0743. The individual
boxes from which yI is determined satisfy the convergence criteria
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and hence are each of width � 0:05: However, the size of the box
covering their union is determined by the problem itself and cannot
be changed by choosing a tolerance.

Since the output consists of strictly disjoint subsets, we cannot
expect Assumption 17.5 of Section 17.5 to be satis�ed. As in the
example in Section 17.7, we must either be satis�ed with poor bounds
on f�(cI) and xI�(cI) or else continue with the �rst phase of our
algorithm using a smaller box size tolerance.

17.9 THIRD NUMERICAL EXAMPLE

We now consider an example of a perturbed problem that arose in
practice as a chemical mixing problem. It is an equality constrained
least squares problem given by

Minimize (globally) f(x) =
18X
i=1

(xi � ci)2

subject to x1x9 = x2x14 + x3x4

x1x10 = x2x15 + x3x5

x1x11 = x2x16 + x3x6

x1x12 = x2x17 + x3x7

x1x13 = x2x18 + x3x8

x4 + x5 + x6 + x7 + x8 = 1

x9 + x10 + x11 + x12 + x13 = 1

x14 + x15 + x16 + x17 + x18 = 1

x14 = 66:67x4

x15 = 50x5

x16 = 0:015x6

x17 = 100x7

x18 = 33:33x8:
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The parameters ci and their uncertainties "i are given in the following
table.

i ci � "i i ci � "i
1 100� 1:11 10 0:66� 0:017
2 89:73� 1:03 11 0:114� 0:0046
3 10:27� 0:51 12 0:002� 0:0001
4 0:0037� 0:00018 13 0:004� 0:00012
5 0:0147� 0:0061 14 0:245� 0:0067
6 0:982� 0:032 15 0:734� 0:02
7 0� 0 16 0:0147� 0:0061
8 0:0001� 0 17 0:0022� 0:0001
9 0:22� 0:0066 18 0:0044� 0:0013

We used the constraints to eliminate variables and write the prob-
lem as an unconstrained problem in �ve variables. We �rst solved
the unperturbed case. The minimum value of f was found to be
f� = 3:07354796� 10�7 � 2� 10�15: We then solved the perturbed
case. and obtained a set of 59 boxes covering the solution set. The
smallest single box (call it xI 0) containing the 59 boxes is given in the
following table. We obtained the interval [0; 2:556] bounding f�(cI):

i X 0
i i X 0

i

1 [96:2; 103:8] 10 [0:6046; 0:7207]
2 [87:7; 91:7] 11 [0:0603; 0:1638]
3 [8:47; 12:07] 12 [�0:0174; 0:0237]
4 [0:0035; 0:00348] 13 [�0:0109; 0:0205]
5 [0:0142; 0:0152] 14 [0:2338; 0:2559]
6 [0:98142; 0:98147] 15 [0:7122; 0:7556]
7 [�0:000205; 0:000249] 16 [0:0147; 0:0148]
8 [�0:000384; 0:000645] 17 [�0:0205; 0:0249]
9 [0:1983; 0:2440] 18 [�0:0128; 0:0215]

As pointed out above, we used the equality constraints to elim-
inate variables and obtain an unconstrained optimization problem.
Therefore, the Jacobian for the function �(x; c) expressing the John
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conditions (see Section 17.6) is just the Hessian of the objective func-
tion. As described in Section 17.6, we veri�ed that the Hessian (with
c replaced by cI) does not contain a singular matrix. Therefore, we
know that the method described in Section 17.5 yields sharp bounds
on f�(cI) and xI�(cI). We did not do the computations.

17.10 AN UPPER BOUND

In Section 12.5, and elsewhere, we discuss how we can use an upper
bound f on the global minimum to improve the performance of our
global optimization algorithm. In this section, we consider an arti�ce
in which we preset f to zero in certain examples. We then give an
example that shows why this is particularly helpful in the perturbed
case.

For simplicity, we consider the unconstrained case. Suppose we
wish to minimize f(x; cI) where cI is a nondegenerate interval vector.
We apply the algorithm given in Section 12.14.

Assume we know that f(x; c) is nonnegative for all values of x
and c of interest. Suppose we also know that f(x�; c) = 0 for all
c 2 cI , where x� is the point of global minimum. Then we know that
f�(cI) = 0: Therefore, we set f = 0:

Least squares problems are sometimes of this type of problem. It
can be known that the squared functions are consistent and, hence,
that f�(cI) = 0: For example, see Walster (1988).

As described in Section 12.5, our algorithm deletes points of an
original box in which f(x; cI) > f. The smaller f, the more points
that can be deleted in a given application of the procedure. Thus,
it is advantageous to know f�(cI) when the algorithm is �rst ap-
plied. Often, the �rst value of f computed by the algorithm is much
larger than f�(cI). Values of f closer to f�(cI) are computed as the
algorithm proceeds.

We know f�(cI) = 0. In addition to speeding up the algorithm,
this also saves the e¤ort of repeatedly trying to improve f. But, in
the perturbed case, there is another advantage. When we evaluate
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f(x; cI) at some point x, we obtain an interval. The upper endpoint
of this interval is an upper bound for f�(cI): But even if we evaluate
f(x; cI) at a global minimum point x�, the upper endpoint of the
interval is not f�. It is larger because the uncertainty imposed by
the interval cI precludes the interval f(x�; cI) from being degenerate.

Therefore, we can never compute an upper bound f equal to
f�(cI) by evaluating f(x; cI). Knowing f� = 0 and setting f = 0
provides an advantage not otherwise obtainable.

We now consider an example. In Section 17.1, we pointed out
that the problem of solving the set of equations AIx = bI can be
recast as the least squares problem of minimizing

f(x; cI) = (AIx� bI)T (AIx� bI):

Here, the parameter vector cI is composed of the elements of AI and
the components of bI .

Consider the system given in Equation (5.3.1). The solution set
is shown in Figure 5.3.1. The smallest box containing the solution
set is �

[�120; 90]
[�60; 240]

�
:

When we evaluate f(x; cI) at some point x, we obtain an interval
[f(x; cI); f(x; cI)]: It can be shown that the smallest value of f(x; cI)
for any x is 2862900=121; which is approximately 23660:33. Suppose
we compute f equal to this best possible value we can compute.

Suppose we then delete all points x where f(x; cI) > f. The
smallest box that contains the remaining points can be shown to be�

[�291:98; 243:82]
[�277:53; 457:53]

�
:

If we rely only on the procedure that uses f to delete points, the
computed solution is much larger than it is possible to compute by
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including other procedures. The other procedures in the optimiza-
tion algorithm delete whatever remaining points they can that are
outside the solution set.

If we set f = 0, then deleting points where f(x; cI) > f can delete

all points not in the solution set. That is, the subroutine using f can
contribute to the progress of the algorithm as long as points remain
that are not in the solution set.

17.11 SHARPBOUNDS FORPERTURBED
SYSTEMS OF NONLINEAR EQUA-
TIONS

We discussed perturbed systems of nonlinear equations of one vari-
able in Section 9.10 and the multivariable case in Section 11.17. In
this section, we discuss how such problems can be recast as optimiza-
tion problems. We can then use the methods discussed earlier in this
chapter to compute sharp bounds on the smallest box containing the
solution set.

Consider a perturbed problem

f(x; cI) = 0 (17.11.1)

where f is a vector of nonlinear functions and x is a vector of the
same number of dimensions. The interval cI can be a scalar or vector.
We replace this problem by

Minimize f(x; cI) (17.11.2)

where

f(x; cI) = [f(x; cI)]T f(x; cI):

Pintér (1990) suggests solving unperturbed systems of nonlinear
equations by recasting them as global optimization problems. He
does not use interval methods. He considers more general norms
than least squares.
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We can apply the method described in Section 17.5 to solve
(17.11.2) and thus compute sharp bounds on the smallest box con-
taining the set of solutions of f(x; cI) = 0:

It is reasonable to assume that (17.11.1) has a solution for all
c 2 cI . However, we need assume only that there exists at least
one c 2 cI for which a solution exists. Under this assumption, the
globally minimum value f� of f is zero.

In Section 12.5, we discussed how an upper bound f on the global
minimum f� can be used in our optimization algorithm. Since we
know that f� = 0, we set f = 0. As pointed out in Section 17.10,
this improves the performance of our algorithm.
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Chapter 18

MISCELLANY

18.1 NONDIFFERENTIABLE FUNCTIONS

In this chapter, we discuss some short topics that do not �t conve-
niently into previous chapters. We begin with a discussion of non-
di¤erentiable objective functions.

As we have pointed out earlier, the simplest interval methods for
global optimization do not require that the objective function or the
constraint functions be di¤erentiable. However, the most e¢ cient
methods require some degree of continuous di¤erentiability. It is
sometimes possible to replace problems involving nondi¤erentiable
functions with ones having the desired smoothness.

We now consider two such reformulations from Lemaréchal (1982).
We then introduce two more general reformulations.

In what follows in this section, the letter x denotes a vector of
precisely n variables. This remains true even after we introduce
additional variables xn+1, xn+2, etc.

Consider the unconstrained minimization problem

Minimize f(x) =
mX
i=1

jfi(x)j (18.1.1)

in n variables. Note that jfi(x)j is not di¤erentiable where fi(x) =
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0: Lemaréchal reformulates the problem as the following inequality
constrained problem in n+m variables.

Maximize
n+mX
i=n+1

xi (18.1.2)

subject to
�
fi(x) � xn+i (i = 1; � � � ;m)
�fi(x) � xn+i (i = 1; � � � ;m):

The di¤erentiability of this new problem is limited only by the dif-
ferentiability of the functions fi (i = 1; � � � ;m).

Next, consider the minimax problem

Minimize maximum
i=1;��� ;m

fi(x): (18.1.3)

Lemaréchal notes that this problem can be reformulated as

Minimize xn+1 (18.1.4)

subject to fi(x) � xn+1 (i = 1; � � � ;m):

Note that in each of Lemaréchal�s reformulations, it is necessary
that at least one of the introduced constraints be active at the so-
lution. This is ensured by the fact that the objective function is
minimized for each problem.

With Lemaréchal�s reformulations, we are able to replace the
absolute value function and the max function by di¤erentiable func-
tions provided they occur in the objective function. We now give
di¤erent reformulations that allow these functions to occur in the
constraints of the original problem as well as in more general forms
in the objective function.

We �rst consider the absolute value function. Suppose the func-
tion jt(x)j occurs somewhere in the statement of a given optimization
problem. We replace jt(x)j by a new variable xn+1 and add the con-
straints xn+1 � 0 and

[t(x)]2 � x2n+1 = 0: (18.1.5)
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The presence of the constraint (18.1.5) causes xn+1 to take on
the required value of jt(x)j at the solution point. Lemaréchal�s use
of inequality constraints allows slack at the solution, in general.

Next, we consider the max function. We begin by noting that

maxft1; t2g = 0:5(t1 + t2 + jt1 � t2j):

Using this relation and our procedure for replacing the absolute value
function, we can replace maxft1; t2g by 0:5[t1(x) + t2(x) + xn+1] if
we add the constraints xn+1 � 0 and

[t1(x)� t2(x)]2 � x2n+1 = 0:

This enables us to treat the max of two functions. If there are
more than two functions, we can use the relation

maxft1; t2; t3g = maxft1;max(t2; t3)g

recursively.
Note that the minimum of two or more functions can be treated

by using the relation

minff1; f2g = �maxf�f1;�f2g:

These procedures produce di¤erentiability at the expense of added
variables. Therefore, we have two options. First, we can solve the
original problem using a simple (and hence slow) interval algorithm
that does not require di¤erentiability. Second, we can solve a re-
formulated problem involving more variables using a more e¢ cient
algorithm.

It is not clear which option is best for a given problem. However,
it seems probable that the second approach requires less computing,
in general.

The minimax problem with or without inequality constraints can
be solved directly by interval methods. That is, a reformulation such
as that described above is not needed. See Wolfe (1999).
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Optimization problems with certain max-min constraints can also
be converted to standard optimization problems by a method given
by Kirjner and Polak (1998). Their method is applicable when the
constraints have the form

max
k2R

min
j2Qk

f jk(x)

where R is the set of integers f1; � � � ; rg for some integer r and for
any k 2 R, Qk is a set of integers f1; � � � ; qkg.

18.2 INTEGERANDMIXED INTEGERPROB-
LEMS

The approach to the global optimization problem that we have used
is applicable to problems in which some or all of the variables are
required to take integer values only. In this section, we brie�y discuss
such problems.

As we have pointed out before, our approach to solving a global

optimization problem is as follows: Begin with a box xI(0) in which
the solution is sought. Delete subboxes that can be proved (using
interval methods) not to contain the global solution. Continue until
the remaining set of points is small.

For simplicity, assume that all variables must take integer values.
First consider imposing this condition on the unconstrained problem.

We can delete or reduce a subbox xI of xI(0) using the following
procedures.

1. For any box xI generated during the application of the algo-
rithm, reduce each interval component until its endpoints are
integers.

2. If the i-th component of the gradient of f is positive (negative),
replace the i-th component Xi of xI by the degenerate interval
equal to the smallest (largest) integer in Xi. Compare the
procedure in Section 12.4.
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3. Generate sample values of the objective function f as in Section
12.5 to obtain an upper bound f on the global minimum f�.
Now, however, the sample point must have integer components.
As in Section 12.5, delete subboxes of the current box xI where
f > f.

4. Use hull consistency and box consistency as discussed in Chap-
ter 10.

We leave it to the reader to put together algorithms similar to
those in earlier chapters for solving an integer optimization problem
using the procedures listed above. Such an algorithm is not very
e¢ cient.

Another approach that works when the variables must be integers
is the following: Add the constraints

sin(�xi) = 0 (i = 1; � � � ; n): (18.2.1)

These constraints force the variables to be integers. The problem
can now be treated as if there are no conditions that variables take
integer values.

Solving an integer or mixed integer problem in this form can
be a slow process. The constraints (18.2.1) are of little use unless
the intervals bounding the variables have width less than (say) 1.
However, the method produces the global solution.
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one-dimensional interval New-
ton, see Newton method,
see Newton method

optimization, see Optimiza-
tion, see Optimization

for the equality constrained
problem, 423

for the inequality and equal-
ity constrained prob-
lem, 447

for the inequality constrained
problem, 374

for the unconstrained prob-
lem, 325

properties, see Newton method,
multidimensional, prop-
erties, see Newton method,

one-dimensional, prop-
erties, see Newton method,
multidimensional, prop-
erties, see Newton method,
one-dimensional, prop-
erties

Basin, 315
Box, 87
Box consistency, 204
Box constraint, 358, 359

prescribed, 358
unprescribed, 359

Cancellation, see Dependent sub-
traction, see Dependent
subtraction

Center
of a box, 87
of an interval, 23
of an interval matrix, 87
of an interval vector, 87

Centered form, 32, 164
Certainly feasible point, 112
Certainly infeasible point, 112
Closure

of an expression, 66
topological, 66
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Composition, see Expression com-
position, see Function
composition, 80, see Ex-
pression composition,
see Function composi-
tion

Consistency, 203
box, 204
convergence, 219, 224

hull, 210
Constant variable expression,

68
Constraints, 335, 342, 439

equality constraints, 335,
416

inequality constraints, 335
prescribed, 358, 388
unprescribed, 359
using equality constraints,

416
using inequality constraints,

367
Containment

constraint, 49, 51
failure, 49

Containment set, 49
enclosure, 79
equivalent expression, 55,

61
theory, 50

Continuity, 81
Convergence

of the multidimensional New-
ton method, 291

of the one dimensional New-

ton method, 190, 192
quadratic, 175, 192, 291

Convexity, 314
CRT, see Crude range test
Crude Range Test, 391
CSET, see Containment set, see

Containment set

Dependence, 18
problem, 18

Dependent interval operations,
19

subtraction, 19, 113
Diagonal dominance, 88
Di¤erentiation

automatic, 140, 141
forward form of, 142

symbolic, 141
Discriminants, 239

Endpoint
analysis, 34
of an interval, 15
sharp, 30, 35

Existence of a feasible point,
see Existence of a so-
lution, see Existence of
a solution

Existence of a solution
of a constrained optimiza-

tion problem, 381, 400,
420, 442

of a single equation, 192,
193

of a system of equations,
233, 289, 290, 402, 403,
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407
Expression

composition, 77
Extended interval arithmetic,

see Interval arithmetic,
extended, see Interval
arithmetic, extended

Feasibility, 111
certainly strict, 366

Feasible point, 111
certainly feasible point, 112
certainly strictly feasible point,

112
Fourier-Motzkin method, 115
Fritz John conditions, see John

conditions, see John con-
ditions

Function
composition, 76
constraint, 335
interval, 24
monotonic, 37
nondi¤erentiable, 479
pillow, 390
thick, 42
thin, 42

Fundamental theorem of inter-
val analysis, 29, 64, 77

Gauss-Seidel method, 98, 105,
248

convergence of, 101
Gaussian elimination, 92, 116,

274
pivot selection, 94, 120

Generalized interval arithmetic,
see Interval arithmetic,
generalized, see Inter-
val arithmetic, gener-
alized

Global minimum location, 295
bounds, 329, 382, 430, 431,

460
Global minimum value, 295

bounding, 303, 311, 363,
400, 460

using constraints, 402
bounds, 320, 329, 362, 381,

430, 474
smallest upper bound, f, 303,

311
using an upper bound, f,

303, 362
Global minimum value, f�

using an upper bound, f
using, 415

Gradient, 301
GrafEq, 7
Graphical Calculator, 7

Hessian, 135, 138, 308
Hull, see Solution set, hull of,

see Solution set, hull
of

Hull consistency, 204
Hull method, 98, 101, 105

IEEE-754 �oating-point arith-
metic standard, 16

Inclusion isotonic, 25, 76, 77
Inequalities
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interval, 111, 165
system of, 115

Infeasible point, 111
certainly infeasible point,

112
Initial bounds

in the solution of an opti-
mization problem

location, 299, 374, 423
value, 375, 424

on the solution of a single
equation, 187

on the solution of a system
of equations, 99, 277

Integer problem, 482
Integer programming problem,

482
Interval

analysis, 2
origin of, 2

bound, 2
sharp, 2

center, 23
closed, 15
complex, 1
degenerate, 15
expression, 48
function of, 23
magnitude, 23
midpoint, 23
mignitude, 23
negative, 16
nonnegative, 16
nonpositive, 16
number, 15

positive, 16
real, 15
sharp, 30, 50
width, 23

Interval analysis, 1
fundamental theorem of, 29,

65
Interval arithmetic, 1, 17

extended, 21, 176
generalized, 164

Interval extension, 24, 77
Interval function, 24

form of, 30
Interval linear equations, 87
Interval linear system, 88, 246,

417
overdetermined, 108
solution set, 89, 91
hull of, 107

Interval mathematics, 1
Interval matrix, 87

irregular, 88
regular, 88
singular, 88

Interval quadratic equations, 165
Interval vector, 87

center of, 87
norm of, 88
width of, 88

Jacobian, 138, 246
John conditions, 337, 343, 360,

398, 422
John point, 465

Krawczyk method, 249
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Kuhn-Tucker-Karush conditions,
337

Lagrange multipliers, 337, 338,
346, 360, 398

Line search, 312, 363
Linearization tests, 277, 368,

423
also see reference to equa-

tion (11.11.1) on page,
318

Linearizing
equations (or equality con-

straints), 246, 372, 417
inequalities (or inequality

constraints), 113, 368

M-matrix, 88
MACSYMA, 141, 161
Magnitude of an interval, 23
Maple, 7, 141, 161
Mathematica, 7, 141, 161
Matlab, 7
Mean value theorem, 175
Midpoint of an interval, 23
Mignitude of an interval, 24
Minimax problem, 480
Mixed integer problem, 482
Monotonic function, see Func-

tion, monotonic, see Func-
tion, monotonic

Monotonicity
test, 301
use of, 37, 301, 366

Moore method, 251

MuPad, 7

Newton method
multidimensional, 247
algorithmic steps, 279
convergence, 291
derivation, 246
inner iteration, 253, 255
properties, 285
termination, 263
use of, 318, 345, 361

one-dimensional, 175
algorithm steps, 186
convergence, 190, 192
derivation, 175
expansion point, 176, 180,
206

properties, 189
termination, 182

Newton step, 284
Nondi¤erentiable problems, 333,

394, 437
Nonexistence of a solution

of a constrained optimiza-
tion problem, 381, 430

of a single equation, 190,
228

of a system of equations,
287, 289

Nonlinear equations
of one variable, 173
overdetermined systems of,

294
systems of, 245
perturbed, 292
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Norm
vector, 88

Optimization
constrained, 335
equality constrained, 397
inequality constrained, 357
perturbed, 458
unconstrained, 295

Peeling, 386
Perturbed problems

nonlinear equations, 199,
292

optimization, 453
Pivot

primary, 120
secondary, 120

Point
certainly feasible, 112
certainly infeasible, 112
certainly strictly feasible,

112
feasible, 111
infeasible, 111

Preconditioning, 95, 115, 248
analytic, 273
matrix, 95, 107, 123

Quadratic equations, 165

REDUCE, 141, 161
Rounding

directed, 16
outward, 16

Sensitivity analysis, 292, 453

Sharp
bounds, 30, 35
endpoint, 30, 35

Slope
automatic evaluation of, 160
expansion, 129, 146
function, 147
Newton method, 197

Solution
existence, 175, 192, 289
nonexistence, 175, 190, 287
set, 91

Solution set
hull of, 90, 107

Spectral radius of a matrix, 88
Splitting, 187

a box, 225, 267, 329, 380,
429, 451

an interval, 33, 187
Stationary points

�nding all, 334
Subdistributivity, 30
Subtraction

dependent, 19, 113
Su¢ ciently reduced box, 265

Taylor expansion, 129, 372
Termination

of an optimization algorithm,
318, 329, 381, 430

of multidimensional New-
ton, 263

of one dimensional Newton
when 0 2 f 0(X), 182
when 0 =2 f 0(X), 181
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Tests
linearization, 277, 318, 368,

423
Thick function, 42
Thin function, 42
Tolerance, 457

box, "X , 258, 319, 375, 424,
447

equality constraint, "q, 424,
447

function width, "f , 183
inequality constraint, "p, 375,

447
interval width "X , 183
objective function, "f , 319,

375, 424, 447
Triangular factors, 92

Uniqueness of a solution
of a single equation, 195
of a system of equations,

290

Vector
interval, 87
norm, 88
real, 87

Width
of an interval, 23
of an interval matrix, 88
of an interval vector, 88

Wrapping e¤ect, 276

Zero, see Solution




