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"When to be sensitive and when not, that is the question" 



Preface 

A text surveying perturbation techniques and sensitivity analysis of linear systems 
is an ambitious undertaking, considering the lack of basic comprehensive texts 
on the subject. A wide-ranging and global coverage of the topic is as yet missing, 
despite the existence of numerous monographs dealing with specific topics but 
generally of use to only a narrow category of people. In fact, most works approach 
this subject from the numerical analysis point of view. Indeed, researchers in this 
field have been most concerned with this topic, although engineers and scholars in 
all fields may find it equally interesting. 

One can state, without great exaggeration, that a great deal of engineering work is 
devoted to testing systems' sensitivity to changes in design parameters. As a rule, 
high-sensitivity elements are those which should be designed with utmost care. 
On the other hand, as the mathematical modelling serving for the design process is 
usually idealized and often inaccurately formulated, some unforeseen alterations may 
cause the system to behave in a slightly different manner. Sensitivity analysis can 
help the engineer innovate ways to minimize such system discrepancy, since it starts 
from the assumption of such a discrepancy between the ideal and the actual 
system. 

All in all, methods of mathematical optimization rely one way or the other on 
relative sensitivities, under a different title in each, ranging from gradient methods 
to model tracking or self-learning systems. Even the simple task of fitting data to a 
curve usually involves sensitivity calculations. As for social scientists, economists, 
as well as for many other disciplines, sensitivity and perturbation techniques can 
provide valuable information about the amount of inaccuracy in the behaviour 
of a model as related to the inaccuracies in the system's data. If the data gathered 
by field study or experimental testing falls within certain tolerance limits, the 
tolerances may well be amplified and widened in the output results obtained. The 
question might then arise as to how uncertain the results are - or how unrealiable - in 
relation to the data's uncertainties. In this instance, perturbation analysis can provide 
valuable information about regions of compatibility and admissibility of solutions. 
An alternate use might also be to determine the allowable data tolerances in a para­
meter for the results to sustain a certain level of accuracy; and so forth. 

As rewarding a subject as it may be, sensitivity analysis still imposes a tedious job 
when it comes to organizing a text on it. As the text is intended to serve a wide audience, 
applications of various kinds had to be included, and a huge effort had to be devoted to 
ensuring as comprehensive a discussion as possible of the area of linear systems. 
Some texts have tried to attract the widest readership by choosing some topics of the 
linear systems and some of the nonlinear ones. Practical experience has shown that 
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such texts have little to add to the real user's knowledge, and only serve to provide 
an idea about the subject. The present line of approach is stronger, in that it provides 
not only practical applications but mainly a coherent mathematical justification that 
brings still further applications within range. 

Perturbation techniques and sensitivity analysis are of course no new terms, nor 
are they recently explored fields. As a mathematical discipline, however, a unified 
body of knowledge rather than an elementary application; they are rather young. 
Only during this last century have celestial mechanics witnessed an era of rapid 
progress; the three-body problem - in contrast with Newton's two body problem -
becoming the new challenge. Workers in the field opted to consider this third 
body as a perturbation in the field. In this context also, Lagrange's ingenious 
method of variation of elements was introduced, and Poincare's theory of asymptotic 
expansions enabled the summing up of a few terms of a divergent series to yield almost 
exactly its sum. 

Perturbation theory in linear algebra is an even more recent branch. In 1948, 
Turing's famous paper triggered interest in the problem of sensitivity of solutions 
of linear equations to round-off errors. In this paper, Turing laid down the defi­
nition of a condition number by which a small input error in the data can be 
drastically amplified in the solution. Numerical analysts then acknowledged 
this number as the major factor affecting computational accuracy, and have tried 
since then to control it while working out any new numerical procedure. But an 
ill-conditioned system can only be cured up to a certain extent, and no matter how 
cunning, skilled or elaborate one is, Turing's number or a variant of it will eventually 
hinder our illusion. 

This work covers the subject of sensitivity analysis as related to linear equations. 
At first, the plan was to furnish one for linear systems in general, but as the work grew 
it was found impossible to survey the whole theory in one volume. It was then 
decided to release the available material as it constitutes a unified body of knowledge. 
Naturally, we started with the first basic problem in linear systems, that of linear 
equations, for we shall need many of the results if we are to proceed further. As the 
reader might have noticed, it was not in our plan to either surveyor compare the 
different numerical methods for solving the equations. For this, he may refer to 
current literature in numerical analysis, which is plentiful. Rather, our task was 
only concerned with the problem of executing perturbation analysis of the equations, 
while making reference to some relevent applications. 

The desire on the part of the author to provide such a text grew up incidentally from 
his training in engineering and related disciplines. Workers in theses fields sometimes 
encounter problems in which it is important to perceive the accuracy of the results 
when the input data is subject to uncertainty or errors. This they seek to determine 
irrespective of any numerical treatment of the problem. They may also wish to pursue 
a sensitivity analysis of their models under newly varying conditions. It was this 
philosophy that inspired the writing of the text and which led the author to 
prepare the rest of the manuscrlpt. This explains why rounding errors are incor­
porated into the larger context of perturbations, and why no effort has been made to 
discuss error analysis from the view point of comparing different numerical 
strategies. In any case, there is a vast literature on this subject alone. And instead of 
making entangling the reader so overwhelmingly in the different numerical procedures 
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for solving the equations, it concentrates on deepening his working knowledge in 
this fruitful area. This does not at all mean that numerical analysts cannot profit 
from it. On the contrary, many up-to-date error bounds have been included and 
compared. Furthermore, criteria for validating the solutions and ways of improving 
them are to be found therein. 

The text is therefore a survey and a working knowledge book on perturbation 
techniques and sensitivity analysis as applied to linear equations and linear pro­
gramming. It uses a moderate language which appeals to engineers and applied mathe­
maticians. Many workers in various disciplines will frod it equally valuable. And as a 
text, it can easily fit - from experience - into a first course on the subject to be taught 
in one lecture per week over one semester. As to its rigor, it will soon be realized that 
there is some overlap in levels, in the sense that some knowledge is standard while 
some is culled from original papers. Our intention was to encourage readers of 
different backgrounds and training to approach the subject. 

The book consists of five chapters, each related to a specific case so as to make it 
self-contained. Hence, it will be found that it is not strictly necessary to read the 
text from the beginning. In other words, it looks as though each chapter is in­
dependently written for the reader interested in one specific subject. And we certainly 
make no claim to completeness in anyone of them. 

In conclusion, the author feels that such a subject deserves a global coverage which 
communicates efficiently with the different audiences. And with this specific idea 
in mind, we hope to have fulfilled this aim and to have filled a gap in the available 
literature. 

Indeed, a word of gratitude should be addressed to all who have contributed to the 
appearance of this book. Prof. P. Spellucci at the Technische Hochschule in 
Darmstadt, Prof. T. Yamamoto at Ehime University and Dr. J. Garloff at the 
UniversiHit Freiburg read various parts of the manuscript and made several suggestions 
which greatly improved the text and rescued me from many blunders. Any remaining 
pit-falls become naturally those of the author. Dr. J. Rohn at Charles University 
provided the author with a mathematical notion which helped in some proofs in 
section 2.6. The author is also grateful to Prof. N. Makary and Prof. E. Rasmy for 
fruitful discussions related respectively to sections 4.5 and 5.3, and also to Dr. 
A. Hussean and Dr. T. EI-Mistikawy who helped in calculations of sections 3.4 and 
4.3; all are based at Cairo University. The whole project of writing this text would have 
indeed been foundered without permission from Cairo University to allow me to visit 
the University of California-Berkeley on my sabbatical leave, thus making use of its 
rich library. The same also applied to the Alexander von Humboldt Foundation, 
which gave me the opportunity to visit the Technische Hochschule in Darmstadt, 
enabling me also to profit from the staff there as well as its different libraries. I would 
like also to take the opportunity of thanking Prof. A. Bjorck for his valuable 
comments on part of the manuscript. My sincere thanks are also addressed to Eng. 
A. Assaad for editing the text; the effort he put into this work is greatly appreciated. 
Finally, I am grateful to my wife for allowing me ample time on the manuscript. 

Cairo, August, 1986 A. S. Deif 
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Chapter I 

Perturbation of Linear Equations 

1.1 Introduction 

This chapter will discuss the behaviour of the system of linear simultaneous 
equations 

Ax = b 

when the matrix A and the vector b are subjected to small order perturbations AA 
and Ab respectively. The problem then becomes 

(A + AA) (x + Ax) = b + Ab 

and we are mainly concerned with studying the deviation Ax of the solution with 
the perturbation. Such an exercise is called sensitivity analysis, for the extent of the 
deviation Ax relative to AA and Ab defines the sensitivity of the system. A highly 
sensitive system is roughly one where a relatively large deviation Ax is incurred by 
small perturbations AA and Ab. As we shall see, highly sensitive systems are generally 
to be avoided in practice. They are referred to as ill-conditioned, for a highly sensitive 
system would yield large variations in the results for only small uncertainties in 
the data. To clarify this fact, let us study the behaviour ofthe system of equations 

x+y=2 

0.49x + O.51y = I 

- representing a pair of straight lines intersecting at x = I, y = I - when a small 
term e is adaed to the equations. Surprisingly enough, the set of equations obtained, 
namely 

x+y=2+e 

0.49x + O.51y = I 

represents a pair of straight lines meeting at a point (x, y) given by x = I + 25.5e; 
y = I - 24.5e, and rather distant from x = I, y = 1. Here, a small change of order e 
in the equations has produced a change of 25e in the solution. This system has 
definitely a high sensitivity to perturbations in its matrix A and vector b. 

It is indeed worth noting that sensitivity analysis is usually performed after a 
problem has been solved for x. It is not intended to find an adjusted solution for the 
system 

(A + AA) x = b + Ab 
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for then, the effect of the perturbations M and !:1b on x will have remained un­
examined. Rather, it aims at representing !:1x as a function of the perturbations M 
and !:1b, in order to elicit their effect on the original solution. For the forementioned 
example, this function would be given by 

!:1x !:1bl 
-~50-
x - bl 

At this stage, let us examine the origins of the perturbations M and !:1b of 
a system of linear equations and their possible practical meanings. In the field of 
economy, social sciences, etc ... , system perturbations usually stem from the lack of 
precision of the data collected through field observations, this lack being termed 
uncertainty of the data. For the engineer they may be intentionally induced into one 
of the design parameters to investigate the behaviour in service of the designed system, 
be it an electrical system, a chemical plant or a building's structure. For the 
mathematician, perturbations might appear as the result of truncating some infinite 
series, say 7t or e. 

Finally, coming last though not least, perturbations represent in numerical 
analysis the effect of round-off errors. Such errors might arise during data reading, 
or in the course of computation, at the level of an intermediate result. Of all 
disciplines, numerical analysts have been most interested in this area for the sake of 
precision in the results they obtain. 

This text will not assign to !:1A and !:1b anyone of the foregoing interpretations, 
dealing with them in a most general manner through their symbols. This approach 
does not void the symbols from their factual content. Instead, it keeps them in a form 
so general that they can account at the same time for all perturbations inherent to -
or induced in the system. On some occasions, some interpretation or the other will be 
emphasized, only for the sake of illustrating the concept. Being far from specialization, 
this text is not intended for the sole use of numerical analysts. For the more 
specialized application of error analysis to various computational algorithms, the 
reader is referred to Wilkinson's treatises (1963, 65), which form only a part of the 
literature on the subject. 

However, it may be of interest to illustrate here how rounding-off can be 
accounted for as a perturbation. Let us therefore consider the solution for 
x = (Xl' X2)T of the system 

when performed on a four-digit machine with fixed-point arithmetic. The solution 
comes as 

Xl = 1.667, X2 = -1.333 

This is only an approximation to the exact solution, since substitution into the set of 
equations yields the residual 

r = Ax - b = (0.001, O.OOlf 
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The error residual is due to the machine's approximation of the solution which is 
more exactly 

x 2 = -4/3 

Alternatively, one can state that the vector x obtained is an exact solution of the 
perturbed system 

Ax = b + Ab 

where I'l.b = r. 
In any case, whether I'l.A and I'l.b account for errors due to rounding, truncation or 

inaccuracy in the input data, the solution obtained will still deviate from the ideal 
case. For the above example, the solution's deviation can be expressed by the 
vector 

I'l.x = (1.667 - 5/3 , 

= (0.001/3, 

-1.333 + 4/3)T 

0.001/3)T 

Therefore, the value 0.001/3 could be taken as a measure of the deviation, or, 
alternatively, the sum of deviations in both variables, namely 0.002/3, could be chosen, 
etc ... In general, how to measure this deviation and in what form is one 
question, the answer to which necessitates the introduction of the concept of 
norm. 

1.2 Norms of Vectors and Matrices 

The norm of a vector is introduced here to provide a measure of the vector's 
magnitude exactly analogous in concept to that of absolute value for a complex 
number. The norm of a vector x, denoted Ilxll, is a non-negative scalar function of x 
satisfying the following set of axioms 

Ilxll > 0, "Ix =I- 0 (positivity) 

Ilexll = lei· Ilxll (Homogeneity) 

Ilx + yll ~ Ilxll + Ilyll (Triangular inequality) 

In general, a scalar function 11·11 satisfying the above axioms qualifies as a norm. 
The reader can exercise in showing that the following function, termed the 
HOlder norm, and stated as 

p?;l 

qualifies as a norm of x. For a proof of the validity of the triangular inequality for this 
norm, the reader is referred to Deif (1982) for p assuming integer values. For p assum­
ing general values, the reader may refer to Beckenback and Bellman (1965). In the 
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special case where p = 2, the general norm function yields the well known Euclidean 
norm 11'11 2 or II'IIE' which gives the length of a vector in analytical geometry. Other 
widely used forms of the norm function are 

IIxll! = I Ix;!, for p = I 
i 

and 

Ilx II"" = max I Xi I, for p -+ 00 
i 

Applying each of the foregoing versions of norm to a vector given by 

X = (1, -2, 3 + l)T, i=v-t 
would yield 

Ilxll! = 1 + 2 + tfiO = 3 + tfiO 
IIxllE = VI + 4 + 10 = ViS 
IIxli oo = tfiO 
Likewise, the norm of a square matrix A is defined as a nonnegative scalar 

function noted IIA II and satisfying the following axioms 

IIA II > 0, VA * 0 
ileA II = 1eiliAII 
IIA + BII ~ IIAII + IIBII 
IIABII ~ IIAIIIIBII 

Again, many functions could be found that qualify as matrix norms, according to the 
above rules, e.g. 

(Frobenius norm) 

IIAIIM = n . n:t~ I aijl 
I, J 

(Maximum norm) 

(Column norm) 

(Row norm) 

Some have even more properties than those described by the axioms. The last two 
norms defined above - Rowand Column norms - may for instance be 
subordinated to a corresponding vector norm; that is for every matrix A one can 
always find a vector X such that 

IIAxll = IIA II IIxll 
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(cf. Young and Gregory (1973); Deif (1982)). Many matrix norms are consistent 
with vector norms, e.g. the Frobenius matrix norm with the Euclidean vector norm, 
meaning that they satisfy the relation 

IIAxl1 ;£ IIA II Ilxll 

However, the equality part of a consistency relation is only verified for specific 
configurations of A and x, whereas for the Rowand Column matrix norms, each 
matrix A can be subordinated to at least one vector norm Ilxll. 

In virtue of this additional property, subordination to a vector norm, the row and 
column norms - and all norms analogous in this respect - are termed bounds, 
or better still, least upper bounds (lub). This means that 

IIAxl1 
II A lip = lubp (A) = s~p Ilxllp

P 

In the cases where p = 1,00 in the above relation, we obtain respectively the 
formentioned Column and Row norms. As an example, if 

then 

IIAlll = 7, IIAt) = 12 

The derivation of Iub(A) necessitates the use of a vector x, whence some authors 
refer to it as the induced matrix norm. If we consider the Frobenius norm, noted 
IIAIIF (and held as the matrix analogue of the Euclidean length of a vector), as 
compared to its corresponding induced norm-version (called the spectral norm) 
given by 

where Amax stands for the largest eigenvalue, we find that 

This characteristic makes induced matrix norms widely used in relation to error 
analysis, as they set tighter bounds. 

Usually, authors do not differentiate in notation between both types of norms, 
unless the need rises for the exclusive use of one. In this text, the analytical 
expressions derived will be valid for nearly all norms, the bounds set by their 
numerical values being tighter or looser according to the type of norm used. 
Furthermore, as norms were devised to quantify and compare magnitudes of 
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vectors and matrices, we may settle as analysis proceeds for using the popular 
lazy quotation: for some norm - as many authors incidentally do. Also, IIA II 
will denote any matrix norm, including the cumbersome notation lub (A), further 
replaced by IIAII1, IIAb ... , IIAlloo-

These definitions of norms, already so well known and frequently used in 
functional analysis, were employed in 1950 by Faddeeva, in the context of proofs 
of convergence. Faddeeva defined vector and matrix norms independently, linking 
them with the concepts of consistency and subordination. The Frobenius norm is 
called the absolute value of the matrix by Wedderburn (1934), who in turn traces the 
idea back to Peano. 

Another type of norm, the Dual norm, was introduced by von Neumann (1937) 
to be treated axiomatically by many authors, see for instance Stoer (1964). The 
Dual norm of a vector u, noted lIull D, is defined by 

For example, for the vector 

uT = (1, -2,3 + i) , i= yCl 

the dual norm is given by 

taking Xl = 0; X z = 0; 

On the other hand 

I<u . x>1 1 f1{\ 
lIull~=sup I =1+2+ v lO=3+j!To 

x max Xii 
i 

taking Xl = 1 ; Xz = -1 ; X3 = (3 - i)f1/iO; i = yCl. 
This concept of Dual norms is no more than a direct application of Holder's 

inequality, stated as 

where ui and Xi are two sets of numbers; i = 1,2, ... , n; and 

lip + Ilq = 1 , p ~ 1 

In fact, if we allow Xi to vary, there will surely exist a homogeneous configuration of X 

for which the equality strictly holds. In that case lIulif = lIuli co and vice-versa. 
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What is most interesting for our purposes is however the application of the concept 
of Dual norm to find the value of lub (uv*), uv* being a matrix 

lIuv*xll Iv*xlilull 
lub (uv*) = sup -- = sup = IlullllvllD 

x II xII x Ilxll 

Other similar dual matrix norms can also be derived. The reader interested in further 
information is referred to Stoer (1964), who also deduced some further properties of 
dual norms as compared to usual norms. 

Returning to the system of linear equations 

Ax = b 

we recall having stated that solvmg tor x wIth an accuracy depending on the used 
computing machine always yields the residual vector r 

r=AX-b 

This vector r should in some way give an indication of the accuracy of x. 
Writing 

A (x + flx) - b = r 

x = A-1b being the system's exact solution, we get 

Af1x=r 

or 

i.e. 

so that 

From this, we can conclude that the magnitude of the relative error in the solution x 
is bounded by the norm of the residual vector r times the quantity IIAIIIIA-111. This 
latter quantity is termed the condition number of A (noted cond (A)). It plays a vital 
role in assessing the numerical stability of algorithms, and deserves to be discussed 
separately. For the time being, let us just clarify the concept by a practical 
example. Considering the same example discussed before, we will solve 
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using a four-digit machine with fIxed-point arithmetic. Then 

Xl = 1.667, X2 = -1.333 

and 

Meanwhile 

A-I = [ 2/3 -1/3J 
-1/3 2/3 

giving 

cond (A) = IIAIIIIA-lil = 3 

Hence, using the iI-norm, we get 

II~xll ::;; IIAII IIA-llI~ = 3 x 0 002/3 = 0002 
Ilxll - Ilbll . . 

N ow if we use the exact value of x 

~x = (0.00033 ... , 0.00033 .. y 

we get 

II~xll . W = 0.00033 ... x 2/3 = 0.00022 ... 

which is of course smaller than the foregoing upper bound. In both cases, the error 
was small, because - as we will be explaining shortly - A is well-conditioned. 

Furthermore, we notice that the error in both Xl and X2 does not exceed 
5 x 10-4 . This is simply due to the fact that we used a three-decimal-place 
precision with the third decimal place rounded according to whether the fourth 
decimal place is greater or smaller than 5. In this specifIc example, the exact 
solution is 

Xl = 5/3 = 1.66666 ... 

x2 = -4/3 = -1.333333 ... 

which yielded after rounding-off 

Xl = 1.667 X2 = -1.333 
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By cancelling the fourth decimal place without knowing its value, we have induced an 
error of 0.0005 at most. For a number displayed with t decimal places, the 

error would likewise not exceed 5 X 10-1- 1 = ~ X 10- 1• Most calculating machines 

use floating-point arithmetic for minimal error and better accuracy. The reason behind 
this becomes clear when a number like 125.7235124 is to be represented in a ten-digit 
machine. The inherent error does not exceed 5 x 10-8, but its absolute value is variable, 
depending on the place of the decimal point. For numbers between 1 and 9.99 ... 
inclusive, the error will not exceed 5 x 10- 10 ; however it is not so readily determinable 
for other numbers. The introduction of floating-point arithmetic simplified this 
issue by setting the accuracy of the machine itself. Any number is stored as 

exllf', 10 > lei ~ 1 (normalized floating-point: 1 > lei ~ .1) 

The number e is called the mantissa, and has as many digits as the machine itself. 
The number b is the -exponent. The figure set forth before can thus be represented as 
125.7235124 - the error being 5 x 10-8 - or as 1.257235124 x l(f - the error 
being now 5 x 10-10 X 102 = 5 X 10-8 • The accuracy of the machine is to the 
nearest 5 x 10- 10, and for a number a, the error is at most as large as 5 x 10- 10 x lal. 
For a machine with a t-digit mantissa, the error becomes 5 x 10- 1 xla!-

Now, supposing a matrix A is to be be processed on the computer, what would 
be the maximum error in the norm of A due to rounding-off? In other words, 
what is the bound for IIA + ~AII - IIAII due to rounding-off? Since the error in aij 

is less than 5 x 10- 1 x laijl (note that sometimes only part of the machine's mantissa 
is displayed), then II~AII ~ 5x 1O-/IIAII. While assuming such error to be less than 
5 x 10- 1 x Il).li:x laijl for aij "# 0 and zero for au = 0 (see Rice (1981), p. 136), we get 

" ] 
III A + LlA 11- II A III :::;; II LlA II :::;; 5 x 10-1 x n x ~3:x I aij I 

',] 

But we have that 

II A II ~ ~3:x I aij I 
',] 

whence 

I II A + LlA II - II A "I' -I :::;;5xlO xn 
IIAII 

For instance, a matrix A of order n processed on an HP-15C calculator - having 
a ten-digit mantissa - has an error II~AII less than 5 x 10-10 x nliAIl (i.e. less than 
10-9 nllAII)· 

1.3 Condition Number and Nearness to Singularity 

The condition number of square matrix A, noted cond (A), is a nonnegative real 
scalar given by 

cond (A) = IIAII IIA-1 11 
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When IIA II is chosen as the lub (A), it is easily shown that 

II Au 1/ 
cond (A) = sup -­

u,v IIAvll 

with 11ull = Ilvll = 1 

Geometrically, this equals the ratio between the longest and shortest distances from 
the origin to points located on the surface 

y = Ax 

and such that Ilxll = 1. Hence, cond (A) is always greater than unity. 
To visualize the relationship between the condition number and the error in the 

solution of a perturbed system of linear equations, let us again consider the 
exaggerated example in Sect. 1.1, namely 

x+y=2 

0.49x + 0.51y = 1 

The equations represent a pair of straight lines intersecting at x = 1, y = 1. 
Now for some perturbation 13 in the right-hand side of the first equation, the 
equations become 

x+y=2+e 

0.49x + 0.51y = 1 

the solution for which comes as 

x = 1 + 25.513 
Y = 1 - 24.513 

The original system is termed ill-conditioned (in contrast with well-conditioned) in 
the sense that a small change of order 13 in the equations has induced a change of25 13 
in the solution. 'This is due to the acuteness of the angle between the two lines. 
For this example, 

A-I = [ 25.5 -50J 
-24.5 50 

yielding cond (A) ~ 150. This large condition number is associated with the relatively 
large error in the result. Usually, the larger the condition number, the smaller the 
determinant is. As det (A) --+ 0, we have cond (A) --+ 00. A matrix is therefore called 
ill-conditioned if it is near to singular, as far as arithmetic precision is concerned. 
In the output of a computer, we might thence encounter the message matrix is 
singular or ill-conditioned, since the machine might not be able to tell the difference 
unless it uses a very-high-precision arithmetic - especially with small valued 
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determinants or very poor pivots. In both cases, whether the matrix is very ill­
conditioned or simply singular, the results obtained are far from being realistic. 

To investigate how the condition number can give a measure of nearness to 
singularity, we will borrow the following example from the HP-15C advanced 
matrix functions library. If 

A = [: ~.9999999999 J 

and 

A-I = [-9999999999 lOl0J 
1010 _1010 

the condition number, in i",-norm, is given by 

cond (A) = IIAII IIA-lil = 4x 1010 

This large value of cond (A) means that A must be very close to being singular, i.e. 
almost equal in norm to some singular matrix. In fact, by choosing a certain dA 
as 

[ 0 -5 x lO- 11J 
AA = 0 5 X 10-11 

we get 

[ 1 0.99999999995J 
A + AA = 1 0.99999999995 

which is singular. Despite its very small norm (11M II", = 5 x 10-11), this increment 
(perturbation) dA transformed A into a singular matrix. This means that A must have 
been originally very close to being singular. This can be interpreted by stating that 
since cond (A) is so large, the relative difference between A and the singular matrix 
closest to it 'is very small. In fact, a measure of this closeness is given by liliA-III for 
when A is singular, IIA-lil becomes infinite, i.e. 

1 . 
IIA-lil = mm (IIA - SID 

the minimum being taken over all the singular matrices S. Hence 

con~ (A) = min (IIA - SII/IIAII), 

a result which appeared in Kahan (1966). For the above example, in i",-norm, 
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and 

This latter value (l/IiA -111) is in fact the key to a suitable choice of the matrix AA, 
as shown above. 

The two diagrams below are intended to visualize and clarify the concept 
of nearness to singularity. Around every matrix A (represented by a point in space) 
there exists a region of radius II AA II wherein any matrix is practically indistinguishable 
from A in terms of data uncertainties or round-off errors. Figure I shows the 
configuration of a well-conditioned matrix, located at a relatively large distance 
from the nearest singular matrix. In Fig. 2, the matrix A is ill-conditioned since the 
spherical region of radius IlAA II encloses some singular matrices. 

s s 

Singular matrices Singular matrices 

Fig. 1 Fig. 2 

In the next section, we will see how II AA II II A -111 is involved in the evaluation 
of error bounds in problems such as matrix inversion and sensitivity of solutions of 
simultaneous linear equations. For the time being we can state that systems with a 
small value of IIAAIIIIA- 1 11, i.e. for which . 

IIAAII ~ liliA-III 

are less susceptible to perturbation-induced solution errors. Instead ifll II A-III < II AA II 
or that llcond (A) < machine precision w.r.t. IIAII under rounding errors, the matrix 
A becomes indistinguishable from a singular matrix, rendering the computation 
meaningless. In the UNPACK user's guide (see Dongarra et al. (1979)), A is con­
sidered singular to working precision if the logical expression 1.0 + RCOND.EQ.1.0 
is true (RCOND is the reciprocal of cond). 

It becomes apparent that IIA -111 is the most important part of cond (A); the one 
causing greater calculation difficulties due to rounding errors. Usually, IIA -111 is 
calculated through solving the linear equations 

Ax =y, 
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with y chosen so as to enhance relatively the growth of x, yielding 

IIA-1 11 ~ ~ 
- lIyll 

simply because 

IIA-III IIA-IYIl = sup--
y Ilyll 

Henceforth, cond (A) can be considered a byproduct of the solution of linear 
simultaneous equations. Its accuracy depends to a great extent on the algorithm 
used and the pivotal strategy followed. For instance, Cline, Moler, Stewart and 
Wilkinson (1979) proposed complete pivoting together with an L U decomposition of A 
for better stability. Their method has been largely implemented in the UNPACK 
package. O'Leary (1980) provided a simpler modification to improve the accuracy of 
the condition number estimate, see also Hager (1984) in this respect. Estimating 
condition numbers for sparse matrices is found in Grimes and Lewis (1981). 

At this stage, an important fact should be pointed out. All ill-conditioned 
matrices being very near to a singular one, one might think that det(A) equals 
approximately zero or - equivalently - that an eigenvalue of A is near the origin. 
This is misleading, for in the case of a matrix like 

A= [100
10 0 ] 

10- 10 

cond (A) = 1()2°, and yet det (A) = 1. Then again, A needs only a mere 

[ 0 0 ] LlA -- 0 _10- 10 

to become'singular. Likewise, for the matrix given in Moler (1978), as 

[
-149 -50 -154J 

A= 537 180 546 

-27 -9 -25 

which is also ill-conditioned, the eigenvalues are A. = 3; 2; 1 and det (A) = 6. 
The nearest singular matrix is 

_ [-149.0006.. -49.99807 .. 
S - 536.999 8.. 180.00063 .. 

-27.000 61.. -8.99803 .. 

-154.00004 .. J 
545.99998 .. 

-25.00004 .. 
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Hence, neither det (A) nor its eigenvalues are a measure of ill-conditioning. This is 
due to the fact that 

IIAxl1 m~x IAil 
cond (A) = sup -- ?: ---

II X Il=lIyll=lI!Ayl! minlAil 
i 

while it is not necessary that cond (A) be small for the right hand side of the 
inequality to remain small. Actually, it is the set of the singular values of A 
that gives such a measure of ill-conditioning, as the spectral condition number 
can be evaluated as 

max (Ji 

cond (A) = _i. _ 
mm (Ji 

i 

where (J stands for singular value. For the above matrix A, we have 

(J1 = 817.760 

(Jz = 2.47497 

0"3 = 0.0029645 

Whence 

cond (A) = 275850.9023 

The definition of cond (A) discussed in the foregoing pages is the most popular. 
Other less common ones can be found in the literature. For instance, Kuperman 
(1971, p. 10) proposed the definition 

( 
n n I 0 det (A) I ) / 

cond (A) = i~l j~l oa
ij 

eij Idet (A) I 

where eij is the uncertainty in aij" When defined in this way, a condition number 
of less than unity would signify that the change in det (A) - represented by the 
numerator - does not approach det (A) in value. Hence a small uncertainty eij 

would not bring det (A + ~A(ei)) to zero under small e;j" The matrix A is 
then not critically ill-conditioned. Similar detenninantal criteria, as applied to nearly­
singular matrices, are also found in Noble (1969, ch. 8). 

At this stage, before proceeding to the following section, it is interesting to 
outline a numerical application of the condition number related to the concepts of 
conditioning and nearness to singularity. Let A be a perfectly singular matrix. We 
now seek to solve the system of equations 

Ax = 0 
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i.e. to compute a null vector of A. An excellent approximation to a null vector could 
be calculated using a procedure outlined by Moler (1978), termed Inverse-Iteration 
Method. It proceeds as follows: 

1. Suppose A is nonsingular 
2. Choose at random a vector y 
3. Solve the system Ax = y 

(Theoretically, some component(s) of x must be infinite. However, in practice - due 
to rounding - x will acquire a very large value but will probably not become 
infinite). 

4. We proceed to normalize x 
5. We obtain the solution as x/llxli 

This simple technique is based on the equation 

A(x/llxll) = ylllxll ~ 0 

To visualize this, we borrow the author's illustrative example 

[3 6 9J 
A = 2 5 8 

147 

Choosing the vector y as 

yT = (3.14,0.00,2.72) 

the solution vector x' is found by elimination, that is 

[
3 6 

o 2.002 

o 0 

9 : 3.14J 
4.003 i 1.67 

5 x 10-3 ! -2.92 

yielding 

xT = (-5.83 X 103 , 11.69 x 103 , 

and 

xT W = (1, -2.005, 1.003) 

which is equal to the null vector within machine accuracy. The reader is also 
referred to Kramarz (1981) for similar ideas; regarding modification of a singular 
matrix into a nonsingular one by perturbation, with application to computing a 
null vector. 
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1.4 A-Priori Bounds 

This section will only discuss determined systems. Perturbation analysis of indeter­
minate and overdetermined systems makes use of the sensitivity analysis of A +, 
which relies in tum on the sensitivity of the eigenvalue problem. The analysis of these 
systems will thus be postponed to a later chapter. To carry out a sensitivity 
analysis of Ax = b, given that del (A) '" 0, we proceed with a study of the 
effects of variations in both A and b on the solution x. In other words. if both A 
and b undergo a perturbation of the form A + dA and b + M, how would this 
affect x1 As seen before, .1.A and .1.b could be either induced perturbations or 
rounding errors unavoidable in numerical computations. 

Such a study faUs in the category of a-priori analysis. in contrast with a-posteriori 
analysis (discussed in Chap. 2). It was Wilkinson who, in 1959, pioneered rounding 
errors' aoalysis in linear systems with a mammoth work on the SUbject. Later on , he 
further published a series of papers and books summarizing his work (1960, 
1961 . 1963, 1965, 1971). However, the idea of rounding-ofT errors runs still older. 
We could trace the concept of matrix conditioning a t least back to Turing (1948). 
It had already figured implicitly in Von Neumann and Goldstine's paper (1947). 

To see how the variations in the condition number affect the solution x, write 

x + l::t.x "'" (A + l::t.A) - 1 (b + M) 

Now expand (A + l::t..A) - 1 to become 

ifllA - I .1.A N is less than unity, or more rigorously ifand only if the spectral radius of 
A- I l::t.A is less than unity. We can obtain, upon neglecting second order terms: 

that is 

but 

from which one finally obtains 

~Jx~ "IW' i j Ail (II JA ~ + IIJb ll) 
Ilxll I AII Ibll 

~ ccnd (Al ( I JAG + IIJb ll) 
I AII Ibll 
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which is the well known error bound. The condition number therefore determines 
the susceptibility of the solution of a linear system to given changes in the data, 
coinciding with the definition set forth by Rice (1966), see also Geurts (1982). 

One could obtain the same result above by introducing the factor e-measuring 
the strength of perturbation - in the equation 

The bracket (x + eX(I) + ... ) is a series in e made convergent by choosing lei small 
enough. By regrouping terms containing e, and setting 

and IIb l - AIxll ~ IIb l II + II AI II IIxll 

one could wind up with the same bound. Note that the condition 

IIA- I Mil < 1 

still holds, since e is a fictitious factor contained in M. Furthermore, (x + eX(I) + ... ) 
is a convergent series, since it is the product of the expression (b + !lb) times the 
convergent series 

In order to put the emphasis on first order perturbations, we prefer to include only the 
terms with e. Al will then be of the same order of magnitude as A. Grouping the 
terms containing e in the foreseen equation will therefore implicitly guarantee 

. convergence. Note that, in the case where the term !lA !lx is not neglected, a further 
minor refinement can be brought to the above set bound, e.g. the one described by 
Franklin (1968) 

IIL1xll ::; cond (A) ("L1A" + IILlb ll) 
IIxll 1 _ cond (A) IIL1AII II All IIbll 

. IIAII 

Though very cumbersome to use, this bound does not usually alter the previous 
result noticeably. In fact, as Forsythe and Moler (1967) observed rather easily, 
when b is held constant, that 

II!lxll ::; IIA- I Mil 
IIx + !lxll -

::; cond(A) II!lA II 
- IIAII 

the inequality holding without any approximations (see exercise 1.19). In any case, 
cond (A) always appears in the expressions for error bounds related to linear 
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equations; it also appears in expressions for similar bounds associated with the 
relative variation in A-I, such as 

cond (A) II ,lA II 
II(A+ ,lA)-I-A-I II IIA- I ,lAIl IIAII 
------,-----< <-------

IIA-III - 1 -IIA- I ,lAII- II,lAII 
1 - cond (A) -­

IIAII 
which is identical to that obtained for IIAxll/llxll. This should not come as a surprise, 
as computation of A -1 is equivalent to solution of the equation AX = B with 
B = I. Bounds associated with A -1 are further mentioned in exercise 1.18. 

For first order perturbations, the reader should further note, the relative 
variation in II A -111 is approximated by 

IIAAII 'IIA 111 = IIAAII/(l/IIA-III) 
radius of sphere 

distance to a singular matrix 
(refer to Fig. 1 and 2, Sect. 1.3) 

Therefore, the more accentuated the ill-conditioning of A, the greater the susceptibility 
of A -1 to rounding- or perturbation-induced errors. 

The calculations involved in applying the above bounds for either of Ax = b or A -1 

are short and straightforward. Even for IIA-III, we need only solve a set of linear 
equations 

Ax = y (see Sect. 1.3) 

Beside being referred to as simple, elegant and easy to work with, these bounds are 
also given first priority when the sensitivity analysis of a linear system is performed. 
Moreover, in virtue of the bounds' simplicity, some perturbations occasionally 
cause inequalities to become equations (see van der Sluis (l970a». And for each 
inequality, there exist matrices for which the equality holds. 

To exemplify the above results in a simple way, let us consider the two equations 
seen in Sect. 1.2, namely 

A= [~ ~l [ 0 0 ] ,lA -
0.01 -0.02 

The results obtained on a lO-digit machine - to minimize the effect of rounding 
compared to the induced AA - were as follows: 

x = (1.666666667, -1.333333333)T 

x + Ax = (1.681355932, -1.362711864l 

Then, using the iI-norm 

IIAxII ~:~:~:~~:: = 0.014476615 Ilx + Axil 
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which represents an error of 1.5 % approximately. Then with 

1 
[
-0.003333333 0.006666 667J 

A- JA = 
0.006666667 -0.013333333 

we get 

IIi1xll ~ IIA-1i1AII = 0.01999 
Ilx + i1xll -

which in tum represents an error of approximately 2 %, thus setting a bound larger than 
the true error. To compare the magnitude of this perturbation in the solution with that 
incurred had A been ill-conditioned, let us consider the example in Sect. 1.1, 
namely 

b=Gl [ 0 0 J JA-
0.005 -0.01 

Here the value of IIi1AII/IIAII is the same as above. Yet since cond (A) is large, a 
large error should be expected. In fact 

x = (1, I)T 

x + L1x = (0,2)T 

that is 

IIi1xll = ~ = 1 
Ilx + i1xll 2 

i.e. quite a huge one hundred percent error has been induced. Alternatively 

1 
[

-0.25 0.5J A- JA = 
0.25 -0.5 

so that 

IIi1xll ~ IIA -1 i1A II 
Ilx + i1xll -

= 1 

Seen the influence of cond (A) on the perturbed solution, the question arises as to 
whether cond (A) could be reduced, or whether the errors induced in general could be 
reduced. This question has been the major concern of many a numerical analyst for 
more than two decades. Answering it always relied on a combination of adequate 
pivoting along with scaling or equilibration. 
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1.5 Pivoting and Equilibration 

To demonstrate the effect of a good pivoting strategy in improving the solution 
precisionwise, we borrow an example treated by Wilkinson (1965, p. 216). Solve 

[
0.000003 0.213472 0.332147J [XlJ [0.235262J 
0.215512 0.375623 0.476625 x 2 = 0.127653 

0.173257 0.663257 0.625675 X3 0.285321 

with a 6-decimal-digit machine. If 0.000003 is to be taken as a pivot, the reduced 
system of equations becomes 

[
0.000003 0.213472 0.322147J[XlJ [0.235262J ° -15334.9 -23860.0 x 2 = -16900.5 

° -12327.8 -19181.7 X3 -13586.6 

Taking -15334.9 as a pivot for another eliminatory step, we obtain 

[
0.000003 0.213472 0.322147 J [XlJ [0.235262 J ° -15334.9 -23860.0 x 2 = -16900.5 

° ° -0.500000 X3 -0.200000 

Using back-substitution, we obtain 

X3 = 0.400000 

x2 = 0.479723 

Xl = -1.33333 

To show how poor these results are, Wilkinson compared them with those obtained 
when a better pivoting strategy is adopted. Going back to the initial equations, 
Wilkinson selected 0.215512 as the pivot, instead of 0.000003. He obtained 

[
0.215512 0.375623 0.476625J [XlJ [0.127653J ° 0.361282 0.242501 x 2 = 0.182697 

° 0 0.188856 X3 0.127312 

And upon back-substitution, the solution comes as 

X3 = 0.674122 
x2 = 0.0532050 

Xl = -0.991291 
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The correct answer, down to ten decimal digits, comes as 

X3 = 0.6741214694 
x2 = 0.05320393391 
Xl = -0.9912894252 

Comparison elicits how a good pivoting strategy brings about remarkable accuracy 
improvements. A good pivotal strategy is therefore one which allows for interchanging 
rows with poor pivots with ones having good pivots using elementary row operations. 

One might argue that pivoting should not improve the solution, since the product 
of the pivots equals det (A), the value of which is independent of the pivoting 
strategy or sequence. Therefore, if good pivots are used at the start, the poor ones left 
will be used near the end of the process, jeopardizing the attained accuracy. 
This reasoning is fallacious because, as Wilkinson pointed out, errors propagate and 
amplify during calculations, thence the earlier their elimination, the lesser their 
importance near the end of the calculations. This is visible in the foregoing 
example, wherewith starting with the smaller pivot did not make the last pivot any 
larger. On the contrary it usually introduces a very large pivot in the next stage, 
returning to normal in the last stage but one. The matrix then becomes disequilibr<\ted, 
this situation affecting greatly the solution as will be seen later. 

Scaling of the equations Ax = b is in fact mainly a scaling of the vectors of A, to 
make them more or less of the same norm. The obtained system of equations is 
henceforth said to be in an equilibrated form. For example, 

-1 

-2 

can be so scaled to obtain 

[
0.2 

A' = 0.1 

0.1 

0.1 0.3J 
-0.1 0.1 

-0.2 0 

This procedure can invariably be carried out for any matrix A (cf. Forsythe and 
Moler (1967)). However, the equilibration mode of a matrix is not unique, whence 
the possibility of following different pivotal strategies when using Gauss elimination. 
Equilibration is nonetheless advantageous, as it generally decreases the condition 
number of a matrix. Van der Sluis (1969) showed that for different norms in current 
use, the condition number can be minimized by row scaling down to unity norm. 
According to Wilkinson (1965, p. 192), a matrix with unity length rows and 
columns is termed equilibrated. For instance, unitary matrices are readily equilibrated, 
and correspondingly possess stable numerical operations. 

We will reproduce hereafter the simple result derived by Dahl (1978) to 
visualize how scaling reduces the condition number, thus making the system 
Ax = b less susceptible to perturbation errors. Dahl obtained that 

II L'1y II ~ max lL'1a;.IIIA- 1 1I1JD"1 1 {I} Dzlil 
lIy + L'1yll i,j J 
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Here, y is the solution for the new scaled system obtained by respectively pre­
mUltiplying then postmultiplying Ax = b by the two diagonal matrices D1 and D2· 

n:tax I i1a;j I is a bound on the perturbations of the elements of the scaled system and 
loJ 

{1} is a matrix the elements of which are all unity. To see how easily this result follows 
from Ax = b, we write 

D 1b = D 1(A + i1A) D2D;1(X + i1x) 

= (A' + M ') (y + i1y) 

with 

D1AD2 = A' 

D1 i1A D2 = i1A' 

Naturally, our interest focuses next on evaluating 

lIi1yll/lly + i1yll 

Applying the bound mentioned a few pages ago, we get 

IIi1YII S IIi1A'IIIIA,-111 
Ily + i1yll - I 

~ ken, t)· a IIA-111 IIDl1{1} Di 1 11 

Here IIi1A'11 ~ ken, t)· a 11{1}II, where ken, t) represents the machine accuracy with 
respect to A and a is the maximum among the absolute values of the elements of A'. 
The effect of scaling was elicited by the author through considering 

[
1/2 1/3 1/4J 

A = 1/3 1/4 1/5 

1/4 1/5 1/6 

of which the inverse A -1 comes as 

[ 
72 -240 180J 

A- 1 = -240 900 -720 

180 -720 600 

For the unsealed system, relative to an fro-norm, we obtain 

aliA -111 II {l} II = 112 (240 + 900 + 720)(3) = 2790 

As for the scaled system, he chose 

D1 = diag (1, 3/2, 2) , 
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thus obtaining for the same norm 

For further clarification of this result, let us consider the solution of the system 
Ax = b; A being the same as above, and b being defmed by 

b = (1, I,ll 

we obtain, on an HP-41CV machine, a solution 

x = (11.99999852, -59.99999434, 59.99999539)T 

Simultaneously, solving the system 

with D 1 set as in the example above would yield: 

x = (12.00000001, -60.00000012, 60.000000l4l 

The exact solution for this system comes as 

x = (12, -60, 60l 

whence, upon comparison, we can assess the importance of the improvement scaling 
brings about in the solution. 

The matrix Dl = 'diag (1, 3/2, 2) is of course not the best row scaling matrix. 
Choosing Dl is generally not easy, especially since Dl has no one unique defmition. A 
configuration of Dl that decreases IIA -1 D;lll usually augments IIDI Mil. van der 
Sluis (1970b) suggested the choice according to 

which would prevent any row of A being dominated by another. Such a choice, while 
not risking to worsen a situation, still runs the risk of not improving it. For the 
previous example, with Dl = diag (1, 5/4, 3/2) according to the above defmition, 
the scaled equations become 

[
1/2 1/3 1/4J [XlJ [1 J 5/12 5/16 1/4 X 2 = 5/4 

3/8 3/10 1/4 X3 3/2 

the solution of which is 

x = (11.99999950, -59.99999813, 59.99999850l 
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This result is not of an improvement over the one obtained previously, but is 
slightly better than that obtained in the first place. 

An interesting problem would indeed concern the minimization of cond (D1AD2) 

for Dl and D 2 • Unfortunately, the results obtained in this direction are not 
practical. But this is hardly discouraging as Golub and Van Loan (1983, p. 73) truly 
remarked, for already the bounds are heuristic and it makes little sense to minimize 
exactly a heuristic bound. Instead, it is quite sufficient to fmd an approximate but fast 
and practical way to improve the quality of the computed x. 

Usually, the system Ax = b is only row-scaled, that is D2 = I like in the 
previous example. Column scaling will only lead to scaling the solution vector itself. 
van der Sluis (1970b) noted that pivoting and row equilibration exert rather 
independently their action on the algorithm's stability. The reader interested in 
practical effects of various pivoting and equilibration strategies is referred to work by 
Curtis and Reid (1972). 

On the other hand, Householder (1964) suggested a method for preventing 
error propagation during Gauss elimination, by fixing the condition number of A 
so that it doesn't grow larger. This is achieved by choosing the elementary 
operations Ri , used in succession to bring A to an upper triangular form, as 
unitary (cf. exercise 1.4). Householder's famous transformation is given by 

with 

It is both unitary and Hermitian. 
Still, the foregoing a-priori bounds - as first derived by Wilkinson - are not 

judged fully satisfactory by scholars. Wilkinson himself confessed that they were by no 
means the best possible. He realized that they could still be narrowed further by 
elaborate argumentation (Wilkinson, (1961)), since in that form they did not 
account for statistical effects. Furthermore, the matrix A itself depends on the 
transformation of A into a sequence of matrices A 1, A 2, ... until a triangular form 
(like for example in Gauss elimination) is obtained. Chartres and Geuder (1967) 
derived bounds' which can be evaluated during the computation itself. Using 
information generated during the solution process, they could avoid error bound 
magnitude exaggeration, as is the case with Wilkinson's a-priori analysis. They 
applied this method in relation to LU factorization. Unfortunately, the bounds 
thus obtained depend on the particular sequence of back-substitutions. Derivations 
of similar natun; can also be found in work by Loizou (1968). / 

It was only in 1979, with the publication of Skeel's work, that the concept of 
conditioning was questioned. Like Hamming (1971), Skeel argues that the term 
ill-conditioned system is itself ill-defined. It is rather vague to simply state that small 
changes in the initial system can produce large alterations of the result. The term 
"relatively small - or large - change" should rather be used, if we are to take 
floating-point arithmetic as a serious matter. Further, it makes no difference how, 
or using which method, we scale A to make the answer insensitive to small changes 



1.5 Pivoting and Equilibration 25 

in the original coefficients, for in every such case the system will remain ill­
conditioned. We should in fact try to scale the whole system, including the vector b. 
For this we need a new dermition of the condition number that would relate errors 
more correctly. 

The main difference between the first approach and Skeel's is easily grasped. 
For instance, instead of using the form 11M II/IIA II which does not account for the 
relative error in each coefficient, one should use IliA -111M III, where IA I is the 
matrix of absolute values of matrix A. Beside appearing more logical, such a 
practice brought great improvements in the understanding of error propagation 
phenomena. 

To obtain an error bound for IIAx1l/11x11 in terms of the variations in both A and b, 
we write as before 

(A + AA) (x + Ax) = b + db 

or 

so that 

It follows directly that 

IILlxll IIIA-IIILlAllxl + IA-l/iLlblll 
--<-----:--:;-------
/lx/l - (1 - /I 1A.-lIILlAIII) /lxll 

a result which represents an alternative to Wilkinson's bounds. As for the condition 
number, it is given by 

lim /lLlx 11/11 xII 
,(<lA, <lb) ... O 'e(LI A, LIb) 

where e(M, Ab) represents the relative error in the data. Note that the above 
defmition does not differ from the previous one, since for 

e was represented by IIAAII/IIAII, and cond (A) = IIAIlIiA-lli. In the present case, 
we simply take 

IAAI ~ elAI and IAbl ~ elbl 
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thence obtaining directly 

d · . billA -lilA I Ixl + IA -11 Ib III con ltIon num er = ----------
Ilxll 

which is a condition number for the whole system Ax = b; in contrast with the 
expression for cond (A) set forth previously. Seemingly, Skeel realized that to match 
both definitions - in cases where variations in A and b occur ..:... one should implicitly 
use two different numbers e, namely e1 for AA and e2 for Ab. Unless he did this, 
then for the old bound 

IIAx11/11x11 ~ IIA II IIA 111 {(IIAA II/IIA II) + (1IMll/llbll)} 

one would get 

cond(A) = 211AIIIIA- 111 

To overcome this difficulty, Skeel associated one condition number to the variation 
in A, namely 

IliA -lilA Ilxlll/llxll 

and another to variations in b, in turn 

IliA -lllblll/llxll = IliA -lllAxlll/llxll 

As both numbers come to nearly coincide, Skeel concluded that there existed one 
condition number that could account for both kinds of perturbations; a condition 
number of the solution, or more simply of A, given by 

cond(A) = IIIA- 11IAIII 

This expression contrasts with the previous II A -111 IIA II. 
lt is however very unfortunate that Skeel's definition of cond (A), despite its being 

more realistic a's a sensitivity criterion, suffers from an impossibility of reducing it 
through scaling. This is easily seen if we consider the fact that for any diagonal 
matrix D 

cond (DA) = IliA -1 D- 11 IDA III = cond (A) 

Row scaling must accordingly have no effect on accuracy, a statement which is in 
fact all but true. This should explain why no optimum way for scaling a matrix 
exists. 

On the other hand, cond (A) = IIA -111 IIA II allows for scaling to improve 
accuracy, a fact well confirmed by practical examples. It also allows the use of 
unitary operations to fix the condition number so that it does not grow larger 
during computation, as in Householder's transformation. An interesting question 
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is now whether such manipulations could be possible for the quantity cond (A) 
= IliA -1 I IA III. 

To compare both Skeel's and Wilkinson's bounds, we will hereafter use them in 
conjunction with the example presented by Hamming (1971), namely 

[
3 2 1 J 

A= 228 28 , 

1 28 -8 

[
3,+ 38J 

b = 68 

28 

of which the exact solution comes as 

x = (8, 1, I)T 

According to the definition of cond (A) as IIA -111 IIA II, the matrix A would be 
ill-conditioned for small values of 181(IIA -111 IIAII = 36x 105 for 181 = 10- 6). 

However, for the particular choice of b depicted above, the system is well-conditioned 
according to Skeel's definition. Indeed 

-0.68 0.4 0.2 

-0.1 
A-I = __ _ 

I - 1.88 
0.4 - - 0.3 

0.2 
--0.6 

8 

0.2 

whence 

1 
I A-III AI = 

1 - 1.88 

8 

0.2 
--0.6 

8 

1 + 1.88 

0.4 

-0.4 
--0.6 

8 

2.4 8 

- + 1.2 1.4 - 0.68 
e 

1.68 

0.8 

0.8 
1.6 1 - 0.6e 

e 

and 

cond (A x) = IIIA-11IAllxl + IA- 1 11blll = 6- 2.4e 
, Ilxll 1 - 1.88 

which shows that the system is well-conditioned. However 

cond (A) = IliA -lilA III = 0.88- 1 + 2.6 - 0.68 
I - l.88 
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indicating that for small values of lsi, the system would be ill-conditioned for 
some other right-hand side term b. On the contrary, the system with the matrix A 

as 

is well-conditioned whatever the choice of b may be, since in this case 

IliA -lilA III = 17/2 

and 

cond (A, x).:;:; 211 lA-II IAI II = 17 

Therefore, for any vector b, the solution must be expected to be only at accurate as the 
machine itself. Indeed, the choice of b as 

b = (1/s, 1, l)T , e = 10- 9 

and the solution of the system on an HP-15C calculator with floating-point 
arithmetic yields 

x = (-4.7333 ... x 10- 2 , 5.000000001 X 108 , -5.800 ... x 1O-2)T 

The exact solution x being given by 

we have that 

"t~il ~ 0.1/(5 x 108) = 2 X 10- 10 

The reader may try any other vector b of his choice to investigate this accuracy. In 
fact, applying Skeel's bound to our example gives 

= 3 X 10- 9 

being the machine's accuracy itself with respect to IIxli. 
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To compare this result with the one obtained from Wilkinson's a-priori bound -
in case we had to use cond (A) = IIA-lil IIAII - we obtain 

111~~11 ;;i IIA- l AAII + O(IIAbll) 

with 

IIA- l Mil :::;; cond (A) IIMII = 6 x 10+9 X 3 X 10-9 = 18 
- IIAII 

a result in itself very misleading. 
Comparison might be rather unfair for Hamming's example; where well- or 

ill-conditioning partly accounted for the particular configuration of b considered. 
There could be no doubt now, irrespective of the choice of b, as to how poor the 
a-priori bounds ar~; as illustrated by the second example above. This fact did not 
elude Wilkinson (1965, p. 190) who noticed that by substituting IIA-IIIIIMII for 
IIA- 1 Mil, pessimistic results would be obtained. As he noticed, for case!! where 
AA = aA, then IIA- l AAII = a, i.e. it is independent ofcond (A). 

At this stage, one might wonder, since Skeel's bound sounds more realistic, why 
it had to be introduced by a whole section on a-priori bounds that yield pessimistic 
error criteria. To answer this, we must first point out that, apart from any historical 
sequence, Wilkinson's bounds are easier and quicker to apply. Should one start off 
with them, and should he find that the error is tightly ,bounded, he would have 
a guarantee - and a good enough one - of the solutio~\s accuracy. Furthermore, 
the a-priori bounds provide a crude estimate of the error in the solution without 
indulging in the solution process itself, as might be necessary here to evaluate A-I. 

On the other hanq, Skeel's bound is computed a-posteriori because it involves the 
solution x. It is only in some cases where the system is well-conditioned irrespective 
of the right-hand side b that we have 

IIAxll :::;; 28 IIIA-IIIAIIi 
IIxll 1 - 8 lilA l11A111 

serving as an a-priori bound. Even here, A -1 has to be used. 
As a general method for investigating good- from ill-conditioning, we can compute 

in order the following functions: 

a = IIA-IIIIIAII 8 

b = IIIA-IIIAIII 8 

IliA-II IAI Ixl + IA-lllbill 
c = Ilxll 8 

where 8 represents either the machine's precision or the uncertainties in our data. If 
a is high-valued, then we can conclude that Ax = b is not necessarily ill-conditioned. 
Next !tying out b, if still high, then the value of c will answer our querry. On the 
other hand, a being small-valued guarantees that band c are small. 
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Another important part of Skeel's work is indeed a remark concerning Gauss 
elimination method with partial or complete pivoting. It is interesting to note that· 
cond (A, x) might grow larger after pivoting. For instance, in Hamming's example 
cond (A, x) ~ 6. For the system after one eliminatory step, that is when 

2 

-2 
-4/3 + 26 - + 26 , 1 J 
-2/3 + 26 . ~/3 - 6 

, 0.86- 1 -3 + 36 
cond (A, x) = -----

1 - 1.88 

[ 
3 + 36J 

b' = -2 + 46 

-1 + 6 

meaning that Gauss elimination is not asymptotically stable for any pivotal strategy 
depending only on the coefficient matrix A. This is visualized by trying to solve 
Ax = b in Hamming's example on an HP-15C calculator with floating-point arithmetic 
and a ten-digit accuracy. By taking 6 = 10-9 the results were 

x = (1.166666667 X 10-9, 1.024351388,9.512972235 x 1O- 1)T 

with an accuracy of 

/lAx11 ~ 5 x 10- 2 

Ilx/i 

which is very poor, notwithstanding the number of machine digits. 
Skeel suggested a scaling procedure to overcome this problem remarkable in that 

it works perfectly in most cases. The matrix D, chosen to scale the system 
Ax = b into DAx = Db, is given by 

This scaling procedure has the advantage of reducing the residual Dr of the 
scaled system to a value within machine accuracy (cf. Sect. 2.5). Unfortunately, it 
runs the risk of increasing the value of IIA -1 D- 1 /1. For the specific example listed 
above, it has decreased this last quantity, thence improving greatly the accuracy. For 
Hamming's example, D comes as 

( 1 1 1 ) 
D = diag 6 + 68 ' 128' 68 

Solving the scaled equations - DAx = Db - on an HP-15C for a value of 
6 = 10-9 , we get 

x = (9.999999996 X 10- 10, 1, 9.999999998·x 1O- 1)T 



with accuracy 

IIAxl1 ~ 5 x 10- 10 

IIxll 

1.6 Sensitivity Analysis: A Circuit Theory Interpretation 31 

which is of the order of the machine's accuracy itself. . 
Although Skeel's scaling criterion seems ideal, it still faces a difficulty in its 

application, since it needs, again, an estimate of x. This could be overcome by 
solving first the unsealed system, then proceeding to solve the scaled one. This 
exercise is time consuming, but it pays off in terms of accuracy - especially with large 
and sparse systems. 

Among this vast ocean of endeavour for tighter error bounds, it is undoubtedly 
Oettli and Prager (1964) who laid the foundations for a-posteriori analysis. They 
introduced a technique called interval analysis that has inspired Skeel's work. The 
chapter to come will. discuss this technique in detail. 

1.6 Sensitivity Analysis: a Circuit Theory Interpretation 

In this section, we will discuss a problem akin to the foregoing error analysis, 
namely the sensitivity of x with respect to the elements of A and b. If A and b are func­
tions of some parameters aj; j = 1, ... , m, then to obtain OXk/oaj' we simply differen­
tiate Ax = b to obtain 

whence 

where eT = (0, ... , 0, 1,0, ... ,0) with the unity element in the kth place. In the 
special case where the above expression vanishes totally for a certain value of 
k and j, the variable Xk is said to be insensitive to perturbations in aj. The reader 
interested in further reading on insensitivity of linear models and its applications 
is referred to work by Rosenthal (1976). 

We will now consider a physical problem which, to the author's opinion, might 
offer a generalization of Engineers' accomplishments in sensitivity analysis, namely 
the definition of the system adjoint to Ax = b. We start by writing the equation 
Ax = b in the form 
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where [A! -I] is equivalent to the cut-set matrix describing Kirchhoff's current 
law in an electrical network. Suppose we devise a dual or adjoint system described by 
ATy = -e, that is 

where e is a vector yet undefined. The solution to the above equation will necessarily 
take the form 

[{-] = [~;] z 

z being an arbitrary vector. Again, in an electrical network, [I! AT] may represent 
the tie-set matrix describing Kirchhoff's voltage law. The vector {x! b)T, (e! yt 
and z are then respectively equivalent to the branch currents, branch voltages and nodal 
voltages. 

We will further define the two systems Sand S, illustrated by the two diagrams 

It is easily seen that 

This follows imniediately from the fact that the last inner product is equal to 

zT(A! -I) (i-) , which is null as seen above. By further writing the relation of 

orthogonality as 

one can differentiate the expression with respect to the elements of A, that is aij' to 
obtain 

But from the expression yT A = _eT , one can write that ~yT is given by 
Oaij 

oy7 T oA . 
-.A+y-=O 
oaij oaij 
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AX 
wherefrom we can derive an expression for the sensitivity, oa .. ' as 

lJ 

or 

T ax T oA 
e -=Y -x 

oaij oaij 

This is exactly what engineers arrive at in calculating sensitivities, for to compute 
OXdOaii' we simply take eT = (0, ... ,0, 1,0, ... ,0) where 1 occupies the kth place. 
Then oAjoaij becomes a matrix the elements of which are all zero except unity in 
place of aij' Hence 

which is exactly what Director and Rohrer (1969a, 1969b) invariably did in 
analyzing sensitivity of linear systems. To summarize their method, we can say that 
they represented in two boxes the original network N and its adjoint fI, viz. 

I Ai. ~ 0 I 
BVb = ° 

N N 

A and B are respectively the cut-set and the tie-set matrices, each of which being 
composed of linearly independent rows, and each satisfying - from graph theory -
the identity ABT = 0. ib and Vb are respectively the branch currents and branch 
voltages, including as well branch sources. Z is the impedances' matrix. It is 
diagonal in most cases unless controlled sources are present. 

Now, from the relation BVb = 0, we have that Vb = ATV; V being the nodal 
voltage vector. Therefore, 

Note that here, not only is <Vb' ib> null, but also, and more generally, 

because both Nand fI have the same configuration, or Topology; i.e. the same 
matrices A and B. This rule is referred to in network theory as Tellegen's Theorem. 
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Consider now the three circuits N, N and Nil.. The last one, Nil.' is an incremented 
circuit, where all variables Pij have been altered to become Pij + Apij.l All three 
circuits satisfy Tellegen's Theorem, since all have the same Topology, same node and 
branch numbering, same reference directions, etc ... They only differ in the values 
of their generators, which will be determined as analysis requires. When we apply 
Tellegen's theorem to N, N and Nil., we get, as stated above, 

because both quantities are null. For Nil.' we have also that 

i.e. 

<Vb + AVb, tb> = 0 

<Vb' ib + Aib> = 0 

Upon subtracting the two results, we get 

Now, writing the above relation for all branches while isolating the sources, we 
get: 

voltage source current source 

where e and j stand for voltage and current sources respectively. But since we assume 
constant sources, then: 

Ae-=O, Aj= 0 

Also, from the relation Vb = Zib, we have that: 

I Writting Pij instead of only Pi has the advantage of allowing for controlled sources. 
Special cases with Z diagonal exist, like in memory-less circuits where Zii = Pi> Pi being 
the value of the ith resistor; or in reactive circuits where Zii = jWPi' Pi being in this case the 
value of the ith reactive element. Subsequently, we will take zij = Pu without loss of 
generality. Therefore, differentiating the matrix Z with respect to Pij is equivalent to its 
differentiation with respect to zij. In the frequency domain, we add only the factor jw 
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Here, we have neglected the term ~z Aib since it will be cancelled out anyway in the 
final derivation. Hence, we obtain; 

_eT ~ie + ~vJJ = -(~Zib + Z ~ib)T ib + V'{; ~ib 
= -i'{;(~Zib + Z ~ib) + V'{; Aib 

"T "Z· + ('T ?TZ)" . = -lb Ll lb Vb - lb Ll1b 

Note that in the frequency domain, the transpose is replaced by the conjugate 
transpose. The last relation obtained is the final result, since by setting vr - i'{;Z = 0, 
we define the adjoint network, i.e. a network the impedance matrix of which is trans­
posed. Ifwe focus our interest on ovJlopij - the sensitivity of the output voltage with 
respect to the variable Pij, we set e1 = 0, and all Jl = 0, except for Jk set equal to I. On 
the other hand, had we been interested in Oie/OPij, we would have had to set it = 0, 
and all e1 = 0, except for ek set equal to - 1. Therefrom follows a simple result, 
namely that 

OVjk(or oiek) iT oZ . " . 
----"---:c--- = -lb - lb = -lbi1bj 

0Pij 0Pij 

In the frequency domain, this result is just multiplied by jw (j = ]/=I). 
By now, the reader will have noticed the great similarity, or rather the almost 

exact equivalence, between the above result and the one obtained for the set 
Ax = b. Analysis of Nand N yields all sensitivity relations between iek and the elements 
Pij' Likewise for Ax = b, one solution for x and another for y - which belongs 
to the adjoint system AT y = -e (e defined a-priori for a particular Xk) - yield the 
sensitivity relations of Xk with respect to all elements au' Note also the resemblance 
between the vector e defined for Ax = band e used in analysing N. All elements 
of e and e are null, except for the one element corresponding to the variable ~Xk 
(in Ax = b) and ~iek (in N). 

As a conclusion for the section, we will borrow a simple example from Temes 
and LaPatra (1977) to clarify the above results. The following figures depict the 
systems Nand N 

+ V1 

+ V1 
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whence 

Z~D 
0 

° 0] ['0 0 q 0 o 0 , 0 0 r32 
Z= 

r32 00' o 0 0 

0 o r4 o 0 0 r4 

Z is not diagonal because of the existence of a current-controlled voltage source. 
Now: 

and 

In the network N, setting 

e1 = 0, 

and 

e2 = -1 volt 

73 = -74 = e2/r4 = -1/r4 
71 = 72 = -r3273/r1 

the sensitivity relations become 

For further reading on sensitivity analysis of linear systems, the reader is referred to 
the explanatory work by Calahan (1972). 

1.7 An Application on Error Bounds: Lyapunov's Equation 
The Lyapunov equation, and more generally the Sylvester equation 

AX-XH= C 

appears frequently in the theory of linear dynamic systems, in relation to problems of 
control and stability. It is solvable using algorithms available for the solution of 
linear equations, since it can be written 

(A ® I - I ® HI) x = c 
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where x and c are respectively vectors containing all the elements of X and C, 
set in a suitable arrangement. This form defines the Kronecker product of two 
matrices, noted 0, (see Bellman (1970, Chap. 12)). Hence, solving the Lyapunov 
equation for X is in fact solving it for x. Only, when A and B are of order m and n, 
the number of linear equations rises to m x n. For matrices A and B of high order, 
the algorithms become cumbersome and time-consuming. Bartels and Stewart (1972) 
set an equivalence between the Sylvester equation and the problem 

where T and S transform A and B into Jordan form (Schur form for unitary T 
and S). T- 1 XS is therefore easily found, wherefrom X could be evaluated. 
Further formulations of the problem can also be found in Golub, Nash and 
Van Loan's work (1979). 

In this section, the sensitivity of X to changes in A, Band C will be our main 
concern. At first, we will assume that the unperturbed problem has a unique solution 
X, a fact guaranteed if 

where It stands for eigenvalue. If A, Band C are subject to perturbations AA, AB 
and ~C, then X will change to X + ~. Therefore: 

A ~X - ~XB = ~C - ~AX + X ~B - ~A ~X + ~ ~B 
I.e. 

IIA ~X - ~XBII ;;:;; II~CII + II XII (II~AII + II~BII) + II~II (II~AII + II~BII) 

But we have that 

min I AM) - AiB) I 
IIAL1X -L1XBII ~ ',j II L1X 1/ 

cond (T) cond (S) 

where T and S are similarity transformations which diagonalize A -and B. For 
defective A 'and B, the above bound becomes more complicated. The derivation of 
the above bound follows directly from Bartels and Stewart's equivalence problem. 
And by using the relation 

(IIAII + IIBII) II XII ~ IICII 

we finally reach 

{ 
cond (T) cond (S) } {11L1CJ1 IIL1AII + I\L1BII} 

II L1 XI/ (IIAII + IIBID ~in I Ai(A) - ij(B) I 1CIf + IIAII + IIBII 
--< ',j 

II XII - { cond (T) cond (S) } {"L1AII + IIL1BII} 
1 - OIAII + IIBID min I AlA) _ Aj(B) I IIA II + II BII 

'. j 
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provided that the bracket in the denominator is less than unity. Note the similarity 
between this bound and Wilkinson's (c.f. Sect. 1.4). Here the quantity 

cond (T) cond (S) 
OIAII + IIBI!) min I A.;(A) - A .(B) I . . ) 

I,) 

stands for some condition number (cf. Deif (1983 a)). A more formal representation 
for the condition number is 

II AX - XBII 
cond (A, B) = sup 

IIXII=lIf ll=11IAY - YBn 

which is lesser in value than the foregoing expression, since 

sup IIAX ~ XBII :s; IIAII + IIBI! 
IIXII=1 

and 

Inf IIAY - YBII ~ min IAi(A) - A/B)I/cond (T) cond (S) 
IIfll = 1 i, j 

there being no possible equality for any X and Y. The latter infnnum is termed, 
according to Stewart (1971), the separation between the two matrices A and B. 
A special case occurs when both A and B are normal, giving 

IIAX - XBI12 
sup 

IIXII2=\lY//2=11IAY - YBI12 

Il!-~x I Ai(A) - AiB) I 
I,) 

~!1IAi(A) - Aj(B) I 
I, ) 

since cond2 (T) = cond2 (S) = 1, Tand S being both unitary. For arbitrary matrices 
A and B, however, the condition number is given from the singular values of 
A ® 1- I® BTas 

max o";(A ® I - I ® BT) 
cond (A B) = _i ______ _=_ 

2' ~n O"i(A ® I - I ® BT) 
1 

a form in general expensive to calculate. As for the simple case when both A and B 
are normal, one has in '2-norm 

_IILl_X-,-II_:s; .IILlAII + II LlBII (Lle = 0), 
IIX + LlXII IJ?l~ IA;CA) -Icj(B) I 

I, ) 

a result which coincides with one obtained independently by Jonckheere (1984). 
Note that in the above bound, the deviations AA and AB can be large as was 
already observed by Forsythe and Moler (1967) concerning the equivalent bound 
related to the problem Ax = b (see Sect. 1.4 and also exercise 1.19). 
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Beside exploring sensitivity matters, this chapter has cast a light on the value of 
cond (A) in determining the influence on the solution of alterations in the given data. 
As we have seen, cond (A) is a measure of the sensitivity of the solution x (of Ax = b) 
to changes in A; be they induced, or unavoidably generated in the course of computa­
tions. We have also found that any formulation of a bound for Ax = b must 
incorporate the notion of conditioning: a measure of how rounding, truncation or 
perturbation errors are exaggerated in the results due to disparity in the size of the 
elements of A. Or as Kahan (1966) rightly put it "If A's condition number cond (A) 
is very large and if A and b are uncertain by a few units in their last place, then no 
numerical method is capable of solving Ax = b more accurately than to about 
cond (A) units in x's last place" (cf. exercise 1.12). . 

However, rounding and truncation are by no means the sole sources of error, for 
inaccurate data can generate errors exceeding by far the combined effects of the 
latter two. In practice, this might be the case in physical models (engineering, 
econometrics, etc, ... ) where data are collected through inaccurate measurements, 
either with a certain .tolerance, or having a mean and a variance. In this case, the 
coefficients of A and the elements of b are known within a certain accuracy. Thus, 
they belong to some intervals of expected values, the properties of which we will next 
proceed to investigate through a study of interval analysis. 

Exercises 1 

1. Show that cond (A) = CTl(A)/CTn(A) based on i2-norm, where CTl and CTn are the 
maximum and minimum singular values of A. Investigate the case where A is 
normal. 

2. If A = [1 3J, and A = [1 1 ] ' discuss cond (A) in each case. 
1 4 0.1 0.101 

J. Show that cond (AB) ~ cond (A) cond (B). 

4. If U is unitary, show that cond2 (UA) = cond2 (AU) = cond2 (A). 

5. Comment on A = diag (lOs, 10- 5), det (A) = 1, cond (A) = 1010. Find the 
nearest singular matrix. 

6. If IIBII/IIAII = 8 < 1, show that cond (A + B) ~ (cond (A) + 8)/(1 - 8). 

7. If det (A) --+ 0, s~ow that cond (A) --+ 00. Hint: consider min 1\ t~ II taking 
vk = Cik, Cik being the cofactor of aik • v v I 

8. For A = [IX + 13 IX J, show that det (A) and cond (A) can be made in-
IX rx-f3 2 

dependent. Hint: det (A) = -132 , cond (A) = 1 + 132 (rt! + Irxl V rx2 + 132 ) grows 
with IIXI growing. 

9. For A = [IX : 13 IX: 13]' show that det (A) and cond (A) are interdependent. 

Hint: det (A) = f3(2IX + 13), cond (A) = 1 + 21 j I increasing simultaneously 

with IX growing. 
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(

00 (_)k-l ) 
10. Show that det (J + eA) = exp I -- l tr Ak . Hence obtain for A 

k= 1 k 
non-

singular that det (A + eB) = det (A) + e tr (AaB) + O(~). 

11. Show that det (J + eB) ::;; (1 + e trn By, with n = order of B. Are there any 

restrictions on B? Hint: det (A) = I1 Ai (). is the eigenvalue), tr (A) = L Ai' 
i i 

use relation between arithmetic and geometric mean. 

12. If cond (A) ~ lQP, show that the solution .Y of the linear system Ax = b 
computed in t-digit(decimal)arithmetic has almost t-p significant digits. Check 
your result by solving the equations 

1.332x + 0.664y = 1.996 , 0.665x + 0.334y = 0.999 

on a lO-digit machine and having cond (A) ~ 103 

13. If for the first numerical example in Sect. 1.3 of the 3 x 3 matrix A, A is 
required to be nonsingular on a t-digit machine, obtain a lower bound for t. 

14. Compute a null vector for A = ° -1 3 [-1 4 -2J 
2 -9 7 

15. Show that for A positive definite, B real symmetric 

where S is symmetric. Thus obtain the symmetric perturbation formula 

on a three-digit machine. Obtain a bound for IIAxll/llxl1 in terms of the round-off 
errors. 

17. If Ax = b, with A = [~ !J, b = [:J and if A and b exhibit respectively 

changes LlA = [
0.1 

0.02 
' LIb = . Evaluate an approximate bound o J [ O.OlJ 

0.3 -0.1 

for IIAxll/llxll. 
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18. ShowthatifllA-lMII < 1 then: 

a-II(A+LlA)-IIl:S: IIA-lil 
1 -IIA- I LlAII 

II (A + LlA)-l - A-III IIA- I LlAII 
b - < --'----''--

IIA- I II -1-IIA- I LlAII 

c - II(A + LlA)-III;;:: IIA-lil (1- IIA- I LlAIl ) 
1-11 A-I LlAII 

19. Using the identity B- 1 - A-I = -A-I(B - A) B- 1, obtain that 

II(A + ~A)-l - Alii :S: IIA- I ~AII 
II(A + ~A)-lll -

And by writing ~x = _A-l(B - A) B-lb if ~b = 0, show similarly that 

II~xll :S: IIA- l ~AII 
Ilx + ~xll -

20. Let B be an approximate inverse of A due to a machine accuracy e, show that a 
rule of thumb of the computed B is: 
(number of correct decimal digits) ;;;: (number of digits carried) 

-log (IIAII IIA-lll) -log (IOn), 
where n = dimension of A. 

21. The condition number cond (A) refers to the sensitivity of the problem discussed. 
Many variations of the condition number exist for the various problems. Show 
that, for the simple problem of multiplying two matrices A and B, i.e. 
C = AB, the sensitivity of C with respect to the variations in A and B is 
governed by 

II LlCJI :S: HAil II BII (II LlAII + IILlBII) 
1ICJ1 IIABII IIAII IIBII 

Define the condition number for the problem. 

22. For the equations 0.2161xl + 0.1441xz = 0.144, 1.2969xl + 0.8648xz = 0.8642 
having Xl = 2, Xz = -2 exactly, if Xl = 0.9911, Xz = -0.4870 are approximate 
solutions with residuals '1 = -0.00000001 and 'z = 0.00000001, explain why 
'1 and 'z are small though Xl and Xz are by far inaccurate. 

23. Consider the equations Xl + Xz = 2, Xl + 1.00001xz = 2.00001 having Xl 
= Xz = 1, select Xl = 1 + ex, Xz = 1 + {3 and obtain '1 = -ex - {3, 'z = -ex 
- 1.00001{3. Show by taking ex + {3 = 0 that '1 and 'z can be made arbitrary 
small, while Xl and Xz becoming very inaccurate. 
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24. Show that the system 

2XI + X 2 + X3 = 1 
Xl + 8X2 + 8X3 = 28 
Xl + 8X2 - 8X3 = 8 

having 

-8 

1 - 28 

1 

1- 28 

-1- 28 

o 

det (A) = 28(1 - 28), 
1 - 28 28(1 - 28) 28 

1 -1 o 
28 28 

8 1 28 1 
and Xl = --, x2 = - - --, X3 = - , is well-conditioned 

1 - 28 2 1 - 28 2 

25. The following linear system is obtained for a bridged T network 

1 1 1 1 1 
-+-+- VI I 
Rs RI R4 RI R4 

1 1 1 1 
-+-+- v2 0 

RI RI R2 R3 R2 

1 1 1 1 1 
-+-+- V3 0 

R4 R2 Ro R4 R2 

obtain iJv3/iJR3 at R. = R3 = Ro = 14 = 1 Kn, RI = R2 = 0.5 Kn and 
I = 1 rnA. Find also A14 which compensates for an error in R3 given by 
AR3 = 1 Q using first order approximation so that AV3 = O. 

26. Show that the results in Sect. 1.6 concerning sensitivity analysis of a linear 
system can be modified to account for all kinds of controlled sources. Hint: 
carry out the same analysis using a "Hybrid branch matrix" H made from the 
relations: 

(. I )T H( I.)T 
lbl J Vb2 = Vbl J l b2 

27. For the circuit shown draw N and hence derive an expression for 

iJvo 
iJL, iJC, iJR 
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28. Obtain a bound for IIAXII/IIXII, if AX - XB = C undergoes a perturbation 
with: 

A = 1, C = [0 1J 

LlA = 0, LIB = [ 0.1 -0.2J 

0.3 ° ' LlC = [0.1 OJ 

29. Show that 

m~x I AlA) + A/B) I 
cond (A ® I + I ® BT) = a. _'.:.::.1 _____ _ 

~in I Ai(A) + AiB) I 
" J 

where a. satisfies 

1/cond2 (T) cond2 (S) ~ a. ~ cond2 (T) cond2 (S) 

and where T and S diagonalize A and B. 

00 

30. Consider X = C + s(AX + XB) and by writing X = C + I sn<pn(A, B), show 
n::::l 

that CfJn = ACfJn-1 + CfJn-1 B, CfJo = C, and that <Pn = AnC + C 1) An- 1CB + 

... + CBn. Moreover X can be written as X = perI - seA + B)r1 C) with 
P suitably chosen. 



Chapter 2 

Methods of Interval Analysis 

2.1 Introduction 

Three types of errors are encountered in numerical analysis, namely: 

1. Round-off errors, arising when numbers are rounded to fit a certain precision 
arithmetic; e.g. the case where 1/6 = 0.1666 ... is approximated to 0.167 on a three­
digit machine. 

2. Truncationerrors, resulting when convergent series are truncated down to a number 
of terms, e.g. the case where 1t = 3.14159265 ... is approximated by 1t = 3.14. 

3. Data errors, associated with the specific physical model under study. They 
represent a parameter's uncertainties when it is determined through experimental 
measurements. 

The first two types can be remedied almost completely either by increasing the 
machine's precision in the first case, or by indulging in lengthy computations for the 
second. Data errors, for their part, are uncontrollable. In solving, for instance, the 
differential equation 

dy b 
-=ax 
dx ' 

x(O) = c 

where the constants a, band c include a certain uncertainty, we would get a solution y 
which is itself uncertain. Interval analysis deals incidentally with evaluating the error 
in y resulting from errors in the constants a, band c. 

A problem to be investigated in this chapter is formulated hereafter. In solving the 
equations Ax = b, if each element aij of A is allowed to vary around a mean or 
centre value (denoted a~j or m(aij)) within certain bounds, that is 

then what would be the expected variations in x? Here, eij is the maximum error 
(or uncertainty) anticipated in the element aij of the data. Finding these upper and 
lower bounds for x is not such an easy matter, for they can surely not be evaluated 
through the standard error analysis discussed in chapter one. In fact, fmding x using 
the formula: 

x + Ax = (A + ~A)-1 b 

would necessitate the expansion of (A + ~A) -1 into an infinite series in ~A(Q(A -1 ~A) 
< 1). Substituting by ~A = ±E (an error matrix) would yield x ± ~x only by 



2.1 Introduction 45 

considering all terms. To emphasize the futility of this procedure, consider for 
instance the solution of the overly simplistic problem 

ax = b, 
3 1 

a = - + - and b = 1 2 - 2 

dx d2x (L1a)2 
Then x = XC + -d L1a + da2 -- + ... 

a 21 

with 

dx 

da 

b 
2 ' a 

d2x 2b 
da 2 = a3 ' ••• 

whence 

2 1 ( 1 ) (2) (1) (± ~ r 
x = 3" - (3/2)2 ±"2 + (3/2)3 21 + ... 

2 2 2 20 2 
3±9+27+"'~27±9 

i.e. x is included approximately between the bounds 

14 26 
-<x<-
27 27 

On the other hand, writing the equation directly as 

[1,2] x = 1 

i.e. 

aE[I,2] 

yields directly 

X E [1/2, 1/1] = [1/2, 1] 

which are the exact bounds. 
Standard error analysis is usually used when the perturbation L1A is finite and 

fixed in value, so that L1x is also fmite and uniquely defined. It may also be used when 
lL1aul is small enough, so that only the 1st order perturbations are considered. In case 
the data lie within a certain range of values, an adequate method should be designed 
to analyse directly the exact ranges instead of just the parameter variations or 
perturbations. This approach is referred to as interval analysis. It yields a solution 
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in the form of bounds similar to those obtained in the previous example. It is not 
compulsory however that data errors be given in the form of bounds, but they should 
be expressed in this form whenever possible. Rounding and truncation errors, for 
instance, can be dealt with through interval analysis, since the number 1/6 = 0.1666 ... 
can be written as 

1/6 E [0.166, 0.167] 

and likewise 

1t = 3.1415 ... E [3.14, 3.15] 

Interval analysis can therefore substitute for standard error analysis. It suffers 
however from one major drawback, namely that its arithmetics do not conform with 
the common rules of real arithmetic. This yields larger-than-expected error bounds, 
when numerical analysts' concern lies more in finding bound-conserving algorithms 
than in finding stable ones as in standard error analysis. Furthermore, apart from 
yielding pessimistic bounds, interval analysis is time consuming. To the first criticism, 
workers in the field retort that it is remedied by extensive computation; to the 
second, they respond by suggesting that computer hardware be preprogrammed with 
interval arithmetic so that its computations can be executed at speeds comparable 
to those of ordinary machine arithmetic. A breakthrough was apparently made in 
this area by Kulisch and his coworkers (see Kulisch and Miranker (1983». In 
any case, interval analysis stands now as a new branch in mathematics. Since the work 
performed early on by Moore, Hansen and their coworkers in the U.S.A., in the 
early sixties, and by Kruckeberg, Nickel and their colleagues in Germany, interval 
analysis has come a long way, and at a furious pace. Nowadays, one would hear of 
such topics as interval topology, interval calculus, interval geometry, etc ... , together 
with other applications ranging from electrical circuits to psychology. Moore's second 
book (1979) contains a large bibliography, together with a large appendix - edited 
by Bierbaum and Schwiertz - containing an exhaustive listing of the work published 
upti111978, thus updating Bierbaum (1974,1975). An updated version of the interval 
analysis library is also compiled by Garloff (1985). Early introductions to this topic 
were Moore's first book (1966), Alefeld and Herzberger's book (1974) in German, 
with its subsequent English edition (1983). We can also quote the proceedings of two 
conferences, held in Oxford in 1968 and in Karlsruhe in 1975, edited respectively by 
Hansen (1969) and Nickel (1975). A third conference also took place in Freiburg in 
1980 and its proceedings was edited by Nickel (1980). 

2.2 Interval Arithmetic 

Setting x E [a, b] signifies that x is allowed to take any value between a and b, 
including both end points. It also implies that b ~ a. For this reason, some authors 
opt for the notation [g, 0] for an interval [a] of which the lower and upper bounds are 
respectively q and "ii. When q = "ii, [a] becomes an interval with zero segment, i.e. 
a point in Rl. It is then referred to as a point or degenerate interval; it can 
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alternatively be noted a. Hence, interval analysis embraces ordinary real point analysis 
as a special case. When stating that 

[a] s; [b] 

we imply that the segment or interval [g, a] is entirely contained in [ll, b]; i.e. 
g ~ II and a ~ b. On the other hand, [a] < [b] means that a < ll. Two intervals 
[a] and [b] are said to be equal if their end points coincide, i.e. g = 12 and 
a = b. When [a] and [b] have a certain range of values in common, then they are 
said to intersect; i.e. [a] n [b] =f. ~. On the other hand, when g > b or a < 12, their 
intersection is void, and [a] n [b] = ~. 

The difference between g and a is defined as the width or span of [a], i.e. 
w[a] = a-g. This quantity may be taken as a measure of the uncertainty in the 
variable a. For an interval matrix AI, the elements of which are [aij]' we take 

From this short introduction we can now proceed to state some basic rules, 
namely 

[a] + [b] = [g, a] + [12, b] = [g + ll, a + b] 
[a] - [b] = [g, a] - [ll, b] = [g - b, a - b.] 

[a] . [b] = [g, a] . [ll, b] = [min (ab, gb, all, ab), max (ab, gb, all, ab)] 

[1 IJ -[a ]/[b] = [q, ii]. b' ~ iff 0 ¢ [q, b] 

As it turns out to be, interval addition and multiplication are associative and 
commutative. As for the distributivity, consider the instance 

[1,2] ([1, 2] - [1, 2D =f. [1,2] [1, 2] - [1, 2] [1, 2] 

where the left-hand side equals [-2,2], and the right-hand side equals [-3,3]. 
However [-2,2] c: [-3,3], which expresses a property known as subdistributivity; 
stated as 

[a] ([b] + [cD s; [a] [b] + [a] [c] 

for the three intervals [a], [b] and [c] (cf. Moore (1966». Fortunately, the cancellation 
law holds, for if [a] + [b] = [a] + [c] then [b] = [c]. Then again, having that 

[a] + [x] = [b] 

does not entail that [x] = [b] - [a]. For instance, we have that 

[1,2] + [3,4] = [4,6] 

and 

[4, 6] - [1, 2] = [2, 5] 
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For a review of the rules of interval algebra and logic, the reader is referred to 
Ratschek (1975). 

This oddness of the rules complicates matters seriously. Indeed it is very 
disappointing to note that for one and the same interval [a] 

[a] - [a] "# 0 

[a] / [a] "# 1 

[a] . [a]"# [a2] (when 0 E [aD 

It requires much effort of an analyst to devise techniques fit to deal with so many odd 
rules - so many obstacles. And, unless interval computations are carried out with 
utmost care, results could turn out to be erroneous and misleading. 

To demonstrate the above rules of interval arithmetic, let us borrow a simple 
example from Moore (1969). We wish to evaluate 

when a l = 0.2 ± 0.001; a2 = 0.3 ± 0.005; a3 = 6.17 ± 0.02; a4 = -2 ± 0.1 and 
x = 0.452 ± 0.001. When performed step by step on a three-decimal-digit machine, 
the calculations are as follows: 

[ad = [0.199,0.201] 

[a2] = [0.295, 0.305] 

[a3 ] = [6.15,6.19] 

[a4 ] = [-2.1, -1.9] 

[x] = [0.451,0.453] 

[x2] = [0.203, 0.206] 

[a4 ] [x2] = [-0.433, -0.385] 

[a3 ] + [a4 ] [x2] = [5.71,5.81] 

[a2 ] [x] = [0.133, 0.139] 

[all + [a2 ] [x] = [0.332, 0.340] 

so that 

[0.332, 0.340] 
[y] = [5 71 ] = [0.0574, 0.0599] 

. ,5.81 

I.e. 

y = 0.0586 ± 0.0013 

The above calculations were executed using rounded-interval arithmetic in order 
to account for any eventual round-off errors in the intervals' end points. In fact, 
although [a] was represented as an interval to account for possible fluctuations 
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around its mean value equal to ±!w([a]), the end points of this interval may them­
selves be subject to some error. This would perpetuate our error in a vicious sequence, 
a definition of [a] becoming thence impossible to reach. For instance, if [a] = [3,6], 
then l/[a] = [0.166 ... ,0.333 ... ], having inaccurately defined end points. Had we 
replaced the equal sign by the s; sign, as in rounded-interval arithmetic, we could 
have carried out the computation as l/[a] s; [0.166, 0.334]. A numerical example on 
the use of rounded-interval arithmetic is also discussed in Moore (1979, p. 16). 

In the above example, interval manipulations proved efficient by giving narrow 
bounds for the solution y. In many cases, however, they may yield loose bounds for 
the result around its expected value; one famous example for such a situation is 
Gauss' interval elimination. Suppose Ax = b is to be solved using an appropriate 
pivoting technique together with interval arithmetic to account for rounding errors 
unavoidably generated in the course of computation. Let x be the exact solution 
for the equation, and x(/) the actual solution obtained (here I = word length), then 
[x(l)] will stand for the corresponding interval approximation. Obviously, x E [x(l)]; 
the question arises as to how large w[x(l)] is, i.e. how loose the error bounds are. 
Wilkinson's a priori analysis has shown that 

Ilx - x(l)11 ~ e(/) cond (A) 

where e(l) is a measure of the relative error in the elements of A Ecf. Dahl, Sect. l.5; 
Wilkinson (1965) p. 197). Furthermore, are the computed bounds in [x(l)] equally 
favourable? Wongwises (1975) conducted several thousand experiments on various 
computers. The matrix A was created at random, in order to vary cond (A). The 
quantity w[x(l)]/llx - x(l)11 was plotted versus n, the order of A. Wongwises found 
that this index of uncertainty in the result increases very rapidly with n; for n = 30, 
w[x(l)]/llx - x(l)11 yields an overestimation of 109 , which is obviously unacceptable. 
What is more awkward is that results have nothing to do with cond (A) or the 
value of I, a conclusion drawn when we are lucky enough to see the algorithm reach its 
end. More usually tha,n not, computation is interrupted, simply because of a pivot 
containing the zero in its interval, which is a very probable occurrence. 

We will borrow from Hansen (1969) an example in which such large bounds can be 
obtained. Here, we wish to solve the equations 

[2,3] Xl + [0, 1] x 2 = [0, 120] 

[1,2] Xl + [2, 3] x2 = [60,240] 

using standard interval arithmetic 

[x] = [0, 120] [2, 3]- [60, 240] [0, 1] = [-120 180] 
I [2, 3] [2, 3] - [1, 2] [0, 1] , 

[2,3] [60, 240] - [0, 120] [1, 2] 
[x2 ] = [2,3] [2, 3] _ [1,2] [0,1] = [-60,360] 

We will see shortly why these bounds are loose and misleading. Some improvements 
can be achieved by rearranging the above quotients as Hansen and Smith (1967) 
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noted. The estimate obtained is still not that much better, notwithstanding the size 
of the problem. In fact, in the simpler instances, as when we compute the range of 
values of a/(a - 2), a E [10, 12] we obtain [1,3/2] when using interval arithmetic, 
whilst the exact range - [1.2, 5/4] - could be obtained upon inspection, taking note 
of the quotient's monotonicity. This drawback has been known for a long time to 
numerical analysts, who realized the inconvenience of solving linear equations using 
interval arithmetic. Yet, for reasons of bad publicity, as Nickel pointed out (1977) 
this inconvenience was not admitted widely until Wongwises stipulated it in 1975. 
Many a numerical analyst remained skeptical, or even suspicious, about this new field 
for a long time. Nowadays, thanks to innovation and testing of numerous algorithms 
and the associated progress, interval arithmetic has become an established discipline. 
Gauss' methods themselves have undergone further progress that narrowed greatly 
the error bounds. 

The main questions are yet to be answered: what are the exact ranges of 
values for Xl and xc? What is the significance of finding a solution X for 
AIX = bI, AI ~ fA, A] and bI = [Q, b] being respectively an interval matrix and an 
interval vector? 

When endeavouring to solve A I X = bI , we set out to find all the possible 
values of the vector X E R" satisfying the equation Ax = b, where A and b 
are fixed and assume all possible combinations of values inside AI and bI . This 
infinite number of solutions constitutes a region inside Rn which we will call X. In 
other terms, solving A I X = bI for x is synonymous to finding X, given by 

X = {x: Ax = b, 

As for the interval vector ~, it is in fact the vector with the minimum possible 
interval containing X. Note that we do not usually write AI ~ = bI, because, as a 
matter of fact, A I Xl ;2 bI . In the sequel, we shall assume that every matrix A 
contained in A I is nonsingular. 

Now, for Ax = b when A and b take respectively all values of AI and bI, the set X 
containing all possible solutions x is represented by the two inequalities 

Ax ~ b 
Ax;::;; Q 

valid for nonnegative values of the elements Xi. A proof of this assertion is provided in a 
later section. For the simple numerical example given above, the foregoing inequalities 
will read respectively 

2Xl ~ 120, 

3xl + x2 ;::;; 0, 
Xl + 2X2 ~ 240 

2Xl + 3x2 ~ 60 

Similar inequalities can be obtained for negative values of Xl and X2. All these 
inequalities define a region X in R2 containing all possible solutions x to the 
problem. This region we will call the domain of compatible solutions. Obviously, it 
has the shape of a polygon (see Fig. 1) and although X here is convex in anyone 
quadrant, the union of all polygons lying in all possible quadrants is usually a 
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nonconvex domain. This is the exact approach to the problem, for :x! can easily be 
shown to be equal to 

x = ([-120,90], [-60,240])T 

Note the accuracy of this bound when compared to that obtained using standard 
interval arithmetic. Again, it is in general difficult to find X, or to represent it once it is 
obtained; especially in spaces with more dimensions than two. One must thus adopt a 
different approach. 

Solution of linear equations with interval coefficients has followed two main 
channels, namely: 

a) To try and estimate (AI)-I; an approach adopted by Hansen et al. The 
solution x, hopefully the narrowest interval containing X, satisfies the relation 
x C;; (AI)-1 bI. 

b) To use linear programming to define X as 

X= {x: Ax = b, 

x satisfies the relation A I X n bI "# ~. This approach was adopted by Oettli et al. 
It was further found useful in studying the compatibility of solutions to Ax = b, 
A and b having fixed values. 

1-110.140) Xl 

Xl 

190. -60) 
Fig. 2.1 

2.3 Hansen's Methods 

In their two papers (Hansen (1965); Hansen and Smith (1967)), the authors sought 
an· estimate of (A I) -1 that would include in its intervals the coefficients of 
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(A C) - \ A C being the matrix of mean values of the intervals of AI, termed the 
centre of AI, i.e. 

Now, let EI be an error interval matrix given by 

where B is an approximate inverse of A c, computed using some matrix-inversion 
algorithm with single-precision floating-point machine arithmetic. EI has smaller 
valued elements when AI has a narrower width. Similar to the bound used for a 
fixed matrix A, one can assign a norm to E1 or AI, i.e. 

IIAIII = max f max(l~ijl, laij \) 
, j= 1 

Now from the above residual relation, we could write 

which is unfortunately impossible to evaluate. For one thing, one must rely in its 
evaluation on the identity (AI)(AI)-l = I; which is not necessarily true. Had it been 
valid, (1 - EI)-l would not be equal to the series 

(with IIEIII < 1) 

since a proof of such an identity must rely on the distributive law which does not 
hold. 

Instead, one should make use of the relation 

£C=I-ACB 

but first obtain 

11(1 - £")-1 - (I + £" + (EC)2 + ... + (Ec)mll ;;:;; II (E")m + 111 11(1 _ E C)-111 

IIEllm+l 
~ -=-1 -c11:-E"""'11 ' 

Meanwhile, note that since A C <;; A I and E C <;; E I , then 

(ATI = B(I - E c)-1 <;; B(S~ + DI) 

<;; B(S~ + DI) 

11E11 < 1 
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Here, DI is a matrix with identical elements, each of which is given by 

Furthermore 

the relation is written in this order to make use of the subdistributivity law. To 
exemplify the foregoing theoretical discussion, let us borrow one example given by 
Moore (1966), viz. 

AI _ [ [0.999, 1.01] [-1.00 x 10- 3, 1.00 x 1O- 3]J 
- [-1.00 X 10-3, 1.00 x 10-3] [0.999, 1.01] 

whence A C = I and B = I; and 

I I [[-0.01,0.001] [-O.OOI,O.ool]J 
E =I-AB= 

[-0.001,0.001] [-0.01,0.001] 

Here, IIEI II = 0.011 and, for m = 1, 

0.000122 < 1 IIE~iI2 { < 0.000123 
- Ell 

Taking the upper bound as a binding value for the interval, we obtain 

1_ [[-0.000123,0.000123] [-0.000 123, 0.000 123]J 
D - [-0.000 123, 0.000123] [-0.000123, 0.000123] 

wherefrom we finally get 

(AC)-1 S;; [ [0.9898, 1.00113] [-0.00113, 0.00113]J 
[-0.00113, 0.00113] [0.9898, 1.00113] 

If the reader would take m = 2 and compare the results, he will readily conclude 
that the greater the value of m, the higher the accuracy attained. Moore (1966) 
found out that the upper and lower bounds of any component of the interval 
matrix {(A") -1 fA C S;; A I} fall short of being sharp by a quantity of the order of the 
square of the width of A I. As for the solution Xl S;; (A 1)-1 bI, it can be calculated by 
multiplying (A 1)-1 by bI. 

The same procedure can also be applied to a definite-element matrix A, when its 
elements have rational values. For instance 

[ 
1 1/2 1/3J [1 0.5 

A = 1/2, 1/3 1/4 = 0.5 tx 

1/3 1/4 1/5 tx 0.25 
0~5J 
0.2 
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with oc = [0.3333333333,0.3333333334] in double-precision arithmetic. For this 
reason, Hansen's method is valuable to numerical analysts when solving the simple 
problem Ax = b. It can replace the error analysis approach by Wilkinson (1963). 

Another method, proposed by Hansen and Smith in their 1967 paper and yielding 
good results for narrow intervals, proceeds as follows: 

• LetAlx = bI 

• Suppose A C is the centre value of A I 
• ComputeB = (AC)-l 
• Use interval arithmetic to find BA I and BbI 

• Solve (BAI) x = (Bb I) using for instance Gauss' elimination. 

The error in the computed values of Xl is of the order of the square of the width of the 
coefficients' set [noted O(W2)]. Miller (1972) provides us with an example, viz. 

AI = [[2 ± 0.1] [1 ± O.I]J 
[1 ± 0.1] [1 ± 0.1] , 

The set X is found from 

bI = [[3 ± O.1]J 
[2 ± 0.1] 

19x1 + 9X2 ~ 31 , 
9Xl + 9X2 ~ 21 , 

21xl + l1x2 :f; 29 
11Xl + 11x2 :f; 19 

and is represented by a quadrilateral with vertices (1/3, 2), (1, 8/11), (17/11, 2/11) 
and (1, 4/3). Therefrom, the exact bound [x] is given by 

[x] = ([1/3, 17/11], [2/11, 2]f 

Now, multiplying by B which is given by 

we obtain 

BAI = [[1 ± ·0.2] [±0.2]J 
[±0.3] [1±0.3] , 

BbI = [[1 ± O.2n 
[1 ± O.3]J 

The set Y = {y: BAy = Bb, BA E BA I , Bb E BbI } is obtained like before. It is 
represented by the quadrilateral with comers (1/3, 2), (3/5, 2/5), (17/11, 2/11) and 
(11/5, 14/5). Whence we get 

[Yl] = [1/3, 11/5] , [Y2] = [2/11, 14/5] 

But by applying Gauss' elimination, or the Gauss-Jordan variant of it, we can 
solve 
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for z, which is in turn given by 

[Zl] = [1/5, 11/5] , [Z2] = [2/11, 14/5] 

The author later reworked the example using 10 instead of 0.1 to estimate the order 
of the error between ZI and Xl. He found that 

[XlJ = [1 - 7s, 1 + 7sJ, 
1-10 1+10 

and 

[z 2J = [1 - 810 , 1 + 410] 
1 + 10 1 - 510 

Here, note that Xl s; ZI. Both W(XI) and W(ZI) are of the form given by 
1210 + 0(82). The fact that ZI exceeds Xl by only 0(W2), where W is equal to 
w(AI , bI), is the main result obtained by the author. His proof is based on the lemma 

which is a variant of Kuperman's result (cf. Sect. 1.3). Here qki is the (kth, ith) element 
of B. sij is the error in aij' i.e. 

Si is the error in bi' i.e. 

Xj is the jth component of x", i.e. the solution to Aex = be. Now solving, by 
interval arithmetic, BAI z = BbI must entail no further loss of accuracy. Incidentally, 
Gauss' method transforms BAI into a diagonal matrix D. Thus, solving Dz = d 
ensures that ~ s; ~ ~nd that the same order of accuracy O(W2) is maintained. 
Further methods for estimating Xl can be found in Hansen and Smith (1967). 

The two methods of Hansen discussed above are adequately implementable, 
especially with narrow intervals. For excessively large values ofw(AI, bI), however, 
more pronounced errors might appear in the results. It would have been more 
advantageous then to find a way to approach as much as possible the end 
corners of Xl before applying the above listed procedures. This was proposed by 
Hansen (1969). One can thence determine Xl very accurately, without the need for 
either estimating (A I) -1 or solving BA I z = Bb I using interval arith¥letic. In this case, 
even if W = w(A I, bI) is large, the error in W(XI) would only depend on the 
round-offs, i.e. on the machine precision. 

This method primarily involves solving Ax = b,with A and b fixed and uniquely 
chosen from AI and bI in such a way as to maximize or minimize x, thus obtaining 
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I a~ a~ 
x = Xmax - Xmin· If - and - are negative in sign, then the choice aij and aa ij ab i 

b. will make us approach x .. In case the sign is reversed, the opposite choice 
should be made. As for the ~'~rtial derivatives, they are simply obtained from the 
relations 

ax aA 
A-+-x=O aa ij aaij 

and 

To exemplify the technique, let us apply it to the example first listed above, 
namely 

[ [2,3] [0, l]J [XlJ [[0, 120] J 
[1,2] [2, 3] x 2 = [60, 240] 

Now supposing we wish to determine Xl max (in the fourth quadrant, with Xl ~ 0, 
X2 ~ 0), we will use AC to represent A 

AC = [5/2 1/2J 
3/2 5/2 ' 

and 

OXI 
- = - [5/11 oa ll 

OXI 
- = - [5/11 oa12 

oXl 
- = - [5/11 oa2l 

oXl 
- = - [5/11 oa 22 

and 

(AC)-l = [ 5/11 -l/11J 
-3/11 5/11 

-1/11][~ ~J [~J <0 

-1/11] [~ ~J[~J>o 

-1/11] [~ ~J[:J>o 
-1/11][~ ~J [: J<o 

oX -1/11][~J > 0 _1 = [5/11 
ObI 

OX 
-1/11]GJ < 0 _1 = [5/11 

ob2 



2.4 Method of Linear Programming 57 

whence Xl max is obtained by solving 

X = 90 1 max 

which is corroborated by Fig. 1. Carrying out the same calculations for Xl min' 

x Zmax and xZmin' we obtain 

Xlmin = -120 
x Zmax = 240 

x Zmin = - 60 

and the interval vector Xl is given by 

Xl = ([-120, 90], [-60, 240W 

Note that if any of the derivatives is null, its corresponding element aij is left as it is 
in the form of an interval [ail The previous methods are thus considered vital; 
they are used even when all derivatives are non-zero as in the previous example, to 
account for rounding errors. The error in W(XI) has now been improved; at best it is 
of the order 8(1), I being the machine precision. 

In practice, both A C and b C are usually given along with the range of the 
uncertainties in their elements. If Xl is the solution - computed in interval form 
Xl = [K, x] by some method of interval arithmetic - then the error in XC due to 
uncertainties in the data can be measured by the quantity 

1 I 1 
- w(x ) = - max (x. - x.) 
2 2 i ' -, 

We can further take as a measure of error, the interval metric 

q(XI, XC) = max {llx - xCII, II~ - xCII} = max {max (Ixi - xfl, I~i - xf I)} 
i 

This latter measure is sometimes preferred, on the grounds that XC does not usually 
divide x - K into two equal segments. 

2.4 Method of Linear Programming 

Linear programming facilities can provide us with a second approach for solving 
AIX = bI. This line of thought was adopted by Oettli and Prager (1964) and 
Oettli (1965). First, the authors set out to define the set 
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If x is a point belonging to the solution set X, then it must satisfy the following 
relation 

II a~jXj - b~1 ~ I Liaij /Xjl + Lib;; 
j j 

i = 1, ... , n 

Here, t1a;j and t1b; are the uncertainties in the data, i.e. 

and 

To prove the above relation, write 

(A C + <5A) x = be + <5b 

or alternatively 

be - A ex = <5Ax - <5b 

then 

i = 1, ... , n 

Now 

Then the right-hand side certainly does not lie outside the intervals 

i = 1, ... , n 

Then for x to be an admissible solution of A I x = b I, the left-hand side must also lie 
within the same intervals, i.e. 

b~ - I a~h ~ - I Lia;j I Xjl - Lib;; 
j j 

i = 1,00', n 

and 

b~ - I a~h ~ I Liaij IXjl + Lib;; i = 1,00', n 
j j 

from which Oettli's inequality follows. A simple proof was further suggested by 
Hansen (1969). The fact that X denotes the set of all possible solutions x of 
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Ax = b (A and b possibly assuming any of the values of A I and b I respectively) 
necessitates that 

Now writing A I X as [4x, Ax] for x ~ 0, and b I as [Q, 11], we can conclude that for the 
intersection of A I X and b I to be non-empty we must have, 

4x ~ 11 and Ax ~ Q 

Simultaneously, putting 

4=Ae_AA, A=Ae+AA 

Q = be - db, 11 = be + db 

results, for x ~ 0, in the two inequalities 

A ex - be ~ AAx + Ab 
A ex - be ~ -AAx - Ab 

wherefrom Oettli's compatibility condition directly follows. Now, we can utilize linear 
programming to maximize (or minimize) x, subject to the two above inequalities. This 
would yield extreme values located at some of the vertices of the space polyhedron. 
If x and ~ are respectively the maximum and minimum values of the objective 
function x processed with the simplex, then 

The reader is asked to apply the simplex on Hansen's example (1969) discussed 
previously, that is to maximize x subject to the inequalities 

2XI ~ 120, 

3xI + x2 ~ 0, 
Xl + 2X2 ~ 240 

2XI + 3x2 ~ 60 

For other ways of determining the solution set of A I x = b I , the reader may consult 
Hartfiel (1980). 

As we have already pointed out, one of the problems usually enountered when 
using this approach is the nonconvexity of the region containing the possible 
solutions. Fortunately enough, in practice Aaij is small and the polyhedron lies in 
just one orthant. This allows for the simple application of linear programming. 
However, if Aaij is large, Cope and Rust (1979) argue, application of the same 
technique might still be possible. In fact, whilst Oettli and his co-workers require 
that Aaij be small, Cope and Rust allow the solution set to spread over many orthants, 
and even to become unbounded. They look for bounds on all of the solutions lying 
in anyone orthant. A word for the reader wishing to compare this line of methods 
to that of Hansen's for determining (A)-I: linear programming is much slower, 
but all the more accurate - especially with wide intervals. 
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However, one must bear in mind the fact that Xl will not satisfy the equations 
AIXI = hI, be they computed using Hansen's method, linear programming or any 
other method. This is why we write the equations in the form AIX = hI, where x 

is any element of the set X given by 

As for Xl - the minimum interval enclosing X - it satisfies the relation 

This can be seen from Hansen's principle AI Xi n hI "# ~, for an Xi E X E [~, x] . 
In other words, one can conceive that 

(see also exercise 2.9), Figure 2 illustrates this fact. 

Fig. 2.2 Fig. 2.3 

In general, the big the area of X enclosed in Xl, the tighter the bound AlxI ~ hI. 

For example, for the equations 

[2,4] Xl + [1,2] X z = [-I, I] 

[1,2] Xl + [3,4] X z = [-I, I] 

sketched in Fig. 3, X represents 70 % of the surface area of ~. 
For the famous example in Barth and Nuding (1974) depicted in Fig. 4 and 

stated as 

[2,4] Xl + [-2, I] X z = [-2,2] 

[-1,2] Xl + [2,4] X z = [-2,2] 

the area of the set X is relatively small compared to that of Xl . The difference 
between both areas is called the overestimation error. In practice, different 
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algorithms produce different ~'s and accordingly different overestimation errors. 
We have seen that Gauss' method, for example, produces large overestimation 
errors in comparison with other methods. In fact, one of numerical analysts major 
concerns is presently to find new techniques for the reduction of this error. Their 
goal is to find bound-conserving algorithms, by contrast with stable ones as 
stated in standard real analysis. In this respect, two choices were possible: 
finding classes of data A, b for which Gauss' method is bound-conserving (as for the 
class of M matrices discussed in Barth and Nuding (1974) and in Beeck (1974»; 
or resorting to iterative methods to improve on the results as we shall see later 
on. 

Xl 

L ______________ _ Fig. 2.4 

2.5 A-Posteriori Bounds 

Error analysis of the solution of the equation Ax = b usually involves three phases: 

1. Design of a technique to be stable and virtually insensitive to the uncertainties in 
the coefficients of A and b. In any case, the solution will contain a certain 
error due to the machine precision, which can be forecast using Wilkinson's 
a-priori analysis. 

2. After having solved the equations, finding a way to judge of the accuracy of the 
results; a procedure aiming at deciding whether to accept or reject the results and 
termed a-posteriori analysis. Results are judged accurate or not usually by 
comparing the residual vector r = Ax - b to the allowable uncertainties in A 
and b: if these latters are allowed to vary in a limited range, then r is supposed 
not to exceed a certain bound. 

3. Investigating the possibility of improving on the results, although they might be 
acceptable on an a-posteriori basis. This can be achieved using iteration; its 
discussion is postponed to the next chapter. 

As the term implies, a-posteriori analysis yields a prognosis of the operation 
executed on the problem Ax = b. We already knew of the uncertainties in A and b 
before running our algorithm, be they due to limited precision of the machine in 
representing the numbers, or to an incapacity on our behalf to determine our data 
accurately. Such uncertainties are not defects in themselves, for they will always exist. 
Rather the defect might lie in obtaining results that are incompatible with the 
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amount of anticipated uncertainty. Analyzing how good the results are in relation to 
how precise our data were is what we term a-posteriori analysis. 

Oettli's compatibility condition for the existence of a solution x that satisfies 
A I X = bI - as stated before - has inspired Rigal and Gaches (1967) to use it also as a 
test, for a linear system, of the compatibility of a given solution with the data. 
Despite their having fixed values, both A and b still suffer from inaccuracies, either 
inherent or introduced to the system. If x is an approximate solution of the system 
Ax = b, then it is considered compatible with the linear system's data if it 
satisfies 

(A + c5A) x = b + c5b 
N1(c5A) ~ ex 

N2(c5b) ~ f3 

where c5A and" c5b are matrix and vector of uncertainties. NI and N2 are some 
definitions of norm, and ex and f3 are measures of the uncertainties. The decision 
whether to accept or reject x according to its being or not compatible with the 
uncertainties in the data depends on us finding a class of matrices c5A and 
vectors c5b, bounded by the above described measures called the loci of indiscernible 
data, that satisfy the perturbed problem. The condition of compatibility is then 
found to be 

withl/p + l/q = l,p;;; l.Toobtainthisfineresult,wecanuseasbeforetheequation 

Ax - b = c5b - c5Ax 

put in Oettli's form, since the intervals of uncertainty in A and bare [-~A, M] 
and [-Ab, ~b], that is 

i = 1, ... , n. 

By summing over all values of i, we would obtain 

which is Rigal and Gaches' result for p = 1, provided we derme 

Ilxllp = (f IxiIPY'P 

II A lip = (~laijIP)I/P 
l,j 
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For a general value of p greater than unity, the result would still be valid if we raise 
both sides of Oettli's inequality to the power p and sum again over all values of i. 
Then taking the pth root, we obtain 

/lAx - blip::;; (~(~ Aaij IXjl + AbirY'P 

= IIAA Ixl + Abllp 

~ IIMlxlilp + IIAbllp 
~ IIMllp Ilxllq + IIAbll p ' 

the exact result required. In fact, the authors' main contribution lies in the remark that 
the expression 

sets a tighter bound than both the subordinate Holder matrix and consistent vector 
norms. This becomes clear when we take AA = yz*. The angles between x and all 
vectors [Aaib Aai2, ... ,Aain]; i = 1, ... , n become equal. By applying the idea of dual 
norm discussed in Sect. 1.2, we obtain 

II AAx lip Ilyz*xllp I z*x 1 
sup -11-11- = sup II II = IIY lip sup -11-1-1 = Ily lip II z lip = II AAlip 
x"'o x q x",o X q x"'o X q 

As for the calculation of l5A and l5b required for error adjustment in the solution x, the 
authors suggested 

l5b = f3r 
0( IIxllq + f3 ' 

r = Ax- b 

and l5A = yz*, where z is a vector satisfying the relation z*x 
from r = Ax - b = l5b - l5Ax = l5b - yz*x, y = l5b - r. Then 

l5A = yz* = (l5b - r) z* 

1. Therefore, 

The reader may refer to Oettli, Prager and Wilkinson (1965) for similar ideas. Although 
the compatibility condition derived by Rigal and Gaches was meant mainly for square 
matrices, it is still valid for least-squares problems. For a discussion of this 
topic, the reader may refer to Kovarik (1977). 

Since in the above analysis, it is only required to find one possible l5A, we 
have chosen the simplest one l5A = yz*. Such perturbation is called perturbation of 
rank one. Perturbations of finite ranks, beside setting tighter bounds as was seen 
above, provide a representation of l5x in the same form as the perturbations in the 
data (see exercise 5.1 and also RaIl (1979)). 
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Unlike forward error estimation in chapter one which starts from assumptions 
about data perturbations and obtains a comparison between the actual solution and the 
true solution, backward error estimation as developed here, assumes the solution 
obtained to be the exact solution of some perturbed problem and proceeds to 
estimate the corresponding changes in the data. 

To demonstrate the above condition on an example, let us consider the 
following, executing our computations on a 1O-digit machine with floating-point 
arithmetic: 

b= GJ 
For a solution x = (2.333333333, -0.333333333)T, the residual IS r = Ax - b 
= (0, 1O-9)T. Now, takingp = 1, then 

IIL\AIII = (5) (10- 1°) (1 + 1 + 1 + 4) = (35) (10- 10) 

IIMIII = (5) (10- 1°) (2 + 1) = (15) (10- 10) 

and 

Ilrlll = 10-9 ~ IIL\AIII Ilxll oo + IIL\bll l = (35)(10- 1°)(2.333333333) + (15)(10- 1°) 

Hence, x is a realistic solution despite the round-off errors. Also 

b (15)(10- 10) 9T 10 T 

b = (35) (10 10) (2.33 ... ) + (15) (10 10) (0, 10-) < (0, (2) (10- » 

and 

where z can be chosen as z = (t, tl, satisfying ZT x = I and also liz II . Ilbb - r II ~ 0(. 

bA can be chosen.as 

satisfying the perturbed problem 

([ 1 IJ [0 0 J) [2.333333333J [2J [0 J 
1 4 - (4) (10- 1 °) (4) (10- 1°) -0.333333333 = 1 + (2)(10- 1°) 

with exactitude, up to the accuracy of a ten-digit mantissa. Note that bA and bb 
are not unique, but depend on the particular choice of 0( and {3. 

It is also worth noting that since Rigal and Gaches compatibility condition, as 
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stated above, is just another version of Oettli's criterion, the latter can still be used in 
its raw form, being that form suggested by Skeel (1979). If r satisfies 

Irl ~ .1A Iii + M 

where Ir I stands for the vector of absolute values, then x is a realistic solution. 
Then for a machine of precision B, .1A = B IA I and also .1b = B Ibl, and 

Irl ~ B(IA Ilil + Ibl) 

becomes another form of the above criterion when testing the compatibility of x with 
the error B in the data using floating-point arithmetic. bA and bb are then chosen 
as 

bb = -Hlbl 
bA = HIA I diag(sgn x) 

where H is a diagonal matrix, with Ihiil ~ B. For the above example, bb and bA 
can be chosen to fit into the perturbed problem 

([ I IJ [I'It -'11 J) [ 2.333333333' [2 - 2'11J 
1 4 + '12 -4'12 -0.333333333 J = 1 - '12 

with'11 = 0,1'12 = -2.l42857144xlO- 10 1 < B = 5xlO-10 . 

The above compatibility criterion has been widely implemented in many 
packages. For example in the IMSL one, if x is a computed solution of Ax = b, then 
it is considered compatible with the uncertainties in the data as a result of round-offs, 
if the machine accuracy B is greater than p, where 

Ibi- i aiixil 
p = max ---'_---.::...i=_I __ !..-

15iSn n 

BN + AN L li·1 
j= 1 J 

and where 

BN = max Ibd, 
1 Si5n 

AN = max lai·l. 
15i.j5n J 

The above compatibility condition can also be used to control the value of r. 
For example, by scaling the equations into the form 

IDrl ~ BIDI (lA Ilil + Ibl) 

where D is a scaling diagonal matrix. One can choose 

1 
d·· = .,-----;-:-:--;----:----:-:--::--:-----:-:-: 

II lailllxli + ... + lainllxnl+ Ibil 
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to bound IDrl by 8(1, 1, ... , l)T. However, we should not be misled by the idea that 
we have reached an optimum solution, since Ilbxll is bounded by IliA -lllrlll 
~ 81IA- 1D- 1 11 which could assume ·a high value. If for instance in the example 
considered in Sect. 1.5 

[
1/2 1/3 1/4J [X1J [lJ 
1/3 1/4 1/5 x2 = 1 

1/4 1/5 1/6 X3 1 

we choose D = diag (1/42, 1/32, 1/26), we get for x: 

x = (12.00000014, -60.00000039, 60.000 00023)T 

which is a worse result than when the system was first scaled as seen. Yet, the 
new residual r is such that 

Irl < 8(1, 1, ... , l)T 

This explains why there is no algorithm that performs satisfactorily in scaling any 
general matrix. However, the ratio 

max (IA Ilxl + Ihl) 
min (IA Ilil + Ihl) 

can give an indication of how poor is the scaling of a system. 
In the above analysis, the authors were not concerned with identifying the domain 

of compatible solutions. Rather, their concern lay in making sure that the computed 
solution x lies within this domain, which would be termed realistic solution in case it 
satisfies this criterion. Following another methodolgy, other authors have devised an 
expensive way of defining the domain of uncertainty of x, thus determining the 
number of significant digits in each ofthe unknowns as well. This was done statistically, 
as in the work of LaPorte and Vignes (1975). If the residual r i of each equation 
2: aijxj - hi is calculated and found to satisfy the condition of normed residuals, 
j 

namely 

i = 1, ... , n 

with 
n 

ri = rNn .2: (aijx/ + hi" 
1=1 

where N is the number of bits of binary mantissa, we call the solution x solution 
in/ormatique. All of such informative solutions constitute in Rn a set !2iJ which is 
termed domaine d'incertitude, that is 
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Every point in !?fi corresponds to an informative solution of the system, and the 
bounds of this domain permit a definition of the uncertainty in each of the 
unknowns. If 'Yi and (j~ are respectively the mean and variance of the unknown of 
order i in the population of !?fi, then 

e. = 1/(x(1) - X.)2 + ()2 
I ILL 

Knowing 8i' we can estimate the number of significant decimal digits Ci of each 
unknown from the relation . 

This relation characterizes the relative error in each of the unknowns. As for 
defining !?fi, the authors have used a method which they termed methode de 
permutation-perturbation. Obviously, from its very name, the method consists in a 
permutation of the columns of A together with a perturbation of its elements, with a 
solution each time for ,~. 

2.6 Two Problems in Interval Analysis 

This section will deal specifically with the following two problems, find a 

1. Maximal Xl s; X = {x: AI x s; bI } 

2. Minimal Xl ;2 X = {x: AIX ;2 bI } 

The reason for the assignment of a separate section for their discussion their 
apparition in a variety of applications. Of the latter, we mention the domain of 
tolerance analysis. To clarify, we take the precise example of an electrical filter 
having an external behaviour R which we call response. This latter is obviously a 
function of the filter's elements as well as frequency, i.e. 

R = R(X1' xZ' ... , Xn' W) 

Now suppose that due to some discrepancies in the elements resulting from ageing, 
temperature changes, manufacturing defects, etc. . .. , the actual response 
R(.x1, Xz, ... ,Xn , Wi) will differ at each frequency Wi from the ideal R(X1' ... , 

xn(w;). Then if we set a bound for the variation of R from R at each frequency Wi' the 
question will arise as to the maximum allowable deviation (in plus or minus) in each 
of the elements x.(j = I, .,. , n) such that R deviates from the ideal R by no more 

J 
than a prescribed amount ±AR(wJ The problem can be formulated otherwise as 
follows: Find the maximal AXI, such that R - R s; AR. For further elaboration, 
we define a sensitivity matrix S as 
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and set as a condition that for small perturbations 

-AR ~ R - R = S Ax ~ AR 

where AXT = (Xl - xl' ... , xn - xn), ART = (AR(w1), ... , AR(wm», nand m 
being respectively the number of elements and the number of sample frequency points. 
In general, we have that m ~ n. The problem is now more defined and we look 
for the maximal A.Y ~ X = {Ax: -AR ~ S Ax ~ AR}. A more generalized form of 
the problem would be: Find the 

Maximal Xl ~ X = {x: AIx ~ hI} 

The practical example stated above becomes therefore a special case of this general 
form. Likewise in the second of the two problems, we basically handle the exactly 
opposite situation. When we search for the 

we are in fact looking for the minimum allowable xJ, i = I, ... , n, such that AI x 
encloses still hI. 

The above two problems have not deserved much attention in the literature, and 
yet they have been touched upon briefly in the German school. For instance, in 
Nuding and Wilhelm (1972), the authors called the solution respectively of 
AI x ~ hI and AI x ;2 hI innere Losung and iiuj3ere Losung and forwarded a 
simple example of crane's design to which these concepts can be applied. 

It is obvious that both problems differ from Hansen's problem stated as to find a 
minimal xl ;2 X = {x: AIX = hI}. The set X in Hansen's problem is larger than its 
counterpart in the two above problems, since AI x = hI implies also AI x n hI i= ~, a 
special case containing both sets AI x ~ hI and AI x ;2 hI, when they assume 
respectively a maximum and a minimum value of xl. However, unlike Hansen's 
problem which has always a solution, the above two problems may not have one. 
F or consider 

[ [1,2J [-2, IJJ [X1J [[0, 10JJ 
[O,IJ [2,2J x 2 ~ [1O,20J 

having a region X, defined for Xl' x2 ~ ° by 

Xl - 2X2 ~ 0, 2X1 + x2 ~ 10 
2X2 ~ 10 , Xl + 2X2 ~ 20 

which is empty. Same thing applies to all other quadrants. While for the same AI 
and hI, the set X = {x: AI x ;2 hI} has a solution x = (10,5)T. We will now 
represent the two problems schematically, and derive conditions for the existence ofa 
solution X. 
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For the fIrst problem, illustrated in Fig. 5, we can assert that if 

then AI X ~ bI has a solution set X, only if 

Fig. 2.5 

The proof relies upon a description of the interval set AIX - valid for all x­
communicated to the author by Dr. J. Rohn. AIX is dermed by 

AIX = [ACx - AAlxl, ACx + AAlxl] 

wherefrom applying for instance AI x n bI *- ~ leads directly to Oettli's criterion 
(cf. Sect. 2.4). Whereas for AI x ~ bI to have a solution x, this implies that the set X 
described by the two inequalities 

ACx - AAlxl ~ 12, ACx + AAlxl ;;:; b 

is nonempty. The same set can also be described by 

AAlxl - Ab ;;:; ACx - bC ;;:; -AAlxl + Ab , 

or even more briefly 

IAcx - bCI ;;:; -AAlxl + Ab 

But -AAlxl + Ab is less than both -AAx + Ab and AAx + Ab. Similar argument 
applies to AAlxl - Ab, to give 

-AAx - Ab ;;:; ACx - bC ;;:; -AAx + Ab 

AAx - Ab ;;:; ACx - bC ;;:; AAx + Ab 



70 2. Methods of Interval Analysis 

or that 

-!!.b ~ Ax bC ~ !!.b 

-!1b ~ Ax - bC ~ !!.b 

which constitute a necessary condition for the equations Ax = bI and Ax = bI to 
have each a solution x (see Sect. 2.4). And since x satisfies simultaneously both of 
them, then x E Xl (\ Xl; completing thus the proof. 

Now comes the difficult task of choosing Xl, one of maximal width. Unfortunately, 
no unique value of Xl can be generally found. For consider 

[ 2 IJ [XIJ = [[-1, I]J 
I 2 Xl [-2,2] 

Here, there is no need for setting as a condition that Ax s; bI , since it IS 

automatically satisfied given that A = constant, wherefrom 

The region X is a parallelogram of vertices (-4/3, 5/3), (0, 1), (4/3, -5/3) and 
(0, -1). Any maximum interval chosen inside X will satisfy the relation AXI s; bI 

One can choose Xl as Xl = ([-1/2, 0], [0, I])T to yield A~ = ([-1, 1], 
[-1/2, 2])T, which is included in bI. Other choices for Xl may well be ~ 
= ([-1/4, 1/4], [-1/2, 1/2])T and Xl = ([0, 1/2], [-1, O]l ... etc. Hence no 
unique ~ exists. In practical applications, other conditions are usually imposed 
on ~. For instance, due to some economic reasons [Xl], [Xl] ... etc. may be 
confined to a certain range, and so forth. But having that AIx s; bI as our 
starting assumption will at best enable us to find the extreme points of X. As to 
choosing Xl, it becomes the task for an engineer, who can judge which of the 
values of Xl inside X is the most favorable one. 

To determine therefore the extreme points of X, one can opt for the linear 
programming approach (see Sect. 2.4) and having as constraints 

Another method which can be used, is when Ax = bI and Ax = bI define X. The two 
equations are written in the form 

or alternatively that Atx = b:, where t stands for total. The problem is now 
easier and the condition that Atx (\ b: =I- !lJ is directly obtainable. Note that this 
last contition is not trivial. It would have been so had At been square; i.e. if A was 
constant and such a condition would have been automatically satisfied. But 
because At is a rectangular matrix of order 2n x n, the equation Atx = b: may not 
have a solution at all. It would have a solution only if AtA;bt = bt, I;j bt E b: (see 



2.6 Two Problems in Interval Analysis 71 

Sect. 4.1). In other words, a necessary condition for the existence of a set X 
= {x: AIX ~ bI} is that A,A;b{ II N =f. ~. The reader may exercise by checking the 
last condition on the two numerical examples above. 

Consider the example in Sect. 2.2 

[2, 3] Xl + [0, I] x2 = [0, 120] 
[I, 2] Xl + [2, 3] x 2 = [60, 240] 

then 

AI = [[2, 3] 
[1, 2] 

[0, I]J 
[2,3] , 

bI = [ [0, 120]J 
[60,240] 

A, ~r~ n . [0 ° 1/2 OJ Al -
t - ° 1/3 - 1/3 ° 

and X = A;b. Furthermore 

[0 
1/3 7/6 

~J . ° 1 ° AA' = 
t, ° ° 1 

° 2/3 -1/6 

and 

r[20, 220]l r [0, 120]j 
. I I [60, 240] [60, 240] 

A,A;b, n b, = [0, 120] n [0, 120] =f. 0 

[20, 160] [60, 240] 

Now, to determine the. extreme points, we calculate Xl max' X2 max' Xl min and X2 min' 

We will carry out these calculations for Xl max only. We have that 

From consistency, we get 

1 7 
3 b2 + "6 b3 = [0, 120] 

2 1 
- b - - b = [60 240] 
3 2 6 3 ' 
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with 

bz E [60, 240] , b3 E [0, 120] 

Therefore, to maximize Xl is in fact to maximize b3 , subject to the last conditions. 
Using Hansen's last seen method, we get b3 = 72, bz = 108. Hence solving the equa­
tions 

2Xl + 3xz = 108 

2Xl = 72 

yields the point (36, 12) as shown in Fig. 6, and so forth. 

Fig. 2.6 

190. ~l 

The second problem, namely: find the 

follows a similar argument. Here again, Xcould be found empty for some AI and bI. 
For example, if 

AI = [[1,2] [-1, I]J 
[0, 1] [2, 2] ' 

bI = [ [0, 10]J 
[10, 20] 

then AI X :;:> bI defines a set X described for xl' X z ~ 0 by 

Xl - X z ;;; 0 , 
2xz ;;; 10 , 

2Xl + X z ~ 10 
Xl + 2xz ~ 20 

which is void, and same applies to all other quadrants. 
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To find out whether a solution set X exists, such that 

let 

then AI X ;;2 bI has a solution x, iff 

The proof follows the same lines as for the first problem, which we shall not 
repeat. Rather we shall be contented to define X. Again since x satisfies simultaneously 

then, from Sect. 2.4, we have 

- AA Ixl ~ ACx - b ~ AA Ixl 
- AA Ixl ~ ACx -12 ~ AA Ixl 

or that x satisfies 

- AA Ixl + Ab ~ ACx - bC ~ AA Ixl - Ab 

or even more briefly, the set X is such that 

IAcx - bCI ~ AA Ixl - Ab 

This is identical to X = {x: AIX ;;2 bI }. 
At this point, one must note, that altough x could be empty, there always exists an 

xl, such that AI xl ;;2 bI . A corresponding situation is not to be encountered in the 
first problem, whereby an existence of a nonzero interval vector xl such that 
AI xl s; bI necessitates the existence of a set X whose points belong to xl satisfying 
AIX S; bI . The reason tor which, in the second problem, there always exists an xl 
such that AIxl ;;2 bI , can be easily reached from Hansen's problem AIX = bI having 
always as solution a nonempty set X and a minimal xl ;;2 X such that AI xl ;;2 V In 
our case since the condition AI x = bI is released, xl is narrower than its corresponding 
one in Hansen's problem. 

To search for a rninjmal xl such that AI xl ;;2 bI , when AI x ;;2 bI has no solution 
set X, may be achieved using a similar method to Hansen's third method in 
Sect. 2.3. Let Xl E Xl and x2 E X2' where 

Xl = {x: AIXI = b or AIXI ;;2 b} 

and 

X2 = {x: AIx2 = 12 or AIx2 ;;2 12} 
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It follows that 

where::! is the interval whose vertices are Xl and~, and by minimizing Ilxl - x2 11E 

gives the minimal ::!. Writing the last scalar function in the form 

n 

/lxl-xllli= I(XJ-X;)l 
;= 1 

and then differentiating with respect to aij' and reckoning its sign (positive or 
negative), we will obtain the necessary hint as to which value of a ij , Ilxl - ~IIE 
becomes minimum. This is a variant of Hansen's last method discussed before. If the 
sign of the expression 

is positive, then f!.ij will reduce Ilxl - ~IIE; {iij is the appropriate choice if the sign is 
negative. Note thflt the reason for writing the second bracket in the right-hand 
side of .!he expression the way it is, is that Xl depends on aij in the problem 
AI Xl = b, while x2 does not in the same problem. Let us illustrate the above procedure 
with an example, incidentally the same example stated by Hansen. Obtain .<nin for 
AI::! ;:> bI, where 

AI = [[2,3] [0, I]J 
[1, 2] [2, 3] , 

bI = [ [0, 120JJ 
[60,240J 

Here, Xl and ~ are obtained by solving respectively A1Xl = b with Al E AI, and 
A2x2 = 12 where Al E AI; Al and Al are suitably chosen, so as to minimize 
Ilxl - xlii£" 

AC = [5/2 1/2J 
3/2 5/2 ' 

[ 5/11 
(Ac)-l = 

-3/11 
-1/11J 

5/11 

The mean values of Xl are obtained from solving ACx = b; for Xz we have to 
solve ACx = 12. This yields X~ = (360/11, 840/11)T and X~ = (-60/11, 300/11)T. 
N ow we move from X~ and X~ in that direction that minimizes the value of 
Ilxl - ~IIE' To obtain xl, we get the values of the derivatives of all xt=l,l with respect 
to all' all' a2l and all to replace into the derivative of Ilxl - ~II~ which is 



2.6 Two Problems in Interval Analysis 75 

whence 

ox l 

-1/11] [~ OJ [360/11J = _ 1800 _I = _ [5/11 
oa ll o 840/11 121 

ox l 
-1/11][~ 1 J [360/11J = _ 4200 

_I = -[5/11 
oa l2 o 840/11 121 

ox~ [0 OJ [360/11 J 360 - =- [5/11 -1/11] 1 0 840/11 = ill oa21 

ox~ 
-1/11] [~ OJ [360/11J - = -[5/11 = 840/121 

oa22 1 840/11 

ox l 

5/11] [~ OJ [360/11J _2 = -[-3/11 = 1080/121 oa ll o 840/11 

ox l 

_2 = -[-3/11 
oa12 

5/11] [~ IJ[360/11J o 840/11 = 2520/121 

ox~ 
5/11] [~ OJ [360/11J - = - [-3/11 = -1800/11 

oa 21 o 840/11 

oxi 
5/11] [~ OJ [360/11J - = -[-3/11 1 840/11 = -4200/121 oa22 

Substituting in the expression for D, we get, after having dropped the common 
factor 2 

420 1800 540 1080 
D =-x---+-x--<O 

11 11 121 11 121 

420 4200 540 2520 
D =-x--'-+-x--<O 

12 11 121 11 121 

420 360 540 1800 
D21 = 11 x ill + U x - 121 < 0 

420 840 540 4200 
D =-x-+-x---<O 

22 11' 121 11 121 

Whence Xl is given by 

[ 3 1J [X~J = [120J 
2 3 xi 240 
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which yields the point (120/7, 480/7). For r we follow the same procedure to obtain 
the partial derivatives: 

oxi 
-1/11] [~ OJ [-60/11J - = -[5/11 o 300/11 = 300/121 oall 

oxi 
-1/11] [~ 1J [-60/11J - = -[5/11 = -1500/121 

oa 12 o 300/11 

oxi 
-1/11] [~ OJ [ -60/11 J = -60/121 - = -[5/11 

oa 21 o 300/11 

ox2 
-1/11] [~ OJ [ -60/11 J = 300/121 _1 = -[5/11 

oa22 1 300/11 

ox~ 
5/11] [~ OJ [ -60/11J - = -[-3/11 o 300/11 = -180/121 oall 

ox~ 
5/11] [~ 1 J [ -60/11 J = 900/121 - = -[-3/11 

oa12 o 300/11 

ox2 
5/11] G OJ [ -60/11J = 300/121 _2 = -[-3/11 

oa 21 o 300/11 

ox~ 
5/11] [~ OJ [-60/11J - = -[-3/11 1 300/11 = -1500/121 oa~2 

and 

420 300 540 180 
Dll = - - x - - - x - - < 0 

11 121 11 121 

420 1500 540 900 
Dli = -~x --- - - x - > 0 

11 121 11 121 

420 60 540 300 
D21 = - - x - - - - x - < 0 

11 121 11 121 

420 300 540 1500 
D22 = - U x ill - u x - ill > 0 

And r is thence obtained from 
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which yields the point (0, 30). Therefore (xY = ([0, 120/7], [30,480/7]) and 

AI Xl = [[2, 3] [0, I]J [ [0, 120/7]J 
[1,2] [2, 3] [30, 480/7] 

_ [[0, 360/7] + [0, 480/7] J = [ [0, 120]J = bI 
- [0, 240/7] + [60, 1440/7] [60, 240] 

the equality to bI being exact. Thus ~ is the narrowest interval satisfying the relation 
AI Xl :2 bI. Figure 7 below differentiates the various regions. 

Xl 

[60. gO) 

ig.2.7 
X 

With this, we are through discussing the two problems that we had intended to 
discuss. Yet, many new problems will still arise in physical applications. Indeed, 
interval analysis is becoming an invaluable tool in tolerance analysis. 

In the foregoing brief discussion, we have restricted ourselves to the cases where A 
is a square matrix. Naturally, the problem becomes more involved when this matrix A 
is rectangular. Comput.ation of (AI) + will obviously be more complicated. Some work, 
yet incomplete, has been done on the study of solution structure for linear interval 
equations when A is rectangular by Ratschek and Sauer (1981). Other special classes 
of matrices have also attracted some interest; as for example, the class of totally 
nonnegative interval matrices discussed by Garloff (1980). This class of matrices is 
encountered in interpolation processes and in problems of approximation. In Rohn 
(1981 a), the matrices having prescribed column sums are examined; this kind of 
matrices appears in the input-output description of some economic models. 

For their part, numerical analysts only interested in the problem Ax = b, can 
either use Hansen's method to bound the solution inside intervals; thus accounting 
for round-off, or use an interval method to solve the equations, subsequently using 
a-posteriori analysis to check the accuracy. If still not satisfied, they may seek better 
bound-conserving algorithms, or use iterative methods to improve on the solution as 
we shall be seeing later on. 
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2.7 An Application to Electrical Networks 

In the previous section, we have mentioned a domain within which interval methods 
can be of great use, namely tolerance analysis. In this section, we shall further 
exemplify this application with a practical example on filter design in which it is 
required to find the maximum allowed errors in the designed elements so that the 
filter's frequency response will not deviate from the ideal one by more than a 
specified increment. 

If R (Xl' X2' ... , Xn' w) denotes the ideal response of a fi~ter with ideal circuit 
elements Xl> X2, X3, ... , Xn at each frequency point Wi' and if R (Xl> X2, ... , Xn, w;) is 
the actual response of the filter with circuit elements Xl' X2' ... , xn' then the problem 
is one of finding the deviation of each component Xi from the ideal X;, so that R - R 
will not exceed a certain value ± AR(w;). It is noteworthy that, had the incremental 
change (jR(w;) been precisely known at each frequency W;, the problem would 
have become a simple exercise of fitting R(xl , X2, ... , Xn> Wi) to R(Wi) + (jR(Wi), 
that is 

m 

_ Min_ .L [R(.x\, ... , Xno Wi) - R(wi) - (jR(Wi)]2 
Xl,···,X n ,=l 

yielding finite values of xl' ... , in. In other words, there is a one-to-one correspondence 
between the values of the circuit elements and the particular shape of the response. 
The unknowns Xl, ... , Xn are obtainable using the generalized least-squares method; 

where J is some Jacobian matrix and (jf is the error between R(xl> ... , Xno w;) and 
R(w;) + (jR(Wi). References on the generalized least-squares method include Leven­
berg (1944), Marquardt (1963) and Fletcher (1969). For the application to filter 
design, see Deif(1981). 

Our problem here is different; (jR(wi) is unknown, but allowed to vary only 
between two specified bounds, namely ± AR(w;). What the range Xj - Xj - i.e. 
± Ax; - is, has yet to be found so that it will verify 

For small values of ± AR(w), this inequality corresponds to the problem 

Max [Axd, [Ax21, ... , [Axnl 

subject to the condition that 

i = 1, ... ,m 
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S being the sensitivity matrix with elements sij = 8Rj8xj[w. and dimension m x n. 
This problem was the first to be dealt with in the last"' section. We will now 
apply it to the three order Butterworth filter depicted below: 

This filter has a frequency response given by 

R(c 1, L, C2, OJ) = --
Vo(S) I 
e(s) s=jw 

J[ Rl 2(LC1Rl )J2 [ ( L) J2 1 + R2 - OJ ~ + LC 2 + OJ c1R1 + c2R 1 + R2 - OJ 3 Lc1C2R 1 

The value of R has been computed for values of OJ = 0.2,0.4,0.6,0.8, 1.0, 1.2, as well 
as the values of 8Rj8cl, 8Rj8L, 8Rj8c2' The problem was to find the ranges of 
~Cl' ~L and ~C2 that will cause the new response to deviate from the ideal computed 
by no more than ± 1 %. For this filter, the data were: 

-0.004556 -0.001065 0.019403 [-0.0079997, 0.0079997] 

-0.015826 -0.018889 0.077145 [-0.0079837 , 0.0079837] 

-0.029693 -0.105347 0.145884 ["J [-0.0078197, 0.0078197] 
.dL ~ 

-0.044919 -0.303193 0.114969 [-0.0071209, 0.0071209] 
.dc 2 

-0.056569 -0.452552 -0.056569 [-0.0056569, 0.0056569] 

-0.054966 -0.406901 -0.171627 [-0.004007 , 0.004007] 

The matrix on the leftmost side is the sensitivity matrix S evaluated for the three 
elements at the six frequency points. The vector b on the right-hand side is 
±~R(OJi)' Si is calculated to be 

. [-1775.778381 624.396789 -94.003882 0 0 

~J S' = -5.981765 29.262743 -14.678855 0 0 

-365.758743 148.220203 -22.878661 0 0 

The consistency equations, SSb = b, come as 

[ 
I : 0 1 --------------------------------------!---

39.528901 -19.878810 6.042750 i b=b 

123.851673 -56.949083 13.254874:0 
I 

162.815496 -71.666222 15.066454 i 
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Now since the range of values of b4 , bs, b6 is narrower than that of bp b2 and b3, the 
above consistency condition is inverted and reads 

[
0.416461 -0.605201 0.365 401J [b4J [bIJ 
1.323586 -1.759503 1.017087 bs = b2 

1.795386 -1.8292790.955619 b6 b3 

We will now compute the maximum range for AcI , found to be given by 

ACI = -1775.778381bI + 624.396789b2 - 94.003882b3 

= -81.872846b4 + 148.034156bs - 103.637235b6 

Thus, to maximize ACI is equivalent to minimizing b4 and b6 while maximizing bs' 
The three variables are then chosen as: 

b4 = -0.0071209 
bs = 0.0056569 
b6 = -0.0040070 

These values will unfortunately not satisfy the foregoing consistency conditions; the 
calculated values of bp b2 and b3 will be out of range. We still have thence to find out 
which of b4 , bs and b6 has to be changed to achieve consistency. For this end we check 
the expressions 

The set of minimum values determines which of b4 , bs and b6 will be changed, for the 
objective function ACI won't change by much, while bp b2 and b3 change rapidly to 
become in range. The above quotients are easily calculated by dividing the coefficients 
of each of b4 , bs and b6 in ACI by its corresponding column in the above con­
sistency matrix, i.e. 

Relative b4 bs b6 

sensitivities 
for 196.591 -244.6032 283.626 

61.856 84.134 101.896 
45.6018 80.924 108.4503 
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We fmd then that b4 is that which should be altered, followed by bs and then b6 • A 
value of b4 = 0.0045672 is quite sufficient for consistency. Hence, 

b4 = 0.0045672 , 

and 

b1 = -0.0029857, 

Then 

~Cl = 0.8788343 

~L = -0.1280253 

~C2 = 0.0454529 

Similarly for ~L, 

bs = 0.0056569, b6 = -0.0040070 

b2 = -0.0079837, b3 = -0.005977 3 

~L = 9.886351b4 - 21.01596bs + 13.549591b6 

wherefrom some preliminary values would be 

b4 = 0.0071209, bs = -0.0056569, b6 = 0.0040070 

yielding out-of-range values for bi' b2 and b3 • Thence 

Relative b4 bs b6 

sensitivities 
for 23.738 34.725 37.081 

7.4693 11.944 13.3219 
5.506 11.488 14.1788 

Again, we found that it is most suitable to change b4 , which IS found to be 
-0.0045672. Hence 

b4 = -0.0045672, 

and 

b1 = 0.0029857, 

Then 

~Cl = -0.8788343 

~L = 0.1280253 

~C2 = -0.0454529 

bs = -0.0056569, b6 = 0.0040070 

b2 = 0.0079837, b3 = 0.005977 3 
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which is not so surprizing a result, since both /:lL and /:lCI have opposite sensitivities. 
As for /:lC2, it is given by 

/:lC2 = 2.781 90b4 + 2.415306bs - 4.7 59153b6 

and 

b4 = 0.0071209 , bs = 0.0056569, b6 = -0.0040070 

these values need no further alterations, as they satisfy the consistency condition. 
Then 

bi = -0.0019221 , 

yielding 

/:lci = 0.6695791 

/:lL = -0.1027805 

/:lc2 = 0.0525198 

b2 = -0.0046037 , b3 = -0.0013924 

Now we are faced with the question as to what range the elements are allowed to 
vary such that they fulfill the condition 

-/:lR ~ S/:lx ~ /:lR 

The answer to that is any range inside the polyhedron with vertices 

(±0.8788343-, +0.1280253, ±0.0454529), 
(±0.6695791, +0.1027805, ±0.0525198) 

The remaining vertices are not easy to find. They can of course be evaluated if we 
allow for different objective functions. This is the technique adopted for linear 
programming. The results obtained thus far are, however, not to be underestimated. 
Although the range of errors in the elements cannot be written as [±0.8788343], 
[±0.1280253] and [±0.0525198] - since this would ensure that S /:lxI ;;> bI as seen 
in the previous sections - these results still give us a clue as to the maximum range 
for anyone variable. For example, CI can be varied until it reaches 4.8788343 as 
the maximum range allowed for that element, only of course if Land c2 are also 
changed to 1.1219747 and 1.0454529 respectively. This result is not achievable 
through direct observation of S, for /:lci can be taken - if /:lL = /:lc2 = 0 - as 

However, this value of /:lc i will be smaller than that calculated using our method. This 
is thus a rewarding technique, especially if our selected task was tuning the filter. 
The element can then be manufactured with a tolerance as large as ± 0.88F 
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(normalized value to 1 rad/sec cut-oft) and the circuit can still be tuned with 
varying Land Cz so that the response will not exceed I %. The reader interested in 
techniques relevant to this subject can refer to Zereick, Arner and Deif (1983). 
The authors of the paper were considering finding the minimum number of elements to 
be tuned starting from some worst case or actual response. The element to be tuned 
can be selected using the above technique, but its new value must be so chosen that 
S ~x will be included in the set X given by {~x: S ~x £ [-~R, ~R]}. This set can 
only be determined using linear programming techniques. 

One last word remaining to be said is that the above technique is only valid for 
small variations in circuit elements, as only the first order sensitivities are taken 
into account, neglecting second order terms. It can however be altered for use with 
large variations by incorporating an interative scheme. 

The above discussed method falls under the heading of network design. Applica­
tion of interval arithmetic to the analysis of electrical networks is an easier task to 
carry, where one is mainly concerned with the computation of the range of the response 
function in terms of the variations of the circuit's elements. The reader is referred to 
Skelboe (1979) for a worst-case analysis of linear electrical circuits. 

Exercises 2 
1. If A and B are two interval matrices with A £ B, show that ~A ~ ~B and 

IAI ~ IBI where IAI = Max {IAI, A E A} taken component-wise. 

2. Show that ~(A ± B) = ~A + ~B, ~AIBI ~ ~(AB) ~ ~AIBI + IAcl ~B, 
IAI ~B ~ ~(AB) ~ IAI ~B + ~AIBcl. 

3. Show how the condition of compatibility of x with the uncertainty in the data 
of Ax = b, namely that Ax ~ b and Ax ~ /2, can be modified for Xi ~ O. 

4. Use one of Hansen's methods to solve AI x = bI, where 

AI = [[1 ± 0.1] [-1 ± O.I]J 
[1 ± 0.2] [-2 ± 0.3] , 

Determine the overestimation error. 

bI = [ [1 ± 0.2]J 
[-1 ± 0.1] 

5. Define the metric q(A, B) = lAC - 81 + I~A - ~BI measuring the closeness 
of two interval matrices A and B. Show that 

a) q(A, B) ~ 0 b) q(A + C, B + C) = q(A, B) 
c) q(A, C) ~ q(A, B) + q(B, C) d) q(A + C, B + D) ~ q(A, B) + q(C, D) 
e) q(AC, BC) ~ q(A, B) ICI t) q(AB, AC) ~ IA I q(B, C) 

6. If AI £ Rn,n withthematricesAandAarenonsingularandA-1 ~ OandA- 1 ~O, 
show that (AI )-1 = [A- l ,A-1] 

7. Showthatw(ab) ~ w(a) Ilbll + w(b) lIall,withthe bound attained for some a and b. 
And for Xl £ (AI)-l bI, show how to compare w(r)/lirll with the bound 

I I -1 (W(A I ) WW)) 
IIA IIII(A) II II AI II + IWII . 

For some notions on the conditioning of the problem AI x = bI , the reader is 
referred to Zlamal (1977). 
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8. If (AC + £5A) (x" + £5x) = bC + £5b, with ACx" = bC and I£5AI ~ AA, l£5bl ~ Ab 
show that 

£5 < I(AC)-ll C 
I xl = 1 _ III(AC)-li AAlll (Mix I + Ab) 

The reader is to consult Beeck (1975) for further error bounds of interval linear 
equations. 

9. By writing Oettli's inequalities in Sect. 2.4 in the form 

L (a~j - ,1aij sgn (Xj)) Xj ::;; iii' 
j 

L (a~j - ,1aij sgn (x)) Xj ;;::: Qi' 
j 

i = 1, ... , n 

i = 1, ... , n 

where equalities exist for some n equations out of them, at which some of the 
x/s are maximum or minimum, show by choosing all x/s as the extreme points 
of the set of feasible solutions that 

Max L (arj - Llaij, a~j + Llaij) C~j, i) ;;::: iii 
j 

10. If A = [~ ~ J and b = G J 
obtain x of Ax = b on a three-digit machine with fixed-point arithmetic. Find 
out whether x is compatible or not with the uncertainty in the data. Show how 
to set the residual r equal, to zero by scaling A conveniently. Compare both 
sets of results. 

11. If I£5AI ~ e IAI and l£5bl ~ e Ibl, where e is the precision of a calculating 
machine with floating-point arithmetic used to solve Ax = b, show that the 
error in the solution x, noted £5x, is bounded by lI£5xll ~ IIIA-lllrlll, r being a 
residual vector equal to Ax - b. Obtain also 

lI£5xll IIIA-lIIAllxl + IA-lllbill 
---::;;e.~--~~~~~--~~ 

Ilxll - Ilxll 

in the case where x is compatible with the uncertainty in the data. Compare the 
results with the bound obtained by Skeel, Sect. 1.5. 

12. Check whether the system Ax = b, where 

[ 
103 2 X 102 3 X 102 ] 

A = 5 X 108 -5 X 109 5 X 108 , 

10-7 2 X 10-7 5 X 10- 7 

is poorly scaled. 

13. Define the sets Xl = {x:AIx = bI },X2 = {x:AIx s; bI}andX3 = {X:AI;2 bI}, 
where AI and bI are given by 

AI = [[1,2] [-2, l]J 
[0,1] 0[2, 2] , 

bI = [[-1, 1], [-2, 2W 

Hence obtain min Xl or max ~ in each. 



Chapter 3 

Iterative Systems 

3.1 Introduction 

Whereas direct methods for solving linear equations yield results after a specified 
amount of computation, iterative methods, in contrast, ameliorate on an approximate 
solution until it meets a prescribed level of accuracy. In theory, direct methods 
should give exact solutions in the absence of round-off errors. Yet in practice, due to 
conditioning problems, this is never the case. For small matrices, direct methods 
are recommended. For the large ones, direct methods involve very large operations 
without real need, since the matrices are usually sparse. 

Iterative methods have the advantage of simplicity, uniformity and accuracy. 
They start with an approximation to the solution, and end up, after a few 
repeated iterations, with a better approximation. They are usually applied to 
problems in which convergence is known to be rapid or to large scale systems for 
which direct methods yield inaccurate results, since rounding and truncation occur 
very frequently in the course of computation. Iterative methods are therefore more 
adequate for large systems, especially when the system has a sparse matrix. 
Such systems arise in relation to vibrational problems and in the solution of 
partial differential equations using finite difference methods. 

The only limitation on the use of iterative techniques is that the matrix A 
should possess enough properties to guarantee convergence; otherwise, we may run 
into a divergent iteration process. Of such properties, we mention for the time being 
diagonal-dominance, irreducibility and cyclic qualities; these are not rare in 
occurrence, which is frequent in practical situations. Apart however from their 
eventual suitability for the problem in hand, iterative methods are very attractive 
for numerical analysts in virtue of their great simplicity of use. They only 
involve matrix addition and multiplication, thus requiring no programming. 
Furthermore, there is no need for scaling, pivoting, decomposition, elimination or 
back-substitution, as in direct methods. In short, iterative methods are by far 
easier to use. 

Among the famous iterative methods for the solution of linear equations, 
we can mention Jacobi's, Gauss-Siedel's and the relaxation types. For each of these 
methods, the equation Ax = b is rewritten as follows 
Jacobi: 

Gauss-Siedel: 

(D + L) x(i + 1) = -Ux(i) + b 
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Relaxation: 

(D + wL) X(i+ 1) = (-wU + (1 - w) D) xli) + \Vb 

where A = D + L + U 

D = diagonal matrix of the diagonal entries of A 
L = lower matrix containing the elements below the diagonals 
U = upper matrix of the elements above the diagonals. 

Numerical analysts call w the relaxation parameter, and speak of overrelaxation 
when w > 1, and of underrelaxation when w < 1. For w = 1, the Gauss-Siedel is 
recovered. 

Therefore, starting from an initial vector x(O), one generates a sequence of vectors 
x(O), X(I), X(2), ••• which converge towards the desired solution x. The proof of 
convergence is straightforward; for instance for the Jacobi method, writing the 
recurrence relation in the form X(k) = JX(k - 1) + h with J and h defined as in above, 
implies in conjunction with x = Jx + h, that 

X(k) - X = i'(x(O) - x) 

showing that X(k) will approach x for every x(O) if and only if g(J) < 1. An alternative 
sufficient condition could be expressed as IIJII < 1, which under the various norms 
used imposes different conditions on the elements of A (c.f. Faddeeva (1959)). In fact, 
in real practical problems, we find that the conditions of convergence are guaranteed. 
For example, in boundary value problems treated using the finite difference 
approximation, A is diagonal-dominant, that is 

n 

I au I > I I aij I or 
j=1 
j¢i 

n 

lajjl>Ilaijl 
i=l 
i*j 

This ensures that IIJII < 1 for Jacobi, relative to an 100 or II-norm (see exercise 3.7), 
and that g(G = -(D + L)-1 U) < 1 for Gauss-Siede1 (see exercise 3.4). Even if A 
is not diagona1':dominant, the above methods still converge for some lesser restric­
tions. For instance, for the class of positive-definite matrices, g(G) < 1 (see 
exercise 3.8). Also, if A is irreducible, we can be satisfied with a weak row or 
column criterion, and so on ... 

In this chapter, we will neither survey nor compare the different iterative 
methods. For such a treatment of the subject, the reader may refer to the excellent 
treatises by Varga (1962). Householder (1964), Young (1971) and Young and 
Gregory (1973). Our efforts will be directed to performing sensitivity analysis of the 
equations. The reason for assigning a separate chapter for this category of 
methods, apart from its being a different way of treatment, is that they involve two 
kinds of errors, one of which being specific to iterations. Indeed, while the first 
type of errors is due to perturbations in the coefficients, as previously seen for 
direct methods, the second type relates to the choice of a stoppage criterion to 
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terminate the iteration process; the iterations as we know are only finite in 
number. On the other hand, as we will be finding, the rates of convergence of the 
iterative methods which depend on Q(J), are also a function of the conditioning of the 
problem. Apart from worsening results because of round-off, the condition number 
also reduces the rates of convergence. A method to reduce cond (A) based on order 
reduction for large systems will also be discussed. It is based on keeping only those 
equations which are well conditioned. At last, we will consider and discuss an 
iterative system in which the matrix A is an interval matrix. 

3.2 An Alternative Bound 

Supposing we wish to perform an error analysis of the equation 

it is obvious that we should obtain the same bounds as those derived in section lA, 
whatever the shape of the equations. Now since, for some norm, 

III - D-1AII < 1 

an error bound incorporating such a quantity would clarify more the sensitivity of x 
to changes in A and b. In many practical situations, A is strongly diagonal dominant, 
that is 

and the Jacobi iterations become very stable and even very fast. To ascertain the 
first proposition, we will follow the same elementary routine as before, and from 
x = D-1b + (1- D-1A) x, obtain 

to a first order approximation. By cancelling redundant terms, we get 

Ax = D- 1 Ab + (I - D-1A) Ax - D- 1 AAx 

Hence 

or alternatively 
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But given that 

Ilxll (1 + III - D- 1 A II) ~ Ilx - (I - D- 1 A) xii 

= IID- 1bll ~ IIDII- 1 Ilbll 

we have therefore that 

IILlxl1 < 1 + III -D- 1AII (1ILlAIIIID- 111 IIDIlIID-1111ILlbll) 
Ilxll -1-III-D-IAIl I+III-D- 1AII+ IIbll . 

Here, we note that 

And by putting 

IIVIIIIV- 111 = cond (V) = max laul/min laiil 
i i 

we finally obtain 

II Llxll .::; (1 + III - V- 1AII) (m~x laul) (1ILlAII + IILlb ll ) 
Ilxll I-III - V- 1AII min laul II All Ilbli 

i 

The result is self-explanatory. Note that the product of the first two brackets on the 
right-hand side of the inequality sign must be of the same order as cond (A), and 
in fact they are, for, when writing A in the form A = D - D(I- D -1 A), we obtain 

IIAII ~ IIDII (1 + III - D- 1AII) 

and 

1 < liD-III 
IIA II = 1 _ III _ D- 1AII 

as set forth in exercise 1.18. From this, it follows that 

cond (A) = II AIIIIA -111 

.::; IIVIIIIV- 111 (1 + II I _. V-I All) 
1 - II I - V-I A II 

= mi~xlaiil (1 +III-V-:AII) 
mm I au I 1 - II I - V- A II 

i 

(cf. Varah (1975), for different norms). 
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We can therefore conclude that the numerical calculations yield more accurate 
results whenever the diagonal elements are of comparable size, with III - D -1 A II 
much smaller than unity, i.e. the sum of the off-diagonal elements in absolute value 
is very small compared to the diagonal ones or, in short, with A being strongly 
diagonal dominant. Such matrices yield small errors in the solution and cond (A) 
will thus approach unity, which is its lowest attainable value. 

Indeed, iterative methods guarantee the existence of the above qualities, for 
writing the equations Ax = b in the form x = D- 1b + (I - D- 1A) x is in fact 
synonymous to scaling them. The latter form, when read x = h + Jx, sets I - J as the 
new coefficients' matrix, and h as the new right-hand side. And because I - J is a 
diagonal dominant matrix with unity diagonal elements, the solution becomes less 
sensitive to perturbations in either J or h. Assuming enough iterations are performed, 
the relative error in the solution will not exceed the following bound 

IILlx II ::; 1 + II J II (. 11M II IILlI1 II) 
Ilxll l-IIJII l+IIJII+ Ilhll 

For example, given that 

[ 
103 

A = 5 X 108 

10- 7 

2 X 102 

-5 X 109 

2 X 10- 7 

3 X 102 
] 

5 X 108 , 

5 X 10- 7 

[ 
22 X 103 

] 

b = 345 X 109 

29 X 10-6 

cond (A) ~ 1016 ; the solution on a ten-digit machine with floating-point arithmetic 
is given by 

x = (10.00000003, -60.00000000, 79.99999997)T 

when we use a direct elimination method. The residual r = Ax - b was found to be 

For the same system, when processed in the iterative form, we get 

[ ::] = [ ~.1 
X3 -0.2 

eond (I - J) is then given by 

coud (I _ J) ::; I + IIJII = ~ = 4 
- I - IIJII 0.4 

After 20 iterations, the solution is given by 

x = (10, -60, 80l 
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which is the exact value for the solution. Even for a smaller number of iterations, 
say k = 17; the solution is 

i = (10.00000001, -60.0, 80)T 

with a residual r given by 

r = i -Ji - h 
= (10- 8 , -10- 9,2 x 1O-9f 

Supposing now we didn't know the exact solution beforehand, which is usually 
the case, and we wish to compare both results obtained from calculations, then the 
comparison of the two quantities 

IIA -111 IIA II J!.1 for the first system 
Ilbll 

1 + IIJII Ilrll 
I-IIJllllhll 

for the second system 

would reveal that the second system's output is more accurate. In fact, for the 
second system, 

IILlxll ~ 1 + PII.!tl! = 4 (10-8
) ~ 5.8 X 10- 10 

Ilxll 1 -PII Ilhll 69 

And since the machine's precision reaches at best 5 x 10- 10, we can envision how 
accurate the solution obtained is. This comes not as a surprise since the first system 
has a large valued cond (A); alteration of only the tenth decimal digit produces a 
larger residual. This becomes very clear when we substitute the solution of the 
second system into the first. The residual obtained is 

Still now, we are faced with a perplexing situation. The computed residual of the 
first system, corresponding to the first solution, is smaller than that of the same 
system that corresponds to the second solution: r 1 = (2 x 10- 5, 0, _1O- 14)T and 
r2 = (10- 5,5, 1O-15)T. Does this mean that, for the first system, the first solution 
is more accurate than the second one? And even this phrasing is still incorrect, for, 
as we have seen in Sect. 2.5, a smaller residual (within a certain machine accuracy) 
does not necessarily imply a better solution. A correct comparison is established 
using the a-posteriori error bound given by 
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(see also exercise 3.18) and as A- 1 is given by 

A -1 = 0.000081301 [ 
0.001056911 

-0.000243 902 

we get 

IIIA-111r1111 ~ 2.8xlO-8 

IliA -111r2111 ~ 1.1 x ro- 8 

1.626016239 X 10- 11 

-1.910 569106 x 10- 10 

7.317073161 X 10- 11 

-650 406.504 OJ 
142276.4228 

2073 170.732 

The above result is based on the (~-norm. This means that the second solution obtained 
by iteration is more accurate, even for the first system. In all cases, although the 
second solution is better, the first one still is acceptable. The true error in the 
solution by direct elimination is 

"1:~r'1 = 3 x 10-8/80 = 3.75 x 10- 10 

based on an 100 -norm. This is a very good result, the error being small. One may 
wonder why the solution of the first system obtained by elimination is still so good, 
although cond (A) ~ 1016 • By considering the realistic defmition of cond (A) as 
cond (A) = IIIA-11 IAIII (cf. Sect. 1.5), which yields a value of 2.46 for the 
system, this fact can be explained, as the first system is well-conditioned. 
Strongly diagonal dominant matrices are well-conditioned irrespective of any 
possible disparity in the size of the diagonal elements, given that 

lilA -lilA III = 111(/- J)-l D- 1 1 ID(I - J)III 
= 111(1 - J)-1111 - Jill 

This means that both direct and iterative systems have a comparable condition 
number. The error in the solution is governed by the bound (see Sect. 1.5) 

IIAxll ~ 111(1 - J)-lllrlll 
~ lil(/-J)-fIIAJllxl + 1(/-J)-lIIMIII 

3.3 Rates of Convergence 

In the previous section, we have demonstrated that diagonal dominant matrices 
with small-valued II I - D -1 A II yield accurate solutions. This latter quantity does not 
only affect the accuracy of the result, but also the rate at which the solution 
converges. 

From the recurrence relation X(k) = Jxfk -1) + h, we can calculate the error 
vector at the kth iteration as 
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The rate of convergence of the term X(kl towards the solution x depends thus on Jk. 

In fact, by taking the norms, i.e. 

we can conclude that the average reduction factor per iteration, namely (1Ix(kl - xll/ 
Ilx(Ol - xll)llk, written for the successive error norms, is bounded by the norm 
IIJk II Ilk . Either of the two quantities can be taken as a measure for the rate of 
convergence. For example, by writing 

( 1Ix(kl - XII)I/k = e -{-+Onfllx(kl_Xll/llx(Ol_Xllll} 
Ilx(Ol - xII 

the average rate of convergence for k iterations becomes 

1 
R = - k (In Cllx(kl - xll/llx(Ol - xii)) 

(cf. Kahan (1958)). A more representative average rate is given by 

It allows one to compare any two distinct systems of different matrix J. For 
example, a system x = Jlx + fl would have a higher rate of convergence than 
another, say x = J2x + f2' if II~ II -< II~ II for a fixed number of iterations k. 

The above rate of convergence is a function of the number of iterations k at the 
outset of which it is evaluated. Instead, Young (1954) proposed -In {l as the 
asymptotic rate of convergence, where {l is the spectral radius of J. In fact, 

lim IIJkllilk = {l 
k~oo 

This follows immediately from the relation 

tlk Uk-I (k ) ilk - m+ l : 
I I ... m-I I I 

. I 

tlk : 
I '. I 

I 
I 
I 
I 
I 

o 

---------------------------1--------

o 
I 

I A~ 
I 
I 
I 
I 
I 
I 

T- I , 

(with the assumption that ill, in the general case, belongs to a nonlinear elementary 
divisor of degree m) since by taking norms, we get 

( k ) l-m+I/IITil liT-III s Ilfll s ( k ) l-m+1 IITII liT-III 
m-l m-l 
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for large values of k. And for k -+ 00, we have that 

( k ) 11k -+ 1 
m-l 

II Tlll l k II r-l111/k -+ I 

and therefore 

II Til II T- l ll is the condition number of the eigenvectors of J; it enters into the 
expressions for error bounds in eigenvalue problems. However, by keeping the 
index k, the average rate of convergence after k iterations is given by 

- .!. In /lJk]1 = - 2. {In ( k ) + In rl-m+ l + 10 v} 
k k m-l 

with 

I 
----,-- ~ v ~ cond (T) 
cond (T) - -

However, if J is normal (J* J = JJ*), then J only possesses linear divisors, and the first 
term of the right-hand side -vanishes. The second term becomes only In (/ while the 
third reduces to zero (T is unitary, meaning that cond (T) = 1 relative to 12-norm). 
The average rate of convergence is thus independent of k and equals always -In 12 
irrespective of the value k assumes. 

Now, what effect does cond (/ - J) exert on the rate of convergence? We can 
state that the greater cond (I - J), the smaller is the rate of convergence, for we 
have simply that 

cond (1- J) ~ I + IIJII 
- l-IIJII 

Thenceforth, the greater cond (/ - J), the greater is IIJII. Nevertheless, this does not 
guarantee a'iarge value IIYlll lk; it only serves as a crude estimate of the smallest rate 
of convergence, since -In 12 ~ -In IIJII (12 ;;;; IIJII). A better estimate is based on 12 
itself. In fact, for special classes of matrices, Gauss-Siedel's Q( G = -(D + L) -1 U) 
and the relaxation method's Q(S = (D + WL)-l (-wU + (1- w)D)) both depend on 
Q(J). We should therefore conclude that the slower the Jacobi method is, the slower 
the other methods are. For this relation, we define matrices with property A 
according to Young (1950) or its generalization, owed to Varga (1962), which he 
termed: the class of consistently ordered matrices. 

According to Young, A is termed of property A if there exists a permutation matrix 
P such that 
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DI and Dz being diagonal matrices. Such matrices possess interesting properties. If A 
is of property A, then A = P ApT is consistently ordered, i.e. the matrix 7 of Jacobi's, 
obtained from A as 

- - - - 1 - - [ 0 ':-D~IMIJ 
J = 1 - D-1A = -D- (L + U) = =D~lM2-!----O----

can still be written in the form 

](0:) = _15- 1 (O:L + ± i)) 
with eigenvalues that are independent of 0:. The reason is that 

= [-~-I-~~~-J [=D;~M-;I-~-~~I-~~J [_~I+~J-I 
i. e. J(o:) and 7(1) are similar, thus having the same eigenvalues. Note that a 
consistently ordered matrix need not be written in the above A form. For example, 
the tridiagonal matrix 

is consistently ordered. Also, if A is of property A, this doesn't imply that A IS 

consistently ordered, or vice versa. For example II -1/4 0 -1/4

J A = -1/4 1 -1/4 0 

o -1/4 1 -1/4 

-1/4 0 -1/4 1 

is of property A, but it is inconsistently ordered. Rather, if A is of property A, then it 
is consistently ordered if and only if 

P{D(l - J(o:»} pI" = P {D (1 + D- 1 (O:L + ± u))} pT = [-~'-I~~'l 
rxMz: D z 

I.e. 

PLpT = lO OJ 
Mz 0 ' 



3.3 Rates of Convergence 95 

Hence, if A is of property A as well as consistently ordered, then 

for all values of IX. And apart from J(IX) being possibly permuted into the right­
hand side's form, in the above expression, its eigenvalues are independent of IX. 

One very important property of the class of consistently ordered matrices: if J.l 
is an eigenvalue of J(IX), then so will be - J.l. This is proved using the fact that J.l is the 
root of 

and then by taking IX = 1, -1. This means that if A is consistently ordered, then the 
eigenvalues of J are always ±J.li' these latters being also the same eigenvalues of 
J(IX), whatever the value IX may assume. However, if A is of property A, then J has 
±J.li for eigenvalues, whereas J(IX) does not necessarily for all values of IX. In such 
cases, the above congruent transformation of J(IX) is only valid for IX = ± 1. 

Let us consider now the relation between the three methods, namely Jacobi's, 
Gauss-Siedel's and the relaxation's in terms of their respective spectral radii. We 
shall assume that A is generally of property A also being consistently ordered. We 
shall also take J to be normal to facilitate our results in terms of (}(J). The 
results will be ultimately formulated in terms of spectral norm. We have that 

1. Jacobi: 

cond (/ - 1) 
I + (}(J) 

1 - (}(J) 

2. Gauss-Siedel: 

PJpT =(0 
F2 

~1) 

wherein,fornormaIJ,FiFl = F2Fi and FiF2 = FIFj. TakingG = -(D + L)-l Uas 
our coefficients matrix, we get 

and 
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whence 

But as the matrices commute, J being normal, then 

And as g(J) = V g(FiFl)' we finally obtain 

This result was obtained by Wozniakowski (1978) for symmetric J. Here it is 
generalized for the class of normal matrices J. Note also that II Gk Ill/k --> g2(J), implying 
that Gauss-Siedel's method is twice as fast in converging as the Jacobi method. 

3. Successive overrelaxation (S.O.R.) 

S = (D + WL)-l (-wU + (1 - IV) D) 

It can easily be shown, as in Stoer and Bulirsch (1980), that when A is consistently 
ordered, we have 

where A is an eig<;nvalue of Sand f1 is an eigenvalue of J. The above result is due to 
Young (1950). A generalization to the class of p-cyclic matrices can be found in 
Varga (1962). 

The question arises now as to which value of w would ensure that g(S) is minimal. 
Young (1950) obtained the optimal solution from the above relation, viz. 

As for the optimal value of g(S), noted gb(S), it is given by 
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The reason for the notation Q(SOR), SOR being the abbreviation for successive 
overrelaxation, is that Wb > 1. In fact, Kahan showed much earlier, in 1958, 
that Q(S) ~ Iw - 11 whatever the value of w, i.e. that values of W with 0 < W < 2, at 
best, lead to convergent methods. This narrowed considerably the space for other 
later authors to search for wb• By substituting for Q(J) = cond (J - J) - 1/ 
cond (I - J) + 1, we get 

_ (V cond (I - J) - 1)2 
Qb(S.O.R.) -

V cond (I - J) + 1 

This is very similar a result to that obtained by Wozniakowski (1978), for J normal. 
Apart from its worsening the result due to the large value of cond (J - J) appearing, 
it looks as though this method, like the two previous ones, will have a small rate of 
convergence. 

3.4 Accuracy of Solutions 

In Sect. 3.2, we have seen that the relative error in the solution x, noted ~x, is 
bounded by 

II~xll -- ::; cond (I - J) . e 
Ilxll -

where e is the machine precision with respect to IIJII. Unfortunately the error in x as 
such is usually complemented by an additional one reSUlting from the fact that the 
number of iterations k is finite. Therefore, we end up with two kinds of errors: 
those due to uncertainties in the data, and those due to interruption of the 
iterations. To obtain a realistic error bound should, in the light of this fact, mean to 
obtain a compound error bound accounting for both types. 

The following figure will be used to clarify this notion of error. 

A 

X =X·!1X 

;lkJ=X 1kJ.!1 X1kJ 

Fig. 3.1 

Due to the fact that ~J and ~h are not null, the actual solution X(k) will differ after 
each iteration k from X(k) by an amount ~X(k) which depends on ~J and ~h. The 
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relation between those three variables, namely L1X(k), L1J and L1h, can be deduced from 
the relations 

X(k) + L1X(k) = (J + L1J) (X(k - I) + L1X(k - I») + h + L1h 

and 

x = Jx + h. 

We obtain 

X(k) + AX(k) - X = (J + AJ) (X(k-I) + LlX(k-I) - x) + LlJx + Llh 

k-I 
= (J + AJ)k (x(O) - x) + L (J + LIJ)i (LlJx + Llh) 

i=O 

wherefrom it follows that 

k-l 

L1X(k) = (J + LIJ)k (x(O) - x) - f(x(O) - x) + L (J + LIJ)i (LlJx + Ah) 
i=O 

Here, one should note that for k -+ 00, 

L1x = (/ - [J + L1JD- 1 (L1Jx + L1h) 

as expected. As for the total error after any iteration k, we obtain 

X(k) - X = (J + L1J)k (x(O) - x) + (I - [J + ~JD-I (I - Jk) (L1Jx + M) 

And, assuming x(O) = 0 for unification, we finally get 

Ilx(k) - xII k ( II LIJ ")k 1 + PII ("LIJ" II Llh ") k 

II xII ~IIJII 1+lJf +1-IIJII-IILIJII 1+ I!JII +1hII (1+IIJII) 

From which the bound in Sect. 3.2 follows, as a special case occurring when k -+ 00. 

In practice, what happens is that for large values of k, due to the fixed word 
length on the display, the error due to stoppage of the iteration process becomes 
negligible relative to that due to rounding. The effect of truncating the iterations 
becomes only pronounced during the early stages of the computation. 

Still, workers have been more interested in X(k) than in X, since the former is involved 
in the evaluation of the residual vector after k iterations, which is given by 

From this relation and that stating that 

0= x - Jx - h 
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we get the following a-posteriori bound, valid after a number of iterations k, 

I/X(k)-xl/ 1 + I/JI/ IIr(k)11 
--- <---"" 

1/ x II - 1 - 1/ Jill/ h II 

which is similar to that obtained in Sect. 3.2. This bound computes the accuracy of 
i(k) relative to the exact solution x once r(k) is calculated at the final iteration k. 

The above bound can also be written in terms of the eigenvalues of J in the 
form 

I/X(k)- xII::; 1/(1 - J)-llil/r(k)l/::; I/r(k)l/. v· max 1-1-1; v 2: 1 
i 1 - Ai 

with v = 1 for J normal, relative to an 12-norm. And because the stopping criterion is 
usually imposed on i(k+I) - i(k) rather than r(k), both quantities being in fact 
equal if we neglect rounding, then for Ili(k + 1) - i(k)1I < 0:, we have 

IIx(k) - xII ::; vo: m~x 11 ~ Ai 1 + 0(11.1111, l/,1hlD 

This means that if the iterations are terminated when I/i(k + I) - i(k)1I < 0: and 
II i(i + 1) - i(i) II ~ O:Ci < k) for some assigned 0: > 0, then the above inequality sets a 
simple bound on how small the length of the final error vector i(k) - x will be, i.e. on 
the difference between the obtained solution and the exact one. The reader interested 
in knowing more about error distribution in relation to stoppage criteria is referred 
to Yamamoto (1975, 1976). 

Supposing even that r(k) is restricted to some criterion, how can one make sure that 
the value of i(k) computed is admissible with respect to the uncertainties in the 
data I1J and I1h? In other words, what is the maximum allowable value for Ir(k)1 at the 
kth iteration for i(k) to be acceptable? This was discussed before, in Sect. 2.5, under 
the heading of a-posteriori analysis. Here, the only restriction is that the number of 
iterations k must be taken into account, so that the value of i(k) will not be misjudged. 
The condition of compatibility must then reduce to the form adopted by Oettli and 
Prager (cf. Sects. 2.4 and 2.5) when k approaches infinity. Writing 

k-J 
X(k) = I (J + ,1J)i (h + ,1h), x(O) = 0 

i=O 

= (J - [J + .11J)-1 (h + ,1h) - (1 - [J + .11J)-1 (J + ,1J/ (h + ,1h) 

we obtain 

(I - [J + I1J]) ~y(k) = h + I1h - (J + I1J)k (h + I1h) 

but 
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And therefore 

r(k) = !':!.JX(k) + !':!.h - (J + !':!.J)k (h + !':!.h) 

The last term on the right-hand side of the last equation can be simplified, when k 
assumes large values, to yield 

where u1 and v1 are the eigenvector and reciprocal eigenvector of J corresponding to 
A1 . The condition of compatibility of a solution X(k), obtained after k iterations for the 
system X(i + 1) = Jx(i) + h, with the uncertainty !':!.J and !':!.h in the data finally 
becomes 

or alternatively, due to rounding 

where e stands for the machine precision. For values of k approaching infinity, 
Oettli and Prager's criterion follows directly, as a special case. 

The above compatibility criterion can on the other hand be written in terms of the 
stoppage criterion vector,.g = X(k+1) - X(k). From 

X(k + 1) _ X(k) = (J + !':!.J) X(k) + h + !':!.h - X(k) 

= !':!.JX(k) + M - r(k) 

we directly have that 

which is a more practical criterion to observe and does not restrict x(O) to be zero as for 
our starting vector. Also, substituting for r(k) in the relation 

results in the following bound, which is a refinement on Skeel's one, discussed in 
Sect. 1.5 

To apply the foregoing a-posteriori measure of {r(k), X(k)} on an example, let us write 

a f3 f3 f3 f3 1 

f3 a f3 f3 f3 0 

A= f3 f3 a f3 f3 b= 0 

f3 f3 f3 a f3 0 

f3 f3 f3 f3 a 0 
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where Ii = 8000.00002 and fJ = -1999.99998. Here, IIJII is very near to unity with 
cond (A) large. The solution, by direct method of elimination, yields 

x = 2014.6 (1,1,1,1, I)T 

and 

,= Ax - b = 0.00146 (1,1,1,1, I)T 

The residual is very high. In practice, these systems are preconditioned before 
attempting to solve them using the direct methods. To solve the above system using 
Jacobi's method, we have 

0 a a a a hI 
a 0 a a a 0 

J= a a 0 a a h= 0 

a a a 0 a 0 

a a a a 0 0 

where a = 2.499999969 x 10- 1 ; hI = l.249999997 X 10-4 . The eigenvalues of J are 
-a, -a, -a, -a, 4a. Hence Q = 4a = 0.9999999875, showing a high condition 
number as well as a very small rate of convergence. In fact, after 40 iterations, the 
results obtained were 

1.079999754 x 10- 3 

9.799997538 x 10-4 

X = 9.799997538 x 10-4 

9.799997538 x 10-4 

9.799997538 x 10-4 

And since the correct answer, down to 10 decimal digits, comes as 

2000.000080 

1999.999980 

x = 1999.999980 

1 999.999980 

1 999.999980 

we can easily realize how far we are from the exact solution. It takes some 109 iterations 
to come any near to it. However, let us demonstrate the use of the compatibility 
condition at 40 iterations anyway. The residual ,(40) is calculated to be 

,(40) = -2.499998743 X 10- 5 (1,1, 1,1, I)T 
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Also, 

2.499998700 x 10-5 

2.499998720 x 10- 5 

~ = 2.499998720 x 10- 5 

2.499998720 X 10- 5 

2.499998720 X 10- 5 

and 

1.104999741 X 10-3 

1.004999741 X 10- 3 

jJjji40)j + jhj = 1.004999741 x 10-3 

1.004999741 X 10- 3 

1.004999741 X 10- 3 

For ;(40) to be a compatible solution at the 40th iteration, the following inequality 
must hold 

2.499998743 x 10- 5 

1.1 04 999 741 x 

1.004999741 X 

::; 5 X 10- 10 1.004999741 x 

1.004999741 X 

1.004999741 x 

2.499998700 x 10- 5 

2.499998720 x 10- 5 

+ 2.499998720 x 10- 5 

2.499 998 720 x 10- 5 

2.499998720 x 10- 5 

10- 3 

10- 3 

10-3 

10- 3 

10- 3 

2.499998755 x 10- 5 

2.499998770 x 10- 5 

2.499 998 770 x 10- 5 

2.499 998770 x 10- 5 

2.499998770 x 10- 5 

This is verified in our case. Here the effect of the errors introduced by rounding is 
small with respect to that of error introduced by the termination of the iteration 
process. For large enough values of k, the opposite situation prevails, and we end up 
with Oettli and Prager's bound. This is clearly illustrated in Fig. 2. 

X[I) 

Fig. 3.2 
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By starting from an initial guess x(O), we iterate successively until we reach, at best, 
:i when k tends to infinity. Any :i in the shaded region is an admissible solution. 
Nevertheless, any solution :ilk) not lying in the shaded area is still compatible with the 
uncertainty M and !JJz if it satisfies the foregoing criterion for r(k). Note that 
111(1 - J)-lllr(k)111 defines the right bound for 11:i(k) - xii, and yet :ilk) need not be an 
admissible solution. Indeed it would be one, if the true error in :ilk) is of the same order 
as Skeel's bound. Alternatively, :ilk) is an acceptable solution if the backward 
error 

is smaller than the round-off error 8. 

3.5 A Method for Order Reduction 

Varah (1973) suggested an interesting method for handling ill-conditioned problems, 
by reducing the number of equations, only choosing those equations which are best 
conditioned. Although his technique is different from the one described hereunder, 
it has indeed been at the origin ofthe treatment in this section. First, we will explain 
Varah's technique. Suppose we want to solve a system Ax = b that has a high cond (A). 
The error in the solution due to rounding is bounded by 

where CTl and CTn are the largest and smallest singular values of A, their quotient 
being cond (A). k(n, 8) is a bound for IIL1AII/IIA II (cf. Sect. 1.2). 

By order reduction, we mean the fact of truncating the number of equations n to a 
number k < n, having a smaller condition number. This would reduce the effect of 
rounding, and consequently, will improve the accuracy. However, by truncating the 
equations, Wt! will have .introduced a new type of error, that due to the truncation 
itself, since we will have dispensed with some of the information which could 
have served better to determine the solution. On the other hand, if both types of error 
present are combined and found to be smaller in magnitUde than the original error, 
before order reduction - that is due to rounding alone - then we will have 
succeeded in bringing about an improvement in accuracy. Varah's technique, unfor­
tunately, is only suitable for a special kind of problems, problems where the vector b 
has particular properties. To see this, the author considered singular value decom­
position of A as A = UDV*, where U is an orthogonal matrix of the eigenvectors of 
AA *; V that of A * A. Note that if A is normal, we have the equivalent simple 
diagonalization formula A = PDpT. D in either case is a diagonal matrix of the 
singular values of A, or of the eigenvalues of A if A is normal. Now 

UDV*x = b 
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whence 

To see how the equations can be truncated, the author took for his new variables 
the following 

x = Vy and U*b = f3 

thus yielding 

Dy = f3 

with Yi = f3d(Ji· Now if b is such that f3d(Ji decreases as i increases (this being a 
restriction imposed by the author), then one can neglect the higher terms, i.e. 
those for which i is greater than some k. Truncating the equations to k terms, one 
would get 

where 

k f3 
(k) _ '" i Y - L., - ei , 

i = 1 (Ji 
e i is the orthogonal basis. 

The overall error is therefore bounded by 

The first term on the right-hand side accounts for the effect of round-off, whilst the 
second is that error due to truncation. And since the first term goes increasing with k, 
whereas the second decreases as k increases, there will exist some optimum value of k 
to choose for the error bound to be minimal. The only limitation on the technique is 
the fact that the quotient (f3/(J) has to be decreasing as i increases. This is guaranteed 
for some boundary value problems which the author treated in his same paper. 
After all, the idea of replacing the smaller singular values by zero has already been 
used in solving least-squares problems; refer to Golub (1965) and Bjorck (1968). 
This procedure has been used for finding the effective rank of a matrix as well, by 
Peters and Wilkinson (1970). 

The method described here does not impose any conditions on b, nor does it 
involve any approximation. Yet, it alleviates the effect of a high condition number 
by forming ~ new matrix having a lower condition number. Take for instance the 
example of the 5 x 5 matrix depicted in Sect. 3.4, here Q = 0.9999999875, forming 
our main obstacle as it yields a very small rate of convergence. By cancelling it from 
the matrix we obtain a matrix 'I having only -a, -a, -a, -a and 0 for eigen-
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values. This speeds up the convergence. To see how this is achieved, substitute J in 
x = J x + h by its spectral fonn 

J = f AiuiuiT 
i=l 

where d is the eigenvector of J corresponding to Ai (J is taken as nonnal for the 
sake of simplicity). Hence, assuming that there is an eigenvalue of J very much near 
to unity in magnitude, like AI; i.e. 1 ~ IAll ~ IA21 ~ ... , then 

or 

Hence 

The second term on the right-hand side vanishes; finally, we obtain the following 
recurrence relation 

Here, J1 has been rid of AI' With minor alterations, the above procedure can still be 
used with any Jhaving values of Al that possess nonlinear divisors. It can also be applied 
to the case where J has two greater eigenvalues Al and A2 , etc ... Aside from this, the 
technique is simple, as it only requires the knowledge of Al and u1 • These can be cal­
culated using Von Mises' power method (see Carnahan, Luther and Wilkes (1969». 
To apply the method on the example in Sect. 3.4, with Al = (} = 0.9999999875, 

ul = (lfl/5, Ifl/5, Ifl/5, Ifl/5, Ifl/5f the new system x = Jlx + hI has 

rx f3 f3 f3 f3 2 000.000 100 

f3 rx f3 f3 f3 1999.999975 

Jl = f3 f3 rx f3 f3 , hI = 1999.999 975 

f3 f3 f3 ex f3 1999.999975 

f3 f3 f3 f3 rx 1 999.999 975 
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rx = -0.199999998, f3 = 0.049999999. J1 has eigenvalues of order 4 
(), = -0.249999997) and a zero eigenvalue. It will thus converge very quickly during 
iteration. Here, one should note that h1 approximates very well the solution, and there­
fore x is reached after only very few iterations. Furthermore, the condition number 
will have been reduced, for cond (I - J + A1U1U1T) ;:;; cond (I - 1). Further, es­
pecially for matrix A having property A, using the spectral norm, do we have 

I + A 
Cond (I - J1) = I _ / 

2 

I + A 
:s; __ 1 = cond (I - J) 
- 1- A1 

In brief, the above technique relies on the removal of the contamination caused 
by large eigenvalues, both in the rate of convergence and in the condition number. 
Further, it relies on the power method in deflating the matrix J. This does not mean 
that we have replaced one iterative method by another when first finding the eigen­
values, for the original system's accuracy depends on AI' whereas the accuracy 
of the power method when used to find A1 depends on the quotient IAJ All, i.e. on the 
better separation of the eigenvalues. 

If a series of deflation procedures is carried out successively to remove all of the 
larger eigenvalues (or, alternatively,: all absurd equations), we will ultimately wind 
up with the system 

Y(i+1) = J v(i) + Ii 
m m,~m m 

where J is of a lesser dimension thlm J. This will be achieved through the use of 
a proper congruent transformation x = Py. Furthermore, the last terms Ym+1' ••• ,y" 
can be obtained by direct inspection, where n - m stands for the number of the 
removed equations. 

3.6 Methods of Iterative Refinement 

Until now, we have used the resid~al r corresponding to an approximate solution 
x of the equations Ax = b, namely 

r = Ax - b 

for two purposes 

1. As an indicator of the accuracy of the solution X. In general, the smaller Ilrll, the 
better is x or the nearer it is to x. 

2. As an indicator of the compatibility of x with the uncertainties in A and b. x is 
termed an admissible solution according to whether r satisfies or not some 
a-posteriori criterion. 

In this section we will demonstrate a new application, namely: 

3. Solving Ax = b iteratively by successively calculating the residual r(i) after every 
iteration, starting from an approximate solution x(O). This class of methods is 



3.6 Methods of Iterative Refinement 107 

termed that of iterative refinement. Herewith, r(il is used either to solve Ax = b, 
or to improve on an approximate solution x(O). These methods can also be used to 
find the inverse A -1 of a matrix starting from a first approximation Jim 

For example, the steps used to achieve an improvement on the solution x of the 
equation Ax = b would be: 

a) Computer(i) = Ax(i) - b 
b) Solve the system Ay<i) = r(i) 
c) X(i+1) = xli) _ y(i) 

Then x(i) will approach the solution x = A -1 b as i approaches infinity. Before we 
proceed with the proof, it is worthy of notice that r(i) is calculated using double­
precision floating-point arithmetic, see also exercise 3.19. Solving Ay<i) = r(i) using 
single precision arithmetic is synonymous to finding y(i) = (A + LlA) -1 r(i). The proof 
proper comes as 

X(k+1) = X(k) - (A + LlA)-l (AX(k) - b) 

= (I - (A + LlA)-l A) (X(k) - x) + x 

This is equivalent to saying that 

X(k+1) - X = (1 - (A + LlA)-l A) (X(k) - x) 

whence 

X(k+1) _ X = (1 - (A + LlA)-l At+1 (x(O) . x) 

but since usually (see exercise 3.20) 

III - (A + LlA)-l All ~ 1, 

X(k) will approach the solution x as k approaches infinity. 
Note that, since step b is usually repeated more than just once, one can store an 

estimate B of A -1 and carry on with the operations using only matrix multiplication. 
In fact, some authors prefer to use the recurrence relations in the form 

X(k+1) = X(k) - B(Ax(k) - b) 

= [I - BA] X(k) + Bb 

similar to the iterative equations in Sect. 3.1. Therefore, the rate of convergence, noted 
R, becomes 

R = - ~ In 11(1 - BA)kll 

(cf. Sect. 3.3). Likewise, the asymptotic rate of convergence is given by 

- In [Q(I - BA)] 
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which is a relatively high rate of convergence in comparison with previous ones 
obtained with other iterative methods, since 

III - BAil ~ 1 

This does not imply that this method is faster in the absolute, since it necessitates an 
a-priori estimate of the matrix B. 

Similarly to the analysis in Sect. 3.4, we will ask, if 

then how remote from x is X(k)? One can indeed easily deduce that 

Ilx(k) _ xii ~ _!X_ 

l-a 

Also, if x(O) is an approximate solution to Ax = b, then how far is x from x(O)? 
This depends, obviously, on the value of the initial residual Ax(O) - b. From the 
relation 

( 
k-l ) 

X(k) - x(O) = - i~O (I - BA)i B(Ax(O) - b) 

it follows that, as k ---+ 00, the final solution x satisfies 

Ix - x(O)1 ~ (I - II - BAI)-l IBIIAx(O) - bl 

componentwise. This simply means that the solution x(O) approximates x by a factor 
proportional to B. Therefore, the more ill-conditioned is A the farther is x(O) 
from x. This is indeed to be expected. The above bound in the present form is due to 
Yamamoto (1981). 

To exemplify the method of iterative refinement, let us consider the example in 
Hamming (1971), discussed in Sect. 1.5, namely: solve 

[3 2 1] 
A = 2 28 28 , 

1 28 -8 

[
3 + 38] 

b = 68 

28 

which has for an exact solution 

x = (8, 1, I)T 

For a value of 8 equal to 10-9 , using a ten-digit-mantissa, floating-point machine 
and direct elimination, the solution was found to be 

x = (1.166666667 X 10- 9 , 1.024351388,9.512972235 x 1O- 1)T 
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which is a very inaccurate result. Instead, use of the method of iterative refinement, 
while still solving Ay<i) = r(i) by direct elimination, yields the solution after seven 
iterations. The results of these are tabulated in sequence in Table 1. 

Another example would be the improvement of an approximate inverse dO) to A. 
First, we form the residual 

R(O) = I - AdO) ; 

Then, we construct the two sequences, according to Demidovich and Maron 
(1973, p. 316), as 

R(l) = I - Ad!) 

R(2) = I - Ad2) 

d 1 ) = dO) + dO) R(O) 

d 2) = d 1) + d 1 ) R(l) 

Then, as k approaches infinity, d k ) will approach A -1. This result can be proven 
using the following relation 

d 1 ) = 11°l(! + R(O» 
= A -1(1 - R(O» (I + R(O» 

= A -1(1 - [R(O)Y) 

112) = B(ll(! + R(l» 

= A- 1(I - [R(O)]2) (21 - I + [R(O)]2) 

= A- 1(I - [R(O)t) 

In general 

Therefrom, it follows that 11k ) approaches A -1 - as k approaches infinity - very 
rapidly. The reader may experiment this method on the following matrix: 

[
1/2 1/3 1/4J 

A = 1/3 1/4 1/5 

1/4 1/5 1/6 

of which the approximate inverse dO) is 

[ 
7.199999783 x 101 -2.399999920 x 102 

B(O) = - 2.399 999 919 x 102 8.999999698 x 102 

1.799999935 X 102 -7.199999756 X 102 

1.799999935 x 102J 
-7.199999756 X 102 

5.999999803 x 102 
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3.6 Methods of Iterative Refmement III 

Usually, the method of iterative refinement is not applied indefinitely. One 
iteration is sufficient to bring about noticeable improvement. For example, for 

[ 
33 16 72J 

A = -24 -10 -57 

-8 -4 -17 

which has for an exact inverse the following 

[
-29/3 -8/3 -32J 

A-I = 8 5/2 51/2 

8/3 2/3 9 

the approximate inverse obtained on a lO-digit machine was 

[
-9.666666881 -2.666666726 

B(O) = 8.000000 167 2.500000046 

2.666666728 0.666666683 6 

-32.00000071 J 
25.50000055 

9.000000203 

which is correct to seven digits. One iteration of refinement yields 

[
-9.666666667 -2.666666667 -32.000000000 OJ 

B(l) = 8.000000000 2.500000000 25.5000000000 

2.666666667 0.6666666667 9.0000000000 

which is correct up to ten digits. 
Usually, the residual is computed using double-precision - even if it is sub­

sequently stored in single-precision form to guarantee the accumulation of inner 
products of vectors. Accumulation is vital, especially if cond (A) is large in value. 
Wilkinson (1965, p. 260) gave accuracy estimates for the computed solutions after 
every iteration, together with the computed residuals. He also provided a rule of thumb 
to guarantee convergence. According to him, the process will in general succeed if 

where n is the dimension of A and 8 the machine precision. 
Another very popular method for iterative refinement, sometimes misnamed in 

the literature as the method of relaxation (cf. Salvadori and Baron, 1966), makes use 
of the residual to update x without solving the whole system at each iteration. It is 
mainly suitable for diagonal dominant matrices, but has still the advantage of being 
easily implement able on a calculator having only the +, -, x, -;- operations. In 
return, convergence with this method is slow. It relies on the reduction of the numeri­
cally largest residual to zero at each step; and terminates when all residuals of the 
last equation vanish. 

Let the equations be written in the form 

Ax(O) - b = riO) 



112 3. Iterative Systems 

choosing X(l) as 

such that when AX(l) - b = r(l), then 

The problem then becomes one of determining a suitable value of Llx(O). From the 
above relations, we have that 

r(l) = AX(l) - b = A(x(O) + Llx(O)) - b 

= A Ll.x<0) + ,.<0) 

Therefore, a good choice of Llx(O) is one which ensures that 

Let riO) be the largest element in magnitude in rIO). Choose Lix(O) as follows 

Ll.x<°) = (0, 0, ... , 0, LlxiO), 0, ... , Of 

so that 

Hence, based on the definition of the i1-norm, we have that 

::;; I IdO)1 + Ir~O)1 I I aik I + Ir~O)1 - Ir~O)1 
i# i",k a kk 

But if A is diagonal dominant, the last bracket on the right-hand side is positive and 
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Hence the sequence Ilr(k)11 is monotonic decreasing and bounded below, thus con­
verging to a minimum value of II Ax - hll. To illustrate the method on an example, 
consider 

1 =~ -~ -~ =:J I::J J,JJ = r L 0 -1 -I 4 L x 4 L 000 

Choosing x(O) = 0 yields 

,(0) = (0, 0, -1000, -lOOO)T 

Next, choose 

X3 = ° + (1000/4) = 250 , 

giving 

r(l) = (-250,0,0, -1250)T 

The next choice of Xi should then be 

X3 = 250, X4 = 0 + (1250/4) = 312.5 

giving 

r(2) = (-250, -312.5, -312.5, O)T 

Next choose 

X3 = 250 + (312.5/4) = 328.1 , X4 = 312.5 

giving 

,(3) = (-328.l, -312.5,0, -78.l)T 

Then choose 

Xl = ° + (328.l/4) = 82 , X3 = 328.1, X4 = 312.5 

giving 

,(4) = (0, -394.5, -82, -78.l)T 

Next, choose 

X 2 = ° + (394.5/4) = 98.6 , X3 = 328.1 , X4 = 312.5 
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giving 

,(5) = (-98.6,0, -82, -176.7)T 

and so forth. It takes some 20 iterations to reach the solution 

x = (125, 125, 375, 375)T 

against 13 iterations for the Gauss-Siedel method. 
Although convergence is slow when using this method, it appears nevertheless, 

that the method is very tractable when dealing with small order systems: a desk 
calculator could do the job perfectly, there being no need for programming. The 
method also appears very useful in cases where only few of the unknowns need 
correction. And since A is diagonal dominant, the variable coinciding horizontally 
with the largest-magnitude residual is the one to start with. 

3.7 Case of Interval Coefficients 

Iterative methods for solving the system Ax = b were previously shown to be divided 
into two categories: 

1. The equations Ax = b are written in the recurrence form 

X(k+l) = JX(k) + h 

whereby starting from an initial vector x(°l, the iteration variable X(k) approaches x 
as k approaches infinity. This is guaranteed if Q(J) < 1. 

2. Starting froman approximate solution x(O), a better solution X(l) is obtained using 
the relation X(l) = x(O) - B(Ax(O) - b) = (I - BA) x(O) + Bb, where B is an 
approximate inverse of A; i.e. III - BA II < 1. This form resembles Jacobi's, see 
Sect. 3.1; after many iterations, X(k) approaches x. Unlike category 1, the method 
does not necessitate that A be diagonal dominant, for instance (i.e. Q(J) < 1). 
Another advantage alike category one, is that iteration will still converge no matter 
what starting :vector x(O) we choose (see Sect. 3.6). Still, the method has a major 
drawback, which is the necessity of knowing an approximate inverse B of the 
matrix A. For this reason, it is only used to improve on an already existing 
solution x(O) obtained by direct methods. This is why it is referred to as the 
iterative refinement technique. 

Both methods can on the other hand be used for the solution of linear interval 
equations AIX = bI. In this case, B represents the inverse of the mid-point matrix of 
AI, i.e. B = (Ac)-l. We shall not indulge in a detailed discussion of the application 
of the first category of methods to interval equations, since the case resembles that with 
A fixed, except for the fact that here, the equations are rewritten in the interval 
recurrence form 
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with Y = [l, J] and hI = 0, Il]. Mayer (1968, 1970) has shown that the above interval 
iteration, for any starting value xI(O), converges to a fixed point of the equation 

if and only if (l(JI) < 1 (cf. also Alefeld and Herzberger (1983, p. 190)). 
If (l(JI) 1:: 1, the second method can be used instead of the first. The reader may 

have already noticed that this method is similar in some respects to Hansen and 
Smith's second method (1967), seen in Sect. 2.3, and where the authors suggested 
a solution by Gauss elimination of the interval equations 

obtaining ZI ;2 Xl. In the iterative form, the above equations become 

Here EI is an error interval matrix (see Sect. 2.3) having IIEIII < 1, a fact which implies 
1(0) 

convergence. Note that z must be so chosen as to enclose xl. Meanwhile, 
increasing the number of iterations will reduce the overestimation error and tighten 
the bound between ZI(k) and Xl until a value of ZI is reached that satisfies 

The iterations are therefore written in the following concise form, from Moore 
(1979, p. 61), as 

k =0,1,2, ... 

with 

i=I,2, ... ,n 

Here, ZI(k) - with k = 1,2, ... - define a nested sequence of interval vectors 
containing the unique solution ZI. 

To illustrate the above technique, let us solve the following example: 

A - , [ _ [[1.9,2.1] [0.9,1.I]J 
[0.9, 1.1] [0.9, 1.1] 

bI = [[2.9,3.I]J 
[1.9,2.1] 

By solving the equations AIX = bI, we calculate in fact the minimum interval vector 
xl that encloses the set X = {x:Ax = b, A E AI, bE bI}. This is achieved correctly 
using the method in Sect. 2.4, or by Hansen's third method, sec. 2.3. 
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In using the above iterative method, one first obtains 

B=[1 -IJ, 
-1 2 

Bbl = [[0.8, 1.2]J' 
[0.7, 1.3] 

EI = [[ -0.2,0.2] [-0.2, O.2]J 
[ -0.3,0.3] [-0.3,0.3] 

And by choosing 

[(0) 1.3 
z1,2 = [-1, 1] 1 _ 0.6 = [-3.25,3.25] 

we obtain, using a two-decimal-digit rounded interval arithmetic: 

/(1) = [ [-0.5, 2.5] J 
[ -1.25, 3.25] 

i(2) = [[-0.35, 2.35]J 
[-1.03, 3.03] 

ZI(3) = [[-0.28, 2.28]J 
[ -0.92, 2.92] 

ZI(4) = [[ -0.24, 2.24]J 
[ -0.86, 2.86] 

Z[(5) = [[-0.22, 2.22]J 
[ -0.83, 2.83] 

The iterations are seen to converge; they will ultimately yield 

The result satisfies exactly the equation Zl = Elzl + Bbl. 
The above technique can also be applied in the solution of non-interval 

equations; here they will account for rounding errors. Moore (1979, p. 61) produced 
the following example 

Hence 

B= [ 0.6 -0.3J 
-1 l' 

Bb = [ 0.6J 
-1 ' 

E = [0.1 OJ ° 0' 

x(O) = [[-1.12, 1.12]J 
[ -1.12, 1.12] 



Then, we can get 

x(1) = [[0.48~~.712JJ 

X(2) = [[0.64~ ~.672JJ 

X(3) = [[0.66~ ~.668JJ 

X(4) = [[0.66~ ~.667JJ 
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X(4) is the exact solution, within the range of rounding errors. Usually the 
equations Ax = b are first solved using Gauss elimination, or a variant of it like the 
Gauss-Jordan method; the approximate solution x(O) is expressed in rounded interval 
arithmetic of a large width. The interval refinement method is then applied. The 
reader may refer to Rump and Kaucher (1980) for a treatment of the topic. 

Still, the above method for obtaining ZI can be improved on to yield a tighter bound 
yI. This has been achieved by Gay (1982), who succeeded in finding an interval 
vector yI enclosing Xl while being of smaller width than ZI, i.e. 

In his analysis, Gay made use of a theorem introduced by Miranda (1941) stating 
that if g(y) is a vector-valued function having the property that g;(y) ~ 0 for some 
y; = y;, and gi(Y) ~ 0 for some Yi = .Vi' then there exists a y at which g(y) = O. 
To apply this result in finding a minimum yI enclosing the set X = {x:Ax = b, 
A E AI, b E bI}, we should note that any yI enclosing X satisfies the relation 
All ;2 bI. Likewise, the two inequalities 

where C = BAI and d = BbI, define the set Y given by 

The above result immediately follows from BAIl ;2 Bbl. And by defining g(y) 
= B(Ay - b), we have gi(Y) ~ 0 when Yi = Yi and gb) ~ 0 for Yi = 'vi. From this, 
it follows that a certain y exists at which g(y) = B(Ay - b) = O. But since B is 
nonsingular, then Ay = b, i.e. Y, whose bounds are defined above, is a solution to the 
equations, defining the smallest set Y enclosing X. This further suggests that we 
proceed with the iterations using the interval-vector valued function given by 
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while iterating on the Jacobi-like form 

or on the Gauss-Siedel form 

Yj - j L.... jkYk L.... jkYk ii 
I(k+ I) _ (dl _ '\' Cl I(k+ I) _ '\' Cl I(k»)/ Cl 

kcj k>j 

which has a higher convergence rate. 
Gay further noticed that Zl, yl and K all differ from one another in the sense of 

the metric q (see Sect. 2.3) by no more than OCr) . W(K); r being set equal to 
sup IIEIII. But noticing that IIEIII ~ w(EI ), we realize that, in fact, Miller (1972) 
thought of a somewhat similar bound when deducing that z1, obtained from BAlz 
= Bbl by Gauss-Jordan, differs from K by no more than O[w(AIW. Moore (1966) 
mentioned a similar result while analysing Hansen's first method (see Sect. 2.3). 

Lastly, as our method is iterative, one must introduce an accuracy test relating 
two successive iterations, a test upon the success of which the process is terminated. 
The author suggested the tolerance criterion 

( I(k) I(k-I») 

q Y ,Y < ( ·b d) 
(k) - 01: prescn e 

wV ) 

But now the question arises as to how far i(k) is from K. One can easily see, 
through a similar analysis to the one in Sect. 3.4, that since 

and 

then 

To illustrate the author's method on an example, we will borrow one from 
his paper (Gay (1982)), namely 

Al = [ [2,4] [-I,I]J 
[-1,1] [2,4]' 

bl = [[0, 2]J 
[0,2] 

The set X is represented by the shaded area in Fig. 3 below. 
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x/ 

I ~ 
I 

I 'x, 
I L.:___ ----1 
I y' I 

I L ______ --------------j 
~~_______ _ ____________ J 

Fig. 3.3 

First, the region X = {x:Ax = b, A E AI, bE b/ } is detnmined using the method in 
Sect. 2.4, wherefrom it follows that 

Xl = [[ - 2/3, 2]J 
[-2/3,2] 

Then Zl is calculated using Hansen's iterative method as explained in the present 
section. One first gets 

B = [1/03 ° ] 1/3 ' 

and 

Bbl = [[0, 2/3]J 
[0,2/3] , 

7,'(0) = [-1 1] IIBb/l1 = [-2 2] 
1, 2 '1 _ II £1 II ' 

Then 

Z/(1) = [[-4/3, 2]J 
[-4/3,2] 

Z/(2) = [[-4/3, 2]J 
[-4/3,2] 

convergence being rapidly observed, and 

Zl = [[-4/3, 2]J 
[-4/3,2] 

£1 = [[ -1/3, 1 /3] [~1/3 , 1/3]J 
[-1/3, 1/3] [-1/3, 1/3] 
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Now for yl, we use Gay's recurrence formula 

M 1. 2 (l(1») = ([0,2/3] - [-1/3,1/3] [-2, 2])/[2/3, 4/3] 

= [-1,2] 

M 1.iy I(2») will be given in a similar fashion, and therefore 

1= [[-1, 2]J 
Y [-1,2] 

from which we have that 

Exercises 3 

I. Show that all block tridiagonal matrices 

D1 A12 

A21 D2 A23 

A N - 1 ,N 

AN• N _;· DN 

with Di diagonal, Aij =F 0, have property A. 

2. Solve by iteration the following 

[=: -~ -~ =:] [::] = [1 J] 
o - 1 - 1 4 x4 1 000 

Choose x(O) = Q. 

3. Prove Gershgorin's theorem: The eigenvalues of A lie in the union of the discs 
given by . 

n 

1..1. - aiil S I laijl 
j=l, Ui 

Hint: Au = AU is(A - aii) Ui = I aijuj ; i = I, ... n 
j= 1, joFi 

Show how to use this theorem to prove that a diagonal dominant matrix is 
nonsingular. 

4. Show that Q[(D + L)-l U] < I, where Land U are the lower and upper parts 
of A; D contains its diagonal entries. Here 

I I aij I 
joFi aii < 1 

(A is diagonal dominant) 
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Hint: consider the equation I(D + L) - ~ 1= 0 in A. Show that values of A 

such that IAI ;?; 1 do not satisfy it, since (D + L) - VIA is diagonal dominant. 

5. Show that 

II(D + L)-1 VII ~ IID-1(L + V)II 

by considering 

where ILl is the matrix of absolute values of the elements of L. This should show 
that Gauss-Siede1 is at least as fast as the Jacobi method. 

6. If: X(i+1) = Hx(i) + h, show that X(i+1) - x = H i + 1(X(0) - x). And if X(i+1) 

= Hx(i) + h + e (e being a computa,tional error), show that X(i+1) - x 
k 

= jf+1(X(0) - x) + L Hk-iei 
i=O 

Hence, obtain a bound for Ilx(i+1) - xii. 
7. Show that if IIJII < 1, then we have, under different norms: 

Specify the norm used. Also, by substituting Xi = PiZi in the expression Ax = b; 
Pi being some positive numbers, show that the system in Zi is convergent if the 
original system in x;" is. By taking Pi = I/laiil, show that any of the following 
conditions can be sufficient for convergenc~ of the Jacobi: 

Show that for A diagonal dominant, conditions I and b hold. 
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8. Show that the Gauss-Siedel method is convergent for positive definite matrices A. 
Hint: G = -(D + L)-l U = (Q ~ I)(Q + I)-I. Here Q = A-l(2[D + L] - A), 
whence A(G) = (p,(Q) - 1)/(p,(Q) + 1). Obtain IA(G)I by letting fL(Q) = Re fL 
+ i 1m fL, knowing that Re fL > O. 

9. Neglecting rounding, and taking x(O) = 0, show that for large enough values of k 

k 

Ilxlk) - xii ;:;;; 11 ~ Atll(v1, h)1 . IIu1 11 

with (] = IAll ~ IA21 ... ,u1 and VI are the eigenvector and reciprocal eigen­
vector of J; assuming J is diagonalizable and irreducible. Compare this bound 
and 

Ilx(k) - xii::; yO( max 1_1_1 
i 1 - Ai 

where 0( ::> Ilx(k+1) - X(k) II 
10. If in Jacobi's method, 

II X(k) - x II ::; yO( m;u 11 ~ Ai \ + 0(11 Mil, II Llhll) 

obtain an expression for O(II~JII, IIMII). Take 0( ~ lIi(k+l) - i(k)lI. 

11. 1f.B<°) is an approximate inverse of A, show that Ifl) equal to IfJ + (A + ~A)-l 
x (I - AIfO» - is a better solution. Write the steps in computing the inverse of 
A by the method of iterative refinement. Show that Ii' --+ A -1 as k approaches 
infinity. 

12. If IfO) is an approximate inverse of A, improve on If 0) using the method of 
iterative refinement 

[
3 2 1 J 

A = 2 2 X 10-9 2 X 10-9 , 

1 2 X 10-9 _10- 9 

[
- 7 X 10- 10 

13(0) = 4.1'3 X 10- 1 

1.72 X 10-1 

4.33 X 10-1 

-1.03 X 108 

2.06 X 108 

1.33 x 1O- 1J 
2.06 x 108 

-4.13 X 108 

13. Given AX<k+l) = X<k)B + C as the iterative form of Lyapunov's equation, show 
that the problem is equivalent to solving the equation (I ® A - BT ® I) x = c 
using the linear iteration MX(k+l) = NX(k) + c, and the splitting M - N 

= I ® A - BT ® I. Prove that the process converges if 

(](M- 1N) = (]«I ® A)-l (BT ® I» = (](BT ® A-I) < 1, 

i.e. the iterations will converge if 

max IA;(B) I < min IAi(A)I 
i i 

where A stands for eigenvalue. 
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14. If C is an approximate inverse of A, and 11M1) = Ifk) + CCI - AIfk» show 
that Ifk) approaches A -1 slower than in the case where we use the expression 
Ifk+1) = Ifk) + B(k)(I _ AIfk». 

15. Obtain, using an interval iterative scheme, values of xl, y and :l that enclose 
the solution of Al x = bl where 

Al = [[2 ± 0.1] [1 ± O.I]J 
[1 ± 0.1] [1 ± 0.1] , 

bl = [[3 ± O.1]J 
[2 ± 0.1] 

16. Show that xl+ 1 = {(I - BAI) xl + B} n xl improves upon an inverse of A 
Show how to choose Band Xo. 

17. If B is an approximate inverse of AI, show that B~+1 = B + (I - BAI) ~ 
approximates (AI)-1 for large k. Shpw that a suitable Eo can be chosen by 

= -11] IIBII \.I 
Bo [ , 1 _ III _ BAlli' vi,j 

(see also Thieler (1975) for other iterative schemes). 

18. If Ax = b has an approximate solution x with residual r, show that 

'-x < IIBrl1 
Ilx II = l-IIBA-III 

where B is the approximate inverse of A.related to the solution. 

19. Roughly speaking, if the residual r = AX(i) - b is computed with a precision 
e/cond (A), show that the method of iterative refmement will produce a solution 
x that is correct to full precision. 

20. Show that the method of iterative refinement for updating an initial approxima­
tion x(O) to Ax = b will produce a full precision solution whenever e cond (A) < 1. 



Chapter 4 

The Least-Squares Problem 

4.1 Introduction 

The set of linear simultaneous equations Ax = b, A E Rmxn, has either a unique 
solution for x, more than one solution for x or no solution at all. For x to be 
unique, A is necessarily nonsingular and x is expressed as x = A -lb (m = n). The 
situation in which there is more than one solution occurs when b can be expressed 
linearly in some few column vectors of A having rank equal to r(A) < n. The 
equations are· said to be consistent yet indeterminate. The solution comes as 
x = Aib, where Ai is some generalized inverse of A satisfying AAiA = A. A generalized 
inverse Ai satisfying the latter condition can be easily suggested (Bellman 1970, 
p. 105) as 

. [1 Xz] R A'= P ; 

where Rand P are respectively elementary row and column operations which bring A 
to the canonical form, namely 

RAP = [~~J 
while X, Yand Z are arbitrary. x is therefore given by 

where At is the determinate part of Ai and c is an arbitrary vector accounting for 
X, Y and Z. To see how this equivalence follows we note that A(J - AtA) 
= A(J - AiA) = ° and that AAtb = b, so that premultiplying x by A yields b on the 
right hand side as our starting assumption. But the vectors of (J - At A) lie in the 
null space of A, and a linear combination of them would represent the homogeneous 
solution. As to AAtb being equal to b, this holds true if the equations are consistent 

i.e. r(A) = r(A i b) or that Rb has the last m - r elements made equal to zero from 
consistency, where A is of dimension m x n. For in this case 

Rb = diag (Ir! 0) Rb 

or that 

p-Ip [~r ~] Rb = AA'b 
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Although At is obtained systematically, it is not unique. Other forms of Ai exist which 
satisfy additional conditions. One might further impose AiAAi = Ai, to imply 
Z = yx. Ai is then called a reflexive generalized inverse. Furthermore, if we impose 
(AAi)* = AAi and (AiA)* = AiA, we are led to more restrictions on X, Y, Rand P. 
Indeed we can do this, since Rand P are not unique and X and Yare arbitrary. The 
last two conditions imply that X = 0, Y = 0 and that each of the matrices Rand P 
is the product of a unitary matrix and a diagonal one; leading directly to the 
singular value decomposition of A, namely 

U*AV = [~ ~l D = diag (0"1' ••• ,0",) 

and 

. [D- 1 
A' = V 

o ~JU*, 
where U and V are two unitary matrices related to A as follows: 

U*AA*U = diag (~, ... ,0-;,0, ... , O)mxm 

and 

V*A*AV = diag (O"~, ... ,0";,0, ... , 0)11 XII 

0"1' ... ,0", are called the singular values of A, i.e. O"i = VAi(A * A) = VAi(AA *), where 
), stands for a nonzero eigenvalue. The above relationships now bring about a syste­
matic computation of Ai. Such an Ai, which now satisfies AAiA = A, AiAAi = Ai, 
(AiA)* = AiA and (AAi)* = AAi, is uniquely determined and is called the Moore­
Penrose inverse defined for an arbitrary m x n matrix A and denoted A +. The 
solution x would be given by 

This generalized inverse was introduced by Moore in 1920, but rediscovered by 
Penrose in 1955. For background on generalized inverses, the reader should consult 
the texts by Rao and Mitra (1971), Bouillon and Odell (1971) and Ben-Israel and Gre­
ville (1974). 

Finally, the situation in which the equations Ax = b admit of no solution occurs 
when the latter are inconsistent, i.e. rCA) =1= rCA: b). We are then contented with 
a least-squares fitting or a solution which minimizes the residual error e = Ax - b 
in the least-squares sense. Such a situation is often encountered in physical 
experiments, where the number of observations exceeds that of the unknowns 
(overdetermined system). For although n measurements should be enough to determine 
the n unknowns, we usually take many more since we lack accuracy in each 
observation. We then end up with an odd situation: n measurements are enough to 
determine the unknowns, but the unknowns computed do not satisfy the rest of the 
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measurements. To alleviate this difficulty, Gauss invented the least-squares technique, 
by which a straight line y = ax + b can be made to fit three or more non-collinear 
points. If m > 2 is the number of such points (Xi' yJ, then the problem is set out so 
as to find a and b such that 

m 

F = I (aXi + b - yl 
i = 1 

is minimized. Each bracket constitutes the difference between each of the expected 
and observed values of the dependent variable y. The values of a and b are then 
obtained from 

of 
~=O oa ' 

of 
-=0 
ob 

yielding the two linear equations 

Another suggestion for F is 

1 m 
F = --2 I (axi + b _ y;)2 , 

1 + a i= 1 

see Froberg (1969) and Usmani and Chebib (1978). Such a choice for F allows for 
minimizing the sum of the squares of perpendicular distances drawn from (Xi, yJ 
to the line y = ax + b. However the first choice for F is the most popular for 
reasons outlined later. 

Likewise, for Ax = b (A of dimension m x n, m > n), X may be found by 
minimizing 

p ~ 1. 

A common value of p is p = 2 and we reach the least-squares fitting. Setting p = 2 
of 

and - = O,j = 1, ... , n, one can easily obtain oXj 

A*Ax=A*b 

to be solved for a unique x, if rCA) = n. If rCA) < n, A* A is singular, but the above 
equations are consistent, though Ax = b is not; for to propose that x = Aib is 
a solution for some generalized inverse Ai, suggests that A*AAib = A*b, Vb, even 
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if AAib #- b. The equations A*Ax = A*b are therefore consistent, if A*AAi = A*, 
or equivalently (AAi)* A = A. Hence x = Aib is a solution to A*Ax = A*b 
whenever Ai satisfies 

A generalized inverse satisfying the above two restrictions only, is called a pseudo­
inverse of A. Such an inverse is quite enough to solve the least-squares problem as 
was first observed by Rao in 1955. However for the sake of generalization, we can 
still work out our problem using A +, and show that x = A + b + (l - A + A) c is 
a solution to A* Ax = A*b. Indeed it is~ since the axioms of the pseudo-inverse are 
satisfied. For xto be a solution, one must habe A*A4+b = A*b and A*A(l- A+ A) 
= 0 being satisfied as above, though x written in this form serves as a generalization 
to the solution of the many classes of Ax = b. Notice the elegance in writing 
x = A+b as a substitute for x = (A*A)-l A*b, when rCA) = n. We therefore 
conclude that x =" A + b + (I - A + A) c is the general least-squares solution to 
Ax = b. Only when the equations are inconsistent, does x become the vector which 
minimizes the error between Ax and b in the least-squares sense (in the consistent 
case, the residual vector comes as (I - AA +) b = 0). Another advantage for using A + 
instead of being confined to an Ai with AAiA = A and (AAi)* = AAi is that one 
may seek a minimum norm solution. In this case Ai must further satisfy AiAAi = Ai 
and (AiA)* = AiA (see exercise 4.2). x = A+b is therefore called a minimal least­
squares solution of Ax = b. 

4.2 Perturbations of the Moore-Penrose Inverse 

Unlike the simple situation in which det (A) #- 0, the solution x(e) of (A + eAl) 
x x(e) = b + wp when A is singular, is more complicated to obtain in a series of e. 
For although x(e), when A is nonsingular, can always be represented in the form 
(cf. Sect. 1.4) 

where x = A-lb, this does not generally apply to the case where A is singular or 
rectangular. The reason is that although (A + eAl)-l may exist, its expansion into 
a Taylor's series in e is just impossible; for when e = 0, A -1 does not exist. The 
case when det (A + eAl) vanishes identically in e, or when A is rectangular, is even 
more involved since only a generalized inverse of (A + eAl) can be evaluated. 

Such a problem appears either in indeterminate systems, where Ax = b is 
a consistent set of equations having x = A + b + (I - A + A) c as a solution, or in 
overdetermined systems in which x minimizes the residual e = Ax - b in a least­
squares sense. For when A and b both undergo a slight perturbation A + eAl and 
b + ebl' the solution x(e) of the perturbed system, in a series of e, will have to be 
evaluated through an expansion of (A + eA 1)+, around e = O. We shall find that 



128 4. The Least-Squares Problem 

X(8), (A + 8A l )+ or (A + 8A l )-1 will all assume in general a Laurent's expansion 
rather than a Taylor's one. To show this on some examples consider 

having as solutions Xl = x2 = 1/8. And 

[ 1 +2 8 -1 J- l 1 [-1 
-2 + 28 =?-1 

1/2J + ~ [1 0 J 
1/2 8 0 1/2 

also 

[
1 -1 + 8 

3 -3 
[ 

21 + 48 
-2 + 1 

= 33 + 208 + 482 

-6 - 28J 298 + 1682 + 483 

-6 - 68 

One feature therefore of (A + 8A l )+ is that, in general 

lim (A + 8A l )+ # A+; 
<~O 

-7 + 38 ] 
-11 - 4e 

2 - 2e - 282 

i.e. (A + 8Al ) + is not continuous at 8 = o. Only when (A + eAl) + assumes a Taylor's 
expansion around 8 = 0 does such a limit exist. A perturbation which guarantees the 
above limit is said to be in the acute case after Wedin (1973) or acute 
perturbation according to Stewart (1977). But in general (A + sAl )+ takes the 
form 

To obtain the A_i and A+i matrices, Deif (1983b) suggested a singular value de­
composition of (A + SAl). Let A be an m x n matrix, with m ~ n without loss of 
generality, and define the two unitary matrices V and U whose columns are eigen­
vectors of A* A and AA* respectively. Then if 

U*AV = [~ ~J 

(see Sect. 4.1) with D = diag (crl' ... , crJ, r = rank (A) = rank (A* A) = rank (AA*), 

and crl, ... , cr, are the nonvanishing singular values of A, i.e. crk = V}'k(A*A) 

= VAk(AA*), k = 1, ... , r, then, 

[ D- l OJ 
A+ = V 0 0 U* 
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As for (A + eAI)' define similarly V, [r diagonalizing respectively through a 
similarity transformation (A + eAI)* (A + BAt) and (A + eAI) (A + eAI)*. Let 
ai' ... ,ap (r ~ p ~ m) be the nonvanishing singular values of (A + eAI)' then 

and because A* A and AA* are both Hermitian with Hermitian perturbation, 
Xk , uk, an Uk can be chosen such that they will assume an analytic expansion in the 

neighbourhood of e = 0, namely, 

,. _ 1 + 1(1) + 21(2) + It.k - It.k elt.k e It.k ... , k = 1, ... ,p 
-k _ ,k + k + 2 k + V - z; 8V(I) e V(2) ... , k = 1, ... ,p 
-k k k' 2 k U = U + eU(I) + e U(2) + ... , k = 1, ... ,p 

with )'k = 0, k = r + 1, ... ,p, so is Ail), k = r + 1, ... ,p. To show that Ail! = 0, 
k = r + 1, ... ,p, we first note that Aif = 0, k = r + 1, ... ,n. The latter follows 
from A*Aif = 0, k = r + 1, ... , n and hence 

° = A*+ A* Avk = (AA+)* Avk = AA+ Avk = Avk , k = r + 1, ... , n, 

and similarly A*uk = 0, k = r + 1, ... ,m. One therefore has from Bellman (1970, 
p.63) 

And it follows directly, for sufficiently small lei, that 

r Vk><Uk + e(vk ><uk + Vk><U k ) + 0(e2) 
(A + eAlt = I (I) (I) 

k=1 VAk + dLI) + e2Af) + ... 

+ f Vk> <Uk + e(v~l»<uk + Vk> <u~l)) + 0(e2) . 

k=r+1 V e2Ai2) + e3A~3) + ... 

The above expression for (A + eAI) + has one main disadvantage in that it requires 
first the explicit evaluation of Ar), v~i) and u~i)' k = 1, ... ,p, i = 1,2, 3, ... , which 
is usually tedious to obtain. It is therefore used to obtain (A + eAI)+ up to a few 
terms only. But we shall use it to get some useful information about the 
expansion. 

It now seems clear that (A + eAI) + will in general possess a laurent's expansion 
around e = 0. The principal part of the series is obtained from the term 

f Vk><Uk + e(v~l»<uk + Vk><U~I») + 0(e2) . 

k=r+1 Ve2A~2) + e3Al3) + ... 
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We immediately notice that, if p = r i.e. r(A + SAl) = rCA), this term vanishes, and 
we end up with a Taylor's expansion of (A + sA1)+, for sufficiently small lsi; 
I.e. 

(A + SAlt = I skA+k 
k=O 

In other words, acute perturbation is only obtained when rCA) does not change 
under a slight perturbation SAl. For example, consider 

we have 

+ 1 [1 (A + SAl) = --2 
1 + s s ~J 

The above result directly implies that if det (A) = 0, then (A + SAl) -1 once it exists, 
, must possess a Laurent's expansion only. But what is the order of singularity of 
(A + SAl) + , i.e. the value of the non-negative integer s denoting the order of the pole 
at s = O? This naturally depends on whether some of 42), A~3), ... are zero. In 
other words if 

k = r + I, ... , p and Ai4) =f. 0 

we have s = 2. Furthermore, if Ai4 ) = Ai5) = 0, ..1./6 ) =f. 0 then s = 3, and so on. It 
seems natural then to investigate the conditions under which Aii) = 0, k = r + I, ... ,p, 
i = 1,2,3, ... It is found that a necessary and sufficient condition that (A + sA 1)+ 
has a multiple pole at s = 0 of order s, is 

For instance, if s were to be two, Af· 3) must vanish implying that the first term 
above is zero. To prove such a proposition, write 

and Ai2) being zero, gives upon grouping first and second order terms 

and 
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The first equation directly suggests that 

To show that Cki = 0, substitute this last relationship into the second equation 
above. Taking the inner product with vk yields 

But we also have from the same relationship, that 

Hence I: ICkil2 = 0, giving Cki = 0, and necessity is proved for s ,,;, 2. Sufficiency is 
easier; if 

then 

1(2) _ <vk A*(Avk + A vk) = 0 ILk - '1 (1) 1 • 

To show that Ak3 ) = 0, we have 

But from the second equation above, one is left with 

A*(Av~2) + A1V~1»)'= 0 

i.e. that 

and 

To ensure the above conditions for the order of the pole at e = 0 of (A + eA 1)+ 
looks quite complicated. However for the special case in which A and A1 are 
square matrices and commute, one has simply that s = v = index A. By v we denote 
the least non-negative integer for which r(AV) = r(AV + 1). For example, for diagonaliz­
able matrices v = 1, and for a nonsingular matrix A, v = O. It also stands for the 
size of the largest Jordan block corresponding to the zero eigenvalue of A. To 
show that s = v for commutative matrices A and Ai' it is enough to prove that, 
for instance, for v = 2, 

AV~l) + A1 vk = 0, for some k (r + 1 ;;i; k ;;i; p) , 
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while 

Taking k = r + 1 and observing that 

and Alv,+l = p,u+ l (A and Al commute), then by taking the inner product with 
U,+l yields c +1 . = 0, Vi. This also shows that V,+l is proportional to the second 
vector in the' ch~in of v vectors. Let this vector be D, then Al V~l~ 1 ~ D and 

But because 

one has 

thus completing the proof. In fact, this special result was first discovered by Rose 
(1978). He proved that if A and Al commute and (A + eAl)-l exists, then it can be 
written explicitly in the form 

00 v-I 

(A + BA1)-1 = AD I (_)k (AD Al)k ek + Af(I - AAD) I (-l (AAfl B-k- l . 
k=O k=O 

AD is the Drazin inverse of A and is the unique solution to AAD = AD A, 
AD AAD = AD and Ak+l AD = Ak, k ~ v. For more detailed information about the 
Drazin inverse and related applications, the reader is referred to Campbell and 
Meyer (1979). 

Now returning to the interesting case of acute perturbation, i.e. when r(A + eAl) 
= r(A), we have said that (A + eAl) + will assume a Taylor's series around e = 0, 
that is 

Our next task is to determine A+k. It was Ben-Israel (1966) who first derived this 
expression without explicity stating that r(A + eAl) = r(A), yet in fact he asserted 
this condition by two other conditions. Ben-Israel showed that if AA+ Al = Ai> 
A+ AAt = At and IleA+ Alii < 1, then 

co 
(A + eAl )+ = A+ + I (_)k (A+ Al)k A+l. 

k=l 
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His proof relies upon the identity (A + eA l) = A(I + eA + Ai)' Also by denoting 
C = (I + eA+ A l ), the author showed that 

A+ ACC*A* = CC*A*. 

But we also have that CC+ A*AC = A*AC as Cis nonsingular from ileA + Alii < 1. 
It follows from exercise 4.1 that 

from which the above expansion is directly obtained. The above series in e becomes 
a simpler formula to use than, 

provided that Ai satisfies the Ben-Israel conditions. Note that the principal part 
of (A + eAl )+ vanisnes and the above analytic part remains only. The reason is that 
r(A) = r(A + eAl ); a result which follows immediately from using two only of the 
Ben-Israel three conditions (see exercise 4.15). Nevertheless, his above expansion of 
(A + eAl )+ into a series of e, was established using all three conditions. 

It now becomes apparent that unless r(A + ~A) = r(A), (A + ~A)+ - A+ is 
always large. In other words, for r(A + AA) #- r(A), although II~A II can be made 
sufficiently small, II(A + ~At - A + II will become unbounded. Since it is interesting 
to obtain finite bounds on II (A + ~A) + - A + II as ~A -+ 0, we shall confine our­
selves to acute perturbation. 

For the special case in whichAA + ~A = M,A + AM* = AA*andiIA + Mil < 1, 
one easily obtains from (A + ~A) + - A + = [(I + A + ~A) -1 - I] A +, that 

II(A + ~A)+ - A+II < IIA+ ~AII 

IIA+II = 1- IIA+ ~AII 

(cf. exercise 1.18). If IIA + ~A II < 1 is further replaced by IIA + II 11M II < 1, we reach 
a bound similar to that .of Sect. 1.4 (cf. exercise 4.14). The condition number to the 
problem of computing A+ becomes IIAII IIA+ II, generalizing cond (A) to include the 
case where A is singular. Also, similar to the condition number of a nonsingular 
matrix measuring its distance to the closest singular matrix (see Sect. 1.3), such a more 
general condition number here measures the closeness of A to one of smaller rank 
(see Demko (1985)). 

The above bound, as first derived by Ben-Israel (1966), was one of the earliest 
bounds for perturbed pseudo-inverses. Unfortunately it suffers from one major draw­
back: regarding the conditions imposed on ~A. The latter is usually uncontrollable 
and cannot adhere to certain rules. But acute perturbations do not imply rules 
as such; the condition IIA + II II~A II < 1 is usually guaranteed under slight perturbation 
~A. As for r(A + ~A) = r(A), it is only invoked to ensure a finite bound for 
Il(A + ~At - A+II as ~A approaches zero. Truly the Ben-Israel conditions imply 
acute perturbations, but the opposite is not necessarily true (see exercise 4.15). 
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Bounds for acute perturbations were first deduced by Wedin (1973). He showed 
that 

a result which is very similar to an anlogous one obtained previously for nonsingular 
perturbations (see exercise 1.18). To reach the above bound, Wedin used an interesting 
inequality relating the singular values of both A and (A + AA). By substituting in 
exercise 4.5, 

yields directly the above result. But the main contribution of the Wedin paper lies 10 

providing a simple decomposition theorem for any M. Wedin showed that (see 
exercise 4.17) 

where B = A + AA. The above relation was made more useful when the author 
noticed from A *(I - AA +) = 0, that 

B+(I - AA+) = B+ B+*B*(I - AA+) = B+ B+* AA*(I - AA+). 

Similarly by dealing with the last term, one has that, 

B+ -A+ = -B+ AAA+ + B+B+*AA*(I-AA+) + (I-B+B)AA*A+*A+ . 

The above formula hence provides a bound for IIB+ - A + 112 for any A and B, that is 

IIB+ -A+11 2 ~ (IIA +11 2 1I B+11 2 + IIB+II; + IIA+II;) IIMI1 2 • 

More briefly 

IIB+ - A+II ~ It max {IIA+llt IIB+m IIAAII2 

where It = (1 + YS)/2 for the spectral norm, v2 for the Frobeniuf '1orm and 3 for 
an arbitrary norm (see Stewart 1977). Also for r(A + AA) = r( ) - being an 
impor~ant special case - one obtains . 

where It is given in the following table provided by Wedin (1973) 

rank 11'11 Arbitrary Spectral Frobenius 

r(A) < min (m, n) 3 (1 + Vs)/2 v2 
r(A) = min (m, n) 2 v2 I 

m ¥= n 
r(A) = m = n 
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The reader should note that, in the above bound, the condition II A + II II AA II < 1 is 
released. In fact, much earlier than that, Forsythe and Moler (1967) made a similar 
statement concerning nonsingular perturbations (see Sect. 1.4). This leads us to 
the heart of the matter; that of deriving an a-priori bound for acute perturbations 
similar to the one described in Sect. 1.4. By using the bound for II (A + ~A)+ II provided 
previously, on finally reaches: 

//LIA// z 
condz (A) IfA]f; 

/ILIA liz 
1 - condz (A) lfIi.IG 

where cond (A) = /lA ill /lA + liz is the spectral pseudo-condition number measur­
ing the sensitivity of A + to acute perturbations in A. 

To see how the above bound works, suppose we want to predict the error in 
computing A + of a matrix A of size m x n, when performed on an t-digit 
machine. Naturally, we shall limit ourselves to acute perturbations, this being the 
restriction imposed for the validity of our bound. In other words, we shall take it for 
granted that rank A does not change while computing A +. To illustrate this on an 
example, we depict one already worked out by Lawson and Hanson (1974, p. 14) 
using the QU decomposition. One can obtain approximately for, 

[
0.4087 0.1594J 

A = 0.4302 0.3516 

0.6246 0.3384 

that 

B+ = [ 3.1317 -2.9327 1.5717J 
. -4.4785 6.0943 -1.2669 

on a five-digit machine, and by applying the above results, one gets: 

/lB+ - A+/I 
/lB+ liz z ~ j/2 (Ui (A)/urCA» 5 x 10-5 V m x n 

~ 1.5 x 10- 3 

To check the goodness of the above bound, we computed A + exactly using a 
refinement technique (see Sect. 4.3) and substracted it from B +, obtaining approxi­
mately 

+ [1.0861XlO-3 5.788 X 10- 5 -8.1129XlO- 4 J 
LlA ~ 

-1.922 x 10- 3 -7.535 x 10- 5 1.4683 x 10- 3 . 

Hence the exact accuracy is governed by: 

being naturally somewhat better. 
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What follows next is an estimation of a bound for IIAxll/llxll, where x minimizes 
IIAx - bliz and x + Ax minimizes II(A + AA) (x + Ax) - (b + Ab)llz. One has from 
x + Ax = (A + AA)+ (b + Ab)that 

Ax = [(A + AA)+ - A +] b + (A + AA)+ Ab. 

Then by using Wedin's decomposition theorem for B+ - A +, one obtains, 

It follows upon taking norms, that 

1111~I~z ~ IIB+ liz IILlAIIz + IIB+ II~ IILlAllz IIAII::"I~Xllz IIAllz + IILlAIiz IIA+ liz 

B+ IILlbll z Ilbll z IIAII 
+ II liz IIbll z IIAllz Ilxll z z 

and by setting, 

Ilbll IILlAII 
rx=I[Af' 

13 = IILlbl1 
Ilbll ' l' = IIAllllxll' 

k = cond (A) = IIAIIIIA +11, 
A k 
k=--

1 - krx 

Ilrll 
(2 = IIAII Ilxll 

according to Lawson and Hanson (1974), one ends up with the following bound: 

This bound dominates II Ax II I II x II for acute perturbations. Some slightly better looking 
expressions exist for the full rank case. The reader can check easily that, for 

rCA) = n < m, the above expression becomes k[(1 + k(2) rx + 131']. For rCA) = m < n, 
it reads k(2rx + 13). Finally for rCA) = m = n, it reduces to the simple expression 
k(rx + 13) (cf. Sect. 1.4). 

Rerturbatio~ theory of pseudo-inverses is the result of the work of many authors. 
Golub and Wilkinson (1966) were probably the first to notice the effect of the 
factor IIA + II IIA lion the solution of the least-squares problem. The problem of extend­
ing perturbation theory from inverses to pseudo-inverses was first studied by Ben­
Israel (1966) under some strong restrictions on AA. Perhaps Wedin (1973) was the first 
to give the most general survey on the general perturbation theory of pseudo-inverses. 
A good review of the subject is also to be found in Stewart (1977). The term acute 
perturbation originated in Wedin (1973), but the expansion of (A + eA j )+ into a 
Taylor's series in e appeared in a different context in Stewart (1969). He showed that, 
under a sequence of matrices Tn satisfying II A + II II Tn II < I and lim Tn = 0, 

lim (A + Tnt = A+ 
n-+ co 

if rCA + Tn) = rCA). In fact, this property was discovered much earlier by Penrose 
(1955) who stated that A + is a continuous function of A if rCA) is kept fixed. 
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But if r(A + AA) > r(A), the computation of A + is at stake, for II(A + AA)+ II 
~ l/I1AAII; a result which had first appeared in Stewart (1969). As to the 
expansion of (A + eA1)+ or (A + eA1)-1 into a Laurent's series, we mention 
Ben-Israel (1966), Rose (1978) and the author (1983 b). But the first considered only 
a class of acute perturbations, the second was only interested in (A + eAl) -1 whereas 
to the third, the expansion relies upon shifts in the eigenvectors and canoe useful for 
calculating only a few terms. For a Taylor's series expansion of functions of linear 
operators, the reader may consult Senechal (1985). Langenhop (1971, 1973) investi­
gated the conditions under which (A + eA1)-1 exists. For properties of A(Z)-l of an 
analytic linear operator valued function A(z), the reader may refer to Ribaric and 
Vidav (1969). Approximations of generalized inverses oflinear operators can be found 
in Moore and Nashed (1974) and also Nashed (1976). Many results pertaining to 
perturbation theory of generalized inverses are set up in terms of perturbation of the 
singular values. This can be found in Thompson (1976), Wedin (1972), Stewart (1979) 
and Sun (1983). Perturbation theory for the least-squares problem with linear con­
straints is studied in Elden (1980). 

4.3 Accuracy of Computation 

Suppose we attempt to compute A + of a full rank matrix A using the most straight­
forward procedure 

A + = (A*A)-l A*, 

by solving the equations (A*A) X = A*. Though A*A is positive defmite and no 
pivoting strategy is required, X usually fails to be an accurate representation of A + • 

The reason is that cond2 (A * A) = cond~ (A) (see exercise 4.19), and a large value of 
cond (A) will make cond (A * A) much larger, indicating that the equations 
(A* A) X = A* are generally ill-conditioned. This has already been seen in Sect. 4.2. 
For although the error in computing A + is at best governed by cond (A), 
that of solving the least-squares problem is affected by cond2 (A). Stoer and 
Bulirsch (1980) asserted this same accuracy by applying the perturbation analysis of 
Sect. 1.4 on the equations A * Ax = A *h to obtain similar bounds to those of Sect. 4.2 
(see execises 4.20, 21). This gives the reader an idea about the futility of solving 
A * AX = A * if it is to be used as a method for computing A + • 

To avoid this unnecessary worsening of the result, different methods have been 
proposed to compute A +. Noble (1976), for instance, summarized some popular 
techniques. A famous one for computing A +, when A is of full rank, is the Q U 
decomposition. A can be decomposed using Householder transformations or the 
modified Gram-Schmidt process, into the form 

A = QU 

where Q has orthonormal columns and U is upper triangular. And it follows rather 
easily that 
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This method is stable by virtue of the backward stability of Householder trans­
formations (see Sect. 1.5). The accuracy of A + is governed by cond (A) = cond (U), 
being the factor governing the accuracy of U -1. For a perturbation analysis of the 
QU decomposition, the reader is referred to Stewart (1977). The author provided 
bounds on the perturbations in both Q and U while preserving the same decomposition 
This technique has been widely implemented and tested many times in different 
contexts. For the numerical aspects of the method and Fortran programs, the reader 
should consult Lawson and Hanson (1974). Businger and Golub (1965) also studied it 
and their method is discussed in Wilkinson and Reinsch (1971) among a collection 
of available Algol procedures in numerical linear algebra. It is also included in some 
up-to-date packages like IMSL, NAG, EISPACK and UNPACK. 

Unlike the simple case in which A has full rank, the situation in which A has 
a rank < min (m, n) is more vulnerable. The reason is that in the above case 
!1A constitutes an acute perturbation for any small II!1A II, and the accuracy in 
computing A + is solely governed by cond (A). Unfortunately, this is not so in this 
case, where· a perturbation !1A generally amounts to an increase in rCA) during 
computation. Though II!1A II could be small, (A + !1A)+ will indeed be large. Ironi­
cally enough, the smaller II!1A II is, the more susceptible (A + !1A)+ can be to pertur­
bations. For we have from exercise 4.9 that II(A + !1A)+ liz ;;;;; 1/II!1A 112' One cannot 
therefore proceed to compute A + without deciding about the rank of A. A very 
effective tool for determing rCA) is the singular value decomposition. Knowing that 
r(A) = no. of its nonzero singular values, one can therefore test these values against a 
small tolerance. And by setting the small singular values to zero, one effectively 
determines rCA) (see Peters and Wilkinson (1970)). The same method can also be used 
to solve the least-squares problem, as was shown by Golub (1965). In fact, the 
singular value decomposition gives the most reliable determination of r(A) according 
to Wilkinson in Wilkinson and Reinsch (1971, p. 7). Following this procedure, we 
impose a sortof acute perturbation, guaranteeing that rCA + /1A) = rCA) for small 
II!1AII. The accuracy of computing A + is again governed by cond (A) and it is a 
remarkable technique. 

At this stage, there should be a word of caution. Setting the small singular values to 
zero is not automatic, for they may be small already, thus comitting ourselves to 
an induced error. Even more serious, in some applications, the most interesting 
information is given by the small (but not negligibly small) singular values. Nash 
(1979, p. 35) provided a very interesting example to illustrate this awkward pheno­
menon. He computed the singular values of 

l5 10-6 

A = 6 0.999999 
7 2.00001 

8 2.9999 

using a twelve-digit machine. They are, up to six digits 

111 = 13.7530, 112 = 1.68961 , 113 = 1.18853 X 10- 5 
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and by determining the matrices V and V, he then worked out Ai once ignoring 0"3 

and, once, by taking it into account to yield A;. He obtained two altogether different 
answers: 

[ 0.118521 0.070370 0.022219 -0.02592] 
Ai = -0.418538 -0.170373 0.077795 0.325925 

0.107415 0.048150 -0.011116 -0.070372 

and 

[ 5322.32 -1809.27 -12349.4 8836.3] 
Ai = -5322.78 1809.22 12349.9 -8836.33 

-26610.8 9046.70 61747.0 -44181.9 

It looks as though the second answer is the correct one, simply because the author 
checked that A; A2 approaches a unit matrix, while A: Al does not. By virtue of this 
dilema, Nash concluded that it is the user's responsibility to set up the tolerance 
criterion, i.e. to decide upon the degree of linear dependence in his data. The 
author went on making an elegant remark: "In a modelling situation for instance, 
the vectors of V and V corresponding usually to small singular values are almost 
certain to be largely determined by noise or errors in the original data. On the contrary, 
the same vectors when derived from tracking of a satellite may contain very significant 
information about orbit perturbations." 

But this does not alter our understanding regarding the general concept of rank 
determination. Suppose the excessive singular values are zero, setting them to be non­
zero wi11leave the matrix (A* A - ~I) nonsingular, but computing the null vector of 
A * A presupposes the latter also to be nonsingular (see Sect. 1.3). It is the machine's 
precision therefore which decides the tolerance and this must be the sole factor 
(assuming that no errors in A are present) in settling this critical issue. 

However, in the least-squares problem, this situation is hardly dangerous; for the 
problem is not checking whether cond (A) is large or grows in computation only. 
Rather, it is mainly a problem of data fitting and hence any increase in the fitting 
variables, which makes the columns of A not really independent, increases in turn the 
possibility of finding small singular values which must be theoretically zero. Nash 
therefore suggested redefining the problem by leaving out certain columns of A from 
the best used to approximate b. In the LLSQFand LSVDFFortran subroutines of the 
IMSL package, implementing Lawson and Hansons' programs (1974), a tolerance 
value is set so as to control the ratio between the smallest and largest singular 
values. It also determines the number of columns of A to be included in the basis 
for the least-squares fit of b. The process terminates when the inclusion of the next 
column would result in a matrix with condition number ~ l/to1. The reader is also 
advised to consult Golub and Kahan (1965) and Golub and Reinsch (1970) on 
numerical aspects of the singular value decomposition. And, for the stability of 
solutions to the least-squares problem, he may refer to van der Sluis (1975). As to 
problems concerning rank determination, one should not miss the interesting work 
of Manteuffel (1981). Here A, together with its elements' uncertainties, is contained 
in an interval matrix AI, where the author seeks to determine its rank. 
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Now after making sure that rCA + AA) = rCA) while computing A + we are left in 
the hands of the pseudo-condition number cond (A). This leaves much to be 
desired, for the latter may be large and the results may still be unsatisfactory. 

Among the available methods to improve upon the accuracy of solutions are the 
iterative refinement techniques. We recall having discussed in detail in sec. 3.6 that if 
det (A) # 0 and x(O) is an approximate solution to Ax = b, then by defming a 
sequence of residual vectors r(i) = Ax(i) - b, i = 0, 1, 2, ... and iteratively solving 
A Axlil = r(i) and subtracting the result each time from x(i), the latter will ultimately 
converge to x. To translate this technique onto the least-squares problem would be 
possible except for one thing: that r will never approach zero. The reason is that Ax 
and b are never equal, since they are assumed inconsistent from the start 
(AA + b # b). Perhaps only when this overdetermined system is nearly compatible, can 
this process be stable, since the error in the solution is proportional to r . cond2 (A). 
But to check that r converges to a minimal value will leave us with an upper bound to 
check for x (cf. Sect. 3.4), a bound which is again dependent on cond (A). 

This problem can be resolved in two ways: either by refining A + only and then 
computing x = A + b, while avoiding the perturbations in b via higher precision 
multiplication, or by transforming the equations into another set having a larger 
nonsingular coefficient matrix to which the method of Sect. 3.6 could be adopted. 
The latter technique was initiated by Bjorck (1967). 

To start with the first option, suppose, for simplicity, that A is of full rank, i.e. 
A + A = 1. Then if B(O) is an approximate Moore-Penrose inverse of A, we perform the 
following steps of i = 0, 1, 2. 

a. Form the residual R(i) = / - B(i)A, in double precision 
b. CalculateAA+(i) = _R(ildil 
c. B(i + 1) = B(i) _ AA +(i) 

But does B(i) approximate A + as i -+ oo? This we shall see in due course. Let us first 
proceed with the proof. Similar to the one in Sect. 3.6, the proof for one iteration is as 
follows: 

R(l) = / - B(I)A = / - (/ + R(O» B(O)A = / - (I + R(O» (I - R(O» = (R(O)l 

The method converges therefore quadratically with a rapid rate. Let us apply it to the 
example in Sect. 4.2. We had 

[
0.4087 0.1594J 

A = 0.4302 0.3516 , 

0.6246 0.3384 

B(O) = [ 3.1317 -29327 1.5717J 
-4.4785 6.0943 -1.2669 

Hence obtaining in succession using an HP-71 B with ten-digit arithmetic, 

R(O) = [ 3.793 x 10-5 

-9.917 x 10- 5 

B(l) = [ 3.131455758 
-4.478076007 

8.106 x 1O- 5J and 
-1.6402 x 10-4 ' 

-2.932317233 1.571656920J 
6.093 591 249 -1.266 848 069 
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R(I) = [ -6.6 X 10-9 1.2018 x 1O- 8J, and 
-1.2506 x 10-8 1.8857 X lO-8 

B(2) = [ 3.131455783 -2.932317276 1.571656923J 
-4.478076052 6.093591327 -1.266848073 

R = , and 
(2) [-2.9000 x lO-10 -2.1300 x lO- IOJ 

9.0502 x 10- 11 -1.1417 x 10-10 

B(3) = [ 3.131455783 -2.932317276 1.571656922J 
-4.478076052 6.093591327 -1.266848073 

with IIR(3)11 ~ 10- 11 and Jf4) = Jf3) up to ten-digit accuracy; meaning that 
convergence is reached after three iterations. But does Jf3) ~ A +? Of course not; for 
proposing that the residual R decreases suggests only that BA ~ I, i.e. that the 
matrix B so obtained is only a left-inverse to A. It is true that it will further satisfy 
ABA = A, (BAf = BA and BAB = B, but not necessarily (ABf = AB. Therefore 
Bbwill not solve the least-squares problem. We have seen that, in Sect. 4.1, for Bb to be 
a solution to AT Ax = ATb, B must satisfy ABA = A and (ABf = AB. The first 
condition is satisfied by our algorithm, but the second does not necessarily hold. 

To obtain an A + of a full rank matrix A, one must refine B so that it satisfies 
BA = I as well as (ABf = AB or the much easier BA = I and AT = AT AB. The first 
condition is already dealt with. For the second we shall iterate as follows: 

1. Form the residual R(i) = AT - AT AB(i) in double precision. 

2. Calculate LlA+ = _B(i)B(ilT R(i) 

3. Jfi+l) = Jfil - AA+ 

To prove that B(i) --+ A + as i --+ 00, we have, 

= A+ A+T{AT _ R(O) + A+ A+T(AT _ R(O) (A _ R(O)T) A+ A+T R(O) 

= A+ - A+A+T R(O)A+T R(O) _ A+R(ol A+ A+T R(O) + A+ A+T R(O)R(O)T A+ A+T R(O) 

It will be found that, 

meaning that B(i) approaches A + by an error of the order of IIR(0)11 2i, thus completing 
the proof. Obviously, one can carry out both types of iterative schemes simultaneously 
on the same example; to obtain after one iteration the same Jfl) computed above. A 
second iteration in the other direction was found quite sufficient, as 

Jf2) = [ 3.130613872 -2.932757884 1.572 511 291J 
-4.476577940 6.094375353 -1.268368353 
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approximates A + by an accuracy of ten significant digits. As to the solution of the 
least-squares problem, if the perturbations in b are taken into account, the sensitivity 
of x = A + b to changes in b is governed by the condition number IIA + II lib II/IIA + b II 
(see exercise 1.21) which is of an order comparative to cond (A). We have therefore 
succeeded in reducing the error in x - if A is known exactly - from being 
proportional to cond2 (A) to an order of cond (A) only. 

Bjorck (1967), on the contrary, does not leave the accuracy of x at the risk of I1b. 
He manipulated his equations so as to take care of any possible perturbations in 
either A or b while carrying out the refinement of x. The author proposed to 
substitute the equations AT Ax = ATb by the following equations: r + Ax = b, 
ATr = 0, which can be combined into m + n equations in the m + n unknowns x 
and r, namely 

having a nonsingular coefficient matrix for r(A) = n, and to which the methods of 
Sect. 3.6 can be applied. 

However, one must not think that subdividing the equations Ax = b into the two 
sets above leads to a better accuracy. This was asserted by Bjorck (1967, p. 266) when he 
deduced that the error in x remains dependent on cond2 (A). The reader can check the 
retaining accuracy by comparing the solution of the above two equations with that 
when solving the normal equations AT Ax = ATb, for a given choice of b. For the 
above example, cond (A) = 9; the system is therefore stable and the solution comes 
for instance for b = (1, I, I)T as 

;'\ = 1.770367279, X2 = 3.494290608 X 10- 1 

with a residual error 

'1 = 2.207519010x 10- 1 , 

'3 = -2.240181963x 10- 1 

'2 = 1.155287390xlO- 1 , 

correct to ten significant digits. To compare this method with the singular value 
decomposition, have we had to refine either A + or x. We supplied the equations of 
Bjorck with the initial value of x and r given from x = B(O)b and r = (I - AB(O)) b. One 
iteration of refinement was found enough to reach the above exact solution, 
against two iterations for refining A + as was seen before. It appears therefore 
unnecessary to solve the least-squares problem using the singular value decomposition 
or its variant - the QU decomposition - contrary to wide belief that ortho­
gonalization does not suffer the squaring of cond (A) like when solving AT Ax = ATb. 
True that the QU method produces errors proportional to cond (A), but the multi­
plication of A + b adds - as we remarked before - another error also proportional 
to cond (A). This remark came something of a shock - as van der Sluis (1974) truly 
stated-when Golub and Wilkinson discovered it in 1966. In fact solving the normal 
equations does produce good results even when cond (A) is large and the data are 
noisy much over the round-off level, as was shown by Fletcher (1975) when solving 
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them using the stable Cholesky decomposition; a method very well suited to factorize 
the positive definite matrix of coefficients, since pivoting is also not required and 
factorization starts from the first entries of AT A. Cholesky's method proved very 
efficient when handling large-scale sparse systems as outlined in Heath (1984). The 
latter also surveys and compares different known numerical strategies for handling 
large normal equations and his article includes an up-to-date bibliography on the 
subject. The reader interested in a comparison among different refinement techniques 
may consult Bjorck (1978). 

We should emphasize though that the QU method is the method of choice for 
the least-squares problem. While cond2 (A) affects the accuracy of solution of the 
normal equations, that of the QU method is governed by Q cond2 (A), where 

Ilrll 
Q=---

IIAllllxl1 

(see Sect. 4.2). Thus for a system in which Q < 1 the QU should give better 
results. Furthermore, if Q cond (A) < 1, or that the first term dominates in the 
bound for II6.xll/llxll in Sect. 4.2 does the accuracy become affected by cond (A) only. 
The orthogonalization method presides therefore over the normal form in terms of 
accuracy of solution (see Stoer and Bulirsch (1980, p. 208) for comparison). 

Summarizing, we quote Noble (1976) in his conclusion. In connection with the 
Moore-Penrose inverse, the most straightforward procedure for computing A + is 

using double precision if AT A is badly conditioned. If there is a difficulty concerning 
rank determination, .the singular value decomposition can be used. As for solving 
the least-squares problem, it is unnecessary and inefficient to first calculate A + and 
then form A + b. The user concerned with single precision results, is advised to 
carry an iterative refmement procedure like in Bjorck (1967). In fact, iterative 
methods are worth using in large sparse matrix problems. The two equations of 
Bjorck, namely 

r + Ax = b and AT r = 0; 

furnish the basis of the iterative scheme. They are also used in conjunction with many 
elimination methods for solving sparse problems, the two equations are combined 
together to form what is called now the sparse tableau. Another advantage 
associated with the two equations of Bjorck, is that they can be employed to test the 
accuracy of solution against a-posteriori measure similar to the one described in 
Sect. 2.5. When applied here, the latter yields easily the two criteria 

IATrl ~ elAT11f1 
Ir + Ai - bl ~ e(lrl + IAIlil + Ibl), 
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computed in double precision, where P and x are approximate solutions to rand x. 
To illustrate these two bounds on the foregoing example, we have 

T. ~ [6 x 1O- 11J 
I A r I = 2 X 10-11 ' 

T [2.798435308 x 1O- 1J 
IA IIPI ~ 1.516155153 x 10- 1 

IP + Ax - hi ~ [ ~ ] 
3 X 10- 10 ' 

1;:1+IAIIXI+lbl~[ ~ ] 
2.448036 392 

which satisfy the above two inequalities for a machine precision e = 5 x 10- 10 • 

In these last two sections, we have studied perturbation theory of generalized 
inverses as well as the numerical solution to the least-squares problem. We have also 
seen that cond (A) affects the desired computational accuracy. We have also thrown 
some light on some iterative techniques which may be used to improve the results. 
The latter have attracted workers and still do. As to the problem of scaling for 
numerical stability, we can mention the bound furnished for the spectral condition 
number by van der Sluis (1969) 

condz (A) = cond~/z (AT A) :::;; Vn min cond 2 (AD) 
D 

if all columns of A are scaled down to lenght unity. The reader may also refer to 
Golub and Van Loan (1983, p. 179) for procedures related to row and column weigh­
ing as well as for methods of iterative improvements. 

4.4 Case of Interval Coefficients 

An experimenter wishing to describe a set of uncertain data (Xi' yJ, i = 1, ... , tn, by a 
straight-line relation is led to three options. He can monitor Xi to vary among a 
set of tn sample points while making a corresponding observation y;- Due to the 
different sources of errors (sampling, human, instrumentation, ... ), each observed 
value Yi will differ from its expected value by an error e;- Choosing, for instance, 
the least-squares method to minimize the sum of the squares of these small residuals, 
he can determine his linear relation. However a different experimenter, knowing that 
the error ei is also uncertain, prefers to take several observations Y while fixing Xi. 

He will then notice that most of these observations differ from one another, but 
naturally lie within a certain range which he may well record. The vector 
Y{Yi' i = 1, ... ,tn} will then be an interval vector, A third experimenter, being more 
sophisticated, notices that although Y takes different values at each Xi, it usually 
centers around a mean one and only differs by a certain variance. 

Although the three problems arise from a simple experiment, they are by no 
means trivial. Theoretically, the first problem (the ordinary least-squares) is the 
easiest to tackle in the big hierarchy. Practically speaking we are usually faced with 
problems like data dependence (rank determination see Sect. 4.3) and there still 
remains a long queue of algorithms when it comes to choose from. The second one 
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possesses one step of difficulty regarding the vast range of solutions obtained 
using the loose bounds offered by interval mathematics. The third problem, very 
popular in the circles of econometricians, have kept them busy for almost half a 
century. 

All three problems can be formulated by the general linear model 

y = Xf3 + e 

where y is a vector of m observations, X is a known m x n design matrix and e is a vector 
of m uncorrelated errors. In the ordinary least-squares problem, we seek a vector 13 
under which IIel12 = Ily - Xf3112 is minimum, giving simply that 13 = X+y. In the second 
problem, although we may adopt the least-squares method the solution 13 will be 
altered at best to X+ /. The third problem can only be resolved through an assumption 
regarding the nature of the error vector e. This is the central problem of Gauss and we 
shall return to it in the next section. Indeed many other problems in the above 
hierarchy are still unresolved ; for example, one in which X itself is uncertain, 
where each Xij has a distribution function with some mean and variance. This 
problem can only be handled using experimental techniques like the Monte-Carlo 
method; but generally speaking little if anything is known regarding the distribution 
of the solution 13. 

In this section we shall consider the second problem above, but add to it the case in 
which A is also an interval matrix, i.e. 

bI=AIx+r, 

where AI is a given m x n interval matrix and bI is a given m x 1 interval vector. 
We shall assume for the sake of simplicity, but without loss of generality, that 
rCA) = n, VA E AI, hence that m ~ n. But since we treat least-squares solutions, 
we take m > nand rCA) #- rCA : b), VA E AI and bE bI ; i.e. the equations are 
inconsistent. 

When endeavouring to solve the above problem using the least-squares method, 
we set out to find all possible values of the vector x with the corresponding 
residual vector r satisfying b = Ax + r, where both A and b are fixed and assume all 
possible combinations of values inside AI and bI. In other words, we execute a kind of 
independent sampling in both AI and bI to choose at one time a fixed A and b. 
We then solve the least-squares problem b = Ax + r by minimizing Ilr112' giving as a 
solution 

with a corresponding error vector r. Imagining that we can keep repeating the 
sampling process until we exhaust AI and bI, we obtain an infinite number of 
solutions constituting a region in R n which we shall denote X. The latter will therefore 
contain all least-squares solutions to the linear equations Ax = b where A E AI and 
bE bI. In other words, solving AIX = bI in a least-squares sense is synonymous with 
finding a set 
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Obviously, related to the set X, there exists a set R containing all possible error 
vectors r. The problem which we are seeking to solve is to find the vector x - one of 
smallest span - enclosing X. Note that bI #- AI X + r; in fact bI ~ AI X + r. 
This incompatibility between both sides is due to two reasons: inconsistency of the 
equations as well as interval independency (cf. Sect. 2.4). 

Unlike the previous case AIX = bI in which det (A) #- 0, VA E AI, treated in 
chapter two, the above problem is more involved. We remember that X has always 
been convex in one orthant, and bounded, for instance, by the inequalities 
4x ~ fj and Ax ~ b. for x ~ O. The latter are obtained from the assumption 
AI x n bI #- ~ set out by Hansen (see Sect. 2.4). To apply here a similar 
assumption is straightforward. Unfortunately the two solutions 4T 4x = ATfj and 
ATAx = 4Tf2 lying on the boundaries of the set described by 4T 4x ~ ATfj and 
AT Ax ~ 4 T f2 do not belong to X. Another more pronounced complication stems from 
the fact that X itself is in general a nonconvex set in anyone orthant. It cannot 
be defined therefore by linear inequalities. To show this on a simple example, con­
sider; 

a E [0, IJ 

having as least-squares solution 

2 
x = -- = [2/3 1] 
12+a2 ' 

_ a2 
- a + 2 = [2/3 1] 

x 2 - 2 + a2 ' 

The set X is described by the curve 

xi + 2x~ - Xl - 4X2 + 2 = 0 , 
2 

I ~ Xl ,X2 ~"3' 

which is a nonconvex set. This phenomenon is not encountered in the previous 
situation (det (A) #- 0); for when one element in A ranges over a certain interval, Xis 
convex; i.e. a straight-line. This well known fact follows from showing that dx/dxj is 
independent of a certain akl. From Sect. 1.6, we have that 

dXi dx;/dakl -efA-I(dA/dakl) x element(i, k) in A-I cofactor of aki 

dXj dx/dakl -ejA-I(dAjdakl) x element U, k) in A-I cofactor of akj 

independent of ak/. On the contrary the same quotient becomes generally a function 
of akl using the cumbersome formula for dA + /dakl (see exercise 4.18). The region X is 
therefore difficult to define. An easier task would be to enclose X in a convex domain 
defined directly from AI and bl . Here again the task is not straightforward. We may 
suggest the set described for A, b ~ 0, A E AI, bE bI as 
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But this set leads to a very large overestimation error, because the two points - as 
we mentioned earlier - flT flx = ATb and ATAx = flTfl. do not lie inside X. While 
suggesting the set 

whose points flT flx = flTfi, ATAx = ATfl. lie in X, is also wrong by considering the 
simple counter-example 

And since we cannot dispence with generality by letting A or b take positive or 
negative values, we must refer back to the two equations set by Bjorck in Sect. 4.3, 
i.e. Ax + , = b, AT ~ = O. Here they become 

to which Hansen's inequalities (see Sect. 2.4) can be applied. But the story has not 
ended, the vector, for a particular choice of A and b is alternating in sign from the 
very definition of the least-squares problem. But suppose we know some range of 
, over x ~ 0, then we can pick up a suitable AI and (AIf. For example, take the 
previous example; 

'3 ~ 0, hence the set X becomes for x ~ 0 

'1 + Xl ~ 1, 

'2 + x2 ~ 1, 

'3 + x2 ~ 1, 

giving 

1 ~ Xl' X2 ~ 0, 

o ~'1o '2 ~ 1, 

,; + '3 ~ 0, '2 + x2 ~ 1 , 

'3 + Xl + x2 ~ 1 

Xl + x2 ~ 1 

o ~ '3 ~ -1 

satisfied by the exact range xi = ~ = [2/3, 1]. It can also be defined by the 
equivalent set (see Sect. 2.4) 

1'1 + Xl -11 ~ 0, 1'2 + x2 -11 ~ 0, 1'3 + (1/2) Xl + x2 -11 ~ (1/2) Xl 

1'1 + (1/2) '31 ~ (1/2) 1'31 , 1'2 + '31 ~ 0 
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being usually much more general to apply. The difficulty therefore in applying the 
bounds of Sect. 2.4 for x ~ 0 stems from the fact that, although 4 is a suitable 
choice of AI, it is not for (AI)T over the whole range of X. The exact set X is dermed 
correctly for x ~ 0 by the four inequalities 

r+4x~b, 

r + Ax ~ 12., 
Air ~ 0 

AJr ~ 0 

where Al and A2 are equal respectively to 4 and A except at those elements 
corresponding to negative values of rio For a set of linear inequalities in x alone, 
one has 

AJ(4x - b) ~ 0, Ai(Ax - b) ~ 0 . 

These two inequalities are easy to apply but suffer the major drawback of not knowing 
beforehand Al and A2 to substitute for in the expressions, except in very special cases 
in which we can guess the signs of rio For the above examined example, r3 ~ 0 and 
hence we are led to a convex region enclosing X, namely 

defining 

Xl = ([1/2, 1], [1/2, I])T . 

As to the two points 4 T 4x = 4Th and ATAx = ATQ lying in X, they are 
Xl = (1, 1), x2 ~ (2/3,2/3), determining ~ exactly. 

The above procedure to define Xl is therefore inefficient. A systematic approach 
could be one of the methods suggested by Hansen and Smith (1967) and discussed 
in detail in Miller (1972) (see Sect. 2.3). The equations 

are rewritten in the form 

where Z is an n x n matrix equal to the mid-point inverse of AIT AI. An easier form is 
also the iterative formula provided in Sect. 3.7. 

k = 0, 1,2, ... 

with 
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and 

IT I 

z~(O) = [-1 I] IlzA b II 
, '1 -IIEIII ' i = 1, 2, ... , n. 

But because we dispensed with the residual vector r, we must expect a loose bound 
associated with a small rate of convergence. For instance, for the above example, 

EI = [[ -5/11,5/11] [-4/11, 4/11]J. 
[-4/11, 4/11] [-1/11, 1/11] , 

ZAITbl = [[4/11, 12/11]J 
[8/11, 10/11] , 

ztO) = [-6,6] 

where the choice of the latter is based on 100 -norm. Convergence is reached after 
fifteen iterations with a 

Zl = ([-2.19,3.66], [-0.81, 2.46])T =:> xl 

and satisfying 

An even better method is to iterate simultaneously on both r and xl. EI and Bbl 

(cf. Sect. 3.7) are 

which become for the above example 

0 0 [-4/9,4/9] [-1/9,1/9] 0 1/9 
0 0 [-1/9, 1/9] [-2/9,2/9] 0 -2/9 

£1 = 0 0 [-1/9, 1/9] [-2/9,2/9] 0 Bbl = 2/9 
0 0 [-4/9,4/9] [-1/9, 1/9] 0 8/9 
0 0 [-1/9,1/9] [-2/9,2/9] 0 7/9 

and starting from z[(O) = [-4,4], we obtain after ten iterations a stabilization in the 
results up to the second decimal, with 

rf = [-0.29,0.5] , 

zf = [0.49, 1.28] , 

r~ = [-0.57,0.13], 

z~ = [0.43, 1.12] . 

s = [-0.13,0.57] 
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One directly notices that the bounds are tighter and very close to being correct 
notwithstanding the smaller number of iterations executed. This is however achieved 
at the expense of computational costs. For a discussion of the above method with 
application to numerical examples, the reader is referred to Spellucci and Krier (1976). 
The authors calculated also upper and lower bounds for the span of the solution x in 
relation to those of A and b. The reader should notice that Hansen's method, 
although adapted here to solve the least-squares problem, can fall into the largest 
context of minimizing a residual between a true and an expected value of two 
quantities desired to be compatible in some sense. For instance, instead of minimizing 
the norm of the residual only, we may further impose a restriction on its width. Such 
a situation arises when fitting polynomials to a set of points of which a straight­
line is a special case. The reader who is interested in methods of fitting interval 
polynomials may consult the work of Rokne (1978). 

The exaggerated bounds obtained by the above method can be further tightened 
using Hansen 1969's method (see Sect. 2.3). A choice of an A E AI and bE bI which 
maximizes Xi is made by watching the signs of oxdoak1 and oxdobk . Xi is obtained 
by solving AT Ax = ATb in which akl = akl> and bk = bk for positive signs etc .... In 
our problem the signs of 

and 

are noticed and the corresponding choice for ak1 and bk is made. By renewing the 
calculations for each Xi and each ak1 and bk we determine xl. The operations are indeed 
time consuming but payoff in terms of accuracy. Let us illustrate the technique on the 
example of Jahn (1974) 

02, 3] [1,I]J 
AI = [0, 2J [0, 1] , 

0, 1] [2, 3] 
Ol,2D 

bI = [2,2] 
[3,3 

We shall take for A the mid-point A e and for b, be etc .... Hence we have: 

-17] {[~J -[0~8J -[~::~J} > ° 

-17] {[1~5J - L.~3J -[~:~:J} < ° 



OX 
_I = [30 
oa32 

OX 
_1 = [58 
obi 

Also, 
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{[3] [3.05J [0.16] -17J - - > 0 o 0 0.78 

-17J {[~] - [3.~5 J - [~:!!]} > 0 

And it follows that XI max is obtained from solving the least-squares problem 

giving Xl = 11/13, X2 = 44/65. Hence Xl max = 11/13. This same point coincides 
with X2 min since the signs are all reversed when calculating the partial derivatives of 
X2 w.r.t. aij. As for Xl min and X2 max' we solve 

giving Xl = -1/5, x2 = 8/5. But Xl with a negative sign suggests the possibility of 
finding a better point than -1/5 to represent Xl min· This point is not reached 
possibly because it is far from xc. Hence using the above point as the new starting 
point reverses the signs of oxl/oall and oxl/oa31 only, suggesting that Xl min and 
x2 max are obtained from solving 

giving Xl min = -6/14, X 2max = 25/14. From which it follows that 

x:,pt = ([-6/14, 11/13], [44/65, 25/14W 
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The above methods for computing xl can be applied to calculate (A I )+. Setting 

b = I and solving AlTAI X = AIT yields an estimation of (A I)+. For instance, one 
can use 

k = 0, 1,2 

similar to the method used to enclose xl. A better formula is to iterate on both RI 
and Xl where R + AX = I, AT R = 0, A E AI. The latter constitute m + n interval 
equations of which the inverse of the combined coefficient matrix yields A I + in its 
lower left comer. Other methods for evaluating AI + rely upon an approximation of 
(A IT AI)-1 alone using well-known methods (see Sect. 2.3), then performing the 
multiplication with (Alf. This leads usually to overestimated bounds, but could 
serve as a starting value for (AI) + to which further iterative methods are applied. 

Naturally we have depicted only a few of the iterative methods for updating 
an approximate solution; still there remains a great number which we have not 
mentioned. The reader is referred to an interesting review of this subject by 
Monch (1978) who is also dating references from 1965 onwards. His work discusses 
four methods for obtaining a monotone enclosure of A + very well suited to (AI )+. 
Another relevant method is also Evan's inversion method and is discussed in Alefeld 
(1984). 

One of the methods for finding AI + is to enclose each of its elements in an 
optimal interval whose upper and lower bounds are evaluated according to the rule of 
signs mentioned before. Watching the sign of 8xij/8akl determines the value of akl, 
i.e. whether we choose tiki or flkl to ensure a maximum or minimum of xii" The sign of 
8xU/8akl is determined from the expression 

8X T -1 {8AT 8AT T 8A } -=(A A) ---AX-A-X 
~l ~~ ~~ ~~ 

for each Xi)" For example for 

[ 1 OJ 
AI = ° 1 

[0, i] 1 

we have approximately that 

8X [-32/81 
8a31 = -28/81 

-28/81 28/81J 
16/81 -16/81 

Hence a choice of a31 = ° maximizes xu' x12' X 21 and X 23 while minimizing X13 and 
X 22 • But since 

,.4+ = [ 2/3 -1/3 1/3J 
-1/3 2/3 1/3 
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one has 

A1+ [[ 2/3 -1/3 0 J [I 0 1/3JJ [[2/3,1] [-1/3,0] [0,1/3] J 
E -1/3 1/2 1/3 ' 0 2/3 1/2 = [-1/3, 0] [1/2, 2/3] [1/3, 1/2] 

and it follows directly, if oX/oakl < 0, Vk, lover the whole range of X, that 

A1+ = [.4+, .1+] 

4.5 Least Squares in Regression 

The word regression became part of the language of statistics as a result of the 
early work of Sir Francis Galton in 1886, who plotted the average heights of children 
against those of their parents. Galton remarked that children of tall parents were not 
so tall as their parents, while those of short ones were not so short as their 
parents. He then concluded that human height tends to "regress" back to normal. 
Nowadays, regression analysis is part of the everyday routine of an experimenter 
wishing to arrive at some mean or average-like relation between two or more 
variables drawn from a set of available observations. No wonder that all standard 
texts in statistics contain at least one chapter on regression and almost all issues of 
statistical journals include articles circling around this topic. 

Work in regression starts from the bivariate chart, in which each point; for the 
case of two variables; represents a pair of measurements (Xi' yJ Usually the 
points become scattered around a mean curve simulating a certain profile. In 
other words, for every Xi' we remark the existence of a large number of values of the 
variable Yi which accumulate around a certain mean and oscillate above and below 
1t. The study of the behaviour of this mean lies at the core of regression analysis. 
The latter becomes, therefore, a study of the mean of the values of one variable, at a 
given value of another variable, and how this mean changes with this other 
variable. The curve or line representing this mean is called a regression curve or line. 
One must note though, that a curve of regression of Yi on Xi can be different 
from that of the regression of Xi on y;-

Linear regression anaJysis follows three different lines: The case where there is no 
uncertainty in both Xi and Yi can be treated as before by the least-squares method. 
When Yi only is uncertain, we encounter one step of difficulty. The case in which 
both Xi and Yi are uncertain becomes the most difficult to handle. One method of 
dealing with this problem is explained in Duncan (1974). If X and yare continous 
variables having a bivariate chart, by drawing horizontal and vertical lines through 
the diagram to isolate each set of points into a square cell, one can build what is 
called a bivariate frequency distribution. It is easy to imagine such a distribution as 
looking like a cross-word puzzle in which the cells of the unshaded areas each 
contain a number representing the number of points inside this cell. It may be found 
that for a certain Xi lying between two bounds, the number in the corresponding 
vertical cells will keep increasing to a mean value then decrease again. These 
numbers represent, therefore, some sort of density function of Y over x. One 
method of obtaining the regression curve is to connect the mean value of the 
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vertical cells, at some mean base value of xi' with the next point by a straight-line 
to obtain a corrugated line. The more cells we take with as many measurements as 
have been taken, we obtain a smooth curve representing our regression curve. 

One drawback attributed to this method is the assumption that the observations 
are error free, and departure from normality is due to the genuine variability in the 
experimental material itself like in most biological or economic models. In this case 
the regression curve is an average relationship for the population under study. 
However this departure could be due as well to some errors in our observation by 
which; for example; although the expected curve is in fact a straight-line, it is 
not so due to the lack of accuracy in the measurements. 

Gauss was the first scientist to settle this issue in his famous paper Theoria M otus 
around the year 1809. He devised the celebrated least-squares method and applied 
it to measure the orbits of planets from a set of observations. A brief examination 
of Gauss's work can be found in Deutsch (1965), and for an account of the 
historical developments of his work, together with priority dispute with Legendre, 
the reader may enjoy the interesting articles of Seal (1967) and Stigler (1981). Today 
the least-squares method is used permanently in geodetic adjustments and astronomical 
calculations. Golub and Plemmons (1980) reported the success of the method in 
handling 6,000,000 linear equations with 400,000 unknowns. Their paper discusses a 
method based on orthogonal decomposition to solve the least-squares problem and 
quotes many references on its numerical aspects, especially suited to large-scale sparse 
systems. A recent survey on the history of linear regression quoting extensive 
bibliography can also be found in Hocking (1983). 

Gauss' main contribution to the least-squares problem was based on a set of 
assumptions by which he deduced axiomatically that the residual error ui between 
the observed value Yi and the one of regression .V; follows a normal (Gaussian) 
distribution (see Fig. 1). This assumption, which is possibly nqt rigorous enough, 

Y 

YiY;' 

Xi 

Fig. 4.1 

Regression line of Y on x 
yr = ex + f3x 

X 

explains the true state of affairs. Since Yi is random, it will indeed center around an 
expected value and differ by a certain variance. There would be no need to assume a 
different distribution if we were to take enough measurements with equal probability 
of error. Econometricians have gained a lot from this assumption and usually 
assume that the residual ui has a zero mean and variance r:r. Moreover the 
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distribution is said to be homoscedastic if the standard deviation (Ji of the residuals 
Ui at each Xi is fixed for all i, that is 

E(u) = 0, 

It helps us, in this respect, to start with the most simple situation in which Yi is 
free of any uncertainty, in order to draw some general conclusions regarding the 
classical method of the least-squares. A very good account on the method is to be 
found in Johnston (1972), and which we shall repeat here. We seek to fit the 
straight-line y = Ii + {3x to a set of points (Xi' y). The notations eX and {3 differ from 
(l( and f3 in the sense that the first set is variable according to 0ur possible choice of 
y., while the second set (l( and f3 denotes the regression mean values. Then by , ~ 

assuming that Yi = eX + f3Xi + ei, where ei is a residual error corresponding 
to the particular choices of Yi, i = 1, ... ,m, we obtain, upon minimizing 

m 

I ef , the two equations (cf. Sect. 4.1) 
i:::: 1 

to solve for eX and fj. One direct property of the least-squares method is that it 
allows us to locate the arithmetic mean point (L x;/m, L y;/m) on the regression line. 
This follows easily from the first equation 

L yJm = IX + /3 L x;/m 

It also follows that Lei = 0, a good result consistent with the very nature of the 
problem. Now denoting.the arithmetic mean of both Xi and Yi, i = 1, ... ,m, by x and 
y; and by defining the new variables 

Xi = Xi -x, 

representing the departure of Xi and Yi from the arithmetic mean, one has 
simply, from ~ Xi = LYi = 0, that 

. Next, let us assume that Yi is uncertain for each Xi and differs from the regression 
line by a random residual ui. To exhaust Yi therefore, is to carry repeated sampling 
for i = 1, ... ,m. The value Yi at some Xi will vary therefore from sample to 
sample as a consequence of different withdrawals from the u distribution in each 
sample. Hence, applying the above formulae for fj and eX will generate a series of 
fj and IX values pertaining to the distribution of the least-squares estimators; for 
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which we shall calculate the mean and variance. Substituting y. = ex + f3Xj + uj in 
/3 and &. one has: ' 

and 

" i.u. 1--• .L... " m xx. 
... - - - 1= 1 _ I 

( 
m ) 

ex = y - f3x = y - f3 + -m - X = ex + .L (- - -m -) uj 
" -2 ,=1 m "-2 L...Xj L... Xj 

i= 1 i= 1 

and it follows from E(u) = 0, that 

E(/3) = f3, E(&') = ex; 

meaning that /3 and &. are linear unbiased estimates of f3 and ex. This is indeed a 
remarkable result concerning least-squares; for increasing the sample size allows the 
estimated values /3 and &. to approach, in the mean, that of the parent population. 

Likewise, the variances of /3 and &. can be obtained in a similar fashion. It is 
easy to check that 

( -)2 2 ., m Xi (Ju 
var (f3) = E[(f3 - f3f] = (J;.L -m- = -m- , 

,=1 ,,-2 ,,-2 
L... Xi L... Xi 
i=1 i=1 

by assuming that the residual errors are uncorrelated, i.e. E(uiu) = 0, i i= j. Also 
m 

( 

-2 ) L X; • 2 1 X 2 i= 1 
var (ex) = (Ju - + -m-- = (Ju m 

m ,,-2 " -2 L... Xj m L... Xj 
i=1 i= 1 

Here· again, we ,notice that var (&.) decreases with increasing m. In other words, the 
accuracy in determining ex improves the more we take sample points (otherwise the 
estimator would have values differing systematically from the true value). This is 
indeed another advantage of the least-squares estimators and is called consistency 
of the estimators. In fact, least-squares estimators are not only consistent unbiased 
estimators, but also best linear unbiased; in the sense that among the class of linear 
unbiased estimators they have the smallest variances. For supposing that 

is also an unbiased estimator, where dj are some arbitrary constants, it increases 
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the variance of the least-squares estimator by a factor of ~ L d j
2 which is non­

negative. 
What remains now is to calculate ~. A simpler way of determining the latter is 

via the relation 

the proof of which results from ji = ex + f3x + ii obtained by averaging Yj 
= ex + {hj + Uj over the m sample values, as well as ej = j\ - pXj + (ji - & - px) 
= Yj - pxj. It follows, together with subtracting ji from Yj, that 

and by taking the expected value of 

In m In m 

I ef = (P - 13)2 I xf + I (Ui - ii)2 - 2(P - 13) I iJu j - u) 
i=l t= 1 i=l i=l 

results in 

coinciding with the above relation. Again, one other remarkable property of the least­
squares regression which arose, is that L e; I(m - 2) is an unbiased estimator of 
~. 

Now what values can 13 and ex take? Alernatively what is the mean of both 
popUlations & and p? Since we seldom measure every item in their population, we have 
to resort to sampling. A good approximation to 13 and ex can thence be obtained 
from the mean of the sample population. But with how much confidence can we 
assert such a proposition? Indeed this can be done with the use of confidence 
intervals. At first, we assume that u j is normally distributed so are P and &, as they 
form linear functions of ue Therefore, at the 95 % confidence level, the true mean 13 
and ex of the populations P and & is unlikely to lie outside the limits 

fi ± I. 960';; , 

And yet the sample regression coefficient may be taken to represent an estimate of the 
true regression coefficient, its accuracy can only be reliable within the confidence 
levels chosen. Such a study of inferences concerning population by use of samples 
drawn from it, together with indications of their accuracies, is called statistical 
inferences. The reader interested in a detailed outline on the subject can consult 
Kendall and Stuart (1961) and Rao (1965). 

One major disadvantage attributed to the above confidence limits is that the 
population standard deviation 0' •. j; is unknown and we have to use instead it 
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sample estimate. This will prove satisfactory for large samples only (m > 30). 
But for small samples (m ;:2; 30), the approximation is poor and small sample 
theory has to be employed. One very common technique to surmount the difficulty 
that 0" •. Ii is generally unknown and the samples taken small, is the t-distribution. 
Since we have that 

j3 = N (f3, _0"1l ), 

V2>~ 
&. = N (a, 0"1l --,;:V:::::::I,==x=; ) 

Vm Ix? 

then to apply this test to find confidence limits for f3 and a, one has that their 
confidence intervals are respectively given by 

, 0" 

f3 +t --"-
- e/2.m-2 VR' '\ -2 

L.. Xi 

where te/2. m _ 2 is the appropriate tabulated value of t with m - 2 degrees of freedom 
corresponding to 100(1 - c) % confidence level, and where 

m 

I e; 
'2 i=l 

0" =--
u m-2 

Likewise, the confidence interval for the variate Yk is obtained in the form 

at a particular xk • The above expression follows directly from writing 

var (& + fJx k ) = var (&) + ~ var (fJ) + 2Xk cov (&, fJ) , 

with cov (eX, /J) = -~x/L £7. Note that since the confidence limits are quadratic 
functions of x, they form hyperbolic loci around the sample line of regression. 

To demonstrate the above results on an example, we depict the one illustrated in 
Sprent (1969, p. 23). The following observed values of x and Y in the table below 
are obtained by adding random standard normal deviates to values of y cor­
responding to given x's in accordance with the exact relationship y = 3 + 2x. 

x o 2 3 4 5 6 7 8 9 10 

y 4.28 2.87 6.62 8.9 11.12 15.31 15.47 17.42 17.93 21.22 21.67 

Applying the least-squares estimation method, we havem = 11, x = 5, L xf = 385, 
L if = 110, L XJli = 215.67, fJ = 1.9606, & = 3.0024, a~ = 1.6518. Hence the 
confidence intervals for f3, a and y (at some Xk) respectively are: 

l.9606 ± 0.277, 3.0024 ± l.639 
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and 

J (Xk - 5)2 
3.0024 + 1.9606xk + 0.876 1 + ---

- 10 

where t = 2.262 chosen for a 95 % confidence level and corresponding to m - 2 
degrees of freedom. As we said before, the confidence limits are a set of hyperbolic 
loci for different values of t spread around the line of regression. Other authors 
suggested, instead of hyperbolas, straight-line segments as confidence limits; as was 
shown in the classic paper of Graybill and Bowden (1967). A similar suggestion is 
to be found in Dunn (1968), in which the linear confidence bounds are restricted 
over a finite range of x. 

Generalizations of alI above results to the general linear model y = {31 + {3ZXl + 
... + {3nxn_l + u is straightforward. From a set of available measurements 
(Yi' Xli, ... , Xn-l), i = I, ... ,m, one can formulate the model in the form 

y = X{3 + u, 

where y is an m x 1 vector of observations, X is a non-stochastic m x n matrix of 
known coefficients having a first column with all elements equal to unity, {3 is n x 1 
vector of parameters to be estimated and u is an m x 1 vector of random errors, with 

E(u) = 0, V(u) = E(uuT ) = rrI; 

i.e. that the errors are uncorrelated (E(uiu) = 0, i =1= j) but having a homoscedastic 
distribution. We shalI likewise assume that y is a random vector which we shalI 
exhaust by repeated sampling. Also by letting Y = xfJ + e be one such sample, we 
have from minimizing eTe (see Sect. 4.1) that 

To show that fJ is a best linear unbiased estimator of {3, we have from 

that E(fJ) = {3. As for the dispersion matrix of fJ, it is given by 

V(fJ) = E[(fJ - {3) (fJ - {3)T] 
= E[(XTX)-l XTUUTX(XTX)-l] 

= rr(XTX)-l 

Next to show that fJ is a minimum variance estimator of {3, we let D = Ty be another 
linear unbiased estimator of the parameters C{3, i.e. that E(D) = E(Ty) = C{3. This 
implies that TX = C, since E(T(X{3 + u)) = C{3. Then calculating V(D), we have 

V(D) = E[(D - C{3) (D - C{3)T] = E(TuuTTT) = rrTTT 
= (J"Z[(C(XTX)-l Xl) (C(XTX)-l XT)T + (T - C(XTX)-l XT) 

x (T - C(XTX)-l XT)T] 
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where the last identity follows by carrying mere multiplications of brackets. And 
since each of the last two terms are of the form BBT (positive defmite) they have 
non-negative diagonal elements. But only the second term is a function of T, 
and it follows that var (6) is minimum whenever ITT has minimum diagonal 
elements, or that T = C(XTX)-l XT, so that the minimum unbiased estimator of 
Cp is 6 = C(XTX)-l XTy = Cp and for C = ! the least-squares estimator pis 
recovered. 

Although the above proofrelies upon the sufficient condition that E(uuT ) = rr! 
for P to be best linear unbiased estimator of p, it is by no means necessary. A less 
restrictive condition, which was found to be both necessary and sufficient, was 
discovered by McElroy (1967), by which P is the best linear unbiased estimator of p 
if and only if the errors have equal variances and equal non-negative correlation 
coefficients. 

Finally; to estimate rr from the sum of squared residuals eT e, we have 

Hence 

And it follows that 

generalizing the foregoing result for n = 2. In other words, an unbiased estimator 
of rr is equal to the sum of squared residuals divided by the number of observations 
minus the number of parameters estimated. 

In analysing the above general model, it was assumed that the errors are 
independent random variables with mean zero and constant variance rr. Instead, if the 
errors are correlated, i.e. E(uuT) = rrQ, the dispersion matrix V(p) becomes equal 
to rr(XTX)-lXTQX(XTX)-l. But because the matrix Q is generally unknown, the 
estimation problem becomes very difficult as Kendall and Stuart (1961, p. 87) reported. 
A multitude of methods exist to tackle this problem which follow two main approaches. 
One is' estimation by quadratic function of random variables using analysis of 
variance techniques and without making any assumption about the distribution of 
the variables. Another, is estimation by the method of maximum likelihood assuming 
normality of the variables. Apparently, as was stated in Rao (1972), the first 
method lacks a great deal of theoretical basis and depends much on intuition, while 
the second is computationally very complicated. The review paper of Searle (1971) 
surveys many of the classical methods and contains an extensive bibliography. Other 
recent references are Ljung and Box (1980) and Dempster et al. (1981). 

Another remark concerning the above model is the assumption that the matrix 
XT X is invertible. The estimation problem when r(X) < n makes use of X+. For an 
application of the generalized inverse in statistical inferences, the reader is referred to 
Rao and Mitra (1971, 1972), Albert (1972, 1976) and Chipman (1976). 

At last the concept of confidence intervals, like in the foregoing two parameters' 
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case, can be extended readily to the n-general case of the model Y = XfJ + u. From 
the dispersion matrix V(fJ) = ~(XT X) -1, one can obtain var (fJ), then use the con­
fidence limits set before. However, in many applications, multidimensional confidence 
regions of several parameters are often simultaneously sought. For example a 
confidence region regarding fJi + fJ~ etc .... as Kendall and Stuart (1961, p. 127) 
envisioned a topic of considerable difficulty. The reason for seeking a simultaneous 
confidence region, is that while fJ1' obtained for one sample may not be dispersed 
from fJ10 the associated fJ2 may well be from fJ2' The reader, interested in knowing 
about multidimensional confidence regions of a general linear model with autocorrelat­
ed disturbances, is referred to a method outlined in Deutsch (1965, p. 163). 

Finally, we come to the most perplex situation, that in which both variables 
4 and yr, are subjected to errors. The latter constitute the true variables satisfying the 
regression relationship and are unobservable. Instead, we observe another pair of 
observations (Xi' Y) related to the true variables by some errors, namely, 

We shall assume like before that E(u;) = E(v;) = 0 and a2 (vi) = ~, a2(u;) = ~. 
Moreover, the errors are uncorrelated, that is cov (up u} = COV (Vi' V) = 0, i i= j and 
cov (Vi' u) = O. Obviously if Vi = 0 we end up with the foregoing simple model 
yr = rt + fJXi' Yi = Yi ~ Ui or that Yi = rt + fJXi + Ui to which the least-squares 
method yields unbiased estimates for rt and fJ. The difficulty inherent in the above 
model, in which the measurement pair (yp x) of the dependent as well as independent 
variables are both uncertain, lies in the fact that Xi is correlated with (ui ~ fJVi), 
a situation not to be encountered when Vi = O. For suggesting that the model is 
given by Xi = 4 + Vi, Yi = yr + Ui and yr = rt + fJ4, gives Yi = rt + fJXi + (u - fJv;) 
in which the error term (Ui ~ fJv;) is correlated with Xi with a covariance of: 

COV (Xi' Ui ~ fJvi) = E[Xi(Ui ~ fJvJ] = E[(x~ + V) (Ui - fJv)] = ~fJa~ , 

being only zero of av = O. This had led to much confusion among workers for 
quite a time and raised up the question whether this is at all a problem of linear 
regression. In all cases, applying the least-squares method to minimize the error term 
yields a regression line of a smaller slope than the true one as well as biased 
estimates for fJ and rt: This follows from the relationship: 

E (fJ) = cov (x", Y") 

~r+ ~ 

against, 

fJ = cov (x", yr) 
(l2r 

x 

for the true regression coefficient of y' = rt + fJx'. Hence fJ is an unbiased estimator 
of fJ only if (lv = O. Lindley (1947) has shown that this is not the whole story. For 
even if the true regression of y' on xr is linear, it does not follow for Y on x. The 
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latter is only true if the c.g.f. of x is a multiple of that of v (see also Kendall and 
Stuart (1961, ch. 29)). Linearity in regression is thus maintained if we add a further 
assumption of normality of Vi' a rather very early assumption in regression 
analysis. 

Among the early attempts to reduce the above model to one of regression are 
those of Wald (1940) and Berkson (1950). The first author proposed a kind of 
grouping of the observations being independent of the errors. The second assumed Xi to 
be fixed during the observations Yi' and it is xi which becomes random around Xi with 
error Vi' i.e. Xi is independent of Vi' Both assumptions lack reality and the problem 
remains difficult to solve. For an old survey of the available methods until 1960 is the 
classical paper of Mandasky (1959), see also Moran (1971). But perhaps, the problem 
is not really one of linear regression as Kendall and Stuart (1961, ch. 29) intuitively 
asserted. For sure, there is no basis in minimizing errors in the vertical directions 
(v-direction) as the classical least-squares suggests. Since Xi is also random, one may 
equivalently minimize in the x-direction, if we are to estimate fJ correctly. To use 
least-squares, therefore, one must take into account both vertical and horizontal 
errors, as Lindely (1947) suggested, i.e. minimizing L wlfi) (Yi - & - PXi)2, where 
the weights Wi(P) are proportional to the reciprocals of the variances of Yi - & - pxi• 

Lindely pointed out that this is exactly equivalent to minimizing the distance between 
(Xi' y;) and (xi,)f;) for all i. The estimates obtained will also coincide with those 
deduced from using the maximum likelihood method as was first shown in Mandasky 
(1959) based only on some assumptions regarding one of the unknowns ~, c? or 
~/c?. 

But if none of the unknowns is known beforehand, the problem has obviously 
no satisfactory answer. We may not even accept a regression line to fit all available 
observations. The reason why there would be no satisfactory linear relation among 
the unobservables as a regression line was furnished geniously by Kendall and 
Stuart (1961, p. 385). Their argument runs as follows: each pair (Xi' Yi) emanates from 
an unknown true point (xi, )f;). So if we knew ~ and c? we could draw elliptic con­
fidence regions for xi, )f; appropriate to any desired probability level and centered 
at (Xi' y;). The problem of estimating fJ and IX is therefore a line which intersects as 
many of these ellipses as possible. And not knowing ~ and c? we neither know the 
area of these ellipses nor their eccentricity, hence admitting of no one satisfactory 
regression line. The authors (see p. 413) pushed their dissatisfaction a little further. 
It looks as though, even if we accept a regression line between X and y, it does not 
necessarily entail that the true relationship between x and y is linear. In fact the 
effects of errors in x and y is not only responsible of diminishing the slope of the 
regression lines as we previously showed, but also in impairing the linearity assump­
tion. 

However, not many workers are willing to give up easily the method of least­
squares, in virtue of its greater simplicity over other methods (see for instance 
Ketellapper (1983)). Also a simple but most interesting study on the effect of data 
uncertainties on the least-squares estimators was carried out by Hodges and Moore 
(1972). The authors favored the least-squares method for its great simplicity and 
showed that the errors can be easily accounted for. By incorporating the effect of the 
errors in the independent variables x, while performing a least-squares sampling 
yields estimators very close to the true ones. This can be done, as the authors explained 
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by considering the model yr = X' f3, in which both variables y and xr are subjected to 
errors and are measured by another uncertain pair y and X related to the true 
variables by the relationships y = y + u, X = x r + V. And by minimizing the 
residual e = y ~ Xp over the m sampled values (Vi' x;s), we have: 

/3 = (XTX)-1XTy = [eXr + V)T (xr + VW 1 eX' + V)T Y 

~ [XrT X r + X'T V + VTXT 1 exr + v? y 

by neglecting the second order term vr V. While expanding the inverse of the above 
matrix e cf. Sect. 1.4) as 

approximately, gives 

where Po = eXrT xr) -1 X rT y is the estimator had no uncertainty in X r existed, 
e = y ~ x r /30 is the residual error vector, again if X r is accurately known. In the above 
formula, terms in V2 are neglected. The sensitivity of /3k to XD can now be obtained 
easily in the form: 

a/3k = (XrT X"J-I e. - (~(xrTxr)-1 X~) fJ' . a r kJ' L., kl II 0 J 
Xij 1=1 

showing that the slope of the regression line is not constant as it is originally anti­
cipated, in contrast with the constant one for constant X. But if second order terms 
in V 2 are considered while calculating /3, i.e. the quadratic term in VVT is taken 
into account, this will yield a coefficient curve for the estimators very close to the 
actual one. The authors went on showing easily, by taking y = Xr f3 + U, where f3 
stands for the true regression estimator; while assuming that E(VTV)jm = diag (a-i, 
... , O"~) = S and ~. = O"~, that , 

E(/3) = fJ - (rn - n - 1) (xrT XT 1 Sf3 

giving a biased estimate of f3 by a term proportional to 0";' Also the variance­
covariance matrix of /3 is 

reducing to the foregoing least-squares variance ~(XTX)-1 when X' is error free. 
Although, the authors concluded that their method has not presented a rigorous 
examination of the effect of data uncertainties on least-squares regression, in our 
view the latter could not find someone forwarding a better defense. 



164 4. The Least-Squares Problems 

Exercises 4 

1. If A+ ABB*A* = BB*A* and BB+ A*AB = A*AB, show that (AB)+ = B+ A+. 

2. Show that x = A + b is the unique solution to Ax = b having minimal norm. 
Hint: Apply the Pythagorean theorem Ilxll~ = IIA+bll~ + 11(1 - A+ A) cll~ are 
A + b and (I - A + A) c orthogonal? 

3. A norm in Cnlxn is a function 11'11 :cmxn --> R satisfying IIAII > 0 if A # 0, 
IIIXAII = IIXIIIAII (IX scalar) and IIA + BII :;:; IIAII + IIEII. Show that if U and V 
are unitary, that IIU*AVllz = IIAI12' Hint: IIAlb = sup IIAxliz 

IIxllz = 1 

4. Show that IIAllz = (}1(A), IIA+112 = 1/(}r(A), (}1(A) > (}z(A) > ... > (}/A), hence 
condz (A) = (}ti(}r' 

5. If (}1 (A) ~ (}z(A) ~ ... ~ (}r(A) > 0 are the singular values of A with rank r, 
show that 

(}i(A) - (}l (E) :;:; (}i(A + E) :;:; alA) + (}lE) 

(}i(AC) :;:; (}i(A) (}1(C) , (}1(A) (}lC) 

Hint: (}i(A) = sup inf II Axll z , 
dim (9') = i, XE9' 

IIx1l2= 1 

i=l, ... ,r 

6. Show that IIAII} = L af(A). Hint: IIAII~ = tr (A*A), use singular value decom­
position for A. Obtain also an expression for condF (A). 

7. If A and Bare m x n matrices with B - A = E, denote their respective singular 
values by lXi and Pi' i = 1, ... ,k = min (m, n). Show that 

k 

I (Pi - IXJZ :;:; IIElli· 
i= 1 

8. Show that, if det (A) = 0 and det (A + BB) # 0, 

(A + BBrl = Cn_1 + BCn_Z + ... + Bn- zC1 + Bn- 1Co 
an_1B + an_ZBz + ... + a1Bn- 1 + aoBn 

where Cn - 1 = Aa, an-l = tr (AaB), ... Hint: (U + A + eB)-1 = [/ + e(U 
+ A)-1 B] 1 (U + A)-I; cf. ex. 1.10. 

9. If A is an m x n matrix of rank rand rCA + L1A) > rCA), show that II(A + L1A)+ liz 
~ 1/IIL1Allz. Hint: use ex. 5, by letting i > r, then (}i(A + L1A) :;:; liE liz· 

10. If A is an m x n matrix of rank r, then if IIA+ liz IIL1Allz < 1, show that rCA + L1A) 

~ rCA). Hint: (}/A + E) ~ IIA~11z -IIEllz ~ 0, for somejfrom ex. 5. 

II. If A and B are not in the acute case, show that IIB+ -A+II ~ 1/IIB-AI12' 
Hint: Choose y E N(A*), i.e. A*y = 0, then A+y = 0 and (B+ - A+) y = B+y, 
(B - A)*y = B*y, IIB+ - A+ 112 ~ IIB+yllz, liB - AI12 ~ IIB*yI12' Show that 
IIB+ - A+ 112 liB - Aliz ~ y*BB+y = I by further imposing thaty E R(B). Hence 
obtain a bound for II(A + L1At - A+ IIi 1 in terms of IIL1Alli. 
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12. If A is an m x n matrix of rank k, show thatthere exists an Ewith IIEI12 = l/11A + 112 
such that A + E has rank k - 1. This result is due to Mirsky. Hint: Use the 
singular value decomposition for A = U diag (aI' ... , ak' 0, ... ,0) V*. Choose 
E = U diag (0, ... ,0, -ak, 0, ... ,0) V*. Show further that a perturbation E 
such that IIEIi2 ;;;; I/IiA + 112 cannot decrease rCA + E). 

13. If ii = Vi + will + e2vh) + ... is an eigenvector of (A + eAI)* (A + eAI ) cor­
responding to the eigenvalue Xi = e4 ,W) + e5,W) + ... , show that Avil) + 
+ Alvi = O. Hint: Premultiply by «A + eAI )+)* the eigenvalue problem 
(A + eAt )* (A + eAI ) ii = Xiii. And if A is normal, does (A + eAI ) has the 

eigenvalue Ai ~ ~ ~? Search for a corresponding eigenvector. 

14. If AA+ AA = AA, A+ A AA* = AA* and IIA+ II IIAAII < 1, show that 

II(A + AA)+ - A+II d IIAAII/IIAIl 
IIA + II ;;;; con (A) 1 - (cond (A) IIAA II/IIA II) 

with cond (A) = IIAII IIA+ II 

15. If AA'+ B = Band IIA+ BII < 1, show that rCA + B) = rCA). Hint: rCA + B) = 

r[A(I + A+ B)]. Show using the example A + eAl = [~ ~ ~J' that the oppo­

o e 0 
site is not true, i.e. that AA + Al ¥= Al 

16. If A and At commute and are both normal, show that for rCA + eAt) = rCA), 
co 

(A + eAtt = A+ L (_)k (A+ Adk ek in the neighbourhood of e = o. 
k=O 

17. Show that B+ - A+ = -B+ AAA+ + B+(I - AA+) - (I - B+ B) A+, where 
B = A + AA. Hint: B+ - A+ = (B+ B + I - B+ B) (B+ - A+) (AA+ + I 
- AA+). 

18. Let A(t) be an m x n matrix with m ~ n whose elements are differentiable func­
tions of t. Then if r(A(O» = n, show that 

- = - A + - A + .+ A + A +* - (I - AA +) dA+ dA (dA)* 

•• • 
around t = o. Hint: A(At) = A(O) + At dA(O) + O(Af), hence, apply the Wedin 

dt 
decomposition theorem for A + (At) - , A + (0) whose last term vanishes as A(O) 
is of full rank, then divide by At and take limit as At _ O. 

19. If A is an m x k matrix having rank k, and define cond2 (A) = IIAb IIA+I12, 
show that cond2 (A* A) = cond~ (A). Hint: A* A has singular values ~(A). 

20. The approximate solution x of Ax = b, with rCA) ¥= rCA : b), is obtained through 
least-squares fitting, i.e. by minimizing IIAx - bilE. Hint: Differentiate with 
respect to x the quadratic form (Ax - b)T (Ax - b) to obtain x = (AT A)-l ATb. 
If AT A is nonsingular, show that under small perturbations AA and Ab, the 
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variation in x(Ax) is given by Ax = _(AT A)-1 AT AAx + (AT A)-1 AAT(b - Ax) 
+ (AT A)-IAT Ab. Hence obtain: 

I/Axll::S; II(AT Ar1 ATIIIIAII"t~illlxll + II(AT Ar11111ATI1 2 IIA~:~\\~I~T:XII 
+ II(AT A)-1 ATllllAllllblillAb ll 

IIAlillbl1 

And by choosing a unitary matrix P such that P A = [-t-J ; A = p T [ -~-J 
obtaining AT A = ;F 1, (AT A)-1 = 1-1(AT)-I, (AT A)-l AT = (;1-1 : 0) P, 
show that the above bound can be simplified to yield 

I/Axil d - IIAAII 2 - lib -AxIiIIAAII - IIblillAb\l 
-- ::s; con (A) -- + cond (A) + cond (A) ----
\lxll IIAII IIAllllxllllAl1 IIAllllxllllb\l 

by defining a suitable norm. 

21. If cond (AT A) = cond2 (.4.) as in exercise 20, show that for the two expressions 
(AT A + G) (x + Ax) and ATb + Ab to be equal, then 

--<cond A --+--IIAxl1 2 - ( IIGII IIAbll) 
IIx\l - ( ) II AT All IIATbl1 

Hint: make use of the results of sec. 1.4. 

22. Let A E /Rmxn is of full rank and having that D = diag (1, ... , yI+b, ... , 1), 
with b > -1, show that the residual reb) = b - Ax(b) for the least-squares 
solution of IID(Ax - b)1I2 is given by 

r (b) _ rk(O) 
k - 1 + be[A(ATA) lATek 

Hence show how b can be chosen for an optimum row-scaling of A. 

23. If A E /Rmxn has rank nand 

M = [rxI m A] rx ~ 0 
AT 0 ' 

show that lTm+n(M) = min (rx, - ~ + JlT~(A) + (~r). What value of rx mini­

mizes condz (M)? (Golub and van Loan (1983, p. 183» 

[
[2,3] -1 ] 

24. Obtain an AI + for AI = 1 [0, 1] 

1 -2 



Chapter 5 

Sensitivity in Linear Programming 

5.1 Introduction 

Whilst the theory of linear equations is concerned with solving the equations 
Ax = b and the methods involved therein, linear programming is used to study the 
set of linear inequalities Ax ~ b. These latter inequalities define the set X = {x: Ax 
~ b, x ~ O} in Rn; n = dim x; X being a convex set with a polyhedral shape. 
Linear programming's major concern becomes then the selection among the vertices 
of X of the one that would either maximize or minimize the linear function 

Mathematically, the problem of linear programming is formulated as follows 

max C1X 1 + C2X 2 + .. , + CnXn 
Xl . ... , xn 

subject to the restrictions 

with 

The coefficients Cj, ... , Cn are called the cost coefficients. The elements au are 
sometimes called the input-output coefficients; they form the so-called technological 
matrix. The different values of b define a bound on the available resources that set 
a limit on production. This nomenclature originated from the practical applica­
tions of linear programming. The reader is referred to Gass (1969) for an account 
on these applications. 

Historically, the linear programming problem has been solved by a systematic 
procedure called the simplex method, devised by Dantzig in 1947. This method we will 
therefore outline briefly. First, the inequalities Ax ~ b are transformed into 
equations of the form Ax + Y = b. This is done by adding a set of new variables 
Yj ~ 0 with j ranging from I to m. The variables Yj are called slacks, and are used 
to balance both sides of the inequalities into equations. The addition of the new 
variables adds to the complexity of the problem's formulation, as it yields a set of m 
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equations in m + n variables. To simplify this cumbersome notation, it has been 
suggested to use the simpler form Ax = b, with x containing in this case both the 
original and slack variables. As for A, it will contain, apart from the technological 
matrix, an additional unit matrix of order m. Hence, there is no need for x to 
be of dimension n + m. Rather, it shall be assigned a dimension n with the condition 
that n be larger than m. We can even suppose that the number of cost coefficients is n, 
some values of m being obviously null. Then, the problem can generally be stated 
as 

n 

min L CjXj 
x j= 1 

subject to the condition that 

Xj ~ 0 given j = 1, ... ,n 

and 

n 

.L aijxj = bi ; 
)=1 

i = 1, ... , m 

The last equation can be rewritten in the following - more easily manageable -
form, namely 

where PI' ... 'Pn are the columns of A, and Po = b initially. In the sequel, we will 
suppose that r(A) = m, i.e. that A has at least m linearly independent vectors. 

We come now to the two basic theorems of linear programming. Their proof, 
which will not be discussed in this text, is based on the concept of convexity, which 
is a master key to all results in the area. The two theorems can be stated as follows: 

n 

1. The objective function F = L CjXj assumes its minimum only at an extreme 
j=l 

point, i.e. at a vertex of the region X. 
2. If a set of vectors PI' P2, ... ,Pk, with k ~ m, can be found such that they be linearly 

independent and, in addition 

then x = (X1o ••. , Xko 0, ... ,Of IS an extreme point and is called a basic 
feasible solution. 

These two theorems are the only basic tools really needed to solve the linear 
programming problem. There remain two further vital issues however, namely: how 
can one move from one basic feasible solution to another, and, second, checking at 
each time the value of the objective function F for every basic feasible solution to 
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compare it with the value of F obtained just before. Although it can be done, one 
doesn't generally go through with such a procedure; a very tedious one especially for 

large problems, as there are in general (n m) vertices. Instead, one should resort to 

a scheme ensuring that one always moves from one vertex to another that has a 
smaller value of F. 

Back to the first of the two issues, we suppose that there exists a basic 
feasible solution (Xl' ... , X m' 0, ... , 0): this is always the case since one can at 
least choose the slacks Xi = bi, i = 1, .,. , m, the remaining n - m variables being set 
equal to zero. Thence, we can write 

X. ~ 0 
J -

Then moving from this vertex to another is equivalent to replacing PI for instance by 
Pm+l while making sure that Xj ~ 0; j = 2, ... ,m + 1. This is achieved by first 
expanding Pm+l in terms of PI' ••. ,Pm i.e. 

Multiplying the expression by a factor (J and subtracting from the original form, 
we get 

(Xl - (JXl,m+dPI + ... + (xm - (JXm,m+l)Pm + (JPm+1 = Po 

In order for Xl - (JXI,m+I' X2 - (JX2,m+I' •.. to be a basic feasible solution, one of 
the terms must vanish, the rest being positive with their corresponding vectors linearly 
independent. This is guaranteed by setting 

X· o ::::;; (J ::::;; min __ J_ 

j xj,m+1 

As for choosing among the column vectors of A a new basis that will guarantee 
our obtaining a new basic feasible solution having a smaller value of F, we must 
obviously use F itself, writing 

Xlj/JI + X2j/J2 + ... + xmj/Jm = Pj' 

and 

j = 1, ... , n 

j = 1, ... , n 

where Zj is the objective function corresponding to the basic feasible solution 
Xli' X2i' ... ,Xmj ; Cl' ... , cm being their cost coefficients. If, at any instant of our 
performing the simplex, the relation Zj - Cj > 0 holds, then a set of feasible solu­
tions can be constructed such that Z < Zo, Z being the value of F corresponding to a 
particular member of the set of basic feasible solutions: This can be deduced from 
the following analysis sirttilar to the one depicted. above: 

(XIO - (JXI) PI + (X20 - (JX2) P2 + .... + (xmO - (Jxm) Pm + (JPj = Po 
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and 

(XlO - (}Xlj) Cl + (X20 - (}X2j) C2 + ... + (XmO - (}Xmj) Cm + (}Cj 

= Zo - (}(Zj - Cj) 

where (}Cj was added to both sides. XlO, •.. , XmO is an initial basic feasible solution. 
Then, from the assumption that for a fixed j, Zj - Cj > 0, we get 

Therefore, starting with the vector Pj' for which Zj - Cj is positive and maximum, 
becomes the best choice for a new basis. 

To illustrate the simplex method, we suggest the following example 

min F = Xl - 3X2 + 2X3 

subject to the conditions 

3xl - x 2 + 2X3 ~ 7 

2Xl - 4X2 ~ 12 

-4Xl + 3x2 + 8X3 ~ 10 

xl' x 2' X3 ~ 0 

Basis c Po 

PI 

1 4 0 7 3 
2 5 0 12 2 
3 6 0 10 -4 
4 Zj - Cj -1 

First Tableau 

Basis C Po 

PI 

31 5 
4 0 

3 3 
76 -10 

2 5 0 
3 3 

10 -4 
3 2 -3 

3 3 
4 Zj - Cj -10 3 

Second Tableau 

-3 2 

P2 P3 

-1 2 
-4 0 

3 8 
3 -2 

-3 2 

P2 P3 

14 
0 3 

32 
0 3 

8 
1 -

3 
0 -10 

0 

P4 

1 
0 
0 
0 

0 

P4 

0 

0 

0 

0 

Ps 

0 
1 
0 
0 

0 

Ps 

o 

o 
o 

0 

P6 

0 
0 
1 
0 

0 

P6 

-
3 
4 
-
3 
1 

3 
-1 
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Basis c Po -3 2 0 0 0 

Pl P2 P3 P4 Ps P6 

31 14 3 
0 - 0 -

5 5 5 5 
2 5 0 46 0 0 20 2 2 

58 32 4 3 
3 2 -3 0 - - 0 -

5 5 5 5 
-143 -92 -9 -4 

4 Zj - Cj -- 0 0 0 
5 5 5 5 

Final Tableau 

Our initial basis was P4 , Ps' P6 ; the first basic feasible solution is (0,0,0,7, 12, 10). 
Zo = 0. P2 is selected since Zj - c j is equal to 3. e = lO/3 and hence P6 is 
eliminated. The new basis becomes P4 , Ps' P2 and the second solution is 

10 31 76 
(0, 3' 0, 3' 3' 0). Finally PI is introduced, since Zj - c j = 3, e = 31/5 and 

hence P4 is also eliminated. The new basis is PI' . Ps, P2 and the solution comes as 
31 58 143 
(5' 5,0,0,46,0), being the final solution as all Zj - c j are negative. Fmin = -5· 

With this we have given a brief resume of the main aspects of the linear pro­
gramming problem. For further relevant techniques, the reader may further consult 
the texts of Dantzig (1963) and Gass (1969). 

We come now to the major topic of the present chapter, namely sensitivity 
analysis in linear programming. The need for such an analysis arises from the 
question: what if the technological matrix A undergoes a perturbation AA? Also, 
what if the cost coefficients are subject to uncertainties? Although, according to 
Rappaport (1967), the "what if' type of questions introduces the topic of sensitivity 
in its very broad meaning, we are only interested here in its mathematical implications, 
namely in how the possible changes or errors in the parameters affect model 
outputs. There are more than one reason for performing sensitivity analysis, 
according to Anderson et al. (1979): raw material price fluctuations; stock exchange 
rates variations; employee turnover; purchasing of new equipment and so on. 
Sensitivity analysis is indeed an invaluable tool for the decision maker, helping him 
cope with the uncertainty and risks that are introduced by post-design systems 
variations. For this reason, it constitutes a good portion of any managerial science 
course. 

More than one trend exist in handling sensitivity analysis in the context of 
linear programming. One very old trend is that of parametric programming, in 
which the parameters are allowed to vary with time, thus giving the linear 
programming problem an aspect of dynamism. Another more recent approach is to 
compute some critical values of the parameters after which the optimal solution 
changes from one basic feasible solution to another. A third trend is to model the 
problem in a stochastic form accounting for any uncertainty in the data. 
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To visualize the effect of uncertainty in the data on model output, consider the 
simple numerical example illustrated hereunder in Fig. I. 

max 2xI + 3x2 
xI·x2 

subject to the conditions 

Xl' X 2 ~ 0 

XI ~ 5 
x2 ~ 6 

XI + x2 ~ 8 

and whose solution comes easily as XI = 2, x2 = 6. 

x \ 1 

Fig . . 1 

Now suppose the problem is reformulated as 

subject to the conditions 

X I ,X2 ~ 0 

Xl ~ 5 

x2 ~ 6 + e 

XI + x2 ~ 8 

Then Xoptimal = (2 - e, 6 + el. A small change in the constraint has only slightly 
affected the solution . On the other hand, for the following problem 

max (2 + e).xI + (3 - e) x2 , e> 0.5 
x I,X2 



subject to 

Xl :;:; 5 
x 2 :;:; 6 

Xl + x2 :;:; 8 
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Xoptimal becomes (5, 3)T. Thus a jump has occured from one vertex to another. In 
the first case, the initial basic feasible solution was maintained, though with a small 
perturbation. In the second instance, on the contrary, a complete shift of basis has 
taken place. 

In this chapter, we shall assume that errors are solely due to uncertainties in the 
data; computational errors will be ignored. The process is then called gutartig -
according to Meinguet (1969) - that is the errors produced are independent of the 
mode of computation. This definition appears in Bauer et al. (1965) as well, 
implying that the overall susceptibility of the solution to perturbations in the data 
dominates the numerical instability resulting from rounding errors. 

5.2 Parametric Programming and Sensitivity Analysis 

Unlike the case of linear simultaneous equations, sensitivity analysis in linear 
programming is rather involved. The matrix A in the system Ax = b is of dimension 
m x n, n being larger than m, and only m columns of A constitute a basic set at one 
time. Hence, not all perturbations in aij, with i and j varying from 1 to m and 
from 1 to n respectively, affect the optimal solution. ORly those which form the 
entries of the base ve~tors are to be taken seriously, provided of course no change 
of basis has taken place. We have therefore two situations: one in which the pertur­
bations in either A, b or c preserve the basis with only minor alterations in the 
solution; the second brings about noticeable change in the solution. These two 
problems have been studied in parallel in the literature, and are in fact inter­
related. In this section, we will endeavour to investigate the first of the two 
problems. 

The term parametric programming has originated in the context of finding the 
range of values of a parameter t in ai/t) such that the basic solution remains the 
same. The earlier work on the subject is due to Saaty and Gass (1954), and Gass 
and Saaty (1955). The next section will indeed delve into their work. For the present, 
we can say that, by assuming that t is within range, or that it is allowed to vary while 
the basis is kept constant, one can study the effect of t in ai/t), and consequently on 
xCt). This has been studied in detail by Saaty (1959), the author reaching the first 
result in the subject of sensitivity analysis. 

The linear programming problem can be formulated in terms of some para­
meter t as follows 

n 

min I cit) Xj 
x j= 1 
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subject to 

n 

I aiit) Xj ~ bi' 
j= I 

and 

i = I, ... , m 

j = I, ... , n. 

Although in the author's original paper, the parameter t stood for time, it may as 
well serve as a perturbation factor like e for instance; this is especially true as 
ai/t) is usually given as a linear relation in t. In either case, our task is to obtain 
dx;/dt, thus eliciting the solution's sensitivity to changes in the data. 

Let us first discuss the very same example chosen by Saaty (1959). The author 
considered 

min (30 + 6t) Xl + (50 + 7t) X 2 

subject to 

(14 + 2t) Xl + (4 + t) X 2 ~ 14 + t 
(150 + 3t) Xl + (200 + 4t) X2 G 200 + 2t 

and 

The results were 

The solution vector 
XO(t) =-' x~(t), ... , x;(t) 

2t + 200 2t2 + 48t + 2000 o 0 
, 4t + 200 ' 4t + 200 ' 

2t2 + 48t + 2000 t 2 + 236t + 700 

Intervals of the parameter t 

t < -50, t;;;; IO 

o 0 50 < t < 499 -6.1 :'5:_ t :'5:_ 10 
5t2 + 294t + 2200 ' 5t2 + 294t + 2200' , - = -., 

t + 14 2t2 + 48t + 2000 
0,----,0,------------

t+4 t+4 
-49.9 ~ t ~ -6.1 

The above results were obtained after tedious manipulations. Each time a set of base 
bectors had to be chosen, with the corresponding intervals of t calculated. This is in 
fact highly impractical, especially on the computer. Let us use it anyway to obtain 
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some sensitivity calculations. For instance, if we are interested in dx; /dt;j = 1,2,3,4; 
at t = 0, we obtain 

dx~ I = (4t + 48) (5t 2 + 294t + 2200) - (2t 2 + 48t + 2000) (lOt + 294)1 

dt 1=0 (5t 2 + 294t + 2200)2 1=0 

1206 

11 x 1100 

dx~ I = (2t + 236) (5t 2 + 294t + 2200) - (t 2 + 236t + 700) (lOt + 294) I 
dt 1=0 (5t 2 + 294t + 2200)2 1=0 

783·5 
l1xl100 

and 

The above results can be more easily obtained if we know the base vectors. 
dx/ /dt,.i = 1, ... , 4, are calculated by differentiating with respect to t the equations 
B(t) x = bet), where B is a square matrix the columns of which are the base 
vectors. We obtain 

dx O I -1 {db(t) dB(t) 0 } I - = B (t) - - - x (t) 
dt 1=0 dt dl t=O 

= [-14 -4J-1 {[-IJ _ [-2 -IJ [:~]} = [- 111:~6100] 
150 200 2 3 4 7 783 . 5 

22 IIxl100 

As for the sensitivity of the objective function FO with respect to t, we get 

[~~] III ~2~~00l 19189 
= (6 7) 7 + (30 50) 783.5 = -22-x-l1-0 

22 II x 1100 

In fact, Saaty's main contribution lies in the second term above, namely eT(t) dxo . 
dt 

The author discovered that this latter term can be written as 

T dxo T -1 {db(l) dB(t) o} OT db(t) OT dB(t) 0 
e - = e (t) B (t) - - -- x (t) = y (t) - - y (t) -- x (t) 

dt dt dt dt dt 
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where yOT (t) = eT(t) B-1(t) is the optimal solution of the dual problem to the original 
linear programming problem, i.e.; if the primary problem reads 

x 

subject to the conditions 

x ~ 0, Ax ~ b 

the dual problem is (see Gass (1969)): 

subject to the conditions 

y ~ 0, 

And for Saaty's numerical example, the dual problem becomes 

max - (14 + t) Yl (t) + (200 + 2t) h(t) 
Yl· Y2 

subject to the conditions 

Yl'Y2~0 
-(14 + 2t)y1(t) + (150 + 3t)y2 (t) ~ 30 + 6t 

-(4 + t) Yl (t) + (200 + 4t) h(t) ~ 50 + 7t 

dFOI Therefore, to obtain -- using Saaty's expression is equivalent to solving first 
dt ,=0 

the dual problem. The reader can follow the same steps of the simplex algorithm as 
explained in Sect. 4.1 to obtain y~(O) and y;(O). These were found to be 

o 58 
Y2 = 5 x44 

Hence 

dFOI - =(6 
dt '=0 

7 [~~J (30~) {[_I] - [-2 -IJ [~~J} ) 7 + 44 44 x 5 2 3 4 7 
- -
22 22 . 

19189 

22 x 110 
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This result is consistent with the one obtained before. The final expression for 
dFo /dt thus reads 

dFa deT(t) a aT db(t) aT dB(t) a 
dt = ~ x (t) + Y (t) T - y (t) dt x (t) 

The application of the above result does not necessitate a formulation of the 
linear programming model in a parametric form. In fact, it becomes even more 
powerful in the usual case where the vectors band e are constant. In such case, 
t represents a perturbation factor related to A, or, in other words, the differentiation 
can be imposed for each element aiF Thence we obtain the well known formula 

8P aT 8B a 
-=-y -x 
8aij 8aij 

= -y?xJ 

which is a universal formula for the sensitivity analysis of a linear system of equations 
similar to the one derived in Sect. l.6. Likewise, we could obtain the effect of an 
alteration of the vector b on the objective function, namely in the form 

Webb (1962) extended Saaty's results to determine the most significant parameter 
having dominant influence over the optimal solution, and consequently over the 
objective function. It can be easily shown that 

For results similar to those of Saaty in the cases where F is convex quadratic 
function in x, the reader is referred to Boot (1963). Some other relevant applications 
are also to be found in Van De Panne and Bosje (1962). 

Another approach to assessing the sensitivity of XO with respect to changes in the 
parameters of the problem BxO = b is to obtain an a-priori bound like the one 
obtained in Sect. 104. Here, it would be given by 

II~xoll ~ liB-III IIMxo - ~bll 

where XO is the optimal solution of the unperturbed problem. II B- l l1 can be 
estimated from 

liB-III = max Ilyll , By = z, IlzII = 1 

(see Sect. l.3). For a general linear programming problem composed of set of 
equalities and inequalities, i.e. 



178 5. Sensitivity in Linear Programming 

subject to the restrictions Ax ~ b, Dx = d, one has from Robinson (1973) 

where 

u(A, D) = max {min {llxll, Ax ~ b, Dx = d} lib, dll ~ I} 

The above bound follows from a result of Hoffman's (1952) on linear inequalities. 
For further extensions on perturbations of a set described by linear inequalities, the 
reader is referred to Daniel (1973). 

To exemplify Saaty's results, let us consider 

subject to the conditions 

xl' x2 ~ 0 
14(1 + e) Xl + 4X2 ~ 14 
150xI + 200x2 ~ 200 

By inducing a perturbation e in all' we obtain the new objective function, for small 
enough values of lei, which comes as 

aFO 
FO(al1 + Aall) ~ FO(all ) + Aan -::l­

uall 

475 
= 11 + (-14e) (-yf . xD 

475 30 10 
=-+ 14e'-'-

11 44 11 

475 1050 
= 11 + 121 e 

This result coincides with the one ultimately obtained after a number of cumbersome 
manipulations and depicted in the following final tableau: 

Basis C Po 30 50 0 0 

PI P2 P3 P4 

ID 2 
30 0 

II + 14B lIDO + 1400B II + 14B 
7 + 28B 

0 
-15 -7(1 + B) 

2 50 
22 + 28B 220 + 280B 1100 + 1400B 

-15 -29 
Zj - Cj Fa 0 0 

1I0 + 140B 22 + 28B 
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with 

950 + 14008 475 1050 
FO = 22 + 288 ~ U + ill 6 . 

Note that, in the tableau, we have allowed a small perturbation in all of order 8 
that will still maintain the same basis. This is guaranteed by choosing 8 subject to the 
restriction. 

22 + 286 > 0 

or that 

6> 
11 

14 

On the other hand, if 6 violates the value set above, a totally different sequence of 
events will be triggered as will be seen later on. 

In conclusion, we can say that parametric programming, while being difficult to 
use on a computer, serves as yet to compute sensitivites at different levels of 6 or t, 
provided the perturbations in the data are of small order. It's also invaluable when 
it comes to establishing a correspondence between solution and interval of parameter 
values, a fact that we will try to explain in the coming section. 

5.3 The Problem of Ranging in Linear Programming 

In many a practical situation, it is rather often desirable to determine that range of 
the parameters or data - that will not alter the solution significantly. This 
problem is of vital importance in many areas of decision-making and management 
sciences, for, whereas data for an analyst are merely terms of a set of linear 
equations, these same data embrace a definite practical reality for the executive. As 
Sandor (1964) pointed out, these data may be sales figures of home heating fuel, 
liable to fluctuation with climatic variations, or the purchase prices of this same 
commodity, which are subject to frequent variation. A primordial question would 
then be: which ranges of data could be tolerated for the same optimal solution to 
remain valid? In management science, this question is synonymous to seeking 
a definition of the decision region for each of the parameters. 

This problem was dealt with within the context of parametric programming by 
Saaty and Gass (1954) and Gass and Saaty (1955), for the case where the data is 
given in parametric form. A more efficient approach is given by Shetty (1959 a, 
1959b), relying only on the final simplex tableau. 

Saaty and Gass (1954) suggested a linear programming problem of the form 

n 

min I c.(A) x. 
x j= 1 J J 
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subject to the conditions 

n 

I ai)..1.) Xj 2: bi , 
j=l 

and 

i = 1, ... , m 

} = 1, ... , n 

The authors' main concern was to locate the optimal solution Xj' } = 1, ... ,n, 
corresponding to a certain range of the parameter A., or, in other words, for which 
range of interval of values of A will the optimal solution remain optimal? This 
necessitates going through all the steps of the simplex in terms of A. and, at each 
time we locate a minimum, the corresponding values of A are checked out. Therefore, 
to each minimum solution, there exists one interval of values of A that is generally 
closed (nondegtmeracy assumed). Each new interval is contiguous with the previous 
one, meaning that they meet at end points. 

To determine the interval of values of A corresponding to a minimum, we observe 
Zj - Cj ;;::; 0, for all values of}. The latter will be a function of A in the contracted form 
aj + A[3j, assuming that the data is expressed as a series in A. Therefore, if a minimum 
is found for A = ,1.0' then 

} = 1, ... , n 

determines that region of ,1.0 for which the above minimum remains an optimum 
solution. The minimal solution for }o = ..1.0 is then a minimum for all values of A, 
such that 

max (-a./[3.) ::; A. ::; min (-a/[3.) 
{J j > 0 J J Pj>o J J 

A typical example has been studied by Saaty (1959), demonstrating the above proce­
dure, its results being tabulated in Sect. 4.2. The two authors elaborated on the subject 
still further in their work (Gass and Saaty (1955)) by introducing the two­
parameter problem 

n 

min I (a j + ..1. 1bj + A2C) Xj 
x j=l 

subject to the conditions Xj ~ O,} = 1, ... , nand 

n 

I aijXj = aio, 
j=l 

i = 1, ... , m 

The minimum solution is the one satisfying the set of inequalities 

V} = 1, ... ,n 
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which define a convex region in the (AI' )'2) plane termed, according to the 
authors, the characteristic region, the boundaries of which being accordingly termed 
the characteristic boundaries. 

To visualize this approach, we consider the same example presented by 
the authors: 

min XI + ,1. l x 2 + ,1.2X3 
Xl_ x2. x 3 

such that 

Xl' X2' X3 ~ 0 
XI - X4 - 2X6 = 5 

Xl + 2X4 - 3xs + X6 = 3 

X3 + 2X4 - 5xs + 6X6 = 5 

The tableau is 

Basis C Po A, 

P, Pz 

I 5 I 0 
2 }., 3 0 I 
3 Az 5 0 0 
Fj = Zj - Cj Fo F, F2 

where 

Fo = 5 + 3AI + 5)'2 

FI=F2=F3=0 

F4 = -1 + 2).1 + 2Al 

Fs = -:UI - 5)'2 

F6 = -2 + Al + 6A2 

A2 0 0 0 

P3 P4 Ps P6 

0 -I 0 -2 
0 2 -3 1 
I 2 -5 6 
F3 F4 Fs F6 

Hence for the vectors PI' P2 and P3 to remain base vectors, one must have 

Al + A2 ~ t 
-3,1.1 - 5Al ~ 0 

Al + 6A2 ~ 2 

conditions which define the region C I depicted in Fig. 2. Then by changing the 
basis, we obtain the other unbounded regions as shown. 

Note that, whenever ). lies inside one region, then a sensitivity analysis, as 
explained in Sect. 5.2, can be carried out so long as the perturbation in A does not 
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(J!U.) 
13 13 

It ·-tl Fig. 5.2 

overlap with another region. The objective function FO becomes, for small perturba­
tions around Ao E C1 : 

On the other hand, when ~A is large, an exact representation is more appropriate, 
namely 

peA) = CT(A) XO(A) 

= CT(Ao + ~A) {B(},o) + ~AB1} -1 {b(Ao) + ~Ab1} 

where B(Ao) is the basis matrix at Ao. The inverse of {B(Ao) + ~ABJ is computed as 
a series in ~}, as seen in Sect. 1.4. For the linear programming problem, however, 
as perturbations are introduced to each parameter one at a time, the above inverse 
can be easily given in an explicit form (see exercise 5.l). 

In Saaty and Gass's work, the data is assumed to be parameter-dependent, and 
the authors exercised in finding the correspondence between optimal solutions and 
ranges of parameter values. In practice, one has rarely data in a parametric form. 
Furthermore, having the data in this form would have complicated things 
seriously, especially for large sized models, where the use of a computer becomes 
unavoidable. This has inspired Shetty (1959a, 1959b) to devise a set of algorithms 
that systematically set out the correspondence between feasible solutions and the 
ranges of data available. The advantage of She tty's scheme is all the more accentuated 
by the fact that it only requires the results of the final tableau. Thence, sur­
prinsingly enough, although the original problem might have had to be inescapably 
solved on the computer, one would only need manual calculations to deduce all 
sensitivity formulae. Shetty specifically addressed the following two questions: 

1. What becomes of the optimal solution when one of the problem's constants (some 
cj' bi or ai) is changed without yet necessitating a change of basis? What is the 
new value of the objective function? 

2. When one of the variables' value is incremented by a given amount, what 
changes become necessary in the other variables' values if the increase in the 
value of F(x) is to be minimal. 
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Although the first question seemingly repeats what was said in Sect. 5.2 regarding 
solution sensitivity with respect to changes in the data, Shetty's answering it 
provides in fact an answer to the extended problem of intervals of values of data that 
preserve basis. In the sequel, we shall use the same notation as in Shetty's papers, 
and use his example once we have transformed it into a minimization problem for the 
sake of homogeneity in our text. In this revised form, the example comes as 

subject to the conditions 

Xl,X2,X3,X4,XS,X6 ~ 0 
3x1 + x 2 + 4X3 + x 4 = 480 

4Xl + 2X2 + 3X3 + Xs = 400 

x2 + X6 = 70 

where x 4 ' x s' X6 are slacks. The initial tableau is 

Basis C Po -20 -10 -20 0 0 

PI P2 P3 P4 Ps 

4 0 480 3 1 4 1 0 
5 0 400 4 2 3 0 1 
6 0 70 0 1 0 0 0 
Wj = Zj - Cj 0 20 10 20 0 0 

The final tableau is 

Basis C Po -20 -10 -20 0 0 

PI P2 P3 P4 Ps 

3 -20 112 0.4 0 1 0.4 -0.2 
2 -10 32 1.4 1 0 -0.6 0.8 
6 0 38 - 1.4 0 0 0.6 -0.8 

zj -2560 -22 -10 -20 -2 -4 
wj = zj - cj = -2 0 0 -2 -4 

0 

P6 

0 
0 
1 
0 

0 

P6 

0 
0 
1 
0 
0 

As for the notation, like in the Shetty's paper, we shall assume that B is the matrix 
containing the basis, i.e. B = {j I Xj E basis in the initial tableau}, whilst B' = {j I Xj E 

basis in the final tableau}. The element at the intersection of the row corresponding 
to a variable xp (p E B) and the column corresponding to a variable Xq will be 
denoted by Xpq. Likewise, bp will lie in the xp's row. For example, a S2 = 2, 
b4 = 480, w2 = 10, a~l = 0.4, b~ = 112, z~ = -22 and w~ = -2. We will now 
investigate Shetty's algorithms: 
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Variation in Cj 

Case 1: j rj: B', i.e. xi is not in the basis of the final tableau. 

a) The maximum possible change in cj without changing the basis in the final 
tableau is given by 

jrj:B' 

This follows from 

wj + ~wj ~ 0, j = I, ... , n 

b) The solution x, aswell as the objective function F, is unaffected, that is: 

~X = 0, ~F= 0 

Case 11: j E B', i.e. Xj is basis variable in the final tableau. 

a) The maximum possible change in Cj without changing the basis is given by 

~C· ::;; ~c· ::;; ~C· 
-}- }- } 

where 

[-w~ J 4cj = max -,-, -00 , 
ajk 

~Cj = min [-~~ , ooJ, 
a jk 

This follows from 

w~ + ~w~ ~ 0, 

~w~ = ajk ~Cj 

k = 1, ... , n 

k ¢ B' 

k ¢ B' 

b) The solution x is unaffected, i.e. ~x = 0, while 

Example: In the above illustrative example, if Cl is decreased by more than 2 units, 
the second tableau will consequently not be the final one. Also, if Cz is increased by 
more than the following 

- [2 4 J ~cz = min -, - = 1.43 
1.4 0.8 
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table 2 will again not be the final tableau. Similarly, the maximum reduction in 
C2 IS 

2 
L'l.c = -.~ = -3 33 
- 2 -0.6 . 

Variation in bi 

Suppose bi is changed within the interval 

then to keep the basis, one must have: 

[ -x. J ~bi = max _,_J, -00 , 
aji 

JEB' 

- [-x. J L'l.bi = min _,_J, 00 , 
aji 

aji < 0 JEB' 

This follows from 

JEB' . 

And as 

x + L'l.x = B- 1(b + L'l.b) , 

we get 

JEB' 

from which the above follows. 
Now, for the change in Xi' we directly have 

j ¢ B' 

The change in F is given by 

L'l.F = I Cj L'l.Xj = I Cja~i L'l.b i 
JEB' JEB' 

Example: In The above illustrative numerical example, 

- -32 
L'l.b4 = -- = 53.33 

-0.6 

L'l.b4 = max --, ~ = -63.33 [ -112 -38J 
- 0.4 0.6 
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Variation in aij 

Case I: j E B', i.e. Xj is a basis variable in the final tableau. 

a) The maximum possible change in aij without necessitating a change of the basis 
in the fmal tableau is given by 

where the first term in Aaij is evaluated for all k E B', satisfying the relation 
ak;Xj > max [0, aj;xk] while the second term for all I¢; B' satisfies the relation 
ziajl < min [0, w;aj;J. Likewise, for~aij' the inequality is reversed and the maxi­

mum is replaced by a minimum. 
b) For a change in aij satisfying the relation 

the optimal change required in the values of the variables is given by 

{ 
- Aaija~ix j 

, ' 
AXk = 1 + AaiPji 

0, 

k E B' 

k ¢B' 

c) The change in the value of F is given by 

To prove the points a, band c, we write the matrix B of the base vectors, subject 
to perturbations Aaij in the element aij' in the form 

B= B+ AaljE 

= B(I + B- 1 AaijE) 

where E is an m x m matrix with eij = 1 and zero otherwise. Hence 

B- 1 = (I + B-1 AaijE)-l B-1 

Aa·· = B-1 _ IJ B-1E B- 1 
1 + AaijOj; 

This last expression is a substitute for the expansion in Sect. 1.4, in the case of 
perturbation in one element only (see exercise 5.1). And as 
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it follows that 

kEB' 

which proves point b. To prove point c, write 

I1F = L Ck I1xk 
kEB' 

-l1aijz;xj 

1 + l1aijaJi 

Lastly, to prove point a, consider the change in WI as 

{
O, 

I1w; = , L ck l1akl ' 
kEB' 

IE B' 

l¢ B' 

_" (-l1aija~iaJI) 
- i..J Ck J , 

kEB' 1 + l1aijaji 

-l1aijz;aj, 

I + l1aiPJi' 

I ¢ B' 

from which point a follows, when we use 

W; + I1w; ~ ° 
Case II: j ¢ B', i.e. Xj is not a basis variable in the final tableau. 

a) The maximum possible change in a;j' without necessitating a change in the basis 
is given by 

where 

{

-OO 

l1a .. = -w,' 
_IJ j 

--, 
z~ 

I 

{
OO' 

l1a .. = -w'. 
IJ J -,-, 

Zi 
Z;> ° 

b) For a change in aij within the above limits, we have 

I1x; = ° 
i.e. the solution is optimal. 
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c) For a change in aij within the limits indicated above, the change in F is given by 

To prove assertion a, we consider 

and since 

the proof is complete if we take wj + L1wj ~ O. Assertions band c are trivial. 

Example: In the illustrative example above, suppose L1a42 = -0.5. From a in 
case I, there are no rows or columns satisfying the conditions for evaluating the first 
two terms, and we get ~a42 = -00. As for the optimal change in Xk, k E B', we have 

L1x = -(-0.5) (0.4) (32) 
3 1 + (-0.5) (-0.6) 

4.9 

L1x = -(-0.5) (-0.6) (32) = -7.4 
2 1 + (-0.5) (-0.6) 

L1x = -(-0.5) (0.6) (32) 7.4 
6 1 + (-0.5) (-0.6) 

Likewise, the change in F is given by 

L1F = -(-0.5)(-2)(32) = -24.6 
1 + (-0.5) (-0.6) 

Suppose instead" that we wish to determine the maximum change allowed in a41 to 
preserve the basis. Applying algorithm a in case II, we obtain 

-2 
L1a = -- =-1 
- 41 -2 

with no change in x3 ' x2 ' X6 or F. 

Variation in Xj optimal 

Suppose, after we have computed the optimal solution, a variable xk is 
allowed to vary. The second question Shetty (1959a) asked was: what is the change 
required in the other Xj,j = 1, ... , k, ... , n, so that the increase in Fbe minimum? 
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Case I: k ¢ B', i.e. Xk is not a basis variable in the final tableau. 

a) The maximum possible change in Xk' without changing the basis in the final 
tableau, is given by: 

where 

- . [Xi 
AXk = mm -, ' 

a ik 

i E B', 

Note that 4Xk = 0 since.Xfc--=7 0, k ¢ B' 
b) For a change in xk within the limits given above, in order for the increase to be 

minimum, the optimal change in the values of the variables is given by: 

i E B' 

i ¢ B', 

i=k 

c) The corresponding change in F is given by: 

To prove the above assertions, we first note that for the change in F to be 
minimum, one must have Ab; = O. Hence, we have 

and assertion a follows, by imposing that Xi + AXi ~ O. Assertion b is trivial. As 
for assertion c, we have that 

Case II: i E B', i.e. Xi is a basis variable in the final tableau. 

a) A change in Xi' i E B' will require a maximum possible change in xl' IE B', such 
that 

i E B', 

i E B', 
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b) For a change in XI within the limits indicated above, in order for the change 
in I1F to be minimum, the change required in the values of the variables is 
given by: 

--, ' 
alk 

0, 

a;k AXI 

a~k 

i = k 

i 'fiB', 

i eB' 

c) The corresponding change in AF is given by: 

To prove the above assertions, we note that since F depends only on ci ' i e B', a 
change in Xi necessitates changes in xl' Ie B'. Therefore, from 

AXi + ail, AXk = 0 , 

AXI + all, AXk = 0 , 

we can deduce that 

i e B', 

leB' , 

k¢B' 

k¢B' 

And from Xi + AXi ;;;; 0, assertion a follows, so does assertion b. As for assertion c, 
we have 

AF = L ciAxi = L - cia;kAxk 
iEB' iEB' 

Example: suppose in the illustrative example above, that Ax! = 10, then 

AX3 = -4 

AX2 = -14 

AX6 = 14 

Also 

I1F = -(-2) (10) = 20 



5.4 Interval Programming 191 

i.e. F will increase by 20 units. On the other hand, if x2 must be incremented by 18, 
we must then have 

-18 
dx =--= 30 

4 -0.6 

0.4 x 18 
Ax = = -12 

3 -0.6 

0.6 x 18 
dx = = -18 

6 -0.6 

with a corresponding increase in F equal to 

-2x 18 60 M= = 
-0.6 

This concludes our discussion of the problem of ranging in linear programming. 
Similar ideas to those of Shetty (1959a, 1959b) can be found in Courtillot (1960) 
though in a less systematic form. 

5.4 Interval Programming 

An interval linear programming problem is defined as 

subject to the condition 

A vector x satisfying the above inequalities is called a feasible solution to the 
linear programming problem. If max cT x is also finite, then x is optimal and the 
problem is.termed bo~nded. 

Many practical problems can be formulated in this fashion. For example, the 
problem discussed in Sect. 2.7 can be treated using interval linear programming. 
Many other problems fall under this same category as well. In the literature, we find 
applications to chemicals manufacturing, etc .... 

Although interval linear programming can be performed using solely the standard 
simplex, and this by increasing the number of inequalities, such a transformation will 
however significantly increase the effective size of the problem. Ben-Israel and 
Charnes (1968) were for their part able to express explicitly the optimal solution x 
in terms of A, b + and b -. They also showed that F is bounded if c is orthogonal to 
N(A), which is the nullity of A. To prove the authors' proposition, the inequalities 
b - ~ Ax ~ b + are concisely written in the form 

Ax = b, 



192 5. Sensitivity in Linear Programming 

Hence it follows that 

U E N(A) , 

where Ai is a generalized inverse of A satisfying AAiA = A (see Sect. 4.1). The above 
solution exists only if the equations are consistent, i.e. 

(cf. Sect. 2.6). Hence if A is of full row rank, i.e. if r(A) = m, then AAi = I, 
and the above condition is guaranteed. This is the case investigated by Ben-Israel 
and Charnes (1968). Furthermore, the objective function F becomes 

F= eTx 

= eT Aib + eT u , U E N(A) 

Then it follows that, for F to be finite, one must have 

which is the authors' first result. Next, to maximize F, one must choose among the 
extreme values of [b-, b+] those which yield a maximum F when premultiplied by 
eT Ai. This is achieved by observing the signs of eTa}, where a} is the ph column 
of Ai;} = 1, ... , m. Hence by associating similar signs in [b-, b+] and eTa}, one can 
maximise. F. Likewise, associating opposite signs minimizes F. Therefore, for a 
maximum interval linear programming problem, we obtain the optimal solution XO in 
the form 

XO = ~ a~bj + ~ a~b; + ~ a~[O"jb; + (l - 0") bj] + u, 
J J J 

where I, Land L are summations performed over} on negative, positive and 
- + ° 

zero values of eTa} respectively and 0 ~ O"j ~ 1. 
The above results are illustrated in the following simple example 

maxx, maxy, 

subject to the conditions 

x+y~5 

x+y~lO 

y~x 

y~x+3 

i.e. 

minx, miny 
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and 

l~ -~J . 2 2 
A'= 

1 1 
- -
2 2 

To maximize x, we have that 

-~J [[5, 10J] = 5 + 0=5 
1 [0, 3J 

2 

As for the maximization of y, we have that 

- --
2 2 5, 10 3 13 [1 I] 

FO = max cTx = [0 IJ [[ J] = 5 + - = -
1 1 [0, 3J 2 2 
- -
2 2 

Likewise, to minimize x, we have that 

- --
2 2 5, 10 5 3 

FO = min cT x = [1 OJ [[ J] = - - - = 1 [1 IJ 
1 1 [0, 3J 2 2 
- -
2 2 

And lastly, to minimize y, we have that 

Fo - • T - [0 IJ [~ - ~l [[5, lOJ] - 5 0_ 5 -mmcx- _-+ _-
I 1 [0, 3J 2 2 
- -
2 2 

The above method is valid if A is of full row rank. If r(A) < m, then the con­
sistency condition of the equations must be checked out first, to make sure that for 
all b E [b - , b +], one has 

The problem becomes more complicated if m > n, for although x can be written in 
the form 

U E N(A) 
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Ai satisfying AAiA = A and (AAif = AAi (since x minimizes the quantity IIAx - bll 
in the least-squares sense yielding AT Ax = ATb, Vb) still such a value of x does not in 
general satisfy the above consistency condition. Robers and Ben-Israel (1970) suggest­
ed instead that the interval programming problem be written in the form 

max cT x 

subject to d- ~ Fx ~ d+ 

g-~hx~g+ 

where F is of full row rank, beginning with the simple case where h is a row 
vector, and ending with the general case where h is assumed to be different. 
Similar approaches can also be found in Charnes, Granot and Phillips (1977) 
and also Charnes, Granot and Granot (1977). Lata and Mittal (1976) extended Ben­
Israel and Robers technique to the case when the objective function is given in the 
,linear fractional form (c T x + co)/(jT x + do). Here, we will limit ourselves to the 
above simple case, assuming that Fis nonsingular as well in order to give the reader an 
idea about one of the approaches. 

First, a transformation is sought in the form 

Fx = z 

whereby the interval programming problem is reduced to the following one 

subject to d- ~ z ~ d+ 

g- ~ hF-1z ~ g+ 

z is therefore a feasible solution for the reduced problem, if the inequalities are 
satisfied. These inequalities, one should note, replace the condition for consistency 
mentioned before. To visualize this equivalence, write 

A = [-r-], b = [-~-J 
Hence 

implies that 

hF-ld~ [g-,g+] 

dE [d -, d +] 

or that 
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where 

Now the maximum value for cTF- 1z is obtained by observing as before the signs 
of (cTF- 1\. The optimal solution ZO is therefore given by 

(eTF- 1)i > 0 

(eT F- 1)i < 0 

(CTp-1)i = 0, 

this provided of course that ZO is feasible, i.e. g - ~ hF -1 z ~ g +. In case ZO is not 
feasible, say 

then choose ZO = z*, where z* satisfies 

To do this efficiently, let 

~ = g+ - hF- 1zo 

be the amount by which the feasibility condition of ZO is violated. It is clear that the 
only components of z? which have to be changed in order to ensure feasibility, are 
indexed by 

i:l~i~r, 

Vi is called the marginal cost of moving towards feasibility. 
A simple example reproduced from Robers and Ben-Israel (1970) will now be used 

to visualize the above method: 

such that 

-9 ~ -3X1 + x2 ~ 9 

o ~ x2 ~ 8 

2 ~ Xl + x2 ~ 6 

We have 

F = [-3 IJ o 1 ' 

h = [1 1], 
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The reduced problem is 

such that 

and 

The optimal solution is 

z~ =-9 

z~ = 8 

It is however infeasible, since 

Calculate 

VI = (-1/3)/(-1/3) = 1 > 0 

v2 = (7/3)/(4/3) = 7/4> 0, 

Hence both z~ and z~ have to be changed. Now 

41 2 
1::.=6--=-7-

3 3' 

and z~ and z~ are changed by amounts (;1 and (;2 such that 

(;1 ( - f) + (;2 (~) ~ I::. = - 7 ~ 
But since VI < V2, a change in z~ has first to be sought, by which (;1 = 18, yielding 

5 
(;2 = - -. Hence 4 . 

z~ = -9 + 18 = 9 

o 5 27 
z = 8 -- =-

2 4 4 

and the optimal solution is therefore 
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Despite its being concerned specifically with the problem discussed in this section, 
interval programming may also be used in the treatment of linear programming 
problems where the cost coefficients are specified in interval form 

i = 1, ... ,n 

This class of problems falls in the category of multiparametric programming. They 
differ from the problems investigated in Sect. 5.3 in that multiple degrees of freedom 
are allowed when varying the objective function coefficients, or that in other 
words, as Steuer (1981) phrased it: it overcomes the one at a time, hold everything else 
constant situation. For problems of this type and their treatment, the reader may 
refer to Gal and Nedoma (1972) and also to Steuer (1976). 

However, if the range of ci falls within its decision region, the problem becomes an 
exercise in solving interval linear equations. In such case, one can consider the 
general case where A, band c are all given in interval form. Much more generally 
still, one can incorporate the effect of round-offs, see in this respect Stewart 
(1973). Hence for the problem 

n 

max L C{Xi 
i=1 

subject to 

definition of the basis matrix BI and its approximate mid-point inverse Yentails that 
(Moore (1979) p. 88) 

X{ = Xi + r[-I, 1], 

x! = 0 , 
Xi is a basic variable 

Xi is a nonbasic variable 

where X is an approximate solution of Bx = b, for some BE BI and b E bl where 
also 

r = 
II YII IIBlx - bIll 
1 - III - YBIII 

The bound for Xl can be further sharpened if w(AI) and w(bl ) are small. One can 
call Xl an initial ZI(O) and iterate, as in Sect. 3.7, using 

k = 1,2, ... 

yielding a nested sequence that contains the interval solution of the linear 
programming problem. For problems of solvability in interval linear programming, 
the reader is referred to Rohn (1981 b). 
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5.5 Programming Under Uncertainty 

In many practical applications, the coefficients in a linear programming problem 
are random. For instance, price fluctuations of commodities assume a certain distri­
bution around some mean or expected value. It is therefore natural to attribute to 
errors an underlying probabilistic distribution. Mandasky (1962) classified the 
solution methods of linear programming under uncertainty under three different 
titles: the expected value solution, the fat solution and the slack solution. 

In the expected value solution, the stochastic linear programming in which the 
data are random is transformed into a non-stochastic problem by replacing the data 
by their respective expected values. As an example, consider in a diet problem that 
Xj is the quantity purchased of the jth food, Pj its price per unit of weight, aij the 
quantity of the i th nutrient contained in a unit of j, and bi the minimum quantity 
required to maintain a good health. Then if the price of Xj obeys a distribution P j with 
an expected price Pi' the linear programming becomes 

n 

min L p.x. 
j= 1 J J 

subject to the conditions 

j = 1, ... , n 
n 

L aijXj~ bi' 
j=l 

i = 1, ... , m 

Hence, in the expected value solution, the expected prices are used in place of the 
distribution of prices, with the usual method of solution carried out. In the sequel, we 
shall denote the expected or mean value E(x) for any distribution functionf(x) of a 
random element x. In other words, we have 

E(x) = f xf(x) dx 
xl 

where the integration is carried out over the interval ~ = [,K, x] which is the range 
of variation of x. Xl provides the domain of uncertainty of x and, according to 
Dempster (1969), a support for x, or supp x. 

In fact, the above mean or center form of x is also suitable for solving the linear 
equations Ax = b, when A and b are random. Hansen's method for handling interval 
equations (cf. Sect. 2.3 and Sect. 3.7) can be formulated as 

X(k + 1) = {I - BE(A )} E(~) + BE(b) 

where B is an approximate inverse of A. 
However, the expected value solution has its drawbacks. For the above linear 

programming problem, if F(A, b, c) is the optimal value of F, then 

E{F(A, b, cn "# F{E(A), E(b), E(cn 
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in general. Hence, although the expected value solution provides a useful reference 
point, especially when the data scatter is small, it may as well lead to erroneous 
results in instances where the uncertainty is significant. Hanson (1960) provides a 
simple example, with only A random, wherein due to constraints conditioning a small 
variation in the parameters leads to an underestimation of E(l') by l', by more than 
30%. 

Another drawback triggered by large uncertainties in the data is that E(l') may not 
be finite. To visualize this, recall that each optimal solution X' corresponds to a 
range of parameter values contained in the so-called characteristic region (see 
Sect. 5.3) or decision region, according to Bereanu (1967).For parameter variation 
within the klh decision region ilk' Xk remains optimal. The interiors of the decision 
regions are disjoint, and their union, il = U ilk' is a convex closed set of Rn. Hence 

k 

whilst each parameter 0( ranges over its support 0(1, the optimal solution X' changes 
from one vertex to the other as we pass through many decision regions. We can 
therefore concll!de that, for E(l') to be finite, the probability that 0( is contained 
entirely in all decision regions must be equal to unity, i.e. 

Pr{supp 0( E il} = 1 

This is nonetheless not all what there is to it. If x* minimizes E(cT ) x subject to 
x ~ 0 and E(A)x ~ E(b), it does not necessarily satisfy the condition Pr(Ax* ~ b) 
= 1. x* is then termed not-permanently feasible. Furthermore, although x* may 
be feasible, the dual programming problem may not be optimized by y*. Rather, 
both vectors x* and y* are feasible (and hence optimal) expected value solutions of the 
primal and dual problems if the first m elements of the vector Qz are nonnegative 
(see Mandasky (1962». z is the vector of the optimal strategy for the matrix game 
E(Q), where Q is the pay-off matrix 

A 

o 

For a proof of the equivalence between game theory and linear programming, 
the reader may refer to an early paper by Dantzig (1951). 

However, if the uncertainties in the data are small, the problem becomes 
much easier. A first approach to the general distribution problem is to assume that 
the support of the random vector formed from A, band c lies in one single decision 
region. Such an assumption is convenient for carrying out a sensitivity analysis for 
small errors. Such an approach was first adopted by Babbar (1955) who expressed 
the optimal random vector XO in terms of random determinants using Cramer's rule, 
then approximating the distribution of these determinants by normal distributions 
(see Sect. 5.6). A more systematic and direct approach was developed by Pn::kopa 
(1966) who expanded l'(A, b, c) around E(l') using Taylor's series when E(A), E(b) 
and E(c) belong to a decision region. It then follows from Sect. 5.2 that 

pO - E(Fo) ~ -y*(B - E(B» x* + (c - E(c)f x* + (b - E(b)f y* 

for small random distribution around the expected value solution. 
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In the fat solution method, the random elements are replaced by pessimistic 
estimates of their values. This method is usually used when the expected value 
solution has a high degree of infeasibility. Hence, by postulating a pessimistic (A, b) 
and solving the non-stochastic problem, we may obtain the degree of feasibility 
required. A vital question: how to determine appropriate pessimistic values for the 
random elements, so that XO will be optimal and permanently feasible? 

We first note that for each (A, b), the values of x that satisfy Ax ~ b, x ~ 0 form 
a convex polyhedron. The set of permanently feasible x's is formed by the intersection 
of these polyhedra; it is also a convex set. Hence, by indexing the possible 
values of (A, b) as (A (r), b(r)); r = 1, ... , R, the permanently feasible values of x satisfy 
x ~ 0, A (r)x ~ b(rl, r = 1, ... , R. The solution of the stochastic programme is then 
an x that minimizes E(cl x subject to the conditions x ~ 0 and A(r)x ~ b(r), 
r = 1, ... , R. Instead, if (A, b) has a continuous distribution it can be transformed 
into the above discrete one by sampling over its support (AI, bI). However, if only b is 
random, then Ax ~ b, x ~ o define a subset of the set of permanently feasible x's. Here 
b is the vector of which the 11h coordinate is the supremum of the i th coordinate of the 
possible vector b. 

Still, both the fat and expected value solutions suffer from serious drawbacks. 
In the fat solution, the random variations in the elements are ignored, while we 
provide plenty of fat in the deterministic version of the problem, with the hope 
that the uncertainty will be completely absorbed. But this usually leads to results 
that are far from being optimal. In the expected value solution, although results do 
not suffer from such inaccuracies, the solution obtained may be far from being 
feasible. The slack solution, on the contrary, is always feasible, and handles the 
inherent uncertainty at the same time. 

The slack solution, also called the two-stage solution originated in the context 
of planning production according to a varying demand. The term "two-stage solution" 
is due to its involving a decision x to be made first, after which the random elements 
are observed and a second decision y is made. Note that the quantities of 
activities x in the first stage are the only ones to be determined, while those of the 
second stage yare determined later. According to Dantzig (1955), the set of 
activities is called complete, in the sense that whatever choice of activities x is made, 
there is always a possibility of choosing y. Hence, it is not possible, as Dantzig 
concluded, to get in a position where the programming problem admits no solution. 
To illustrate what a slack solution means, we recall the author's very example: a 
factory has 100 items on hand which may be shipped to an outlet at the cost of 
$ 1.00 a piece to meet an uncertain demand d. If the supply exceeds the demand, 
the unused stock will have no value. But suppose the demand is larger, then in order 
to meet the unsatisfied demand, the price could be raised locally at $ 2.00 a piece. 
In this case, the equations would look like: 

100 = Xl + x2 

d = Xl + Yl - Y2 

F = Xl + 2Yl 



where 

Xl = number of pieces shipped 
x2 = number of pieces in stock 
d = demand (yet unknown) 
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Y l = number of pieces purchased on the open market 
Y 2 = variable denoting the excess of supply over demand 

Note that X2 + Y2 can be considered of no value or written-off at some very reduced 
price at a later stage. In the automobile market, for instance, the past year's models 
are sold rather cheap. In the coffee market, excess is always burnt. Note that this 
problem always admits a solution under an uncertain demand d. The reason is that 
Y l andY2 have opposite signs, whence the slacks are free to vary with a varying demand. 
After Xl is determined from the first stage, Yl and Y2 are calculated, i.e. allocations 
in the first stage are. made to meet an uncertain demand occurring in the second 
stage. 

In the above simple problem, we had only one product. But, in general, we 
have to assign various resources Xij to several destinations}, i being the number of 
different resources. Let also bij represent the number of units of demand at 
destination} that can be satisfied by one unit of resource i. If U j represents the total 
amount of the resources shipped at destination}, Vj the shortage of supply and Sj 

the excess of supply, then 
First stage: 

n 

I Xij = a i 
j= 1 

m 

I bijxij = Uj 
i=l 

Second stage: 

Total cost: 

m n n 

} = 1, ... , n 

F = I I CijXij + I !Y.jV j 
i=l j=l j=l 

The problem here is that of minimizing F which is composed of two parts: the 
costs of assigning the resources to the destinations as well as the costs (i.e. lost 
revenues) incurred because of the failure of the total amounts up} = 1, .. , , n to meet 
the unknown demands dj ,} = 1, ... , n. Note that F depends linearly on xij and vp 
which in turn depend on uj and dj' The problem is usually set so as to minimize E(F). 
The latter is a convex function in uj (cf. Dantzig (1955)). Unfortunately, it may also 
be nonlinear, thus impairing the use of linear programming. But in many practical 
problems the objective function can be represented by the sum of separable convex 
functions, case in which a linear approximation can be carried out (cf. Charnes and 
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Lemke (1954) and Dantzig (1955)). In case the demand function is of discrete 
distribution, no approximation is required (cf. Elmaghraby (1959)). For further 
reading on the subject and related topics, the reader may refer to Wets (1964, 
1965a, 1965b). 

The two-stage problem in linear programming can be formulated in the following 
concise form due to Mandasky (1962), namely: 

Min E(cix + cJy) 

subject to Ax + By = b 

x,y ~ 0 

where A is a random m x n1 matrix of known distribution, B a known m x n2 matrix, 
b a random m-dimensional vector of known distribution and c1 and c2 are known cost 
coefficients of dimension n1 and n2 respectively. Note that By stands for y+ - y­
as before, y+ representing the excess demand with respect to supply and y- the 
excess of supply over the demand. Inotherwords,y+ = b-Axandy- = Oifb ~ Ax, 
whereas y- = Ax - b with y+ = 0 if Ax > b. This problem has always a feasible 
solution, since y + and y - are chosen freely from the algorithm. This is why we call x a 
decision vector and y a slack vector. Then the assumption that Ax + By = b is 
satisfied by (x, y) irrespective of (A, b) is equivalent to saying that after the 
decision has been made and the subsequent random event has been observed, one 
can always compensate with a slack y depending on x, A, Band b for inaccuracies in 
the decision. 

The two-stage problem in linear programming was introduced by Dantzig (1955) 
as a method for allocating different resources to an uncertain demand. The theory 
has since been proving useful in a variety of applications, starting from the classical 
problem of aircraft-routing allocation studied by Ferguson and Dantzig (1956) and 
ending with the planning of finance under uncertainty (see Kallberg et a1. (1982)). 

5.6 Distributions of Solution 

Except in very special cases, the solution of the system of linear random equations 
Ax = b, in which each of {au, bi, i = 1, ... , m,j = 1, ... , n} is a random variable with 
a given distribution, is difficult to obtain or describe. True, in regression analysis, A 
and b can be both random (usually b only is random), but x is assumed non-stochastic 
and drawn from the estimator x using confidence intervals pertaining to the 
sampling distribution. The philosophy behind regression methods is to achieve an 
average relationship for the population under study assuming already a form of this 
relation (be it a straight-line for the case of linear regression) where one seeks to 
determine this mean or average. The departure therefore from this relation is 
presupposed to be caused by errors in the measurements which have to be smoothed 
out using regression. Contrary to this point of view is the case in which this 
departure is considered to be due to the genuine variability in _ the material itself 
like in most physical and biological models. The reason is that the parameters 
involved in the mathematical equations describing the physical model are known 
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only as random variables. It would be interesting therefore to obtain the distribution 
of the solution to study further on their statistical properties. For the simple linear 
equations Ax = b discussed hereunder, the problem is to obtain-if possible-the 
distribution of x given the distribution of the elements of A and b. 

Although the problem looks simple, it is by no means trivial. Even if all 
random variables are independent, each component Xj is a ratio involving sums and 
products (from Cramer's rule). To find the density function of Xj' we need to 
determine therefore the density of each product, the density of each sum (the terms 
of the sum are not independent) and then the density of the ratios (again not 
independent). In principle, all this is straightforward but computationally it is not to 
the least simple. Approximate solutions can, however be found if the variances of all 
variables are small. Another attempt is to seek not densities but only moments. 

Among the early attempts to tackle the above problem was the one of Babbar 
(1955). The latter investigated the distribution of solutions to the linear equations 

(A + <5A) x = b + <5b 

where A and b are a constant matrix and a constant vector and are both known. 
c5A and <5b are respectively known matrix and vector of random errors having 

and 

E(<5bi) = 0, 

The problem therefore is to obtain approximate distributions for the variables 
xl' ... , xn • Babbar extended his analysis to the linear programming proble~ in 
which the vectors of A become the basis of the solution. Hence the objective 
function will reach an optimum of F = cT xopt' where cT = (c1 ' ••• , cn) is the cost 
coefficient vector. The latter can also be taken to be random with E(<5ci) = 0 and 
E(<5 2c) = ill;. 

Now, if A + <5A is nonsingular, in other words Pr[det (A + <5A) oF 0] = I, we 
have that 

det (A k + bAk ) 
X ------
k - det (A + <5A) , 

n 

F = I (Ck + bck) Xk 
k=1 

where Ak + <5Ak is equal to A + <5A except that the kth column is substituted for by 
b + bb. But we have to a first order approximation that 

n n n 

det (Ak + <5Ak) ~ det (Ak) + I <5biCik + I I <5aijC~j = N(xk) say 
i=1 i=1 j=1 

j,pk 
and 

n n 

det (A + <5A) ~ det (A) + I I c5aijCij = D(xk) say 
i= 1 j= 1 
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where Cij is the cofactor of the element aij and ct is the cofactor of aij in the matrix 
Ak (Ak is equal to A except that its k tb column is replaced by the vector b). It follows 
that the mean, variance and covariance of the above functions are 

n n n 

V[det(Ak + Ak)] ~ I utCfk + I I u~(C~l 
;=1 ;=1 j=1 

j*k 
E[det (A + <5A)] ~ det (A) 

n n 

V[det (A + <5A)] ~ I I utF~ 
;=1 j= 1 

and 

n n 

Cov [det (Ak + <5Ak), det (A + <5A)] ~ I I ufjcijc~j 
;= 1 j= 1 

Nk 

The reader interested in means of random determinants may also consult the short 
note by Bellman (1955). 

Our task focusses next on the distribution of xk knowing those of N(xk ) and 
D(xk). This can be accomplished using the joint distribution of the errors involved 
or by employing characteristic functions and inversion formulas. However if the errors 
are normally distributed, the problem becomes much easier. Babbar made use of a 
theorem provided by Geary in 1930 relating the distribution of a quotient of two 
normal variates to their means, variances and covariances. Geary showed that if N 
and D are normally distributed variables having respectively means, variances and 
covariance E(N), E(D), ~, ~ and UND, then the variable 

is normally distributed with mean zero and variance unity, where Z = NID, 
provided that E(D) > 3UD. Babbar used this theorem to show that the probability 
distribution of the quotient Z comes as 

1 (E(D) u~ - E(N) UND) + Z(E(N) u~ - E(D) UND) 
I(Z) dZ = -- 2 2 2 3/2 V2ll (UN - 2UNDZ + UDZ ) 

x exp ( - ~ (ZE(D) - E(N))2/U~ - 2UNDZ + U~Z2) dZ 

And by substituting respectively for E(N), E(D), at, ~ and UND by E[det (Ak 
+ <5Ak)], E[det (A + <5A)] etc., we obtain the distribution of Xk. Similar arguments can 
be brought up for evaluating the corresponding distribution of the optimal 
objective function F associated with the linear programming problem. For this, the 
reader is referred to Babbar's paper. The idea of approximating solutions of 
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equations using perturbation bounds when the variables are uncorrelated have 
been a great deal implemented in engineering, see for instance Papoulis (1966). 

Furthermore, Babbar investigated probability limits of the solution Xk in other 
words of the quotient Z = NjD, from which he obtained two limits of Z to lie 
between with a certain prescribed confidence level. The same idea of confidence 
limits can also be found in Kuperman (1971, Chap. 12). The latter further suggested a 
statistical ill-conditioned factor of the equations when being less than one-subject to 
some confidence limits-will ensure that the random variations in A will not bring 
det (A) to zero. In other words, a system of linear equations are said critically ill­
conditioned if the determinant of the coefficient matrix can become zero within the 
limits of the uncertainties in the coefficients (cf. Sect. 1.3). 

Since the early work of Babbar, the theory of random equations has attracted a 
great deal of interest among workers. A reasonably unified treatment regarding the 
operator equation 

A(w) x = b(w) 

where w is a random variable is provided by Bharucha-Reid (1964, 1979). Existence, 
uniqueness and measurability of the solution x are established and also some 
methods have been outlined. For example in Nashed and Engl (1979) the authors 
proposed a method of successive approximations like the steepest-descent method to 
minimize the quadratic index 

1 
J(w, x) = 21IA(w) x - b(w)ll~ 

especially suited to solve the least-squares problem when A has dimension m x n 
(m > n). By defining a sequence of random approximants XO(w), xl(w), ... according 
to the relation 

xn + lew) = Xn(W) - exll grad. of J(w, ~(w» 

in which exll is chosen to minimize J(w, x" + lew»~, i.e. 

Ilr"(wW 
ex"(w) = IIA(w) r"(w)11 2 

where ,new) = A*(w) A(w) x(w) - A*(w) b(w), x"(w) converges to the random 
solution of A(w) x = b(w) given by x(w) = A+(w) b(w). The authors further 
showed that the rate of convergence of the iterative scheme is geometric with ratio 
(~(w) - l)j(~(w) + 1) where k(w) = IIA(w)11 IIA+(w)11 is the pseudo-condition 
number of the operator A(w). For an outline of the method of steepest-descent as 
applied to solve singular linear operator equations, the reader is to consult Nashed 
(1970). And for a reading about gradient methods for solving linear operator 
equations, the paper of McCormick (1975) is recommended. 

Nake (1967) on the contrary followed a direct scheme to solve the linear system 
A(w) x + b(w) = 0 using a joint distribution function of the random variables 



206 5. Sensitivity in Linear Programming 

bl (W), ... ,bn(w), all (w), ... ,ann(w). If cP n, ,,2(z, Z) = cP n, niZl' ... ,zn' ZIP ... ,znn) is such 
function, then the distribution of the solution is given by the n-dimensional distribu­
tion function 

Though difficult generally to evaluate, the above integral can be dealt with under 
special cases like in Nake's thesis, when the variables are uncorrelated, A(w) is a 
triangular matrix and also assumes each a normal distribution. 

The above discussed methods whether direct or iterative remain far impractical 
as the reader must have already noticed. A very practical method to handle linear 
random operator equations is the experimental Monte Carlo method. If the elements 
of A(w) and b(w) are independent and assume each some distribution function over 
an interval, then by generating a sequence of random numbers inside these intervals to 
simulate the available distribution and solving each time for the vector x, one 
obtains after some large number of runs the set X of approximately all feasible 
solutions. It will be found that x(w) will assume a normal form whenever aij and 
bi independently do. The reader interested in Monte Carlo methods, in dealing with 
linear operator equations, is referred.to Hammersley and Handscomb (1964) and 
also Raj (1980). 

Summarizing the subject of sensitivity analysis in linear programming, as it was 
discussed in the foregoing chapters, we quote Rappaport's conclusion (Rappaport 
(1967». Sensitivity analysis has the following advantages: 

1. It helps to determine the responsiveness of the conclusions of an analysis to 
changes or errors in parameter values used in the model. 

2. It tests the responsiveness of model results to passive changes in parameter 
values, and thereby offers valuable information for appraising the relative risk 
among alternative courses of action. 

3. It provides systematic guidelines for allocating scarce organizational resources to 
data collection and data refinement activities. 

4. If the value of a decision is insensitive to estimated parameter variations, this 
determines a decision region in which the decision is valid. 

5. If the value of a decision is sensitive to estimated parameter variations, a 
statistical model can be developed to guide the information decision. 

Exercises 5 
1. Show that 

(A T)-1 -1 A-luvTA- l 
+ uv = A - -,:----,;;--,----;--

1 + vT A lU 

for any two vectors u and v. Hence, use the result to show that 

Aa .. 
(B + AaijE)-1 = B-1 - lJ , B-1 EB- l 

1 + AaiPji 

where E is a matrix with eij = 1 and zero otherwise; aji is the element U, i) in 
the final tableau. 



2. If in the problem 

subject to Xl, X2, X3 ~ 0 

3xI + X 2 + 4X3 :;:; 480 

4Xl + 2X2 + 3X3 :;:; 400 

x 2 :;:; 70 
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the optimal solution is x* = (112, 32, 38), find the range of the cost coefficients 
cl' c2 ' c3 so that x* will remain optimal. Then obtain the range of F = [E, F] 
within the decision regions of the cost coefficients as an interval function. 
Calculate also 8F/8cb 8F/cb3 and cF/8all , where all is the first entry in the base 
matrix. Obtain F(CI + eCI) where e is sufficiently small. 

3. In measurements are taken to determine the variables Xb ... , X n' where In > n, 
subject to Ax = b. A famous technique is to calculate the value of X which mini­
mizes IIAx - b II under some norm (least-squares fitting). Show that Ax :;:; b 
defines a convex set C in !t n and obtain the range of Xl which covers 
minimally the set C. Hint: use linear programming and maximize or minimize x, 
so that Ax :;:; b. Show that AXI ;2 b. 

4. Ifin the problem min F = Xl - 3x2 + 2x3 , subject to 

Xl' x2 ' X3 ~ 0 
3xl - x 2 + 2X3 :;:; 7 

2Xl - 4X2 :;:; 12 

-4Xl + 3xz + 8X3 :;:; 10 

each coefficient Cb Cz, C3 undergoes a perturbation of + 10%, each coefficient of 
A a perturbation of -20 % and each of those of b a perturbation of + 30 ~~, 
calculate the new optimal solution and the final objective function. Perform a 
sensitivity analysis with respect to the cost coefficients. 

5. Solve the interval problem 

subject to the conditions 

o :;:; Xl :;:; 4 

0:;:; X z :;:; 6 

3 ~ Xl + Xz ~ 1. 

6. Solve the interval problem 
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subject to the relations 

I ~ Xl + X2 ~ 3 

2 ~ X3 ~ 4 

Show that X = Aib + u, where u E N(A). Hence, obtain a relation between cl 

and Cz such that pO be finite; calculate pO 

7. Solve the interval problem 

ifO ~ Xl ~ 6 

° ~ x 2 ~ 8 
-9 ~ -3xl + Xz ~ 9 

2 ~ Xl +X2 ~ 6 

8. For the problem 

min (30 + 6t) Xl + (50 + 7t) X2 

subject to the conditions 

(14 + 2t) Xl + (4 + t) X2 ~ 14 + t 

(150 + 3t) Xl + (200 + 4t) X2 ~ 200 + 2t 

xl' x2 ~ ° 
obtain 

dx dP 
~~ and ~ at all t governed by t 2: 10 . 
dt dt -

9. Draw a similarity between the two problems 

a) Min cT x, with Ax ~ b , X ~ ° 
MaxbTy, with ATy ~ C, Y ~ ° 

b)Ax=b, with ATy=e, e=(O,O, ... ,O,ik,O, ... ,O) 

Show that 

for the first problem is equivalent to 

aX 
_k = -y.x. for the second problem. aa.. I ] 

I] 



10. If for the problem 

min 30Xl + 50xz 

subject to the conditions 

Xl' Xz ~ 0 

14xI + 4X2 ~ 14 

150x1 + 200x2 ~ 200 
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The term aZ2 becomes 200 + A, find the characteristic region of A for Xl' X 2 to 
remain optimal. 

11. In the above problem, all becomes 14 + /1, obtain the characteristic region in /1 
and A. And if A is restricted to the interval [0, 7], then define the interval values 
of /1 which corresJ3ond to as many as possible of the extreme points xo. 

12. Solve the linear interval programming problem 

min [1 ± 0.1] Xi - [3 ± 0.2] x2 + [2 ± 0.1] X3 

such that 

Xl' x2 ' X3 ~ 0 
3x1 - x2 + 2X3 ~ [7 ± 0.1] 

2Xl - [4± 0.1] x2 ~ 12 

-4XI + 3x2 + [8 ± 0.2] X3 ~ 10 . 
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