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Preface

The demands of the computer age with its “finite”” arithmetic dictate the need
for a structure which has come to be called interval analysis or later interval
mathematics. Since its introduction some twenty years ago the subject has
undergone rapid development. It is serving as an impetus for a quest for rigor in
numerical computations on machines. At the same time it has kindled an
interest on the part of mathematicians in developing the foundations of
numerical computation. .

Anyone using a computer, whether in physical sciences, economic modeling,
engineering design or whatever has surely inquired about the effect of rounding
error and propagated error due to uncertain initial data or uncertain values of
parameters in mathematical models. A standard question should be “what is
the error in my result?”” This book supplies techniques for keeping track
of errors. Algorithms are developed, and applied, for the machine computa-
tion of rigorous error bounds on approximate solutions. Computational
tests for machine convergence of iterative methods, existence and non-
existence of solutions for a variety of equations are obtained via interval
analysis.

Interval analysis is a new and growing branch of applied mathematics. 1t
is an approach to computing that treats an interval as a new kind of
number. Computations in properly rounded interval arithmetic produce
results which contain both ordinary machine arithmetic results and also
infinite precision arithmetic results. Thus, we have at the outset, a
completely general mechanism for bounding the accumulation of roundoff
error in any machine computation. If roundoff is the only error present,
then the widths of the interval results will go to zero as the length of the
machine word incteases.

An interval has a dual nature as both a number and a set of “‘real” numbers.
Many of the algorithms for interval methods make use of this duality and
combine set theoretic operations such as set intersection with arithmetic
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X PREFACE

operations. In a single interval computation, for a problem in which we allow
various coefficients and initial data to range independently over intervals of
values, an interval result will contain the entire set of possible values of the
solution. The ability to compute with sets of values in interval arithmetic
provides for some simple computational tests for existence, uniqueness, and
convergence. By operating with interval-valued functions and by extending
such concepts as integration and operators to interval-valued functions we can
construct upper and lower bounding functions to the solutions of operator
equations, such as boundary value problems.

Somewhat independently, efficient methods have been found for the recur-
sive generation of Taylor series coefficients. By combining interval methods
with Taylor series methods, we can compute upper and lower bounds to
solutions of differential equations even when the differential equations have
uncertain coefficients, which, along with the initial data, are known only to lie in
certain intervals.

Many of the methods for finding upper and lower bounds on solutions to
operator equations based on different inequalities will be seen to be special
cases of interval methods (see § 8.4).

The book is intended as a text and reference work for scientists and engineers
who, as sophisticated practitioners of the computing art, wish to know about
the errors in their results especially in those cases when data is uncertain or
poorly described. On the other hand there is material of interest to the applied
mathematician interested in new developments in and applications to algebra,
recursive function theory, set theory, differential and integral equations and
constructive analysis.

The material in this book can be and has been used for a one semester

senior—-graduate level course. It is accessible to a person with a standard -

undergraduate training in the mathematical sciences with some knowledge of
computer programming.

While the book is one in applied mathematics its orientation is definitely
toward computation with special attention paid to physical, engineering and
economic mathematical models. A special feature is the inclusion of A
Bibliography on Interval-Mathematics, by Fritz Bierbaum and Klaus-Peter
Schwiertz of Germany.

Since the appearance (1966) of the monograph Interval Analysis [57] (now
out of print) and its German translation (1969), the subject has undergone
remarkable development. The present monograph will help bring the reader
up to date on many of the developments of the subject which have appeared
during the past decade. It will serve as a guide to the current literature for those
who wish more details on a particular application than can be included in a brief
treatment.

Iam grateful to William F. Ames for inviting me to write this book and for his
helpful suggestions for revisions. I am indebted to Adena Spohn Moore for

PREFACE xi

helping me write chapter nine. I have benefited frpm discussions with many
colleagues, students, and friends—above all, Karl Nlckle. Some of theT research
on nonlinear systems was supported by the National Science Foundation under
Grants MCS76-83883 and MCS78-03824.

R. E. MOORE
University of Wisconsin
Madison, 1978



Chapter 1

Introduction

It is the purpose of this monograph to provide an account of some of the
principal methods and applications of interval analysis—a new, growing, and
fruitful branch of applied mathematics.

The basis for the new methods is an extension of the concept of a ‘“‘real”
number. In Chapter 2 we show that an interval of “real” numbers can be
thought of as a new kind of number, represented by a pair of “real” numbers,
namely its endpoints. We introduce an arithmetic—interval arithmetic—for
such numbers. When the endpoints of an interval are the same, we have a
“degenerate’’ interval—which we can identify with the ‘‘real”” number equal to
its identical endpoints. Thus, interval arithmetic includes ‘‘real” arithmetic as a
special case.

In practice, we cannot carry out ‘‘real’’ arithmetic anyway. We are confined
to approximate arithmetic of limited precision. We commit roundoff errors. By
properly rounding the endpoints of the machine-computed results of interval
arithmetic (as described in § 2.4), we can compute intervals containing results of
infinite precision; in other words we can find infervals containing the exact
“real” arithmetic results. We can compute arbitrarily narrow intervals contain-
ing exact real arithmetic results by carrying enough digits.

Even if we could solve a mathematical equation exactly, which we usually
cannot, we would still have only an approximate description of the behavior of
areal physical system which the mathematical equation is supposed to model.
For one thing, the constants in the mathematical model will usually be known
only approximately. In particular, if there are constants which are experi-
mentally determined by measurements, then there will be limited precision in
the numerical values assigned to the quantities. With interval methods, as
presented in this monograph, we will be able to compute bounds on the set of
solutions corresponding to intervals of possible values for the measured
quantities. “Although interval analysis is in a sense just a new language
for inequalities, it is a very powerful language and is one that has direct
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2 CHAPTER 1

applicability to the important problem of significance in large computations”,
(R. D. Richtmeyer, Math. Comput., 22 (1968), p- 221).

At the end of each chapter will be found notes pointing to specific references
and occasional comments. A notation such as (N 1) in the text refers to note 1
at the end of that chapter. Proceedings will be listed only once, with the name of
the editor. Individual papers will be referred to by page numbers. At least
seven hundred works have been written to date in some form or other on
interval mathematics (N 5). However, only a fraction of these are accessible
in readily available books or journals. Many are in the form of internal reports
of research institutes, doctoral dissertations, etc. and are not readily available.
In this monograph, references are confined, as much as possible, to the open
literature. Much of the literature is European due to the work and influence of
two of the early innovators in the field, F. Kriickeberg and K. Nickel, and their
colleagues and students.

Applications of interval methods which have been reported to date include
such diverse areas as mathematical programming (Chapter 7), operator equa-
tions (Chapter 8), geodetic computations (N 1), analysis of electrical circuits
(N 2), mathematical psychology (N 3), and the re-entry of an Apollo-type
spaceship into the earth’s atmosphere (N 4). Actually, the methods have
application to any computation whatever, at the very least to bound accumu-
lated roundoff error and propagated error in initial data.

Perhaps uncertainty in initial data would be a more accurate description for
many applications than ‘“‘error” in initial data. Much of the highly repetitive
computing in “production” runs carried out in applied mathematics involves
case studies of the behavior of mathematical models: parameter studies,
sensitivity analysis, design studies, effects of inaccurate measurements or
observational errors, etc. We carry out dozens, hundreds, or even thousands of-
runs with different numerical values for initial data and parameters in the
mathematical model. In many such situations, we could compute the quantities
of interest with a single interval computation, leading to a set of possible values
corresponding to allowable ranges for the parameters and initial data. As an
example, suppose we wish to know how much a particular real root of a

polynomial can change when we vary the coefficients by certain amounts. Say
we have found an approximate root r* for nominal values of the coefficients. If
we can find r; and r, such that r, < r* <r, and such that p(ri, C)<0 and p(rs,
C)>0, say, where p(r;, C) and p(r2, C) are intervals obtained from evaluating
the polynomial in interval arithmetic (§ 2.2) with coefficients lyingin an interval
vector C (§ 2.1), then we will have found that there is at least one root r* in the
interval [r;, r,] when the coefficients lie in C. Furthermore, a single interval
arithmetic evaluation of the polynomial can yield an interval containing the
range of values p(R, C) corresponding to any r in an interval R and any set of
coefficients in C. If the resulting interval does not contain zero, then there are
no roots in R for any such coefficients. Such ideas can be, and have been, used
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to compute upper and lower bounds on roots of polynomials. For instance, in
performing a cost-benefit analysis of a project, the World Bank measures the
project’s profitability by computing the rate-of-return pf a projected c':ost-
benefit stream. The rate-of-return is a root of a polynomial whose coefficients
are the projected cost-benefit stream. Interval methods have been used by the
World Bank to find upper and lower bounds on rates-of-return (N 6). See
Chapter 9.

Applications of interval methods to finding upper and lower bpunds to
solutions of operator equations (differential equations, integral equations, etc.)
are discussed in Chapter 8. In § 8.4 it is shown that certain interval methods are
generalizations of methods based on differential inequalities anq monotone
operators. On the other hand, there are computational metl.lods Wh.lCh- combm'e
interval techniques with those derived from the theory of differential inequali-
ties (§ 8.4). ' ‘

We are not suggesting that all computation should be carried out using
interval techniques, but only that interval methods provide anothqr set of tqols
in applied mathematics—tools which can be especially helpful in analyzing
computational error, verifying sufficient conditions for ex1sten9e and con-
vergence, constructing upper and lower bounds on sets of solutions, and in
providing natural stopping criteria for iterative methods. '

We can represent certain regions in n-dimensional Euc!ldean space,
specifically n-dimensional rectangles, by interval vectors, that is n-tqples of
intervals (X7, X5, - -, X,). By carrying out a finite sequence of mt'erval
arithmetic operations beginning with intervals X;, X5, -+, X,, we obtalp an
interval containing the range of values of the corresponding real rational
function when the real arguments xi, x,, - - -, X, vary independently over the
intervals X, X5, - - -, X,. .

We can find interval extensions of nonrational functions (functions wl_uch
are not rational), including all the elementary functions: expone_ntlals,
logarithms, trigonometric functions, etc. The class of functions express1b{e as
rational combination and compositions of arithmetic and elementary functions
contains most of the functions used in computation and in applied mathematics

(see § 4.4). A variety of techniques is available for refining upper and lower
bounds on ranges of values of functions (§ 4.4). We can, in various ways,
compute arbitrarily sharp upper and lower bounds on ranges of valuets.

By using interval arithmetic, interval-valued functions, integrals of interval-
valued functions (§ 4.5), etc., we can compute arbitrarily sharp upper and lower
bounds on exact solutions of many problems in applied mathematics. Current
research centers around studies of the most efficient ways to do this for
particular classes of problems.

Some of the interval algorithms are extensions of corresponding real
algorithms. Some are essentially different. For example, many int'erval
algorithms involve taking intersections of two or more intervals. There is no
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corresponding operation for real numbers. An interval number (Chapter 2) is
also a set. As a result, we can and do combine arithmetic with set theoretic
operations in interval algorithms.

Computationally verifiable sufficient conditions for the existence or non-
existence of a solution to a given problem in applied mathematics can be
formulated using interval methods (Chapter 5). At the same time, compu-
tationally verifiable sufficient conditions for the convergence of iterative
algorithms can be given using interval methods (Chapter 5).

An interesting and useful aspect of interval algorithms is that of finite
convergence (Chapter 4). If an algorithm produces a nested sequence of
intervals using exact interval computation, then it will converge in a finite
number of steps (to some interval) when the computations are carried out in
rounded interval arithmetic if each new iterate is intersected with the previous
one. In finite precision rounded interval computation such a procedure will
always reach a point beyond which all iterates are exactly equal. This gives us a
convenient stopping criterion for such interval algorithms (§ 4.3): we stop when
two iterates are exactly equal.

The two main objections, in the past, to the use of interval methods have
been: (1) the resulting bounds may be excessively pessimistic and (2) the
interval computations take too much extra time. We will discuss each of these
objections in turn.

It is one of the goals of this monograph to show that arbitrarily sharp bounds
on exact solutions for various types of equations can be obtained with interval
methods. Suppose, for example, that we can carry out, in rounded interval
arithmetic, the solution of a linear algebraic system using Gaussian elimination.
We will assume in this illustration, as is usually assumed, that the coefficients of
the linear system can be exactly represented by machine numbers. Suppose we
obtain an interval vector containing the solution vector (which exists, by the
way, if the interval procedure can be carried out!—see § 5.1), but that the
components of the resulting interval vector are wide—say having widths about
1.0. If we carry out the same computation again, but carry the equivalent of 8
more decimal digits (say “double precision” instead of “‘single precision’’), we
may well obtain an interval vector (containing the solution) whose components
have widths about 107, (See § 5.1 for an illustration of such an effect.) By
various techniques to be discussed in this monograph we can obtain arbitrarily
sharp bounds on exact solutions and even arbitrarily sharp bounds on sets of
solutions (corresponding to intervals of coefficients) to problems in applied
mathematics. In other words, there is no reason to accept interval results which
are not sufficiently narrow in width when we can improve the bounds by further
computation, except, possibly, the cost of such further computations. In short,
the first objection really can be refuted if we are willing to do enough
computation.

This brings us to the second objection, which is really the only one of the two
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that can be taken seriously. If rounded interval arithmetic is programmed on a
computer using subroutine or procedure callsin a “‘high level language” such‘as
FORTRAN or Algol, then a rounded interval arithmetic operation will require
much more CPU time for its execution than the corresponding hardware
machine arithmetic operation. On the other hand, computing machines being
built today have “writeable control stores” so that rounded interval arithmetic
can be put into the hardware, so to speak. We can microprogram rounded
interval arithmetic operations in the writeable control store so that they can
then be executed at speeds comparable to those of ordinary ‘‘hardware”
machine arithmetic. When this becomes common practice, the second objec-
tion will finally disappear, too! We will then be able to compute bounds on the
range of values of a function over an n-dimensional rectangle in about the same
CPU time required to obtain a single (approximate) value of the function. In
the meanwhile, the second objection may be a serious one for large problems
requiring extensive computation. For many problems, however, it will usuglly
be of no practical consequence whatever whether an important computation
requires a fraction of a second or several minutes for its completion on a
computer. The total cost will still be small. In such a case, interval methods can
provide a rigor in the computations (verification of the existence of a solu’flf)n
and guaranteed, rigorous error bounds on roundoff error, propagated initial
error, truncation error, etc.) which seems unattainable any other way. It will
often be worth the small extra cost. A major goal of current research in interval
analysis is that of finding efficient interval methods (see, for example, § 4.4). We
would like to find methods which are as fast as possible for computing rigorous
error bounds on approximate solutions. Further progress in this area can be
expected for some time to come.

If we can compute an interval [a, b] containing an exact solution x to some
problem, then we can take the midpoint, m =(a + b)/2, of the interval as an
approximation to x and we will have |x —m|=w/2, where w=b—a is the
width of the interval [a, b]. Thus, the computation of an interval containing an
exact solution provides at once both an approximation to the solution and error
bounds on the approximate solution.

In § 2.3 we discuss algebraic properties of interval arithmetic. It will be seen,
in § 2.3 and in § 3.2, that fundamental relations exist between the algebraic and
the set theoretic properties of interval numbers.

In Chapter 3 we discuss the finite evaluation of set valued mappings. Interval
valued functions are defined which are extensions of rational as well as
irrational real valued functions. A single evaluation of an interval extension
provides upper and lower bounds on the range of values of a real valued
function whose arguments may vary independently over intervals of possible
values.

In Chapter 4 it is shown how we may compute arbitrarily sharp upper and
lower bounds on the range of values of a function over an n-dimensional



6 CHAPTER 1

rectangle; in § 4.4 we investigate the question of the most efficient ways to
bound ranges of values.

Continuity for interval functions is defined, in § 4.1, in such a way that itis a
natural extension of continuity for real valued functions.

A general, set theoretic property of arbitrary mappings (the subset property)
is explained in § 3.2. It is seen (Chapters 3 and 4) that natural interval
extensions enjoy the related property which we call inclusion monotonicity, not
to be confused with monotonicity in the sense of an increasing real valued
function (which is to say, monotonicity with respect to the order relation =).
Inclusion monotonicity is defined with respect to the set-inclusion partial order
relation < ;the underlying ‘‘subset property’ simply says that, for an arbitrary
mapping f, if A and B are subsets of the domain of f and if A is a subset of B,
then the image of the subset A under the mapping f is contained in the image
of B. Many of the methods of interval analysis make use of this important
property.

“It used to be part of the folklore of numerical analysis that . . . derivatives
are difficult to evaluate . ..” (P. Henrici; see Chapter 3, (N 5)). We show, in
§ 3.4, that derivatives are not difficult to evaluate if we do it recursively and if
we store a certain array of intermediate results. While the method would be
cumbersome for hand computation, it is easy on a stored program computer.
As aresult, we can carry out successive Taylor series expansions efficiently for a
variety of purposes (quadrature, solution of initial value problems, etc.) with
remainder (in mean value form) computed using interval methods.

In § 3.5 we discuss the enclosure of irrational functions in polynomials with
interval coefficients. A technique is given for reducing the degree of the
resulting interval polynomial enclosure.

The concept of a Lipschitz interval extension is introduced in § 4.1. This is’

useful in later sections in tests for the existence of solutions to operator
equations. Many of the interval extensions we will use in computing have the
property.

In §4.5 we discuss the integration of interval valued functions of a real
variable, as well as interval methods for computing upper and lower bounds on
exact values of integrals of both real and interval valued functions. Formal
integration of interval polynomials is also defined.

In Chapter 5 we present computable tests for existence of solutions and
convergence of iterative methods for linear systems, nonlinear systems, and
operator equations in function spaces. Section 5.2 contains recent results for
finite systems of nonlinear equations.

An interval version of Newton’s method for a nonlinear equation in a single
variable is seen, in § 5.2, to possess especially remarkable convergence prop-
erties, particularly when carried out in extended interval arithmetic (in which
we allow unbounded intervals). This, too, can be carried out on a computer.

Operator equations (differential equations, integral equations, etc.) are
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considered in § 5.3 and in Chapter 8. We present interval methods for verifying
the existence of solutions and for constructing upper and lower bounding
functions.

In Chapter 6, we discuss a problem which is just beginning to receive some
attention, in spite of its long standing importance. Namely, the problem of
finding a safe starting point for an iterative method for solving a nonliqear
system of equations. We present an approach, based on interval computation,
using exclusion tests (nonexistence of a solution in a test region). An n-
dimensional interval bisection procedure is given, whose stopping criterion is the
satisfaction of computationally verifiable tests for existence of a solution in a
test region and convergence of a given iterative method from the test region (or
from an arbitrary point in the test region). This is a new area and research is still
in progress, looking for improved methods.

In Chapter 7, some applications of interval methods to mathematical pro-
gramming are discussed. Useful applications have been made in linear pro-
gramming (8§ 5.1), convex programming (§7.2), and general (nonconvex),
differentiable, nonlinear optimization.

The notes at the end of chapters and the references at the end of the
monograph will provide a useful guide to the current literature.

NOTES

See F. Hussain [35] and G. Schmitt [86].
See S. Skelboe {89].

See H. Ratschek [70, pp. 48-74].

See U. Marcowitz {53].

See F. Bierbaum and K.-P. Schwierz [8a].

6. P. Gutterman, Computing Activities Department, The World Bank, Washington, DC,
personal communication.
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Chapter 2

Finite Representations

2.1. Interval numbers, vectors, and matrices. By an interval we mean a closed
bounded set of ‘‘real’’ numbers

[a, b]l={x:a=x =b}.

We can also regard an interval as a number represented by the ordered pair of
its endpoints a and b; just as we represent a rational number, a/b, by an
ordered pair of integers and a complex number, x + iy, by an ordered pair of
real numbers. We will presently introduce arithmetic operations for interval
numbers. Thus, intervals have a dual nature, as we shall see, representing a set
of real numbers by a new kind of number.

We will denote intervals by capital letters. Furthermore, if X is an interval,
we will denote its endpoints by X and X. Thus, X =[X, X].

By an n-dimensional interval vector, we mean an ordered n -tuple of intervals
(X1, Xa, - - -, X,,). We will also denote interval vectors by capital letters. Thus,
if X is a two-dimensional interval vector, then X = (X, X>) for some intervals
X:=[X,, Xi] and X,=[X,, X,]. A two-dimensional interval vector also
represents a two-dimensional rectangle of points (x;, x;) such that X; = x; = X,
and X,=x,=X,. See Figure 2.1. We will not distinguish between the
degenerate interval [a, a], and the real number, a.

X2
X b _
X
Xof- -~ |
| i XI
X, X,
FIGURE 2.1
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10 CHAPTER 2

If the real number x is in the interval X, we will write x € X. Similarly, if
x =(x1, X2, ** * , x,) is a real vector and X = (X, X>, - - -, X,,) is an interval
vector, we will write xe X if x;e X, fori=1,2, -+, n.

We call two intervals equal if their corresponding endpoints are equal. Thus,
X=YifX=Yand X=Y.

The intersection of two intervals X and Y is empty, XNY = O, if either
X > Y or Y > X. Otherwise, the intersection of X and Y is again an interval

(2.1) XNY=[max (X, Y), min (X, Y)].

The intersection of two interval vectors is empty if the intersection of any of
their corresponding components is empty, otherwise, for X = (X, X3, - -, X,,)
and Y=(Y, Y, - -, Y, )wehave XNY=(XNYy, -, X,.NY,), whichis
again an interval vector.

If two intervals X and Y have nonempty intersection, their union,
XUY =[min (X, Y), max (X, Y)], is again an interval. The union of two
intersecting interval vectors is not, in general, an interval vector.

We can extend the transitive order relation, <, on the real line to intervals as
follows:

(2.2) X<Y ifandonlyif X<Y.

Another, extremely useful, transitive order relation for intervals is set
inclusion :

(2.3) XcY Y=X and X=Y.

X=X, ---,X,)and Y =(Y,,: ', Y,)areinterval vectors,wehave X c Y
f X;cY fori=1,2,---,n. B
We denote the width of an interval X =[X, X] by

(2.4 wX)=X-X.

Similarly, the width of an interval vector X =(X;, --
max (w(X1), - -+, w(X,)).
We define the absolute value of an interval X by

(2.5) |X|=max (X1, [X]).

if and only if

©, Xa) is w(X)=

Thus, |x|=|X]| for every x € X.
We will use the vector norm

(2.6) X1l = max (X3, - - -, [Xa])

for interval vectors X = (X4, : + -, X,).
It is useful to define the midpoint of an interval

2.7 mX)=(X+X)/2.

Similarly, if X is an interval vector, we write m(X) = (m(X1), - - -, m(X,)).
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An interval matrix is a matrix whose coefficients are intervals. If A is an
interval matrix with coefficients A; and if B is a matrix with real number
coefficients B; such that B;; € A;; for all i and j, then we write B € A. We will use
the matrix norm

(2.8) llAll=max ¥ |A;]
i

for an interval matrix A. This is an interval extension of the maximum row sum

norm for real matrices. Note that if B is any real matrix contained in an interval
matrix A, then ||B||=||A||. We can compute ||A|| using (2.8) and (2.5).
We will also use the notation

2.9) w(A)=max w(A;) (the width of the interval matrix A)
ij

and

(2.10) (m(A));=m(A;) (m(A) is the midpoint matrix in A).

The definition (2.10) means that we define a matrix m(A) with real coefficients
{(m(A)); chosen as the midpoints of the corresponding coefficients of the
interval matrix A. Clearly, m(A) € A.

2.2. Interval arithmetic. We can treat intervals X anq Y as nu_mbers, adding
them as follows. X+ Y =2, where Z=X+Y and Z =X + Y. Put another
way, we can add the inequalities

X=x=X and YsysY
to obtain X + Y =x +y =X + Y. Thus, we can compute the set
(2.11) X+Y={x+y:xeX,yeY}

Thus, the sum of two intervals is again an interval. It is the interval of sums of
real numbers, one from the first interval and the other from the second interval.
Similarly, we define the negative of an interval by

(2.12) -X=-[X, X]=[-X, -X]={-x: xe X}.
For the difference of two intervals, we form
(2.13) Y-X=Y+(-X)={y—x:xeX,ye Y}
More briefly, the rules for interval addition and subtraction are:
(2.14) [X. X]+[Y, Y]=[X+Y, X + Y]
(2.15) [X, X]-[Y, Y]=[X-Y, X-Y]

We can define the reciprocal of an interval as follows

(2.16) 1/X={1/x:xe X}.
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If X is an interval not containing the number 0, then
(2.17) 1/x=[1/X,1/X].

In other words, (2.17) yields (2.16) for X =[X, X] provided that either X >0
or X <0.

If X contains 0,so that X =0=X,thenxe X implies that 1/x =1/ X or (but
not and) 1/x =1/X. In this case the set (2.16) is unbounded and cannot be
represented as an interval whose endpoints are real numbers. (N 1).

For the product of two intervals, we define

(2.18) X -Y={xy:xeX, yeY}

It is not hard to see that X - Y is again an interval, whose endpoints can be
computed from

X - Y=min (XY, XY, XY, XY)

(2.19) _ o ——
X - Y=max (XY, XY, XY, XY).

By testing the signs of the endpoints of X and Y, we can reduce the formulas
(2.19) to nine special cases. In eight of these, only one real product is needed for
each end point of X - Y. The ninth case requires two real products for each
endpoint of X - Y.

(1) 0=X,0=Y:X-Y=XY,X Y=XY,
2) X<0<X,0sY:X Y=XV,X Y=XY,
(3) X=0,0=Y:X -Y=XY, X Y=XY,
4 0=X,Y<0<Y:X-Y=XY, X Y=XY,
(2200  (5) X=0,Y<0<Y:X-Y=XY, X Y=XY,
(6) 0=X,Y=0:X -Y=XY, X Y=XY,
(7) X<0<X,Y=0:X-Y=XY, X Y=XY,
(8) X=0,Y=0:X-Y=XY, X Y=XY,
(9) X<0<X, Y<0<Y: for this case, we have
X - Y=min (XY, XY)
X - Y=max (XY, XY).
For the quotient of two intervals, we define
(2.21) X/Y=X-1/Y)={x/y:xe X, ye Y}

Recall that 1/Y is defined by (2.16). If 0 is not contained in Y, then X/Y is
again an interval and its endpoints can be computed using (2.17) and (2. 19) or
(2.20). Thus, X/Y is an interval if Y>0or Y <0.
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For brevity, we will sometimes drop the dot notation for the product of two
intervals and simply write XY for the product of X and Y.

2.3. Algebraic properties of interval arithmetic. The following algebraic
properties of interval arithmetic are immediate consequences of the set
theoretic definitions of the interval arithmetic operations (2.11), (2.13), (2.18),

(2.21):
X+(Y+Z2)=(X+Y)+Z,
X(YZ)=(XY)Z,
X+Y=Y+X,
XY=YX

(2.22)

for any intervals X, Y, Z.
In addition and multiplication we have
0+X=X+0=2X, 0X=X0=0,
(2.23)
1X=X1=X

for any interval X.
Thus, addition and multiplication are associative and commutative.
However, the distributive law does not always hold. For example, we have

[1,2]-(1-1)=0;
whereas
[1,2]-1-[1,2]-1=[-1,1]#0.

Thus, X (Y +Z)=XY + XZ is not always true.
We do, however, always have the following algebraic property

(2.249) X(Y+Z) e XY +XZ.

We call this property subdistributivity. As can be seen, it is really a combination
of algebraic and set theoretic relations. (N 5).

In certain special cases, distributivity holds. Some particularly useful cases
are:

xX(Y+2Z)=xY +xZ for x real; Y, Z intervals,
X(Y+Z2)=XY+XZ if YZ>0.

(2.25)

Thus, we can distribute multiplication by a real number and we can distribute
multiplication by any interval through sums of intervals all of the same sign.

The properties (2.24) and (2.25) follow easily from the definitions of interval
arithmetic.
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With the identification of degenerate intervals and real numbers, interval
arithmetic is an extension of real arithmetic and reduces to ordinary real
arithmetic for intervals of zero width.

Note that X — X =0 and X/ X =1 only when X is of width zero. Otherwise,
X-X=[X-X,X-X]=w(X)[-1,1]; and X/X =[X/X, X/X] for 0<X;
and X/X =[X/X, X/X] for X <0. The cancellation law holds for interval
addition:

X+Z=Y+Z

implies X =Y.

By a symmetric interval, we mean an interval X such that X = —X. Thus,
X is symmetric if and only if m(X)=0. For a symmetric interval X, we
have | X|=w(X)/2 and X =|X|[—1, 1]. If X and Y are symmetric intervals,
then X +Y =X-Y =(X|+|YD[-1, 1]; furthermore, XY =|X||Y|[-1, 1].
If X, Y, and Z are symmetric intervals, then X(YxZ)=XY+XZ =
IXI(Y|+|ZD(-1, 1].

An arbitrary interval X can be written as the sum of a real number and a
symmetric interval. Thus,

(2.26) X=m+W, where m=m(X)and W=3w(X)[-1,1].
Put another way, we can write
(2.27) X =[X, X]1=(X+X)/2+ (X -X)/2)[-1,1].

If Y is asymmetric interval and X is any interval, then XY =|X|Y. It follows
that X(Y+Z)=XY +XZ if Y and Z are symmetric, for any interval X.
(N'2), (N 3), (N4), (N6).

2.4. Rounded interval arithmetic. Nearly all numerical computation is car-
ried out with “fixed-precision”, approximate arithmetic. We decide, usually in
advance of beginning a computation, how many digits (or bits) we are going to
carry and we truncate all intermediate and final results to that many digits. The
arithmetic hardware of computers is designed to carry out approximate arith-
meticin “fixed-precision”. Numbers are represented in the computer by strings
of bits of fixed, finite length. Most commonly, so-called floating point arith-
metic is used, in which numbers are represented in the computer by a string of
bits of fixed length, bob; - - - b, s fixed.

Such a string of bits (each b; is 0 or 1) is taken to represent a ““floating point™
number of the form m - 2°, where the ‘“mantissa” m, is represented by s, bits
and e is represented by s + 1 — s, bits. Here, e will be a signed integer, in some
allowed range, and m may be zero or a signed binary fraction with s, —1 bits
plus sign. It is possible to program a computer to carry out the operations of
interval arithmetic with appropriate rounding, when necessary, of left and right
computed endpoints, so that the machine computed interval result always
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contains the exact interval result, or else the computer indicates that it cannot
do so (in case of overflow, for instance, when the allowed range of exponents, e,
would be exceeded).

In some cases, this requires adding (or subtracting) a ‘‘low order bit”’ to (or
from) the right (or left) hand endpoint of a machine computed interval result.
This can be done in such a way that the machine computed interval result not
only contains the exact interval result, but the machine computed right end-
point is the smallest' machine number not less than the correct right endpoint
and the machine computed left endpoint is the largest machine number not
greater than the correct left endpoint. This is called ‘‘best possible” rounded
interval arithmetic. (N 9).

Computer realization of interval arithmetic can be accomplished in various
ways (N 10). Algol or FORTRAN compilers can be augmented so that a
variable of ‘‘interval type” is recognized and the appropriate arithmetic
operations are compiled for expressions involving that variable (N 8). This
can be accomplished either with subroutine or procedure calls to subprograms
written in Algol or FORTRAN or it can be accomplished by microprogramming
the computer in advance, so that interval arithmetic operations (properly
rounded) are defined at the machine language level.

The advantage of defining interval arithmetic on a computer via user
microprogrammable (writeable) control stores is one of efficiency. Subroutine
calls will be necessarily slow compared to hardware arithmetic. By use of
microprogramming, rounded interval arithmetic can be performed at about the
same speed as ordinary hardware arithmetic. There is an initial cost of
achieving such higher efficiency, namely the time required to produce the
required microprogrammed rounded interval arithmetic in the control store of
a particular machine. It is likely that this will be made easier in the coming
years.

Without any ‘‘system’ at all (subroutines, microprogramming or otherwise)
rounded interval arithmetic can be programmed for any specific application by
programming separately the computation of left and right endpoints of inter-
vals. To take the error in finite-precision computer arithmetic into account, all
that is necessary is to multlply positive right endpoints of computed results by a
factor of the form (1+27") for an appropriate integer f, depending on the
number s of “‘significant” bits s > ¢ carried in the mantissa of numbers for that
Particular machine representation, and to multiply negative left endpoints,
slmllarly, by (1+27) (N 7). For large enough s and 7, we can make rounded
interval arithmetic as close as we please to exact interval arithmetic.

A_ numerical example will illustrate the distinction between interval arith-
metic and rounded interval arithmetic.

T
With respect to the order relation =.
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Let X =[-.613-10"%, -.610-107?),
Y =[+.100- 10", +.300 - 10™'],
Z=X1+1/Y).

We compute Z first in exact interval arithmetic. We have

Z=XQ1+1/[1,3)
=X(1+[1/3,1))
=X[4/3,2]
=[-.1226-107", -.81333...-1072].

Next, we compute Z using rounded interval arithmetic based on signed three
decimal digit mantissas and floating point number representation. We have

1=[+.100-10"", +.100- 10™"],

1/Y <[+.333-10"° +.100- 10™"],

1+1/Y <[+.133-10"", +.200 - 10*'],

X[+.133-10"", +.200- 10" ]c[-.123- 107}, —.811 - 107°].

Each of the four numerical intervals on the right hand sides of the above
relations is the smallest (narrowest) interval representable in the chosen
number form containing the quantity on the left. The final result contains the
exact interval value of Z. It is not the narrowest interval of the chosen form
which contains the exact value of Z, because of the cumulative effect of
dropping digits beyond the third one after the decimal point. By carrying
enough digits we can come as close as we please to the exact interval arithmetic
results.

2.5. Functions, algorithms, computer programs. Finite representations of
functions are possible in a variety of ways. We can store and “look up”’ a finite
set of pairs of argument and function values. We can use piecewise-linear or
other interpolation procedures for intermediate values. We can program
formulas and algorithms for computing values in finite sets of computer words,
representing machine executable instructions for carrying out arithmetic and
search operations resulting in function values. In short, computer programs
provide a means for finite representations of functions. In particular, we can
write computer programs which use rounded interval arithmetic and which
operate with interval valued arguments and interval valued functions. In the
remaining chapters, we will study how this can be done for a variety of useful
purposes.
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NOTES

1. The definition and implementation of an arithmetic for intervals on the extended real line,
including unbounded intervals, has been reported by S. E. Laveuve [70, pp. 236-245] based on
ideas of W. M. Kahan.

2. F. N. Ris introduces a number of real valued functions on intervals (in addition to m(X),
w(X), - - ) and discusses their use in analyzing interval algorithms [70, pp. 75-98].

3. An arithmetic for circular discs in the complex plane has been developed and applied to the
computation of complex zeros of polynomials and to the theory of continued fractions; see P.
Henrici [70, pp. 14-30], I. Gargantini and P. Henrici [17], G. Glatz {70, p. 205-214], I. Gargantini
[70, pp. 196-204], [16], [15a], N. Krier [44], K. Nickel [25, pp. 25-34], G. Alefeld and J.
Herzberger [1a), N. Krier and P. Spellucci [70, pp. 223-228].

4. A number of investigations have been undertaken concerning the possibilities for doing
arithmetic with probability distributions; see R. Ahmad [70, pp. 127-134], M. Dempster [70, pp.
107-127), K. Ecker and H. Ratschek [15].

5. For further discussion of distributivity in interval arithmetic; see H. Ratschek [79], O.
Spaniol [90].

6. Other types of arithmetic with sets in n dimensions have been considered (in particular for
ellipsoids and polytopes); see K. G. Guderley and C. L. Keller [22], L. W. Jackson [36], W. M.
Kahan [40], D. P. Davey and N. F. Stewart [12], N. F. Stewart [91].

7. For an example of the direct programming in FORTRAN of rounded interval arithmetic
operations, see R. E. Moore [59, p. 15].

8. A number of programs or programming systems for computing with rounded interval
arithmetic have been published. The most extensively developed of these are based on the
algorithmic language “‘triplex-Algol 60°’; see N. Apostolatos, U. Kulisch, R. Krawczyk, B. Lortz,
K. Nickel, and H.-W. Wippermann [4]. A triplex number is an ordered triple of machine numbers
[x, %, ] satisfying x = £ = x. Thus, [x, £]is an interval and £ is some real number in that interval; ¥ is
called the “‘main” value of the triplex number. For a discussion of some of the advantages of the
triplex representation of intervals, see K. Nickel [25, pp. 10-24]. For a realization of rounded
interval arithmetic on an arbitrary Algol 60 compiler; see H. Christ [9]. For computer realizations
based on FORTRAN subroutines, see J. M. Yohe [100]. The system for performing interval
computation in FORTRAN described by Yohe has been implemented on UNIVAC, CDC,
DEC, Honeywell, and IBM equipment. Triplex-Algol 60 has also been implemented on several
computers, including: Zuse Z 23, Electrologica X8, and UNIVAC 1108, see preface in K. Nickel
[70]. Many of the papers listed in the references contain Algol programs for interval algorithms.

9. Inarecent fundamental work, U. Kulisch has made a thorough study of the mathematical
?oundations of numerical computing, machine arithmetic, rounding procedures, and rounded
Interval arithmetic [48]. See also H. Apostolatos and U. Kulisch [5].

10. See J. M. Yohe [100] and also D. I. Good and R. L. London [18]; for an approach to error

arithmetic based on relative error, see F. W. J. Olver [73].



Chapter 3

Finite Evaluation

3.1. Setvalued mappings. Let M, and M, be arbitrary sets andlet g: M, > M,
be an arbitrary mapping (function) from M, into M,. Denote by S(M;) and
S (M) the families of subsets of M; and M, respectively. Following W. Strother
(N 1), we call the set-valued mapping, g: S(M,)-> S(M,),

(3.1) g(X)={g(x):xe X, X e S(M1)}
the united extension of g. We can also write

gX)= U {g)}
xeX

Thus, g(X) is the union in M, of all the sets containing a single element g(x) for
some x in X. Sometimes, g(X) is simply referred to as ‘‘the image under the
mapping g of the set X’’. We prefer the notation shown above to the commonly
used g(X) because we want to study g as a single valued mapping on S(M;)
with values in S(M,).

Now, even if g has a finite representation, say as a polynomial, and X has a
finite representation, say as an interval, we will still, in general, not have a finite
representation for g. We will not be able to compute, in a finite number of
arithmetic operations, the interval value g(X). (See Example following Corol-
lary 3.1: equation (3.7) and following paragraphs.)

On the other hand, there are some set valued mappings which do have finite
representations and which can be evaluated in a finite number of arithmetic
operations. This is the case, in particular, for rational interval functions.

The endpoint formulas (2.14), (2.15), (2.17), and (2.20) for the interval
arithmetic operations enable us to compute the united extensions of real
arithmetic functions for pairs of intervals as defined by (2.11), (2.13), (2.18),
and (2.21).

By a “rational interval function”, we mean a function whose interval values
are defined by a specific finite sequence of interval arithmetic operations. For

19
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example, consider the mapping F whose values are defined by
T,=[1,2] X,,

(3.2) T,=T+[0,1],
F(X1, X5) =T, Xs.

for intervals X, and Xs.

Here, F is a finitely represented mapping from the set of all pairs of intervals
(X1, X>) into the set of intervals. It can be looked at as a set valued mapping,
whose values are sets of real numbers, namely: closed bounded intervals of
real numbers. For this particular rational interval function, we will have
F(Xy, X5)=g((1,2], [0,1], X1, X;) where g(c1, c2, X1, x2) = (cux1+¢2) x2 is
real valued with real arguments. The formula G(X,, X,)=X,; X, defines
another rational interval function. Taken together, as the first and second
components of an interval vector mapping, F and G map two-dimensional
rectangles into two-dimensional rectangles. For instance, the interval vector
(X1, X2) = ([0, 1], [0, 1]) is mapped into the interval vector ([0, 3], [0, 1]). Not
all rational interval functions are united extensions of real functions. For
example, F(X) =X — X is not a united extension of any f(x), since F(x) = 0 for
all degenerate intervals x, but we do not have F(X) =0 for all X.

3.2. The subset property and inclusion monotonicity. Again, let g: M, > M,
be an arbitrary mapping, M, and M, arbitrary sets. The united extension,
g: S(M,)-> S(M,), has the subset property:

(3.3) X, YeS(M)withXcY implies Z(X)c g(Y).

The subset property (3.3) follows directly from the definition (3.1) of the united
extension.

It is important for many applications of interval computation that interval
extensions (§ 3.3), in addition to those which are united extensions of real
functions, have a similar property. We say that an interval valued function F of
the interval variables X, X5, - - -, X,, is inclusion monotonic if

}/l'th i=1’27".,n’
implies
(3'4) F(YI, Y29"" Yn)gF(X1’X2,“.1Xn)-

United extensions, which all have the subset property, are inclusion monotonic.
Since the interval arithmetic functions are united extensions of the real
arithmetic functions (+, —, -, /), we have the result that interval arithmetic is
inclusion monotonic:

Y. X, and ngXz
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implies
Yi+Y,2X,+X;,
3.5) Yi-Ye Xi—X,
Y, Y. X1 Xs,
Yi/ Y.< X1/ Xo.

From the transitivity of the partial order relation, <, it follows, by finite
induction, that rational interval functions are inclusion monotonic, as are natural
interval extensions of all the standard functions used in computing, (see § 3.3,
§ 4.4). With proper rounding procedures, rounded interval arithmetic operations
are also inclusion monotonic (N 2).

Not all interval valued functions, however, are inclusion monotonic. For
example, consider the interval function F defined by

F(X)=m(X)+3X —m(X)).

We have F([0,2)=1+3-1,1]=[33]; whereas F([0,1])=3+3[-3,3]=
4312 F([0,2])). This interval valued function does not arise as an interval
extension of a real valued function. Its restriction to real x is the identity

mapping.

3.3. Interval extensions. Let f be a real valued function of n real variables
X1,* **, X,. By an interval extension of f, we mean an interval valued function F
of n interval variables X, - - -, X,, with the property

(3.6) F(xy,- -, x,)=f(x1," -+, x,), forreal arguments.

Thus, an interval extension of f is an interval valued function which has real
values when the arguments are all real (degenerate intervals) and coincides
with f in this case.

_ THEOREM 3.1. If F is an inclusion monotonic interval extension of f, then
fXy, -, XS F(Xy, - -, Xa).

Proof. By the definition of an interval extension, f(xi,-:-,X,) =
F(xy,- -, x,). If F is inclusion monotonic, then the value of f is contained in
the interval F(X, - -, X,) for every (xq, - -+, x,) in (X1, - - -, X,).

There is never a unique interval extension of a given real function. For
instance, if F is an interval extension of f such that F(x) = f(x) for real x, then
Fi(X)=F(X)+ X — X defines another, different, interval extension of f.

Real rational functions of » real variables have natural interval extensions.
Given a rational expression in real variables, we can replace the real variables
by corresponding interval variables and replace the real arithmetic operations
by the corresponding interval arithmetic operations to obtain a rational
interval function which is a natural extension of the real rational function. On
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the other hand, two rational expressions which are equivalent in real arithmetic
may not be equivalent in interval arithmetic. They may give rise to two different
rational interval functions. For example, let f(x) = x(1—x)=x —x - x. For the
first expression, we obtain the interval extension F;(X)=X(1-X). For the
second, we obtain F,(X)=X—X - X. Now we have F,([0,1])=[0,1] (1—
[0, 1]) =[0, 1]; whereas F»([0, 1)) =[0, 1]-[0, 1] [0, 1]=[-1, 1].

Since rational interval functions are inclusion monotonic, we have the
following corollary to Theorem 3.1.

COROLLARY 3.1. If Fis a rational interval function and an interval extension
of f, then f(Xy, - - -, X,) €F(X1, - =, X.). In other words, an interval value of F
contains the range of values of the corresponding real function f (f is the “real
restriction’ of F) when the real arguments of f lie in the intervals shown.

Corollary 3.1 provides us with a means for the finite evaluation of upper and
lower bounds on the ranges of values of real rational functions over n
dimensional rectangles. For example, consider the polynomial

3.7 p(x)=1-5x +3x>.

Suppose we wish to know the range of values of p(x) when x is any number‘in
the interval [2, 3]. A natural interval extension of p is the interval polynomial

(3.8) P(X)=1-5X+3X-X - X.
Computing P([2, 3]), we obtain
P(2,3]) =1-5[2,3]+3(8,27]1=[-(3), 0].

Thus, we have found, by a finite sequence of arithmetic computations, th'g\} the
range of values of p(x) when x is in [2, 3] is contained in the interval [—73, 0].
Another natural extension we can use is as follows. Rewrite p(x) in the form

p(x)=1-x(5-x%/3),

which is equivalent in real arithmetic to the original form. A natural interval
extension of p(x) written in this form is

3.9) oX)=1-X(5-X-X/3).
Computing Q([2, 3]), we obtain
Q([2,3)=1-[2,31(5-[2,3]-[2,3)/3)
=1-[2,315-[5,3)
=1-[2,3]2, 5
=1-[4,11]
=[-10, -3].
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Thus, we have found a narrower interval which also contains the range of
values of p(x) for x in [2, 3]. _

The exact range of values for this p(x) for x in [2, 3)is [-% V5+1,—5] and
cannot be found exactly by any finite sequence of arithmetic operations
with rational numbers, since V5 is an irrational number. In the next chapter we
will discuss some interval methods for computing convergent sequences of
upper and lower bounds to exact ranges of values.

In the example above, we found upper and lower bounds on the range of
values of a polynomial by evaluating an interval polynomial using interval
arithmetic. The bounds we obtain depend on which interval extension we use.
Using Q(X) in (3.9) we obtained

-10=p(x)=-3 forall x in [2, 3]

for p(x) given by (3.7).

For polynomials, the nested form (sometimes called Horner’s scheme or
synthetic division), Ag+ X (A1 + X (A,+ - - + X(A,) - - *) isnever worse than
and usually better than the sum of powers A+ A X+A X -X+-:-+
A, X-X- --- -X, because of subdistributivity.

From the set theoretic definitions of interval arithmetic it follows that any
natural interval extension of a rational function in which each variable occurs
only once (if at all) and to the first power only will compute the exact range of
values providing that no division by an interval containing zero occurs.

We can construct inclusion monotonic interval extensions of other commonly
used functions, including all standard FORTRAN functions (§4.4).

For positive integer values of n, we define the powers of intervals by

(X", X"] if X>0o0rnisodd;
(3.10) X"=([X",X"] if X<0andn iseven,
[0,|X]|"] if 0e X and n is even.

We have X" = {x":x € X}. To take the limited precision of machine arithmetic
into account, we can treat X, X, and | X | as degenerate intervals and compute
X", X", and | X|in rounded interval arithmetic, using the appropriate endpoint
obtained in this way in the above formulas for X" in the various cases. Thus we
can compute, in each case, a machine interval containing the exact result.

_ For monotonic Increasing functions f(x) such as Jx, exp x, log, x we have
f(X)=[f(X), f(X)]. We could use the united extensions of such functions
except that we cannot usually compute the required endpoint value exactly.
However, we can extend the machine-computed endpoints outward in each
case by an amount just great enough to include the approximation error for
each such function. In this way we can compute, on the machine, intervals
containing the exact ranges of values. Monotonic decreasing functions can be
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treated in a similar way. Interval extensions constructed in this way, are
inclusion montonic.

For functions which are not monotonic (in the ordinary sense) such as sin x,
we can use other techniques to obtain appropriate interval extensions. This can
be done, for instance, for all standard FORTRAN functions (N 3). It can be
done in such a way that special properties of the functions are preserved by the
inclusion monotonic interval extensions as well. For example, we can ensure
that the interval extension we use for the sine function does not give values
outside the interval [—1, +1] by intersecting this interval with a computed
interval F(X) bounding the range of values of sin x for x in some interval X,
The resulting interval, F(X)N[—1, 1], will still be an inclusion monotonic
interval extension of sin x and will not have values outside [—1, 1].

For real valued functions defined in a “‘piece-wise’’ manner, we can construct
inclusion monotonic interval extensions as in the following illustration.
Suppose that f is defined by

pi(x) for x;=x<x,,

(3.11) f(x)={palx) for x,=x<xs,

p3(x) forxz=x=xs

And suppose we have interval extensions P;, P,, P; for pi, p2, p3. We can
construct an inclusion monotonic interval extension F for f as follows:

(3.12) F(X)=Pi(X N[x1, x2)) UP(X N[xz, x3)UP3(X N [x3, x4]).

In this way we can compute bounds on the range of values, for instance, of
spline functions when the argument x lies in an interval X.

3.4. Recursive evaluation of derivatives. Computer programs for the efficient
evaluation of Taylor series coefficients have been available for more than a
decade (N 4). The techniques used have evidently still not reached a wide
audience. One still sees, in publication after publication, statements to the
effect that “‘the direct use of Taylor series expansions, for the numerical
solution of the initial value problem in ordinary differential equations is not of
practical value because of the difficulty of obtaining Taylor coefficients’. The
exact opposite is true, if we use the right approach (N 5). (See also § 8.1)

The technique to be described here is not that of formula manipulation by
computer. We do not need to see formulas for successive Taylor coefficients in
order to be able to evaluate successive derivatives of a function at some point.
In fact, formulas, fully written out, for successive derivatives usually do grow in
complexity extremely fast; but they are not needed.

Instead, we can operate on a computer with an approach which amounts to
differentiating subroutines (or function subprograms). The result of differen-
tiating a program is another program. The execution of the derived program
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produces a value of the derivative of the function defined by the first program.
In fact, we can write a general purpose program which, when applied to a
function defined by a (say FORTRAN) program in a computer, will produce a
K'th derivative program for general K for that function. If we supply it with an
integer K and argument values, it will produce values of the derivatives (or
Taylor coefficients) up to order K of the given function at the given argument
values. This can be carried out either in machine arithmetic or in rounded
interval arithmetic (N 4). Partial derivatives can also be obtained in a similar
way (N 4).

It is useful to introduce the following notation. Suppose x(t) is analyticin ¢ in
some neighborhood of ¢,. We define

(x)o = x(t0),

(3.13) ‘ .

() =1/ kND(d"x/dt*)(to), k=1,2,---
Thus the notation (x), stands for the kth Taylor coefficient in the expansion of
x(t) about 1 =1,:

(3.14) x(r)=k§ ()l — o).
=0

For the finite Taylor series expansion with mean value form of remainder, we
have

N-1

x(t) = kgo(x)k(z— to) + (1= 10)",

(3.15)

If Ry is an interval extension of rx(s), so that rx(s) € Rx ([to, t]), for every s in

[#o, ], then for ¢ within the radius of convergence of the Taylor series (3.14) we
will have

N-1
(3.16) x(fe kgo(x)k(t— t0)* + Rn ([to, 1)t —1o)",

where the expression on the right hand side is an interval valued function
containing the Taylor series with remainder (3.15).
We will now show how to compute the real and interval values (x); and

Ry ([to, t]) for almost any function x which will ever appear in a computer
program.

From the definition (3.13) we find that
(3.17) x'(to))=(x)y andso (x)x=(1/k)((x)1)r-1.

This will be an important relation, because if we have a function x(t) defined by
a differential equation, for instance,

x'(t)=g(t, x(¢)) with a given x(to),
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then we can use (x)i=(1/k)(&)ik-1 recursively to compute the Taylor
coefficients for x(¢) about fo, provided—of course—that we can handle
g(t, x()). Similarly, (x)i = (2/(k(k = D(x)2)k-2-

Let u and v be analytic functions of 7 in some neighborhood of ¢ = t,. For
arithmetic functions of u and v we have:

(u+v) =Wk +®

(u—v) =W — ()

(3.18) () = T )0y

k
(u/v) = (1/0){(u)k —ji‘jl(v)i(u/v)k-/}.

The derivation of the formulas (3.18) is a simple exercise in elementary
calculus. . ' ' .
All the commonly used ‘“‘elementary” functions satisfy rqnonal Q1ﬁerent1al
equations. Some of these are second order differential equ?tlons, which we can
rewrite as a pair of first order differential equations. This, together with the
relations (3.17) enables us to derive recursion relations for the' kth Taylor
coefficients of elementary functions of an arbitrary analyt.ic funct19n u(t). For
example, we can derive, in this way, the following recursion relations:

(U= (1/u)k§(a —jla+1)/k)w)i—i(u®)ps
j=0

(€)= ki‘(l —j/k)e")i(u)i-j

i=0

k-1
(3.19) (loge u)x = (1/u)<(u)k - El(l —j/k)(u);(log. u)k—f)»
(sin u)x = (1/k)ki1 (j+ 1)(cos u)i—1-i(t)j+1,
i=0

(cos u)x = —(1/k)§,;(f+ 1)(sin u)i—1-(U)j+1.

The “chain rule”, df(u)/dt = f'(u)u'(?) is also useful in the course of deriving
such recursion relations. Similar recursion relations can be derived for bybef-
bolic functions, Bessel functions, and all the other commonly used functions in
applied mathematics. . _

Sometimes the rules simplify; for example, if u is a constant (mdepf:ndent of
1), then (uv)i = u(v)x because (u); = 0for j=1. As another example, ifu(t)=t
then (e“)x becomes (e')« =(1/k)(e")x—1 because (t)x-; =0 for j<k—1, and
(t)l =1.
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A general procedure for applying these rules to the computation of Taylor

coefficients of functions x(z) can be programmed to operate as follows.

1. Represent x(¢) (or x'(t) or x"(¢t) - - -) by a finite list of binary or unary
operations (e.g. Ts=T,+T,, Ty=e "3, etc.);

2. On aline-by-line basis, generate subprograms for Taylor coefficients for
each item in the list, using the recursion relation appropriate for the
operation in that item;

3. Organize the subprograms and the data handling so that the derived
program will accept initial values for N, to, x(o), (and x'(¢), x"(to), - - - if
required); the derived program will evaluate and store, in order, the first
Taylor coefficients of each item in the list, then the second Taylor
coefficient of each item in the list (which may require some of the stored
values of the first coefficients and initial data) etc., until the entire array of
coefficients has been computed; the process can be carried out either in
real computer arithmetic or in rounded interval arithmetic;

4. The list in step 1 above can be generated from FORTRAN (or other
programming language) subprogram description of x(z) (N 4).

Some examples will help to make the method clear. Consider the function

x(t) defined (when ¢, and x(zo) are given) by the differential equation

(3.20) x'()=x>+1.
We have the list

T1 =11
(3.21) T>=(x)o" (x)o,
(xh=T+T>.

Applying the recursion relations given above, we obtain

k

(T = X ()i,

i=0

k
(3.22) (T = X (x)j(X)k—p

i=0

(X1 = (T +(T2)i)/ (k +1).

Since (¢); =1 and (¢); =0 for j>1, the straightforward application of the
recursion relations (3.22) could be modified to recognize that (T;), =0 when
k z3. Even without any such simplification, the recursion relations (3.22)
suffice for the numerical evaluation of any number of Taylor coefficients (x)y,
k=1,2,- -, for the function x(¢). The total number of arithmetic operations
required to find (x), fork =1, 2, - - -, N not taking into account simplifications
possible because of zero terms is (from (3.21) and (3.22)): (N*+N—1)
additions, (N2+ N) multiplications, and (N — 1) divisions.
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The number of arithmetic operations to compute the kth Taylor coefficient
of any function expressible as a finite combination of rational, elementgry, and
composition functions grows at most linearly with k once the coefficients of
lower orders have been obtained and stored by the process described. Thus, the
total number of arithmetic operations to obtain the set of Taylor coefficients of
orders 1,2, - - -, N grows no faster than cN % for some constant ¢ independent
of N and depending only on the particular function in question.

For a more complicated example, consider

(3.23) . x(t)=e """ log, (1+1).
We can represent x(t) by the list
T1 =sin 1,

T,=log. (1+1),

(3.24) Ty=e T,
Ts=cost,
x()=Ts Ts.

The auxiliary function T4 = cos t was introduced because the derivatives of sine
and cosine must be computed together by this approach (since they represent
components of solutions of a coupled second order system of first order

differential equations).
Applying the appropriate recursion relations from (3.18) and (3.19) on a

line-by-line basis, we obtain, using (1), =1, (1);=0 for j> 1,
(Tl)k = (TA)k—-l/ka
(T =(a—(1— 1/k)(T2)e-1)/(1+ 1),

(3.25) (T = 3 (1= /T (-Todec
(Tow = —(T)e-1/k,
(x) = io(Tz),'(Tz)k—/

where a;, =1 for k=1 and a, =0 for k>1. Again the total arithmetic
computation required to find the Taylor coeﬂicientg of orderss 12, 2, T N for
x(t) defined by (3.23) at any value of t is of order N°, (about 2N _gil?ltlons and
multiplications). Note that the functionssin ¢, cos t,log, (1+1), ¢ need only
be evaluated once each, at the outset of the process. '
We can bound the remainder term in the finite Taylor series (3.15.) for .thlS
function x(¢) (given in (3.23)) by using interval extensions of the functions sin £,
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cos ¢, log., (1+1¢), and e M. Carrying out evaluations of those interval exten-
sions for the interval [, ¢] and following this with evaluations of the Taylor

coefficients, using (3.25) in interval arithmetic, we can obtain the quantity
Rn([to, t]) in (3.16).

3.5. Interval polynomial enclosures. Let T, be an interval and let x be a real
valued function of the real variable ¢, with x(¢) defined for all ¢ in T,. By an
interval enclosure of x we mean an inclusion monotonic interval valued
function X of an interval variable T, with X(T') defined for all T = T, having
the property

(3.26) x(t)e X(¢t) forall¢tin Ty.

In (3.26) it is not necessary that X (¢) be real valued. It may be a nondegenerate
interval for each ¢ If X (¢) is a polynomial in ¢ with interval coefficients, it is
called an interval polynomial enclosure. If X (t) = x(t) for all ¢ in T, (see § 3.3)
then X is an inclusion monotonic interval extension of x. For an interval
encosure X of a real function x on T, we have

(3.27) F(T)={x():te T} X(T) forall T<T,.

Example 1. If x(¢) is defined for ¢ in Ty and a = x(¢t) = b for all ¢ in Ty, then
the constant interval function, X(T)=[a, b], is an interval enclosure of x.

Example 2. If x(t) is continuously differentiable on T,, and X'(T) is an
inclusion monotonic interval extension of x'(t), then, by the mean value
theorem, for any ¢, in Ty, we have

(3.28) x(t)=x(to) +x'(s)(t—1to) for some s between ¢ and #,.

It follows that X (T) = x(to) + X'(To)(T — to) is an interval enclosure of x. The
interval valued function X (¢) of the real variable, ¢, is an interval polynomial
enclosure of x. We have

(3.29) x()e X(t)=x(to) + X' (To)(t —to) for all ¢ in T.

Example 3.1f x(t) is analytic for ¢ in Ty, and if the N'th Taylor coefficient of x

has an inclusion monotonic interval extension, Ry, then the interval poly-
nomial

1

(3.30) Xn (1) = ’:z— (0)elt = t0)* + R (To)(t = 1)
=0

is an enclosure of x. The values of Xy (T) for nondegenerate intervals T < T
are also defined and we have
1

(3.31) x(r)eXN(t)gXN(T);:i ()i (T = 10)* + Rn (To)(T — to)
=0

forall tin T < T,.
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Example 4. For a specific example of an enclosure of the form (3.30), let
x(t)=e" and take 1, =0, To=[0, 1], N =2. We have
efe1+t+((1,e]/2)¢* foralltin[0,1].

For a finite representation, which is still an interval polynomial enclosure, we
can take X(1)=1+t+[.5, 1.359141)¢>. For a sharper enclosure, we can take
N =10 in (3.30) to obtain

el e Xyl =1+1+52 4+ +(1/9N+ (1, e]/10):™°.

Only the last coefficient is a nondeginerate in_tsrval. It is contained in the
finitely represented interval [.27-1077, .75~19 1. We can enc?lose the real
coefficients in narrow intervals to obtain a finitely represented interval poly-
nomial enclosure X (f) which contains Xio() for every ¢t in [0, 1]. Of course,
X (¢) also contains e’ for every t in [0, 1] (N 6). ' .

Example 5. For the sine function, we have the interval polynomial
enclosures (for any positive integer N):

sinter—GNP+- -+ =DV IA/QN -
+([~1,1/@N+D)N*" for any t.

2N-1

In applications of interval polynomial enclosures to the? itera?ive solu‘tion of
operator equations (differential and integfal equations in ;.)artlcul'a:irl),
sequences of interval polynomials are sometimes con;tr'ucted with rapidly
increasing degrees. An important technique for restral.mng the unbounded
growth of degrees of a sequence of interval polynomials generated by an
iterative procedure is due to F. Kruckeberg (N 7), who calls the technique

j “Vergroberung’’). ‘
Cocllfrs:zn::lgd (n \z:fegpositive igntegers with m = n, and if ¢ lies in the ur:it 1nterva"ll
[0, 1] then 0=:" =™ From this observation, it ff)llows that ¢" [0, 1}¢
whenever m=n and te[0, 1]. Similarly, if ¢ lies in To, ar’llc_lmmén, }"hen
(t— To)/(To—To) lies in [0, 1] and so (t— To)" €[0, 1)(To— To) (t—To)".

We can also write this last relation in the form

(3.32) (t—To)" [0, w(To)" "1t —To)" forteTo,m=n.

Using the relation (3.32), we can reduce the degree of an inter.val polynomial
enclosure. By ‘‘coarsening”’, we can obtain a wider polynomial enclosure of
lower degree. ‘ )

Compare the following two interval polynomlall enclosures of sin {.zLeg
X0 =t—Ce+(~1,11/5D¢ and Xao(0)=t—(G)+(~1, 11/5H00, To Dt
for t in T, =[0, To). Both X;(¢) and X,(¢) contain the value of sin ¢ for e?.ch tin
[0, To). While X (¢) is of degree five, X,(¢) is only of degree three. The \gndsths of
the two intervals X;(t) and X»(¢) for a given t are w(X 1) = 5ot and
w(X2(1)) =1—§—0T§t3, respectively. The maximum width, for ¢ in Ty is the same
for both!
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NOTES

1. See W. Strother [94],[95]. I am indebted to Wayman Strother for stimulating discussions on
fixed points of set valued mappings, continuity and integration of multi-valued functions, and other
topics of fundamental importance during the early development of interval analysis.

2. See U. Kulisch [48] and also G. Alefeld and J. Herzberger [1a].

3. SeeJ. M. Yohe [100].

4. SeeR.E.Moore[57,chap.11],L. B.Rall[77, § 24].]J. H. Gray and L. B. Rall[19]; D. Kuba
and L. B. Rall [47]. The latter two reports describe programs which can automatically obtain values
of the partial derivatives in the Jacobian matrix for a system of nonlinear equations, given only the
definitions of the functions in the systems. See also R. E. Moore [59, pp. 134-138] and G. Kedem
[42].

5. In P. Henrici [33, p. 66], the reader is asked to verify that expressions for the successive
derivatives of y definedby y' = x>+ y2 increase in complexity as the order increases. This is, indeed,
the case. Nevertheless, since we do not need these expressions in order to evaluate derivatives (as is
shown in § 3.4 of this book) the remark has no relevance as far as criticism of the Taylor series
method is concerned. In fact, in R. E. Moore [59, p. 161], it is shown that we can use the recursion
relations (for the above differential equation, in the notation x' = >+ x?)

(x);=12+x2,
(x)2=t+(x)o(x)1,
(x)3=(1+2(x)o(x)2+(x)7)/3,
(x)a = ((X)o(x)3 + (x)1(x)2)/2,

to evaluate the Taylor coefficients needed for the fourth order Taylor series method
4
x(1+h)= T (x)h"
k=0
= h(h(h(h(x)s+(x)3)+(x)2) + (x)1) + (x)o.

The total number of operations for one fourth order Taylor step for this differential equation is: 9
additions, 14 multiplications. In contrast, the standard fourth order Runge-Kutta formula requires
13 additions and 15 multiplications per step. For this problem, which was used as an argument
against the Taylor series method, the Taylor series method is faster than the widely used
Runge-Kutta method of the same order.

In 1965, after seeing this approach, P. Henrici, in [76, Vol. I, p. 188], wrote ‘it used to be part of
the folklore of numerical analysis that such derivatives are difficult to evaluate, and this led to the
development of increment functions of the Runge-Kutta type, which produce close agreement
using judicious combinations of values of the function f alone. However, in the paper by R. E.
Moore already referred to, it is shown how, at least for rational functions f, [see also § 3.19 of this
book] the machine can be used to evaluate the total derivatives of f recursively, thus removing the
main objection to the Taylor expansion method.” [Italics by author.] Henrici is correct in
everything here except in sayng that “it used to be part of the folklore”. It still is. See almost any
recent elementary text on numerical methods. On the other hand, see [59 (especially Appendix
Cnl.

6. See R. E. Moore [25, p. 7], [58], [62].

7. See F. Kriickeberg [46] and also W. Appelt [70, pp. 141-149], and J. Rokne [85].

Chebyshev approximation and “‘economization’ methods improve the accuracy of the polynomial
of reduced degree.



Chapter 4

Finite Convergence

4.1. Interval topology. We introduce a metric topology for the set of intervals
as follows. We define d(X, Y)=max (X — Y|, | X = Y|). We call d(X, Y) the
distance between X and Y. It is easy to see that the defining properties of a
metric are satisfied by d(X, Y):

dX,Y)=0 ifandonlyif X=Y;
4.1) d(X, Y)=d(Y, X),
dX,Z)=d(X, Y)+d(Y, Z).

The real line is “isometrically” embedded in our metric space of intervals,
since, for degenerate intervals [x, y] and [y, y] we have d([x, x],[y, y]) =
|x — y|, which is the usual topology on the real line.

We define continuity and uniform continuity for interval valued functions in
the usual ¢-6 fashion with the metric d(X, Y). It is not hard to show that the
interval arithmetic operations and rational interval functions are continuous as
long as no division by an interval containing zero occurs (N 1).

It is useful to note the following. Suppose that F(X) is a natural interval
extension of a real rational function f(x); and suppose we can evaluate F(xo)
for some interval X, without encountering a division by an interval containing
zero. Then the range of values of f(x) for x in X, is bounded by F(Xo) = f(x) =
F(X,) and so f(x) cannot have any poles in X,. Furthermore, by the inclusion
monotonicity of the interval arithmetic operations (and hence of F(X)), no
division by an interval containing zero will occur during the evaluation of the
same expression for F(X) for any X = X,. In other words, if F(X,) is defined,
then so is F(X) for every X < X,.

33
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We can list some properties of the interval metric which can sometimes be
useful:

dX+Z, Y+Z)=d(X, Y), forany interval Z;
4.2) XcY implies d(X, Y)=w(Y)=Y-Y;
d(X, 0) = |X|=max (X|, |X]).

We will need the following lemma, which states that natural interval exten-
sions of real rational functions satisfy a sort of Lipschitz condition.

LeMMA 4.1. IfFis a natural interval extension of a real rational function with
F(X) defined for X < Xo, where X and X, are intervals or n-dimensional interval
vectors, then there is a constant L such that w(F(X))=Lw(X) for all X = Xo
(where w(X) = max; w (X)), i=1,2,-+-,n). ,

Proof. For any real numbers a, b and any intervals X; Y, we have the
following relations (which are not hard to prove):

w(aX;+bY;) =lalw(X)+blw(Y)),
(4.3) w(X:Y) = |XiIw(Y) +Yw(X0),
w(1/Y;)=11/Y;’w(Y;), for Y;not containing 0.

Since the natural interval extension has interval values F(X) obtained by a
fixed finite sequence of interval arithmetic operations on real constants (from a
given finite set of coefficients) and on the components of X (if X is an interval
vector) and since X <X, implies that IX:|=|Xo|| (see (2.6)) for every
component of X, it follows that a finite number of applications of the relations
(4.3) will produce a constant L such that w(F(X))=Lw(X) forall X Xo as
desired.

In order to be able to extend results based on Lemma 4.1 to certain interval
extensions of irrational functions, we make the following:

DEFINITION. An interval extension F is Lipschitz in X, if there is a constant
L such that w(F(X))=Lw(X) for every X Xo.

What the condition says is that the width of the image goes to zero at least
linearly with the width of the argument, (the argument X may be an interval or
an interval vector, X = (X1, X2, -+ +, X))

LemMA 4.2. If a real valued function f(x) satisfies an ordinary Lipschitz
condition in Xo, | f(x)— f(y)|= Llx — y| for x, y in Xo, then the united extension of
f is a Lipschitz interval extension in Xo.

Proof. The function f is necessarily continuous. The interval (or interval
vector) X, is compact. Thus, w(f(X))=1f(x1) —f(x,)| for some xi, X2 in
X < Xo. But |x, — x2| = w(X); therefore, w(f(X))=Lw(X) for X c X,.

Thus, from Lemma 4.1, a rational interval extension F(X) defined for
X < X, is Lipschitz in Xj. It follows from Lemma 4.2 that interval extensions

which are united extensions, such as the following, are also Lipschitz in Xo: X "
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given by (3.10); eX =[eX e*], X'?=[X"? X"] for 0<X,; log. X =
[log. X, log. X] for 0<Xo; sin X =[sin X,sin X] for X,c [—-w’/z +;-/2]
sin X =[min,cx (sin x), max,x (sin x)] for arbitrary X,. , ’

If F and G are inclusion monotonic interval extensions with F Lipschitz in
‘YO, 'G Lipschitzin X, and G(X,) < Yo, then the composition H(X) = F(G (X))
is L1p§chitz in X, and is inclusion monotonic. Thus, sin G(X) is Lipschitz and
mclgswn monotonic for X in X, if G(X) is rational in X and G(X,) is defined.
Ordinary monotonicity is not required for inclusion monotonicity.

Thus, an inclusion monotonic interval extension whose values F(X) are
defined by a fixed finite sequence of rational (interval arithmetic) operations
and/or compositions of Lipschitz extensions is, itself, a Lipschitz extension in
some suitably chosen region.

If X and Y are intervals such that X ¢ Y, then there is an interval E with
EéOéb? S}lCh that Y =X +E and w(Y)=w(X)+w(E). If F is an inclusion
monotonic interval extension of f with F(X) defined for X < X, then f(X)<
F (X )‘ for X = X,. We have F(X)=f(X)+E(X) for some interval valued
function E(Xl with w(F(X))=w(f(X))+w(E(X)). We call w(E(X))=
w(F(X))—w(f(X)) the excess width of F(X).

The l_mited extension itself has, of course, zero excess width. Its interval
Yal)u(es f(X) give exactly the range of values of a continuous function f(x) for x
in X.

By a uniform subdivision of an interval vector X = (X, X5, -+, X,,) we
mean the following. Let N be a positive integer. Define X, =
[X:+(—-1Dw(X)/N, X;+jw(X;)/N],j=1,2,---,N. We have X; = U "i:}( ;
and w(X;;) = w(X;)/N. Furthermore, X = Uf’=1(X1 i X2 © 0y X ’)_wit‘,h]
W(Xps -+ Xuy) = w(X)/N. e

We have the following important result.

THEOREM 4.1. If F(X) is an inclusion monotonic, Lipschitz, interval
extension for X < Xy, then the excess width of a refinement, F(n)(X), the union

of interval values of F on the elements of a uniform subdivisio X i
1/N. We have n of X, is of order

N
(4.4) Fn(X)= U F(Xy,- - - X )=F(X1, -, X.)+En

ji=1
and there is a constant K such that
4.5) w(En)=Kw(X)/N.

Proof. The relation (4.4) follows from the fact that f(X)= U, f(X,) where

the X are the elements of the subdivision. We h - 7
some E; and n. We have F(X,)= f(X)+E, for

w(E;) = w(F(X,) - w(f(X,) = w(F(X,)=Lw(X,)=Lw(X)/N
for every X; in the uniform subdivision. Clearly, w(En)=2Lw(X)/N, yielding
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(4.5), with K =2L, (N 2); since, in the worst case, the maximum excess width
may have to be added to both upper and lower bounds in the union.

From Theorem 4.1 it follows that we can compute arbitrarily sharp upper
and lower bounds on the exact range of values of a wide variety of real valued
functions of n variables by subdividing the domain of arguments and taking the
union of interval evaluations over the elements of the subdivision. In the last
section of this chapter we will discuss some more efficient means for doing the
same thing.

4.2. Finite convergence. A sequence of intervals, {X,}, is said to be nested if
X, 1< X, for all k. A sequence of intervals, {X.}, is said to be convergent if
there is an interval X such that lim .. d(Xi, X)=0. Such an interval X is
unique and is called the limit of the sequence.

LEMMA 4.3. Every nested sequence of intervals is convergent and has the limit
X= ﬂ‘,’f:l Xk.

Proof. {X,} is a monotone nondecreasing sequence of real numbers, boun-
ded above by X;, and so has a limit X. Similarly, {X,} is a monotone
nonincreasing sequence of real numbers, bounded below by X, and so has a
limit X. Furthermore, since Xy = X; for every k, we have X = X. Thus {X,}is
convergent and X =[X, X1=N%x=1 Xy is its limit.

LEMMA 4.4. Suppose that X, is a sequence of intervals such that there is a real
number x contained in every X,. Define the sequence of intervals {Yi} by Y1=X;

and Yie1 = Xes1 N Y fork=1,2.--. Then Y, is a nested sequence with limit
Y and we have
(4.6) xeYcY, forallk.

Proof. By induction, the intersection in the definition of Yj.1is nonempty so
the sequence { Y, } is well defined. Itis nested by construction. The relation (4.6)
follows from Lemma 4.3.

By the finite convergence of a sequence of intervals {X;}, we mean that there
is a positive integer K such that X, = Xk for k = K. Such a sequence is said to
converge in K steps. We will now illustrate finite convergence with some
examples (N 3).

It is not hard to see that Xo=[1,2], Xir1=1+X/3, k =0,1,2,- -,
generates a nested sequence of intervals, {X.}. The interval function F(X)=
1+ X/3 is inclusion monotonic since it is a rational interval function. There-
fore, we have X;=F(Xo)=1+[1,2]/3=[3 31 Xo=[1,2]. It follows that
Xi+1 = F(Xi) < X, for all k, by finite induction. By Lemma 4.1, the sequence
has a limit, X. If we compute the elements of the sequence {Xi} using rounded
interval arithmetic, then we will obtain another sequence {X } with Xi = X P
for all k. More precisely, let the sequence X% be defined by X§ = Xo=[1, 2]
and X7, ={1+X}/3: computed in rounded interval arithmetic} X ¥ k=
0,1,2,-- -, (which we can apply, since X < X, for all k). It follows from
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Lemma 4.4 that X7 is a nested sequence and that the limit of the sequence {X,}
is contained in the limit, X *, of the sequence {X# }. The sequence {X}} will
converge in a finite number of steps. For instance, if we use three decimal digit
rounded interval arithmetic, we find, for the sequence {X 5},

X§=[1,2],

X* =[1.33,1.67),

X% =[1.44,1.56),

X% =[1.48,1.52],

X% =[1.49, 1.51],
. X#=[1.49,1.51],

and X§ = X* for all k =4. We have finite convergence in four steps. Note that
the real sequence x,.1 = 1+ x,/3 converges to 1.50 in the limit (after infinitely
many steps) from any x,.

As a second example of finite convergence we consider a sequence of
refinements computed in rounded interval arithmetic and intersected to yield a
nestefi sequence of intervals which converges in a finite number of steps.
Consider the interval polynomial F(X) = X (1 — X) and its refinements F(y)(X)
defined by (4.4). Let X =[0, 1] and consider the sequence of intervals Y, =
Fm(.[O, 1])=F([0, 1]), Yk+1 =F(k+1)([0, 1])ﬂ Yk, k= 1, 2, «++. The inter-
sections are nonempty because each refinement contains the range of values of
f(x)=x(1-x) for x in [0, 1], (namely [0, ;]). By construction, { Y} is a nested
sequence. Thus we have, by Theorem 4.1 and Lemma 4.3, the result

4.7) fx)= kﬂ Fuy(X)= ,}im Y..
=1 -0
For k odd, we will have
Fuo([0, 1) =[0,5+1/(2k)+ 1/(4k>)];
and for k even, we will have
Fuo([0, 1)) =[0,3+1/(2k)].

We can compute a subsequence of the sequence {Y,}, for example for k of the

fozkm k=2"t=1,2,---.If we compute, then, the nested sequence of intervals
Y7 =[0,1],and fort=1,2, -,

Y =F§, (0, 1DNYY

where F ?;)([0, 1]) is F;([0, 1)) computed in rounded interval arithmetic to
three decimal digits, we obtain again a nested sequence { Y} }. This sequence

con;erges in nine steps to the interval [0, .251]. We have Y =0, .251] for all
t=9.
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For any fixed precision representation of machine numbers (as opposed to
“yariable” precision), there is a finite set of machine numbers represented by
strings of bits bob1, * - -, bs with s fixed; in this case, there is only a finite set of
intervals with machine number end points. Any nested sequence of such
intervals is necessarily finitely convergent.

4.3. Stopping criteria. For any iterative interval method which produces a
nested sequence of intervals whose end points are represented by fixed pre-
cision machine numbers, we have a natural stopping criterion. Since the
sequence will converge in a finite number of steps, we can compute the
elements X, of the sequence {Xi} until we reach the condition X1 = Xk If
the elements X, are generated by an iteration procedure of the form

(4-8) X1 =F(Xk)
such that each Xi.: depends only on the previous X, then, clearly, the

criterion Xy .1 =X, will, if satisfied, guarantee that the sequence has con-

verged.

In particular, if F(X)isa rational expression in X and if X, is an interval such
that F(X,) < Xo, which can be tested on the computer, then it follows that the
sequence of intervals defined by

Xi+1=F (X)), k=0,1,2,---,
is a nested sequence
Xo2X12Xp2- -
and hence converges to some interval
X* with X*=F(X*) and X* = Xi
forallk=0,1,2,---.

On the computer, rounding right end points to the right and left end points to
the left when necessary during rounded interval arithmetic, it may happen that

X, = F(Xo) € Xo

but that for some k, Xi.1 is not contained in X
If we modify the straightforward iteration procedure to compute instead

Xi+1=F(Xi) N Xk

and stop when X .1 = Xi (which will happen always for some k on a computer
using fixed finite precision interval arithmetic properly rounded) then the
computer will have obtained the narrowest interval possible containing X* =
F(X*). A narrower interval would require using higher precision arithmetic.

Furthermore, if for a chosen X, the interval F(Xo) N X, is empty, which can
also be tested on the computer, then X, contains no fixed points of F; (i.e. there
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is n‘o'X in Xp such that F(X)=X). This follows from the inclusion mono-
tonicity of F; for, if F(X)=X and X < X, then X = F(X)< F(X,) and so
X ¢ F(Xo) N Xo; therefore, if F(Xo)N X, is empty, there is no such X.

A simple example will illustrate some of the things that can happen
Let .

F(X)=3X +2.
If we take X, =[1, 2], then

F(Xo)=3[1,2]+2=[3,3].

In this_ case F(X,) does not intersect Xj; that is, F(X,) N X, is empty and so
there is no fixed point of F in [1, 2].
If we take, instead, X, =[2, ], then
F(Xo)=F([2,3)=13[2,3]+2

=[1,3]+2

=[3, %1
In this instance F(X,) and X, do intersect; in fact F(X,)NX,=[3,3]. We
cannot conclude anything in this case since F(Xj) is not contained in X,.

Suppose we take X, =[2, 5]; then F(X,)=F([2,5]) =3 3
A s ) - ’ _2[2’5]+2= 3,—.11']
this case F(Xo) < X, and so F has a fixed point X in X,. The iteratio[ns ?

4.8) X1 =F( X)) N X, k=0,1,2,---,

produce, in properly rounded three decimal digit interval arithmetic:
X;=[3,4.5]N[2,5]=[3,4.5],
X,=[3.5,4.25]N[3,4.5]=[3.5,4.25],
X3=[3.75,4.13]1N[3.5, 4.25]=[3.75, 4.13],
X4=[3.87,4.07],
Xs=[3.93,4.04],
X6=[3.96,4.02],
X7=[3.98, 4.01],
Xs=[3.99,4.01],
X9=[3.99, 4.01],
Xic+1= X, k=8,9,10,---.

There is a fixed point of F in [3.99, 4.01].
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If the process generating the sequence depends explicitly on k as well as on
X,, (say Xi+1=F(k, Xi)), then we might have X .1 = X, for some k and yet
X, +2 # Xy, even though {X,} is a nested sequence. An example is

4.9) Xio1=(0,2)/k) N X, X,=[0,1].
We have

X,=[0,1],

X,=[0,1],

X;=[0,1],

X.=[0,3],

X5 =10, %] s

Xk+1=[0, 2/k], k>2

Thus, Xi+1 = X is a valid stopping criterion if and only if the sequence {Xi} is
nested and is generated by (4.8)" with F/ (X,) depending only on the value of Xi.

For real numbers x and y, the relation x =y is either frue or false. If it is false,
then we have x > y. If all we know about x and y is that they liein intervals x € X
and y € Y, then we can only deduce one of three possibilities:

(1) fX=Y, thenx=y,
(4.10) (2) If X>Y, thenx>y,
(3) otherwise, we don’t know whether x =y or x >y.

We can modify any computer program by using rounded interval arithmetic
instead of ordinary machine arithmetic whenever rounding error is possible in
an arithmetic operation and by using the above three-valued logic for all branch
tests involving computed quantities which are only known to lie in certain
computed intervals. If we stop the computation whenever a ‘“‘don’t know”
logical value is obtained, then all intervals computed up to that point by the
modified problem will contain the exact result of the corresponding finite
sequence of operations using exact (infinite precision) real arithmetic for all

arithmetic operations (N 4).

4.4. More efficient refinements. In § 4.1, we introduced the refinement of an
interval extension as a method for computing arbitrarily sharp upper and lower
bounds on the range of values of a real function. For applications of interval
methods it is of practical importance to be able to obtain good bounds on the
ranges of values of real functions as efficiently as possible. In this section we will
explore some ways of improving the efficiency of the straightforward

refinement given by (4.4).
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Wg will begir'l with a characterization of the class of functions most commonly
used in computing. Let FC, (X,) be the class of real valued functions f of n real

variables whose‘ valugs f(x1, x2,+++, x,) for each f are defined for all x =

(x,', X2, **, X,) in the interval vector X, = (X0, X20, * * * , X,0) by some fixed

finite sequence of operations ,
T, = hi(y1, z1),

(4.11) T, = ha(ya, z2),

()= T = hne(yan 2nm)

for yi, zi€Si={x1, X2, * -, xn, c1, €2, "+, ¢p}, Where ¢y, ¢, - - -, ¢, are given
I'efil numbers (called the “‘coefficients’ of f), and where A4, hs, - - -, hy are the
arithmetic functions +, —, -, /, or unary functions (of only one of the variables

Vi, 2:) of e.lementary type: exp, log,, V-, etc. Furthermore, Vit Ziv1 € Siv1 =
S;U{T}, i=1,2,---,M—1. The integer M, the coefficients cy, - - - c' 1(if
?HY)’{ anc} tl;fcs(e;uence of operations hy, ha, -« -, hay define a’ par;icillar
unction f € FC, . Each y;, z; ;
Creviows T (12 ,')'0) yi, zi may be an x; or a constant ¢; or one of the
We will assume here that we can compute arbitrarily sharp bounds on the
e)'(act range of values of each of the unary functions (see (3.10) and the
discussion following it) occurring in the sequence of operations for f(x). The
class .of functions described, FC,, is further assumed to include only ;hose
functions f which are defined for all x in X, and which have inclusion
monotqnic, Lipschitz, interval extensions F(X) for X < X,. For some of the
dlsc'ussx'on to follow, we will also assume that the first and second partial
fienvatlves of f satisfy the same conditions as f. This final assumption, concern-
ing the e?(i§tence of interval extensions with desirable properties ,(inclusion
monotonicity, etc.), will be satisfied automatically for all functions f in

FC,(X,), i : . .
emef} Sic()))n provided only that F(X,) is defined, where F(X) is the interval

T, = Hl(Yl, Zl),
(4.12) T:=H)(Y>, Z,),

F(X)=Twu=Hu(Ym Zn)

\;lvlhe}:e ‘ ‘I'{l,}f{z, cee ’H.M are .the . united extensions of the functions
op,e r;;ions’b A;ntrespelctlYely. Thxs will pe the case, replacing real arithmetic
e unary fu)r/‘ " erval arithmetic operatlf)ns and using the united extensions of
e una ctions, as long as fpr the interval vector X, no division by an
rya containing 0 occurs during the computation of Ty, T5, - - -, Tas and
;)orowde(i/ tThat no arguments containing zero occur for such unary operations as
g. or V. (The latter would spoil the Lipschitz property for the interval
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extension.) Since such an Fis inclusion monotonic, F(X) is defined for every
X < Xo.

Under these conditions, we can apply Theorem 4.1 and find that the excess
width of the refinement Fx)(X) of the interval extension F(X) given by (4.12)
of a function f in FC,(Xo) satisfies

(4.13) w(En)=Kw(X)/N for some K/ depending only on f.

An evaluation of F requires one pass through the finite sequence of operations
(4.12); just as an evaluation of f requires one pass through the finite sequence
(4.11). An evaluation of Fny(X), given by (4.4) requires N" evaluations of
F(X). If n is at all large, this would involve a prohibitive amount of compu-
tation to achieve the result (4.13) for large N. Even for n =2 we have, for
N = 1000 (perhaps to reduce the excess width to .001), 10002 = 10° evalua-
tions to carry out.

Fortunately, by using more information about a particular function f, we can
compute an interval, containing the exact range of values, of arbitrarily small
excess width with far less work. In some cases we can even compute an interval
with zero excess width in one evaluation of F(X). In the remainder of this
section the function f will be assumed to lie in FC,(Xo) and F(X ) is defined for
X < X, by (4.12).

THEOREM 4.2. If each of the variables Xy, X2, * =+, Xn OCCUTS at most once in
the listy1, 21, Y2, 22, * * > ¥ms Zn of arguments in the sequence (4.11) defining f(x),
then the interval extension F(X) defined by (4.12) is the united extension of f for
all X < Xo.

Proof. We will have F(X)=f(X) if and only if F(X)c F(X) and F(X) <
F(X). The firstinclusion is always true, under the assumptions we have made on
F(X). Under the further hypothesis of this theorem, every real number 7, in the
interval F(X), is expressible as r=f(x) for some x =(x1, X2, **, Xp) With
x;eX; foralli=1, 2,--+,n;in fact, each H, is the united extension of h; for
i=1,2,---,n. Therefore F X)e f(X) and the theorem is proved.

The importance of Theorem 4.2 is this: for a function f satisfying the
hypotheses of Theorem 4.2, we can compute the exact range of values of f(x)
for x € X < X, with one evaluation of F(X) using (4.12).

If some x; occurs more than once in the list of arguments in (4.1 1), then the
corresponding X; will occur more than once in the list of arguments in(4.12).In
this case, there may be real numbers in F(X) which are not expressible as f(x)
for any x € X. As an example, consider f in FC1([0, 1]) defined by

T,=1—x1, f(x1)=T2=T1x1.

Here, the variable x, occurs twice as an argument. Consider the corresponding
list for F(X). We have

T1=1"X1, F(X1)=T2=T1X1.
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Now F([0,1])=[0,1]; b i i
po! 15, 1) =[0, 1]; but there is no x; in [0, 1] such that f(x;)=(1—x)x; =

On the other hand, the interval function

T.=1-X,, F(Xl,X2)=T2=T1X2

is the united extension of the real function

Ti=1—x,, f(x1, x2) = Tr=Tix,.

In particular, F([0, 1],[0, 1])=[0, 1]is t
A AT xze[[(), 1]. he exact range of values of f(xi, x,) =
Anqther explanation for the difference between these two results is the
following. In both cases we compute, first, 1 —[0, 1]=[0, 1]. In both cases this is
the exact range of values of 1 — x; for x; in [0, 1]. The discrepancy comes at the
next step. When we compute T,.X; with T; =[0, 1] and X; =[0, 1], we obtain
[0, 1]. We obtain the same result for T,.X, with T, =[0, 1] and ,X2’= [0, 1] l
In the second case, this is exactly what we want, the exact range of va,lue.s of
f(x1, x2). In the first case, we get an overestimation of the range of values of
f(x1) =(1—x1)x, because, during the evaluation of T, X, numerically, we have
not made use of Fhe information that T; = [0, 1] represents the range ,of values
of 1—x; for x; in X;. We have not made any distinction between this and
T, =[0, 1] as the range of values of 1— x, for a variable x, independent of x
Thus, for‘ example, it is better to use the interval extension X" defined bl.
(f:).tl(?) f;)(r integer powers x” than to use X - X - - - X. For X =[-1, 2] WZ
o . —I_ 2 . . ’
o 1?1;]2 =[ 0)’(4] L {;2(’2 4)]( :[lflrfgj}_x using (3.10) yields the correct result,
Sometimes we can reduce the number of occurrences of a variable in a real

rational expression by algebrai i i
rationa byp y algebraic manipulation. For example, let f(x;, x, x3) be

(4.14) f(x1, X2, x3) = ((x1 +x2)/ (x1 = x2))x3.
We can rewrite this as
(4.15) f(x1, x2, x3) = x3(1+2/((x1/x2) = 1)).

For x,€[1, 2], x,€[5, 10], x3€[2, 3], the natural interval extension of (4.15)

S

(2,3)1+2/(([1, 2)/[5, 10D - 1)) = [-7, - ¥].

o .
) n .thel oth?r hand, the natural interval extension of the form (4.14) (which is
quivalent in real, but not in interval arithmetic) produces

(([1,2]+[5, 10D/((1, 2] =[5, 10])[2, 3] =[-12, - §]
with an excess width of 3.



44 CHAPTER 4

Given a function f in the class FC,(X,) defined by a finite sequence of the
form (4.11), we can construct interval extensions of f other than the natural
extension given by (4.12). We will now discuss three such extensions: the
centered form, the mean value form, and the monotonicity-test form.

A “centered form” is a particular form of interval extension, F. (X1, - - -, Xu)
of a rational function f(x1, - -, x»). To derive F, for a particular f, we first
rewrite f(xy," "+, X,) as
(4'16) f(xl, t ,x,,)=f(cl, T, Cn)+g(y1, T, yn)
with y; = x; —¢; and with g defined by (4.16); thus

gy, Ly =fyiten L yate) —flen o, e

For rational f, it will be possible to write g in the form gyt s Y =
yihi(y1, - > yu)+ -+ Yaha(y1, - -, ya) where h; is rational and hi(0,---,0)
is defined provided that f(cy, - -+, cn) IS defined. We define F, by

@17 FXu o X)=flen 6+ ¥ YiH (Y, oY)

where ¢; = m(X;) and Y; = X; —c; and H; is the natural interval extension of A,.
An example will illustrate the idea. s '

We reconsider the polynomial p(x) =1-35x +3x~ given before in (3.7). We
first rewrite p(x) as

p(x)=1-5c+3c’+g(y) wherey=x—c,
and
g(y)=p(x)—p(c) = y(=5+5(y +c)’+(y +c)c +c?).

We define P, by
P.(X)=p(c)+ YH(Y)

where c=m(X), Y=X-m(X), and H(Y)=5—5+%((11/41-C)2+
(Y +¢)c +c2). Now, for X =[2,3] we obtain: ¢ =m(X)=3, Y =[~22], and

p(c)=p() =—% We have H(Y)=H([-}3])=[i212] and so Pc([2,3])=
[-8, —5]1=[-7.5833333 ..., 5] This is an improvement over the bounds

computed using the interval extensions (3.8) and (3.9). .Recalll ghgt the exact
range of values of this p(x) for x in [2,3] is [—7\/5+ 1,-5]=
[-6.454559...,-5]. .

From (4.13) it follows (with N =1) that the excess width of the natural
interval extension of a rational function is of order w(X). It has been proveFl by
E. Hansen (N 5) that the excess width of the centered form extension is of

order w(X)’. ‘ .
Thus, if we use the centered form in the computation of the refinements
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Fny(X) defined in (4.4) we will obtain the result
(4.18) w(En)=Kw(X)/N* for some K;

for the excess width, instead of (4.13). Using the centered form instead of the
natural interval extension for rational functions, we could reduce the excess
width of refinements to a given amount with about the square root of the
number of function evaluations required for the natural extensions. But this is
still prohibitively large in many cases and we will discuss ways to make even
more dramatic reductions. Nonetheless, for a single evaluation of an interval
extension on an interval vector of small width, the centered form can give very
small excess width compared to the natural extension for rational functions.
Recently, H. Ratschek (N 5) has found higher order centered forms.

Another interval extension of practical value is the mean value form. We can
apply this technique to functions in the class FC,(Xy). Let X be an interval
vector in X, and let m = m(X), (see (2.7)). Let D;F be an interval extension of
df/dx;; we will show how to obtain these presently. From the mean value
theorem, we have, for all X < X,

(4.19) FXO) S Fuv(X) = fm) + ¥ DIFCOX,=m).

We call Fyy(X) the mean value extension of f on X.

We can illustrate this with an example. Let f(x;, x,) be defined by the
sequence

T, = x3,
T,=x,+Ty,
(4.20) Ts=e'?,
T4= Tsxy,
fx)=T4—T,.
We could also represent f with the expression
flxn, x2)=x; e —x3,

On a line by line basis (see also § 3.4) we can derive D, F for i =1, 2 as follows.
Wecanuse D;X;=1if j=i and 0 if j #i.

D, T,=0, D,T,=2X,,
D\T,=1, D,T,=D-T,,
(421) D1T3 =Ts;, D,T5;= T3(D2T2)1

D Ty=T5+X (D, Ts), D,T,=(D,T3X;
DIF(X)=D1T4, DzF(X)=D2T4—D2T1.
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For X, =[1,2] and X>=[0, 1], we find m =3, ) and, from (4.20), we find
fim)=3/2) e7/Y—-1=8.3819040. ... In the sequence (4.21), the quantities
T,, T», Ts, T4 must first be computed in interval arithmetic using the natural
extensions (or united extensions) of the operations in (4.20) beginning with the
given interval values for X, and X,. We find

T,=[0,1],
T,=[1,3],
Ts=[e', e*]1=[2.7182818...,20.0855369 .. ],
T.<[2.7182818,40.171074].

We next compute
DT, =0,
D\ T,=1,
D, T>=[2.7182818 ...,20.0855369 .. .],
D,T,<[5.4365636...,60.256611],
D,F(X)<[5.4365636, 60.256611],
D,T,=[0,2],
D,T,=[0,2],
D,T><[0,40.171074],
D,T,<[0,80.342148],
D,F(X)<[-2,80.342148].

Finally, we compute Fuv([1, 2], [0, 1]) from (4.19). We obtain

Fuv(1,2],[0,1)) =[-61.917477,78.681284].

We can obtain narrower bounds on the range of values for many functions in
FC,(X,) than are provided by the mean value form by using a modification of it
which we will call a monotonicity test form. A reconsideration of the above
example will illustrate the idea. From the fact that D F(X) turned out to lie
completely in an interval of positive real numbers, we can conclude that
f(x1, x2) is monotonic increasing with x, for all (x1, x2) in X =([1, 2], [0, 1)).
Thus, a lower bound on the range of values of f(x1, x,) in X can be computed by
finding a lower bound on the range of values of f(1, x5). Similarly, an upper
bound can be found by finding an upper bound on the range of values of
f(2, x2). We can do this, for instance with

4.22)  f(X)<[Fuv(1, X2), Fuv(2, X3)1=[36.9308, 58.8966].

FINITE CONVERGENCE 47

For the particular example at hand, the natural extension gives the still sharper
bounds [1.7182818, 40.171074].

Now, from (4.21) we have D, T =2X,, -+, D,F(X)=D,T,— D, T,. If we
substitute each expression into the following ones as appropriate, we can
rewrite D,F(X) as

(4.23) D,F(X)=2X,(e 2 X, 1),
by factoring out 2.X,. Using (4.23), we find that
D>F([1,2],[0, 1) =2[0, 1](e"*"*7[1, 2]-1)
=[0, 78.342148].

(4.24)

From (4.24) we can conclude that f(x,, x,) is also monotonic increasing with x,
for all (x;, x,) in X and so the exact range of values can be bounded sharply by
computing

F(X)=[Fuv(1, 0), Fuv(2, 1)]
(4.25) =[£(1,0), f(2, 1)]
<[2.7182818, 39.171074].

It follows from a theorem of Alefeld and Herzberger (N 6) that the excess
width of the mean value extension is of order w(X)?, just as it is for the centered
form. Thus, for interval (or interval vector) arguments which are very narrow
(small x (X)) both the centered form and the mean value form will give upper
and lower bounds which are very close to the exact range of values. For wide
intervals (large w(X)) the centered or mean value forms may actually give
wider bounding intervals than the natural extension—as was the case in the
example just discussed. However, for the same function (4.20), but with the
narrower argument intervals X; =[1,1.01], X, =[.4, .401] we obtain, from
(4.19) and (4.21),

Fuv(X)=[3.029529, 3.096156];
whereas we get the wider interval
F(x)=[3.029132, 3.096821]
using the natural extension
FX)=X, X% - X7,

The excess width of F(X) here turns out to be .001602 while the excess width
of Fyv(X) is only .000539.

We can modify the mean value extension (4.19) to obtain the monotonicity
test form, Fyr(X), as follows. Let S be the set of integers / (indices) such that
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D.F(X)<0< D;F(X); then we define

(4.26) Fur(X) =[f(u), f()]+ _ZS D.F(X)(X; —m(X)))
where the pairs of real arguments (u;, v;) are defined by
(X X)) if D;F(X) =20,
(4.27) (s, v1) =3 (X, X0) if D;F(X)<0and D;F(X)=0,

(m(X;), m(X;)) otherwise.

We have the following.

THEOREM 4.3. For f in the class FC,(Xo) with F(X) and D,F(X) (i=
1,2, - -, n) expressible in the form (4.12) and extensions of its partial derivatives
(see, e.g. (4.21)), we have f(X) < Fur(X) for all X < Xo.

Proof. Without loss of generality,let S ={i:j=i= n}. Write m; = m(X;). We
have

(4.28) flxn, X2, -5 X, my -, ma) €[f(w), f(0)]

for all x;eX, i=1,2,---,j—1. Here, u=_(uy,us - -,u, and v=
(v1, va, - * * , U.) Where u; and v; are defined by (4.27). Now

(429) flxy, - xp %) =fGn oo my e ma) € L DFXOX —-m)
for all x;e X, i=1, --,n By adding (4.28) and (4.29) we conclude that
f(x) € Fyr(X) for all x in X, (N 7).

As we have seen in the previous example, the better the extensions of the
partial derivatives, D, F(X), the better the results will be for the form Fyv(X).
Compare (4.25) using (4.23) with (4.22) using (4.21).

Skelboe (N 8) has introduced an algorithm which can vastly reduce the
number of evaluations required to compute refinements. Given an interval
vector X and an interval extension F(X) of a real valued function of n real
variables, one can seek, first, a lower bound on the minimum value of f in X, by
looking at a sequence of refinements. One evaluates f only on a finite
subsequence of regions producing the smallest lower bounds. The process is
repeated with (—f) to obtain the upper bounds. While the interval extensions
used for the evaluations can be any of the forms discussed here (or others) there
is an advantage in using forms such as the centered form or the mean value form
(or the monotonicity test modification of it) because of the more rapid
convergence of the excess width to zero as the size of the regions grows small.
Compared to straightforward use of the method of refinements (evaluating on
every part of a subdivision) the algorithm of Skelboe is vastly superior, reducing
the number of function evaluations in one two dimensional example from 10"
down to 85 to achieve an excess width of about 1072
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Skelboe (N 8) proves that, in computing refinements, no subdivision is
necessary of argument intervals for arguments which occur only once in the
expression used for the interval extension. We present next a slight
simplification of Skelboe’s algorithm, using cyclic bisection.

Suppose we are given an interval extension F(X) of a function f in the class
FC,(Xo) and suppose we want to bound the range of values of f in X, using
refinements of F. We can proceed as follows. We first find a lower bound and
then, replacing F(X) by —F (X) we repeat the procedure to be described to find
an upper bound. If the evaluations are carried out in rounded interval arith-
metic, the procedure will converge in a finite number of steps, (see § 4.2). To find
alower bound, we create an ordered list of items of the form (Y, F(Y)), ordered
so that (Y, F(Y)) comes before (Z, F(Z)) in the list only if F(Y)=F(Z). The
interval extension to be used could be the mean value form, the centered form,
the monotonicity test form, or any other interval extension with inclusion

monotonicity. The better the extension, the fewer the number of steps to
convergence.

(4.30) The cyclic bisection for range of values:

(1) set bo=F(Xo);

(2) set X = X;

(3) to begin with, the list is empty;

4) seti=1;

(5) bisect X in coordinate direction i : X = X" U X?;

(6) set b=min{F(X"), F(X?)};

(7) if b = by, then take b, as the lower bound; replace F(X) by
—F(X) and repeat the procedure from step (1) to obtain the
upper bound;
otherwise proceed with step (8);

(8) cycle i (if i <n, then replace i by i +1; if i = n, then replace i
by i=1);

(9) set by=b;

(10) enter the items (X, F(X")) and (X*?, F(X%)) in proper
order in the list; -

(11) set X =the argument (first member of the pair) of the first
item in the list (with lowest F(X)) and remove the item
(X, F(X)) from the list; o

(12) return to step (5).

Note that step (5) means we replace X by two interval vectors,
XV=(Xy, o, X, X, X1, 0, X))
XP=(X, X, X2, X, X))

where X{ =[X, (X,+X)/2] and X" = [(X;+ X)/2, .
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For straightforward application of the method of refinements (4.4) with
uniform subdivision into N subintervals in each of n coordinates the number of
evaluations of F(X) required is N". On the other hand, at least for most
functions with only a finite number of isolated extrema in X, a procedure such
as that of cyclic bisection, (4.30), will produce bounds on the range of values, of
comparable excess width, in about C,(log, N) evaluations of F(X) for some
constant C independent of n and N. If an extremal point x happens to fall on
one or more interior faces during the bisection process (x in X DN Xx?), the
number of evaluations might go up by a factor 2™, for some 1=m = n. For

=10, N=1000 we have N"=10% whereas nlog, N=100 and
2"n log, N =10°.

For functions f which have only one (or perhaps a few) isolated simple
maximum or minimum point(s) in X, we can make use of interval versions of
Newton’s method to further reduce the number of evaluations required to
obtain sharp bounds on the range of values of f in X (N 9).

An efficient procedure for obtaining bounds on the range of values of a
polynomial P(x) with interval or real coefficients when x lies in an interval X
has been given, complete with a triplex-Algol program, by Dussel and Schmitt,
(N 10).

4.5. Integration. For continuous functions f, we have, from the mean value
theorem,

b
(4.31) j f(r) dt= j f()dt=f(s)(b—a) forsomesinl[a,b].
a [a.b]
It follows that,
(4.32) j f(t) dte fF(X)w(X)
X
as long as f is continuous for ¢ in X.

For f in FC1(X,) and F an inclusion monotonic, Lipschitz, interval extension
of f with F(X) defined for all X = X, we have, since f(X) < F(X),
(4.33) J' f(t)dte F( X)w(X) forall X < Xo.

X

Let N be a positive integer and subdivide [a, b]<= X, into N subintervals
X1, Xy, - -+, Xn so that
a=X<X1=X,<X;<-- < Xn=b.

From the additive property of integration, we find that

N
(4.34) j[ b]f(t) dt= ; L f(t) ar.
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Applying (4.33) to (4.34), we have the following.
THEOREM 4.4. There is a constant L, not depending on N or the method of
subdivision, such that

(4.35) J; ]f(t) dte Z F(X)w(X;)
a,b

and
N N
w( & FOXOWX))SL T w(X)’
i= i=1

Proof. From § 4.1, for the Lipschitz extension F there is a constant L such
that w(F(X))=Lw(X) for all X <[a, b]< X,. The result follows.

For a uniform subdivision of [a,b], with w(X))=(b—a)/N for i=
1,2,- -+, N, define

N

(4.36) Sy =Sn(F;[a,b])= ¥ F(X;)(b—a)/N.
i=1

From Theorem 4.4, we have

(4.37) w(S~)=L(b—a)*/N.

As a result, we have the following.
THEOREM 4.5.

(4.38) L'b]f(t) dt= N Su(F;[a,6)= lim S(F;[a, b).

It follows from Lemma 4.4 that the sequence of intervals defined by Y; = S,
Yii1=8c+1NY,, k=1,2,-- -, is anested sequence of intervals converging to
the exact value of the integral

If we evaluate S¥(F;[a,b]) in rounded interval arithmetic, then the
sequence definedby YT =S¥, Y¥,, =S¥ N Yik=1,2,---, convergesina
finite number of steps to an interval containing the exact value of the integral.

We can use Theorem 4.5 to define the integral of an interval valued function
of a real variable .

A Lipschitz interval extension F (§ 4.1) has the property that F(¢) is real
yalued for real arguments ¢; however, for other useful, inclusion monotonic
interval functions (for instance interval polynomial enclosures, see § 3.5) we
mai’ have interval number coefficients so that the width of F(¢) is not zero for
real t.

Suppose that an interval valued function with values F (X) is continuous and
inclusion monotonic for X < X,. If [a, b]< X,, then the sums Sn(F;[a, b])
given in (4.36) are defined for F. For real arguments ¢ (degenerate intervals
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(£, £]) the values of F(r) may be real numbers or-intervals. We define the interval
integral

(4.39) j F(t)ydt= N Sn(F;[a, b)).
{a,b] N=1
It follows from the continuity of F that there are two continuous real valued

functions F, and F such that, for real t, we have F (1) = [F (_t ), F()]. Itis not hard
to show (N 11) that the integral defined by (4.39) is equivalent to

(4.40) ]’[a‘b] F(t)ydt= H[a,b] F(r) dt, J

[a,b]

F() dt].
It is also easy to see that interval integration preserves inclusion:
(4.41) if F(t)< G(t) for all t€[a, b] then
J F(r)dtc [ G(t) dt.
[a,b] [a,b]

It follows, in particular, that if G is an interval polynomial enclosure of £, then

(4.42) L‘b]f(t) dte j G(t) dt.

[a,b]

More generally, if f is real valued and G is interval valued, continuous, and
inclusion monotonic, with ()€ G(r) for all 7 in [a, b], then (4.42) holds.

We will now illustrate these results with some examples. Consider f(t) = 1/t
and put F(X)=1/X. From (4.33) we have

(4.43) jm]u/t) dre(1/[1,2) = 1

From (4.36), we have

I Mz

SN:A

{

(1/(L+[i—1,i]/N)/N

iz

[1/(N+i), 1/(N+i-1)]

Using interval arithmetic rounded to three decimal digits, we obtain
ST =[5,1.0],
S% =[.583,.834],
S¥ =[.617,.783],

S¥ =[.663,.722],
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For the exact value of Sn, we have the actual widths w(Sy)=1/N —3N =
1/(2N) for this example, so the sequence Yi., =S5, N YF with Y¥ =§F
will converge (using thee decimal digit rounded interval arithmetic) in no
more than 500 steps to an interval of width no less than .001 containing the
exact value of the integral. This is slow convergence for such an easy integral;
we will introduce faster methods for bounding integrals in this section. First,
however, an example is needed to illustrate the application of (4.42) and (4.39).
Suppose we wish to find upper and lower bounds on the integral

1
(848 [ et
()

For the function under the integral in (4.44) we have the interval polynomial
enclosure P defined by

(4.45) e eP(t)=1-1*+5*-[.0613,.1667]:°

for all ¢ in [0, 1]. The interval coefficient [.0613,.1667] bounds the range of

values of £ e ** for all s in [0, 1]. (See also § 3.5.) From (4.42) we find, for I in
(4.44),

(4.46) Ie j P(t) dt.
[0.1]
It follows from (4.40) that (using (4.45))

Iej P(t)dt=[1-3+16—.1667/7,1-5+15—.0613/7]
[0,1]

(4.47) c[.742, .758].

By using narrower interval polynomial enclosures, we can, as we shall see,
compute arbitrarily sharp bounds on the exact value of integrals such as (4.44).

It is important to note that, when carrying out formal integration of poly-
nomials with interval coefficients, the end points of a coefficient A; =[A,, A;]
will be switched upon multiplication by a negative real number. This results in
the following two cases. Let Ay, Ay, - - -, A, be intervals.

(4.48) Case 1. If a and b have the same sign, then
j (Ao+:+AgY dt=Aob—a)+ -+ A,(b" ' —a® ") /(g +1);
[a.b]
Case 2. If a and b have opposite signs, with a <0 <b then

J’[ ](Ao+'"+Aqtq)dt=To+T1+.. +T,
a,b
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where T, = A;(b""* —a'™")/(i +1), for i even; and
T.=[(Ab™ = Aa™ )/ +1), (Ad" =A™/ +1)],

for i odd. We can obtain the same result by adding the integrals over
[a, 0] and [0, b].
Note that for “real” (degenerate interval) coefficients A;, with A; = A, both
cases reduce to the usual formal integration of polynomials.

We can formally differentiate a given polynomial with interval coeflicients as
well. However, it is not true that the resulting polynomial contains the
derivatives of all functions enclosed by the given polynomial, (N 2). If we
have an interval polynomial enclosure of the derivative of a function, say
f'(t) € P(t), then formal integration of P(s) from a to ¢ will produce an interval
polynomial enclosure of f(t)—f(a) whose formal derivative, namely P(t)
encloses f'(¢). Thus, the formal integral of an interval polynomial enclosure of
the derivative of a function f is called a derivative compatible enclosure of f,
(N13). It is not a derivative compatible enclosure of every function it
contains.

To illustrate the concept introduced in the previous paragraph, we recon-
sider the polynomial enclosure P(t) (4.45). By formal integration from O to ¢,
we obtain the interval polynomial

(4.49) Q(t)=t—3>+15t" — ([.0613, 16671/t

The polynomial Q(?) is a derivative compatible enclosure of the function

t

0
that is to say, we have g(r)€ Q(t) and q'(t)e Q'(t) where Q'(t) = P(t) is the
formal derivative of Q(t).

By using the techniques for recursive evaluation of derivatives givenin § 3.4,

we can efficiently compute bounds on the exact values of integrals. From (3.16)
and (4.34), (4.48), we have, for any positive integers K and N, if a and b have

the same sign,
THEOREM 4.6.

> Kt k+1
[ goae (T amermm@mxr)
[a,b] 1 k=0

i=

(4.50) q(:)=j e *ds fortin[0,1];

(4.51)
/K + 1))(ﬁx<xi)w(xi)"+‘}

for functions f with inclusion monotonic interval extensions of f and its first K
derivatives. This includes the class of functions FC,(X,) defined in § 4.4. From
the Lipschitz property of the interval extensions, there is a constant Lk such that

(4.52) w((f)x (X)) =Lgw(X:) for all Xi<[a, b= Xo.

4
i
%
5

S

S g

o, Lo
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If we denote the right hand side of (4.51) by Iy k, then we have

N
(4.53) w(lvk)=(Lg/(K+1)) ¥ w(X) ™2
i=1
For a uniform subdivision of [a, b] we have w(X;)= (b ]
s i) - Nf =
1,--+, N and so (4.53) becomes o or all !

(4.54) w(Ink)=Cxh™"' where Cx =Lx(b—a)/(K +1)and h = (b—a)/N.

Tht}s, for fixed K, the right hand side of (4.51), which we denote by I,
contains the exact value of the integral and is an interval of width no more tll;];:;
some constant Cx times the (K + 1)st power of the “‘step size”” h = (b —a)/N.
For the first example considered in this section (4.43) it is not hard to shov\;
that we can take Lx = K +1 and so we can take Cx = 1 for all K. Thus, I x for
th'e application of (4.51) to (4.43) is, for uniform subdivision, an in’ter\'/al of
width no more than (1/N)**' for any positive integers N and K. In this
exarr}(ple e have, furthermore, (f).(X))=(-1)*/Xf"" and (Hx (X)) =
-D7/X: 7, with X;=1+(G—-1)/N, w(X;)=1/N, and X;=1+[i—1 i]l/N
To make the width of Iy be .001 or less, we can take N = 10>/ ®+D “The
simpler method (4.36) with width bounded by (4.37) corresponds to pl;tting

K =0in (4.51) and deleti ; . .
satisfy N = 103)/(K+])' eleting the sum over k. The following pairs of integers

(4.55) K N
0 1000
_1_ 32
? 10
3| e
a| s
s | o4
6| 3
EIEE
I
o 2

For any K >9 we will still need N =2.
. Since the exact value of the integral is contained in In x for every pair of
integers N =1, K =0, we can intersect the intervals Iy x for any sequence of
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pairs of integers {(N, K)} and obtain an interval which still contains the exact
value of the integral. If we carry out all the computations in Iy x using rounded
interval arithmetic, then any sequence of such intersections will converge in
some finite number of steps to an interval containing the exact value of the
integral. We could fix N and take an increasing sequence of values of K, or fix K
and take an increasing sequence of values of N, for instance. Some work has
been done on the question of optimal choices for the parameters N and K;
however, there are still open problems in this area, (N 14).

For the second example considered in this section, the integral given by
(4.44), we can also apply (4.51) to compute Iy x forany N =1, K =0, using the
recursion formulas

(No(X)=e,
(4.56) (M(X)==2X(fo(X),
(De(X) =—-Q/R)X (i-1(X) + (—-2(X)) fork =2.

For N =2 and K =6, using rounded interval arithmetic, we find Inx =6 =
[.746,.748). Compare this with (4.47).

We can also apply (4.51) to more complicated functions in FC, (X,), e.g. x(t)
in (3.23) using the recursion relations (3.25) for the derivatives, (N 15).

It is important to note that, during the computation of Iy x using (4.51) in
rounded interval arithmetic, we must also compute the coefficients (f),(X;) in
rounded interval arithmetic in order to ensure that the computed interval value
of Iy x contains the value defined by (4.51).

Interval extensions of a variety of numerical integration (quadrature)
methods have been programmed and discussed by J. H. Gray and L. B. Rall
(N 15). These include Newton-Cotes formulas of both open and closed type,
Gaussian quadrature, and Euler-Maclaurin integration. The programs find
bounds, as needed, for remainder terms by recursive evaluation of Taylor
coeflicients in interval arithmetic using the methods of § 3.4. The entire process
is automated, so that only the integrand need be programmed—in ordinary
FORTRAN notation.

NOTES

1. See W. Strother [94] and also R. E. Moore [57].
2. R.E.Moore [57].

3. See K. Nickel and K. Ritter {71], K. Nickel [68], [69] and P. Wisskirchen [99] for further
discussion of finite convergence and its applications.

4. See R. E. Moore [62], [59]; F. Bierbaum [70, pp. 160~168]; H. Ratschek [70, pp. 48-74];
K.-U. Jahn [37], [38], [39].

5. E.Hansen [25, 102-106]; see also H. Ratschek [80] and R. E. Moore [57].
6. G. Alefeld and J. Herzberger [1a, Satz 6].
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7. Sefe R. E. Moore [60] for a discussion of uses of monotonicity tests for reducing the number
of evaluations needed to obtain bounds on the range of values of a function.

8. S. Skelboe [88].
9. R. E. Moore [60]; see also R. Dussel [70, pp. 169-177].
10. R. Dussel and B. Schmitt [14].
11. R. E. Moore [57].
1.2. _H. Rat§chek and G. Schroeder [81], have presented a thorough discussion of the concept of
derivative for interval valued functions. See also G. Schroeder [87].
13. “ableitungsvertrigliche Einschliessung”’; see F. Kriickeberg [46], and also K. Kansy [41].
14. R. E. Moore [76, Vol. I, pp. 61-130], [59] and also J. H. Gray and L. B. Rall [20].

15. J. H. Gray and L. B. Rall [20], [21]; see also R. E. Moore [591, (76, Vol. 1 6
B H .E. 5 s . I, pp. 61-130],
[57], and K. Nickel [66]. PP 30



Chapter 5

Computable Sufficient Conditions for
Existence and Convergence

5.1. Linear algebraic systems. In this section we consider finite systems of
linear algebraic equations

(5.1) Ax=b

where A is an n X n matrix and b is an n-dimensional vector. There are two
cases to consider: (1) the coefficients of A and b are real numbers exactly
representable by machine numbers, or (2) the coefficients of A and b are only
known to lie in certain intervals, A;; and B..

There are two types of methods for the numerical solution of such problems.
So-called direct methods, such as Gaussian elimination (with or without
various ‘‘pivoting’’ schemes) can produce exact results in case (1) in a finite
number of arithmetic operations if A is nonsingular and if infinite precision
arithmetic is used. Indirect (or iterative) methods for the solution of (5.1) in
case (1) produce a sequence of approximate solutions which will converge to
the unique solution if, for instance, A is of the form A =1 — M where I is the
identity matrix and M has norm less than 1, for instance for the norm
(maximum row sum norm)

(5.2) IM||=max ¥ |M,|, (aspecial case of (2.8)).
i

An exact solution in case (2) is much more difficult; the set of all solutions to
(5.1), when the coefficients of A and b can range over intervals, may be a very
complicated set. It can, however, be enclosed in an interval vector (an n-
dimensional rectangle) (N 1). As an immediate consequence of Corollary 3.1
in Chapter 3, we have the following computable test for existence of solutions to
(5.1), with real or interval coefficients.

THEOREM 5.1. If we can carry out all the steps of a direct method for solving
(5.1) in rounded interval arithmetic (if no attempted division by an interval
containing zero occurs nor any overflow or underflow), then the system (5.1) has

59
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a unique solution for every real matrix in A and every real vector in b and the
solution is contained in the resulting interval vector X.

In case (1), with exactly representable real coefficients, if the hypothesis of
Theorem 5.1 is satisfied, the resulting interval vector will have a width which
goes to zero as the number of digits carried (in the rounded interval arithmetic)
increases. We illustrate this phenomenon with an example. Consider the
following ill-conditioned system.

2.000 x; +3.001 x> =1.000
.6667 x;+1.000 x, =.3333.

We will carry out a direct method for solving the system using rounded interval
arithmetic with n decimal digits, forn =4,5,6,7, 8, 9.
We can eliminate the x; term in the second equation to obtain

(1.000—(.6667/2.000)(3.001))x, =.3333 - (.6667/2.000)(1.000).

If we carry out the arithmetic using rounded interval arithmetic with n decimal
digits, we obtain (for x,):

forn=4: .6667/2.000[.3333,.3334],
(.6667/2.000)(3.001) € [1.000, 1.001],
.3333-(.6667/2.000)(1.000) € [-.0001, 0],
(1.000—(.6667/2.000)(3.001)) e [-.0010, 0],
x,€[0,00) (no upper bound on x,);

forn=5: .6667/2.000€[.33335, .33335],
(.6667/2.000)(3.001) €[1.0003, 1.0004],
.3333—(.6667/2.000)(1.000) € [-.00005, —.00005],
(1.000—(.6667/2.000)(3.001)) e [-.00040, —.00030],
x,€[.12500, .16667];

forn=6: x,e[.128205, .131579];

forn=7: x,€[.1302083,.1305484];

forn=8: x,€[.13041210, .13044613];

forn=9: x,€[.130429111, .130429112].

/
The sudden increase in accuracy in this simple example which occurs
between n =8 and n =9 is accounted for by the fact that, beyond n =8, the
only roundoff error remaining is in the final division for x,. In this example, the
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width of the computed interval goes down by, at least, 10" for each increase of
a unit in n beyond n =S5.

A phenomenon, somewhat puzzling at first, was observed during early
experiments with interval versions of Gaussian elimination. In case (1), with
real coefficients, the midpoint of the resulting interval solution in rounded
interval arithmetic is usually very much closer to the exact solution than the
width of the interval solution—by seven or eight decimal places for systems of
order around twenty. This phenomenon has been studied and is now well
understood, (N 2). For a fixed number of digits carried in the rounded interval
arithmetic operations, the width of the resulting interval vector will increase as
the order n increases for most matrices at about the same rate as the worst case
analysis of von Neumann and Goldstine. During the Gaussian elimination
process there are multiple occurrences of the coefficients in combination with
subtractions and divisions which reverse endpoints, resulting in the observed
excess width (in most cases) of the interval results. For special classes of
matrices, interval Gaussian elimination can give good results. It has been
shown recently (N 3) that interval Gaussian elimination always can be carried
out, even without pivoting, when A is an *‘M matrix’’; or when A is strongly,
diagonally dominant, (N 4). (See also H. Beeck (N 3).)

Investigations of interval versions of indirect or iterative methods were
begun by E. Hansen and subsequently pursued by a number of other research-
ers (N 5). We can multiply both sides of (5.1) by a matrix Y (for instance an
approximate inverse of m(A)) and define E =1- YA. If |[E||<1 using (2.8),
then the sequence

(5.3) XV =(yp+ EXINXY, k=0,1,2,---,
with
X" =[-1, 1lysll/A-|ED), i=1,2,---,n,

is a nested sequence of interval vectors containing the unique solution to (5.1)
for every real matrix in A and every real vector in b. In rounded interval
arithmetic, the sequence (5.3) will converge in a finite number of steps to an
interval vector containing the set of solutions to (5.1). Thus, we have:

THEOREM 5.2. Using the norm (2.8), the system (5.1) has a unique solution x
for every real matrix in A and every real vector in b (for interval matrix A and
interval vector b) if ||I — YA|| <1 for some matrix Y (real or interval). Further-
more, the solution vector x is contained in the interval vector X*' defined by (5.3)
for every k =0, 1, - - - . Using rounded interval arithmetic, the sequence {X*'}
converges in a finite number of steps to an interval vector containing the set of
solutions to (5.1).

We can illustrate (5.3) with a simple example. Consider (5.1) with

G ) )
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If we choose

6 =3
Y = (_1 1), an approximate inverse of A,

we find, using three decimal digit rounded interval arithmetic,

10 6 [-1.12, 1.12]
E=(y o) =(5) *=(0h 1i)
0 0 =) X e, a2

and we obtain

([.478,_1

X _ ([.666, .667])
-1

with X' =X for k =z 4.

The iterative method (5.3) is also applicable in case A and b have interval
components. Sharper bounds on the set of solutions may be obtained using
methods of E. Hansen or G. Alefeld (N 1). As already mentioned (following
(5.2)) the exact set of solutions, when A and 4 have interval components, may
be a complicated set. Even for a 2 X2 interval matrix A and a 2-dimensional
interval vector b, the set of solutions to

Ax=b,

1
X()=

.712]>, X®

([.647,

_1.672])’ X3 = ([.664, .668])

-1

for A,€ A, b,eb can have a boundary which is a nonconvex, eight sided
polygon. Such an example has been given by E. Hansen (N 1).

5.2. Finite dimensional nonlinear systems. In this section we consider finite
systems of nonlinear equations

(5.4 fl(xl, X2, ', X.)=0,
fz(xl) X2, """, xn)=09
fn(xl, X2, ", xn)= 0

which we may write, in vector notation,

(5.5 f(x)=0.

As in the previous section, we can consider two cases: (1) the functions f; are
exactly representable real valued functions, or (2) the functions f; have
coefficients known only to lie in certain intervals. We will discuss case (1) first
and then extend the results to include case (2). (See also E. Adams and W. F.
Ames (N 16).)
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Suppose that f in (5.5) is continuously differentiable in an open domain D; f
and f' have inclusion monotonic interval extensions F and F’, for instance the
united extensions, defined on interval vectors X < D. We have the following
computational test for the existence of a solution (N 6).

THEOREM 5.3. Let Y be a nonsingular real matrix and let y be a real vector
contained in the interval vector X < D. Define K (X) by

(5.6) KX)=y-Yf(y)+{I - YF'(X)}X —y).

If K(X)< X, then (5.5) has a solution in X. It is also in K (X).
The proof of Theorem 5.3 is straightforward (N 6). If the interval vector

X =(X, X3, -+, X,)is an n cube, so that w(X;)=w(X) fori=1,2,---,n,
and if we choose y = m(X), then K (X) will lie in the interior of X if
(5.7) IK(X)—m(X)|<w(X)/2.

Thus, for an n cube X, (5.7) is sufficient for the existence of a solution to (5.5) in
X. The same condition (5.7), which can be verified computationally by evalu-
ating K(X), is also sufficient to guarantee the convergence of a variety of
iterative algorithms as indicated by the following.

THEOREM 5.4. Let X be an n cube, y=m(X), and Y a nonsingular real
matrix. Suppose that (5.7) is satisfied. Put X'” =X, Y'” =Y and consider an
arbitrary real vectorx'® in X'©. Then the system (5.4) has a unique solution in X
and the following algorithms converge to the solution :

(5.8) T =x®_yfrx®),  k=0,1,2,---;
(5.9) x(kﬂ): xP—y®rx®), k=0,1,2, - - aslongas
M- Y(k)F’(X)||<r for somer<1;
(5.100 X*P=x®YNKX"®), k=0, 1, 2, ---, where K(X®)=

(k) Y(k)f(y(k))+{1 Y(k)F (X(k))}Z(k) andy(k)_m(X(k)) Z(k)
X“‘)— m(y™) and where Y is chosen as follows
Y, an approximation to [m (F'(X )],
Y(k) = if IlI _ YF:(X(k))” = "I _ Y(k—l)Fr(X(k—l))”;
Y%~V otherwise.

Proof. The importance of Theorem 5.4 warrants inclusion of a proof even
though it has appeared (and in more detail) elsewhere (N 7). For existence,
we have the following. If P(x) = x — Yf(x) maps X into itself, then f(x) =0 hasa
solution x* in X. This follows, for nonsingular Y, from the continuity of f and
the fact that X is convex and compact, by the Schauder fixed point theorem. It
is not hard to see that P(x)e K(X), (N7). Thus K(X)< X implies that P
maps X into itself. Furthermore, the condition (5.7), which implies that
K (X) c X, also implies that

I - YF'(X)|<1.
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This can be shown as follows. Since X is an n cube, we have
Xi-m(X;)=[-1,1lw/2 foralli=1,2, - n.
Thus

{I-YF'( X)X -mX)}i= { _Zl |- YF’(X)|,-,-}[—1, 1iw/2.
i=
It follows that, for some i, we have

K(X)i=m(X;) = =[YF(m(X)]: + |/l - YF'(X)|[-1, 1]w/2.

From |K(X);—m(X;)|<w/2 it follows that |I — YF'(X)|<1. Since P(x)e
K(X) for all x in X, and since K (X) < X, it follows by induction, from x” € X,
that x*’ e X for all k with x**’ defined by (5.8). Furthermore,

e =M= = YF O] ™~ x¥]

since f(x)—f(x*) e F'(X)(x"*'~x*). Therefore, from |I - YF'(X)|<1, it
follows that the sequence defined by (5.8) converges to the unique solution x*
(of (5.5)) in X from any x?in X. The convergence of the algorithms (5.9) and
(5.10) is proved in a similar way (N 7).

We will illustrate the use of the algorithms (5.8), (5.9), (5.10) with an
example. Consider the system of equations

filxy, x2)=x1+x3-1=0,
(5.11) ,
fa(x1, x2)=x1—x2=0.
For f' we have the Jacobian matrix
2 2
(5.12) f'(x)=( * "2).
1 —2XQ

For the interval extensions F and F' we can take the natural interval extensions
of the corresponding real rational functions, simply evaluating (5.11) and
(5.12) in interval arithmetic. For X = ([.5, .8], [.6, .9]) we have

, (13 1.5
miF (X))"< 1 -15 )
As an approximate inverse of this matrix, we will take
43 43
1 -( )
(513 Y 29 =37

Putting y = (.65, .75) = m(X), we find from (5.6) for the 2-cube X,
K(X)<([.559, .68],[.74, .84]).
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Since ||[K(X)—m(X)||=.091<w(X)/2=.15 the hypotheses for Theorem 5.4
are satisfied and so the conclusions follow. In particular, the iterative method
(5.8) converges to a solution of (5.11) using Y given by (5.13) from any x” in
X@=(.5,.8],[.6,.9]). The other two Newton type algorithms (5.9) and (5.10)
converge as well. The interval algorithm (5.10) produces a nested sequence of
interval vectors containing the solution. Using rounded interval arithmetic, the
algorithm (5.10) converges in a finite number of steps to an interval vector
containing a solution of (5.11).

The algorithm (5.8) with Y chosen as f'(x‘?)™' is the simplified Newton
method. The algorithm (5.9) with y®= f’(x“‘))'l is the Newton method for the
system (5.4). The satisfaction of (5.7) is sufficient to guarantee the convergence
of the simplified Newton method from any x© in X. The interval Newton
method (5.10) produces a nested sequence of interval vectors containing the
unique solution in X if (5.7) is satisfied. It can be shown (N 8) that the widths
of the containing interval vectors converge quadratically to zero if F'(X) is a
Lipschitz extension of f'(x). The ordinary Newton method will converge to the
solution in X from any x'” in X if |[I — f'(y) 'F'(X)||<1 for all y in X.

The special case n = 1 in (5.4) has been considered by a number of authors.
In the case of polynomial functions, methods for bounding the complex zeros in
circles in the complex plane have been discussed by I. Gargantini and P.
Henrici (N 9). Globally convergent interval Newton methods for finding all
the real zeros of a continuously differentiable real valued function in an interval
have been discussed by K. Nickel and by E. Hansen (N 10). The method of
Hansen, which uses extended interval arithmetic (including unbounded inter-
vals) and some new interval forms for derivatives, bounds multiple as well as
simple roots.

A globally convergent method for the general n dimensional system does not
seem to be available. In a later chapter we will discuss some search procedures
for finding safe starting regions for iterative solution of (5.4). The computable
sufficient conditions for existence and convergence given in Theorems 5.3
and 5.4 are much easier to use than the well known Kantorovich conditions
(N11).

In case (2) mentioned at the beginning of this section, when the functions f; in
(5.4) have coefficients known only to lie in certain intervals, we can still use the
interval algorithm (5.10). In this case, we require inclusion monotonic interval
functions F and F’ such that f(x) is contained in F(x) for every choice of real
constants in the interval coefficients and such that f'(x) is contained in F'(X) for
every choice of real constants from the interval coefficients and for every x in X.
We replace f(y*) in (5.10) by F(y*’) and the condition (5.7) now implies, if it is
satisfied, that the system (5.4) has a solution in X (perhaps a whole set of them)
and that the sequence of interval vectors generated by (5.10), starting with
X=X, Y@=, is a nested sequence and converges in a finite number of
steps (using rounded interval arithmetic) to an interval vector containing all the
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solutions to (5.4) in X for any choice of the real coefficients from the given
interval coefficients. Thus we can compute bounds on the set of possible
solutions in X,

The following simple one dimensional examples will serve to illustrate
dramatically the difference between the ordinary Newton method and interval
Newton methods. For a single equation we can use a simpler algorithm than
(5.10). From the mean value theorem for continuously differentiable functions,
we have

(5.14) fx)=f(y)+f(s)(x—y) forsome s between x and y.
If f(x) =0, then we have

(5.15) x=y=(f&)7 ).

Let F'(X) be an inclusion monotonic interval extension of f'(x) and consider
the algorithm (N 12)

(5.16) X xOANKX®), k=0,1,2, -
where
N(X)=m(X)-f(m(X))/F'(X).

From (5.15) it follows that x is contained in N(X) if y =m(X) and if x is
contained in X for then s in (5.14) is also contained in X. In this case, x is also
contained in X' for all k if it is contained in X‘”. We have the following.

THEOREM 5.5. If an interval X © contains a zero x of f(x), then so does X ) for
allk=0,1, 2,---, defined by (5.16); furthermore, the intervals X al form a
nested sequence converging to x if 0¢ F'(X®).

Proof. If 0 F'(X'?), then 0 F'(X®) for all k and the midpoint m (X )y is
not contained in X**V. Therefore we have w(X**")<iw(X*)). The con-
vergence of the sequence follows.

Actually, we can even allow 0 to be contained in F'(X ©) if we use extended
interval arithmetic as the following example shows. Consider f(x)=
—2.001+3x —x>. We have f'(x) =3(1 - x?). We can use the interval extension
F'(X)=3(1-X?); see (3.10). If we put X ?=[-3, 3], we obtain F'(X¥)=
[—24, 3] and, in extended interval arithmetic, we obtain

(5.17) F'(X) 7 =[-00, —35]U[5,0].

Thus the interval X © is mapped here into the union of two disjoint, unbounded
intervals. From this point we can follow the production of one (or more)
sequences of intervals using the algorithm (5.16) beginning with either of the
intervals in the union (5.17). In this example, if we choose the second interval in
the union (5.17), the sequence of intervals generated by (5.16) will terminate in
a finite number of steps with the empty interval since there is no zero of f(x)
beyond 1 Conversely, since a zero of f(x) is in N (X)) whenever itis in X, we can
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tell from an empty intersection X N N(X) that there is no zero in X. If we
choose the first interval in (5.17), then we find, using (5.16), a nested sequence
of intervals

X(O) = [_3’ 3],

XM =[-3, -.083375],

X®=[-3, -1.66526],

X® =[-2.17875, —1.63830],
X%=[-2.17875, —2.06189],

X% =[-2.0162, —2.0003],
X®=[-2.00024, —2.00006],

X7 =[-2.0001112, —2.0001110].

During the computation, we found that N(X“)< X, with 0¢ F'(X“). It
follows that f(x) has a zero in X % for all k in this sequence.

THEOREM 5.6. If 0gF'(X) and N(X)cX with NX)=
m(X)—f(m(X))/F'(X), then f(x) has a zero in X.

Proof. (See E. Hansen (N 13) for a proof.)

In contrast to the behavior of the sequence found above, (5.18), the ordinary
Newton method, x**" = x* — f(x*)/f'(x'*’) generates very erratic sequences
for this example unless x@ is less than —1. For instance, with x® =0, the
ordinary Newton method generates the sequence

xM= 667,

x? = 84518716,
x®=.92592529,
x®=.965774,
x® =.98794069,
x©=1.0078932,
x7=.98291958,
x®=1.0013261,
x® = .87506664,
x19=.94034361,

(5.18)

It is a commonly observed phenomenon that the ordinary Newton method can
get hung up, oscillating near a place where a local extremum occurs if f(x) has a
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very small nonzero value there. The interval Newton method (5.16) will reject

such a region as not containing a zero by producing an empty intersection in
(5.16).

An even more drastic difference between the interval and ordinary Newton
methods is illustrated by the next example. Consider f(x) = x> = (sgn x) x|/,
We have f'(x)=x"?'?/3. We can take F'(X) =X "?3/3 where

(X7, X7, 0<X=X,
(5.19) X ={[IX]7¥3, 0], X<0<X,
[(x17%2,1X17*%, X=X<o.

Thus we have X ~** = {x "*/?: x € X}. We can deal with the unbounded interval
using extended interval arithmetic. Consider first the interval Newton method
(5.16) with any X such that X©<0<X®. We find that N(X)=
m(X)—m(X)" (/X *?/3). We have, from (5.19), (5.16),

X(l) — X(O) ﬂ {m (X(O)) _ 3m(X(0))1/3[0, |X(0)I2/3]}-

We can distinguish three cases:

(1) if m(X*)>0, then XV <[X”, m(X?));

) it m(X®)<0, then XV < [m(X?), X);

3) if m(X®) =0, then XV =0,
In the first two cases, the width of X is no more than half that of X©. In any
case, if X'¥ contains 0, then the sequence (5.16) will contain and converge to the
solution x = 0. The width of X*’ will be no more than 2~*w (X?). This result is
in strong contrast with the behavior of the ordinary Newton method for this
example. For the ordinary Newton method we have

(k+1) _ (k) (k) )
xT U =x T = f)/f ()
=y ® 3,0

=—2x"®

Thus, the ordinary Newton method, for this example, diverges from any x©,
except the solution itself.

It is possible to extend some of the theorems and algorithms of this section to
operator equations in function spaces. We will leave this as an open problem.

In this section we have considered interval versions of Newton’s method for
the iterative solution of (5.4). The interval Newton operators N (X) and K (X)
given by (5.16) and (5.6) are not, in general, inclusion monotonic interval
functions. The approach of the next section is based on inclusion monotonic
interval functions. We will obtain a useful interval version of the contraction
mapping theorem. The results of the next section can be applied to (5.4) if we
first rewrite the system of equations as a fixed point problem.
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5.3. Operator equations. Recall from § 3.5 that an interval enclosure of a real
valued function f is an inclusion monotonic interval valued function F such that
f(t) € F(r). Interval polynomial enclosures are particularly useful. Recall, also,
from § 4.5, that we can formally integrate interval polynomials (4.48) and that
interval integration preserves inclusion (4.41). In this section we will consider
operator equations of the form

(5.20) y()=p(y)(t)

where the operator p may include derivatives and integrals of the function y(¢).
We will consider some interval methods for establishing the existence of
solutions to (5.20) and computational tests for existence of solutions and for
convergence of iterative methods for approximate solution of (5.20). For
clarity of notation, we will restrict our attention in this section to equations of
the form (5.20) in which we seek a real valued function y(¢) of a single real
variable t. The methods can be extended easily to the case of a vector valued
function of a real variable as in systems of ordinary differential equations; and
some of the methods can be extended to cover vector valued functions of vector
valued ¢ (e.g. systems of partial differential equations).

If X(¢) and Y(¢) are interval (or interval vector) valued functions with a
common domain, we will write

(521) XcY if X()<Y() forallt (inthe common domain).
Similarly, if x(z) is a real (or real vector) valued function, we write
(5.22) xeX if x()eX(t) forallzr

Suppose the operator p in (5.20) is defined for some class M, of real valued
functions y with common domain a =¢t=b and that p: Mr—-> M, Let the
interval operator P: M - M be defined on a class M of interval enclosures of
elements of M, with M, € M. We call P an interval majorant of p if

(5.23) p(y)eP(Y) foryeY.

An interval operator P is inclusion monotonic if
(5.24) XcY implies P(X)cP(Y).

We can usually write down such an operator P immediately, given p. (See
Examples 1 and 2 in this section.)

For example, if H and F are inclusion monotonic (see (3.4)), then the
interval operators of the form

b(1)
(5.25) P(Y)(t)=H(t, Y(t))+J F(t,s, Y(s)) ds

with b(z) = b or b(t) =t are inclusion monotonic because of (4.41).
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The following theorem (N 14) provides a basis for useful computational
tests for existence of solutions to (5.20) and for the convergence of iterative
algorithms for solving operator equations.

THEOREM 5.7. If P is an inclusion monotonic interval majorant of p, and if
P(Y?) < Y9, then the sequence defined by

(5.26) Y P=p(Yy" ), k=0,1,2,---,

has the following properties :
1 Yy*Vcy® k=0,1,2,--;
(2) for every a=t=b, the limit

(5.27) Y= N Y
k=0

exists as an interval Y(1) < YX(1), k=0,1,2, - -;

(3) any solution of (5.20) which is in Y isalso in Y® forallk and in Y as
well; thatis, if y(1) € Y O(t) foralla < t = b, then y(t) € Y*(t) for all k and
alla=t=b;

(4) if there is a real number c, such that 0=c=1, for which X c
Y?, (X eM), implies

(5.28) sup w(P(X)(t)) =c sup w(X(¢)), as=t=b,

then (5.20) has the unique solution Y (t) in Yy© given by (5.27).

Proof. Property (1) follows by induction from Y’ = P(Y?) < Y'?, using the
inclusion monotonicity of P. For any fixed ¢, the sequence Y*(¢) of nested
intervals converges to an interval Y (z) which is expressible as the intersection
in property (2). If y is a solution of (5.20), then y € Y'” implies p(y) e P(Y'?)
since P is an interval majorant of p; but y =p(y), so ye Y =P(Y?). By
induction we obtain property (3). From (5.28), it follows that the limit Y'(¢) in
(2) isreal valued for every ¢ and that Y (¢) = P(Y(¢)). From (5.23) it follows that
Y (¢) is a solution to (5.20). Uniqueness in Y follows from the contraction
property (5.28). This completes the proof.

Note that, even without (5.28), we will have convergence of the sequence
(5.26) to some interval valued function Y ().

Some examples will illustrate the application of Theorem 5.7.

Example 1. The initial problem

(5.29) dy/dt=+y@®)?*  y(0)=0,

can be written in the form (5.20) with

(530) PO = [ 4y ds
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We define in a natural way the interval operator P by
(5.31) PX)(t)= J‘Ol(s2+X(s)2) ds  (see §4.5).
Let YO@f) =[0, w] for 0=¢=b; then we have
P(YO)t)= J'Ot(s2+ [0, w?]) ds

=1*/3+[0, w?]t.

We will have P(Y?)< Y'© if /3 +w’b =w. This will be the case if, for in-
stance w =.5 and b =.9; thus, since P is (by construction) an inclusion
monotonic majorant of p (see (3.5) and (4.41)), we can satisfy the hypotheses of
Theorem 5.7 for this choice of w and b.

The operators p and P are defined for continuous functions y and X. From
(5.31) we find that, for 0=¢=b and X < T'” =[0, w],

(532) w(PX)() = L (X (s)>— X (s)%) ds =2bw sup w(X (1));

therefore (5.28) is satisfied with ¢ =2bw if 2bw = 1. It turns out here that the b
and w we found to satisfy P(Y?)cY®©, namely w =.5 and b = .9 also satisfy
(5.28). In other examples, we might have to reduce b to satisfy (5.28) after we
have found w and b to satisfy P( Y©@) < Y©. It follows, from all this, that the
initial value problem (5.29) has a unique solution {expressible as the limit of the
convergent sequence (5.26)) at least for 0 =¢=.9. We can apply the procedure
again with r=.9 and Y(.9) as a new initial point to continue the solution
beyond ¢ = .9. In Chapter 8 we will go into more detail about the construction
of bounds on solutions of operator equations.

Example 2. Consider the following two point boundary value problem
arising in chemical reactor theory (N 15).

y"+(1/1)y’+B exp (=1/|y|) =0,
y'(0)=0, y(1)=T, for real numbers T, B>0.

(5.33)

We can rewrite (5.33) as (ty')’ = —Bt exp (—1/|y|). Integrating this twice and
using the boundary values, we get an integral equation of the form (5.20) with

1 s

(5.34) p)W=T+B[ (1/9)] uexp (~1/ly(w)) du ds
t 0

If we take Y@ =[T,00], then we find that, for all 0=r=1,

(5.35) P(Y®)t)=T+Blexp(-1/T), 1J1-1%)/4< Y©
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for the interval operator

1 s
(5.36) P(Y)(t)=T+BJ (l/s)J uexp (—1/Y(u)) du ds.
t 0

It follows from property (3) of Theorem 5.7 that any solution of (5.33) is
contained in P(Y'?). It has been shown by S. V. Parter (N 15) that (5.33) may
have no solution, one solution, or more than one solution, depending on the
values of T and B. We can apply property (4) of Theorem 5.7 to derive
computable sufficient conditions for the existence of a unique solution to
(5.33). From (4.19) it follows that

w(exp (~1/Y () =lexp (=1/P(Y)/P(YOV|w(Y)(t) for Y < P(Y").

We find that sup, w(P(Y)(t))=c sup,w(Y(1)),0=t=1, for Y < P(Y'?)
and for ¢ = B exp (—1/(T + B/4))/(4T?). Thus, the problem (5.33) will have a
unique solution for B and T such that (T + B/4) log. (B/(4 TH))<1.

The following result may also be of some interest.

THEOREM 5.8 Under the hypotheses of Theorem 5.7 including (5.28), the
ordinary Picard iteration method

(5.37) y P =py*)0, k=0,1,2,---,

converges to the unique solution of (5.20) in Y'” from any y© in Y.

Proof. From y” e Y'? it follows that y*’ ¢ Y*’ for all k with Y*’ defined by
(5.26). In fact, y* Ve Y* implies y© = p(y* ) e P(Y* )= Y. Since
{Y®} converges to the unique solution of (5.20) in Y'”, so does {y*}.

NOTES

1. A method of E. Hansen described in [25, pp. 35-45] and in [26], makes use of information
concerning monotonicity. The method is a forerunner of our ‘‘monotonicity test form’ (4.26); see
also G. Alefeld [2] H. Beeck [70].

2. Seel.von Neumann and H. Goldstine [97]. P. L. Richman and A. J. Goldstein [82]; and also
W. Chuba and W. Miller [10], and W. Miller [54], [55], [70, pp. 246-249], H. Ratschek [78].

3. See G. Alefeld [3], M. Hegben [31], [32], H. Beeck [70, pp. 150-159].
4. See G. Alefeld and J. Herzberger [1a, § 16].

5. See E. Hansen [23], E. Hansen and R. Smith [30], F. Kriickeberg [45], R. E. Moore
[57,§5.2], R. Krawczyk [43], G. Alefeld and J. Herzberger [1a], P. Wongwises [70, pp. 316-325],
P. Wisskirchen [99]. In the paper of Wongwises it is shown both by theoretical argument and by
extensive numerical experimentation that, for matrices with real coefficients, the excess width of
the converged interval vector using iterative methods like (5.3) increases only very slowly or not at
all with the order of the matrix.

6. For a proof of Theorem 5.3, see R. E. Moore [61]. Interval versions of Newton’s method
have been studied previously by R. E. Moore [56], [57]; K. Nickel [25, pp. 19-23],[67]; E. Hansen
[25, p. 23], [24], R. Krawczyk [43]; K. Madsen [50], G. Alefeld and J. Herzberger [1a]. Computer
programs based on interval Newton methods with automatic generation of the derivatives in the
Jacobian matrix have been described by L. B. Rall (et. al.) [47], [19], [77].
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7. See R. E. Moore [63], [61].
8. See R. E. Moore and S. T. Jones [64]; see also K. Madsen [50].
9. See I. Gargantini and P. Henrici [17], I. Gargantini [16].
10. See E. Hansen [27], [28], also K. Nickel [67], {25, pp. 10-24].
11. See L. V. Kanterovich, Functional analysis and applied mathematics, Uspehi Math. Nauk,
3 (1948), pp. 89-185; see also J. M. Ortega and W. C. Rheinboldt [74]; L. B. Rall [77a].
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Chapter 6

Safe Starting Regions
for Iterative Methods

If an iterative method for solving a linear system converges at all, it generally
converges from any initial approximation. For example, if |E|| <1, then
x**V=p+ Ex® produces a sequence {x'*’} converging to the solution of
x = b+ Ex from any x'”. The situation for nonlinear systems is quite different.
In general, an iterative method for solving a nonlinear system of equations will
converge to a solution only from initial approximations which are fairly close to
a solution. While a linear system with real coefficients can have, at most, one
isolated solution, a nonlinear system can have any number of isolated solutions,
depending on the particular nonlinear system. By an “isolated solution” we
mean a solution which has a neighborhood containing no other solutions.
Clearly, even in one dimension, nonlinear equations (for instance polynomial
equations) can have several isolated solutions. This can cause difficulties for
iterative methods at points in between. There are many sources of difficulties
for iterative methods for nonlinear systems (see the example following
Theorem 5.6 for instance). A practical problem is that of finding a safe starting
point from which an iterative method will converge to a solution of a nonlinear
system. For some systems it may be easy; for others it is extremely difficult. In
this chapter we will consider some applications of interval analysis to the design
of search procedures for finding safe starting points for iterative methods.

We can make use of the computational test (5.7) for existence of a solution to
anonlinear system (5.4) in an n-dimensional cube X. If the test is satisfied, then
the iterative methods (5.8), (5.9), and (5.10) converge to a unique solution in X.
One search procedure for finding such a safe starting region X is based on the
following.

THEOREM 6.1. Let E=(E\, E,, - - -, E,) be an n-cube symmetric about the
origin. Thus, E; =[—1, 1]r forsomer>0,i=1,2, - - -, n. Suppose that {x“‘)} isa
sequence of vectors which converges to a solution x of (5.4), computed any way
whatsoever. Suppose further that the sequence of real matrices {Y *’} in (5.9) or
(5.10) converges to a real matrix Y* such that ||I — Y*F'(x + E)||< 1. Then the

75
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computational test (5.7) for existence and convergence will eventually ( for some
k) be satisfied for X = x®P+E Y=Y,

Proof. Recall that K (X), defined by (5.6), using X and Y as given in the
theorem, will have the form, choosmg y= x%,

(6.1) Kx®©+E)=x®-Y®fx")+{I-Y®Fx*+E))E.

For the symmetric n-cube E, we have m(E)=0 and w(E)=2r. We wish to
show that, for some k, we will have

(6.2) IKx®+E)-x®|<r.
Since, for any £, >0, there is a k such that k = k implies
KT = Y®F' x®+ EME| < (I - Y*F'(x + E)||+ £1)r,

it follows that (because of the convergence of the sequences {x“’} and {Y®}
and the continuity of f and F') for some k we will have (6.2).

The search procedure implied by Theorem 6.1 is the followmg

6.3) Along with the computation of any sequence x® designed to
produce approximate solutions of (5.4) we test the condition (6.2); if,
for some k the condition (6.2) is satisfied, then a solution to (5.4)
exists in x'*”=E and the iterative methods (5.8), (5.9), and (5.10)
converge for X'© = x4+ E. We can try any r>0.

COROLLARY TO THEOREM 6.1. If Y*=f'(x)"" and ||f'(x)—F'(x + E)|=Lr,
then the search will be successful for r <1/(L||Y*|).

We will describe, next, another search procedure, based on successive
bisections of n-dimensional rectangles. The search procedure to be given can
be used with any iterative method for solving (5.4) if a computational test is
provided for existence and convergence. Let K (X) be defined by (5.6) and let
X be an n-dimensional interval vector; consider the computational test

(6.4) K(X)cX and |[-YF'(X)|<1.

It can be shown that (6.4) is sufficient for the existence of a unique solution of
(5.4) in X and for the convergence of the iterative algorithms (5.8), (5.9), and
(5.10), (N 1). If X is an n-cube, then we may use the test (5.7) instead.
We begin with some exclusion tests. If, for any i, 0 is not in the range of values
of fi(x) for x in X, then X cannot contain a solution of (5.4). Since F;(X)
-contains the range of values of f;(x) for x in X, we have the following exclusion
test.

(6.5) If 0¢ F:(X) for some 1 =i = n, then (5.4) has no solution in X.

Note that, for each i, F;(X) is an interval; thus we will have 0 ¢ F;(X) if F:(X)
has a positive left endpoint or a negative right endpoint.

It is not hard to show (N 2) that if X contains a solution to (5.4) then so does
K(X). Thus, whenever we compute K(X), we have available another
exclusion test.
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(6.6) If K(X)N X is empty, then there is no solution of (5.4) in X.

The intersection K (X)N X will be empty if, for any i, we have
(6.7) K(X);>X; or K(X):<X.

When using the search procedure to be described with a particular iterative
method for solving (5.4), there may be other exclusion tests available. In any
case, independent of the particular iterative method, we will always have the
exclusion test (6.5).

We describe now a recursive interval bisection search procedure, given by R.
E. Moore and S. T. Jones (N 3).

Let B be an arbitrary interval vector in the domain of F, an inclusion
monotonic interval extension of f in (5.5). Suppose we have an iterative
algorithm for solving (5.5) which has a set C of computable sufficient condi-
tions for the existence of a solution of (5.5) in an interval vector X < B and for
the convergence of the algorithm from X to a solution of (5.5). We will say that
C(X) is true if all the conditions are met for X; otherwise, C(X) is false. The
algorithm concerned may operate with real vectors, in which case “con-
vergence of the algorithm from X can be interpreted as meaning convergence
of the algorithm from any x” in X. If a real vector must be selected from X, we
can take the midpoint m(X). If E is a set of exclusion criteria for the iterative
method concerned, we will say that E(X) is true if we can exclude X, by one of
the tests, as not containing a solution of (5.5); otherwise E(X) is false. For any
X c B, we will have one of the following three possibilities:

(1) C(X) is true;

(2) E(X) is true;

(3) C(X) and E(X) are both false.

It could happen that C(X) or E(X) cannot be evaluated for some X < B. In
that case, the relevant statement is considered false. Thus, in particular, C(X)
is true only if the iterative algorithm concerned is defined on X. If neither C(X)
nor E(X) can be evaluated, then they are both “false’” and we have the third
possibility above. For example, if C(X) requires the inverse of a Jacobian
matrix or an approximation to one, but the inverse does not exist or the
approximation cannot be found (for whatever reason), then C(X) is false.

Determination of which of the conditions (1), (2), (3) holds for X will be
called analysis of X. The goal of the search procedure is to find an X such that
C(X) is true.

A push-down stack T is created during the search procedure. This is a
“last-in, first-out” list. By push X, we will mean the operation of adding X to
the top of the stack. By pop X, we will mean the operation of removing the top

region in the stack (the last one added) and designating it as X. The bisection
search procedure is as follows:

(6.8) Step 1. Set the stack T to empty; set X = B; continue.
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Step 2. Analyze X; if C(X) is true, terminate search (X is a safe
starting region); if E(X) is true, exclude X and go to Step 5;
otherwise continue.
Step 3. Bisect X; select half to analyze; push other half on stack T’;
continue.
Step 4. Set X = half selected to analyze; go to Step 2.
Step 5. If stack T is empty, then terminate search (there is no
solution in B); otherwise, pop X from stack T'; go to Step 2.
We discuss next some bisection rules. In Step 3, in which coordinate
direction should we bisect X ? Having decided this, which of the resulting two
halves should we choose to analyze? Before we discuss these questions, we
remark that, in practise, it might happen (because of the finite representation of
machine numbers) that we cannot further bisect a small region X. In this case,
we can print out such a region for possible further analysis using higher
machine precision and continue the search as if the region had been excluded.
Bisection rules (I). Make a cyclic choice of coordinate direction in successive
bisections; select the left half of the bisected interval.
For this first set of bisection rules, we bisect the interval vector X =
(X1, X3, - - -, X,) in coordinate direction x; to obtain the two halves X D x®
(X =xVUX?) with
X}l) =X;_2) =Xl" ]# i,

XEI) = [Xi9 m()(,)], XEZ) = [m (X)’ X—']'

We always choose X" to analyze next; X @ s pushed on the stack. On
successive executions of Step 3, the index i is increased by one until i =n is
reached; after which, i is reset to 1. Thus we repeatedly cycle i through the
indices 1,2, - -, n. For these bisection rules we will have w(X)=2""w(B)
after np bisections, unless the procedure terminates before np bisections.
If the procedure terminates, then one of two results will have been obtained:
(1) there is no solution in B, (2) we have found a safe starting region. The pro-
cedure will terminate in a finite number of steps if, for all sufficiently small
regions, either C(X) is true or E(X) is true. If F(X) is a Lipschitz extension of
f(x), then E(X) will be true for all sufficiently small regions X which do not
contain a solution of (5.5). It is more difficult to ensure that C(X) will be true
for all sufficiently small regions X which do contain a solution. We will leave
the discussion of the simple, but arbitrary, bisection rules (I) at this point and
consider other sets of bisection rules designed specifically for the iterative
algorithms (5.8), (5.9) and (5.10).
Bisection rules (II). Bisection in a coordinate direction x; in which the
component X; is of maximum width; select a half toward
which a Newton step points from m (X).
With these bisection rules we will still have w(X)=2""w(B) after np
bisections. However, the particular order in which the coordinate directions

(6.9)
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are chosen in successive bisections is not yet completely specified. Suppose the
direction x; is chosen. The choice of a half “toward which a Newton step
points” means we will take [X;, m(X;)]if —[ Yf(m(X))); <0, or [m(X)), X] if
—[Yf(m(X))); >0, or either if —[ Yf(m(X))]; =0 for the ith component of the
half of X selected to be analyzed next. The other components (X, j # i) are left
unchanged. If we cannot compute -Yf(m (X)), we select the left half of X in
direction i. We push the remaining half of X on the stack. If, for a particular
sequence of bisections using rules (II), the Newton steps from the midpoints
always point to a half containing a solution, then the sequence of midpoints of
the selected halves in the sequence of bisections will converge to a solution. As
a result of Theorem 6.1 and its corollary, it seems likely that the search (6.8),
using (6.4) for C(X) and (6.5), (6.6) for E(X), will terminate in a finite number
of steps in this case. The determination of precise conditions under which the
search procedure (6.8) will terminate in a finite number of steps using bisection
rules of type (II) will be left as an open problem.

Bisection rules (III). Since K (X)) contains a solution of (5.5) whenever X
does, we can intersect K(X) with X in Step 3 of the
search procedure (6.8) when using it with the iterative
algorithms (5.8), (5.9), or (5.10). More specifically,
with (6.4) for C(X) and (6.5), (6.6)-(6.7) for E(X) (in
Step 2 of (6.8)), we can use bisection rules (II) in Step 3
but select X' K (X) to analyze in Step 4 and push
X"NK(X) on the stack, where X' is the half of X
selected by bisection rules (II) and where X" is the
other half of X. Note that we will only arrive at Step 3
with aregion X if E(X)isfalse. Now E (X)) is true if and
only if we have either 0¢ F(X) or X N K(X) empty.
Thus we will arrive at Step 3 with a region X only if
X N K(X) is nonempty. It follows that X' N K (X) will
be nonempty. It could happen that X"NK(X) is
empty. If this is the case, then we do not push anything
onto the stack. After np bisections we will obtain a
region X of width w(X)=2""w(B).

Example 1. To illustrate the search procedure (6.8) just outlined with
bisection rules (III) we reconsider the system of equations (5.11) and search
the initial region B = ([0, 1], [0, 1]) for a safe starting region for the iterative
algorithms (5.8)-(5.10). We have

Fi(X1, Xo)=X1+X3 -1,

Fy(X1, Xo) = X, - X3,

(6.10) . (2X1 2X2).

1 -2X,
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We analyze B and find that both C(B) and E(B) are false, so we bisect B.
According to the bisection rules (II) we bisect B in coordinate direction x;
(this is the first direction in which the maximum component width of B occurs).
A Newton step from m (B) points to the right, so we choose the right half of the
bisected region. Thus we obtain X' = ([.5, 1], [0, 1]). When we intersect this
with K(B) we obtain X =([.5, 1],[.125, 1]); we stack X"N K (B). We next
analyze X. We find that C(X) and E(X) are both false, so we bisect X. After
going through the same procedure we obtain, as the new region X to analyze,
X =([.5,.98125],[.5625, 1]). The previous bisection was in the x, direction,
since that was the widest component of the region being analyzed. For this new
X we find that K(X)< X and |I - YF'(X)||=.6190455 < 1. The search pro-
cedure terminates with this X as a safe starting region for the iterative methods
of interest. In fact the ordinary Newton method (5.9) converges rapidly from
m(K (X)) =(.62409084, .79004314), in our safe starting region. In two itera-
tions of the ordinary Newton method from this starting point we obtain an
approximate solution of the system (5.11) accurate to at least eight decimal
places for x,, and x,, namely x; =.61803399, x, =.78615138. In this example,
we have found a safe starting region in two bisections of B.

Another set of bisection rules we would like to consider is motivated by the
following:

(6.11) (1) Bisect X in a direction x; for which —[Yf(m(X))]);#0 and
(x —m(X)); has the same sign as —[ Yf(m (X))]; for some solution
x of f(x)=0
(2) choose the half toward which —[Yf(m(X))]; points; that is
X =X'UX" and we select X' as our new candidate (saving X"
for possible analysis later) where:

(a) X'= ([XI’ Xl]a T [m(X,), X]a T [‘_Xm Xn])
if ~[Yf(m(X))):>0, or _
(b) XI:([XI’ Xl]’ T [‘_Xi, m(X,)], T, [_Xm Xn])

if —[Yf(m(X))); <O0.
Note that if —[Yf(m(X))];=0 for all i=1,2,--,n then we have found a
solution f(m (X)) =0, since Y is a nonsingular matrix.

The condition (6.11) will guarantee that the half X' chosen still contains a
solution x assumed here to be in X. The bisection rules (1), (2) say, in effect, to
pick a coordinate direction and bisected half toward which the ordinary
Newton method moves from the midpoint of X.

Of course, we do not yet know that there is a solution in X ; nor can we tell
whether (6.11) is satisfied even if there is a solution in X. Therefore, we modify
the ideal rules (1), (2) as follows:

Bisection rules (IV). (1)’ bisect X in the first coordinate direction x; for

which [Yf(m (X)L z|[[Yf(m(X))]| for all j=
(6.12) 1,2, -, n;
(2)" use the same second rule as before, (2), where i is
chosen by (1)'.

s R R
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The bisection rules (1), (2)’ can be carried out computationally. Under certain
conditions, we can show they will produce the same choice of X' as the ideal
rules (1), (2).

THEOREM 6.2. If X contains a solution x of f(x) =0, then the bisection rules
(1), (2) will select a half of X which still contains x if, for instance, a Newton step
from m(X), namely m(X)— Yf(m(X)), is close enough to x so that

(6.13) llx = (m (X) = Yf(m GO < Yf(m (XO).

Proof. If (6.13) is satisfied, then for the choice of direction satisfying (6.12)
we have

Y7 (m (XO) = [[Yf (m (X))]i]

and, for this / in particular, we have

[(x = m(X)); — ([ YF(m (X)) <[ Yf(m(X)]].

Therefore, (x —m(X)); has the same sign as —[ Yf(m(X))]..

THEOREM 6.3. If X contains a solution x of f(x)=0 and Y is a nonsingular
real matrix, then the bisection rules (1), (2) will select a half of X which still
contains x if | — YF'(X)| is sufficiently small.

Proof. Since

x = (m(X) - Yf(m(X))) e{l - YF'(X)}(x —m(X)),
we have, since z € Z implies ||z| < | Z],

llx = (m(X) = Yf(m (X =T - YF'(X)|llx — m (X)].
Now (6.13) will be satisfied if

(6.14) 17 = YF' (Xl |x = m GOl <[ Yf(m (X))l

If f(m (X)) =0, then m(X) is a solution; otherwise f(m (X)) # 0 and, from the
nonsingularity of Y, we have || Yf(m(X))||> 0. Thus (6.13) is satisfied if

(6.15) I = YF' O <[ Yf(m (X Ilx — m(X)|

and the theorem is proved.

If m(X)is near x and if Y is close to f’(x)_], then the right hand side of (6.15)
will be close to 1.

Using the bisection rules (IV) on Example 1, (6.10), a safe starting region was
found in four bisections of B. We could modify the rules (IV) to make use of the
intersection X' N K (X) just as we did in the modification (rules (II1)) of rules
(ID). Since K (X) contains a solution x whenever X does, the Theorems 6.2 and
6.3 will still apply to such a modification. However we will now illustrate the
application of the rules (IV) without the modification.
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Example 2. Consider the nonlinear system of equations

fi(x2, x2) :=sin x; +cos x,—1=0,
(6.16) :
falxy, x2)==3—2cos x;—2 cos x2=0.

Again let us take B = ([0, 1], [0, 1]) and seek a solution in B—or rather, a safe
starting region within B for an iterative algorithm for computing a solution. We
can put

cos X; —sin X2>

(6.17) F (X)=(2sinX1 2 sin X,

For X = B, we have

mo0=(3)
[.54,1] [-.8415, O]).
[0,1.683] [0, 1.683]

17 —.42075 )
8415 8415 /

.3570081)
—-.5103303/°

F'(X)c (
mE )=

Fom )~ (

We find an approximate inverse of m(F'(X)), namely

8398 .4199 B
= = F’X
Y (—.8398 .76845) Lm (F"(X))]
and then
—.08552771
~Yfim(X))= ( .691‘97872)’
[-.2122, 1.0411])
X
KX)< ([.81852, 1.5655)

The bisection rules (IV) choose the new region

X'= ([[(; 11]])'

Continuing with the search procedure using the bisection rules (IV), we obtain
the numerical results shown in the following table.

SAFE STARTING REGIONS FOR ITERATIVE METHODS 83
(o) (cor 1561 ("%
) | (e | (%)
(s) | (Govisn) | (5
(53) | (Camorosn) (os9)
() | (o) ()

Thus, after four bisections, we have found a safe starting region. For the final
X in the table, we do have K (X) contained in the interior of X, therefore (5.7) is
satisfied and Theorem 5.4 can be applied. Thus X = ([.25, .5],[.75, 1]) is a safe
starting region for the algorithms (5.8)—(5.10).

Example 3. Consider the two-point boundary value problem
d’x  _
(6.18) d—ti‘=e * with x(0)=x(1)=0.

We obtain the following nonlinear system of equations as a finite difference
approximation to the boundary value problem. Let x = (x4, - -, x,,), where x;
approximates x(kh). We have

6.19)  filx)==2xx—h%e *+xp1+x1=0, k=1,2,---,n,

with xo=x,;,1=0and h=1/(n+1).
We have here, for k,j=1,---,n,

—2+h*e™™, j=k,
(6.20) F'(X)i =41, li—k|=1,
0, otherwise.

Since a solution to (6.18), if it exists, is clearly negative except at the endpoints,
we can try B=(-1,0],---,[-1, 0]). We put X = B to begin with, as usual,
and compute K (X). In this example, we can compute b = — Yf(m (X)) easily by
solving the linear system m (F'(X))b = —f(m (X)) directly, making use of the
tri-diagonality of the matrix m(F'(X)). In fact, we can express K(X) as
K(X)=m(X)+b+ C where the interval vector C can also be solved for
directly from the linear system

m(F'(X))C = (m(F'(X)) - F'(X)}(X —m(X))
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using the multiplicative factors saved during the forward, upper tri-
angularization process in the direct solution for b. We need only perform a back
substitution process in interval arithmetic to find the components of the
interval vector C. We have carried this out for the case n =9, h=.1. The
resulting components of K (X)) are all contained in the interior of the interval
[—1, 0]; therefore K(X) is contained in the interior of the n-cube (n =9),
X =(-1,0],---,[-1,0)). Thus we find that the B we began with is already a
safe starting region for the solution of the nonlinear system (6.19) using the
iterative algorithms (5.8)-(5.10). If we choose to use the ordinary Newton
method (5.9) we do not need an explicit matrix representation of Y, but can
solve for successive displacements D _x B by direct solution of linear
systems with the same coefficient matrix as used in finding » and C. Thus each
simplified Newton iteration would require only re-evaluation of the right hand
side (—f(x“‘))) and the back-substitution process. In this example, no bisections
were required.

While the bisection search procedure can be carried out even if the Jacobian
matrix of the system (5.4) is singular at various places in the region B being
searched, the number of bisections required to find a safe starting region will
increase with the smallness of the size of the safe starting region sought. The
presence of singularities of the Jacobian matrix may force the size of a safe
starting region to be quite small for any iterative method. The following system
arises in the derivation of optimal quadrature formulas for multi-dimensional
integration.

X1 +X3+X5+2X7= 1,

X1X2+X3x4+2xs5x6+2x7x8+2Xx7X0

2 2 2 2
X1X5 +x3x4 +2xs5x6 +2x7x5 +2x7x

= O NI AN Wi

2
9 >
X1%3 4+ X3x3 +2xsxe +2x7x5 +2x7x5 =3,
(6.21) X1X5 F X3x0 +2x5x6 +2x7x8 +2x7x0 =3,

2
XsXe +2X7XgX9 =7,

4 2.2 1
XsXe +2X7X8X5 =35,

3 2 2 1
Xs5Xg T X7XgX9 +X7X8X9 =15,

4 3 3 1
Xs5X6 T X7X8X9 + X7X8X9 = 21

It is readily seen that the system (6.21), which was obtained from P.
Rabinowitz (private communication), has a Jacobian matrix which is singular
on the 8-dimensional surfaces: (1) x> = x4, (2) xs=x9, (3) x; =0, (4) x3=0, (5)
xs=0, (6) x;=0, and perhaps others. A solution is sought in the 9-cube
B=([0,1],[0,1],---,[0, 1]). Actually, a solution to the problem is already

it
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known; however, the system is typical of other, higher dimensional problems of
this type which still await numerical solution. The search procedures described
in this chapter seem to require large number of bisections for such systems. For
a slightly different B, a safe starting region was found (S. T. Jones, personal
communication) in 168 bisections with 73 backtracks. In fact, there does not
seem to be any method, at present, which has an easy time with such problems.

A comparison (N 3) of the bisection search procedure (6.8) with a
continuation method shows better results for the bisection procedure.

The study of methods for finding safe starting regions or safe starting points
for iterative solution of nonlinear systems of equations is still in its early stages.
Much remains to be done.

NOTES

1. See, for example R. E. Moore [61], [63].
2. See R. Krawczyk [43], R. E. Moore [61].
3. R.E.Moore and S. T. Jones [64].



Chapter 7

Applications to Mathematical
Programming (Optimization)

7.1. Linear optimization. A number of authors have considered applications
of interval computation to problems of linear optimization (N 1). In parti-
cular, B. Machost and, later, R. Krawczyk have applied interval analytic
methods to the simplex method for solving linear programming problems.
From an approximate solution of a linear optimization problem, Krawczyk
(N 1) obtains an interval vector which contains the exact solution, taking into
account errors in initial data and rounding errors. In this section we will
describe the method given by Krawczyk. (See referenced work (N 1) for
proofs.) We refer to § 2.1 for notation.

Let A be an m X n matrix, m < n, with interval coefficients. Let B and P be,
respectively, m and n dimensional interval vectors. We wish to find an interval
vector Z which contains the set of solutions to the linear programming
problems: foreach beB,pe P, A, € A:

(7.1) maximize the objective function Q(x)=(p, x), subject to the con-
straints

Ax=b (or Ax =b without ‘‘slack” variables),
0=x.

Here (p, x) denotes the inner product of the real vectors p and x. Also b is areal
vector and A, is a real matrix.

Suppose 7 is an approximate solution of (7.1) for some particular j € P, b € B,
A, € A, obtained using the simplex method, ( may contain rounding errors).
Let S be the index set of all the basis variables of the approximate solution Zz.
Computable sufficient conditions for the set of all solutions of (7.1) to have the
same basis as Z will be given later. Assume, for the moment, this is the case.

Denote by x' the m dimensional vector consisting of the basis components of
an n dimensional vector x. Thus x'= (x;, -+ - x;,) where S={i1, -+, im}.
Similarly, denote by x" the n —m dimensional vector consisting of all the

87
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nonbasis components of x. Let A, denote the m X m matrix consisting of the
basis columns of A, and A; the (n —m)X m matrix consisting of the nonbasis
columns of A,, etc.

Suppose that z’ is the solution of A;z' =" for some A,e A’, b'e B'. We
assume that all A} € A’ are nonsingular. Let Z' be the set of such solutions z' for
all A;e A’, b'e B'. Thus, Z’ is an approximate solution of A, z'=b'. Let Y be
an approximation to the inverse of the matrix A, which was used in the
computation of Z. Krawczyk (N 1) proves the following, assumz’ng that
R=|I-YA'|<1.

THEOREM 7.1. The set of solutions to the linear programming problem (7.1) for
allbe B,pe P, A, € A is contained in the interval vector Z computed as follows::

Zi=3z;+q[-1,1] (basis components of Z),
(7.2) Z"=0 (nonbasis components of Z)
where q = (|Y||A'z'~ B|))/(1 - R).

If w(A) and w(B) are small, the bound Z can be sharpened. We can find a
narrower interval vector containing the set of solutions to (7.1) as follows. Call
Z'9 = 7' (as found in Theorem 7.1). For k =0, 1, 2, - - - compute

(7.3) Z* W= zONYB+(T - YA)Z™).

The iterations (7.3) yield a nested sequence of interval vectors containing the
basis components of the set of solutions to (7.1). In rounded interval arithmetic
the sequence (7.3) will converge in a finite number of steps. We again set the
nonbasis components of Z equal to zero.

To determine whether the set of all solutions has the same basis as Z, we
proceed as follows. We can easily test Z' = 0. Next, we denote the transposes of
the matrices A’ and A" by A’" and A" respectively. Let P’ and P" be the basis
components and the nonbasis components, respectively, of the vector of
objective function coefficients. By the methods of § 5.1, we can find an interval
vector V containing the set of solutions of Al'v=p' for all A,e A’ and all
p'eP.If A""V — P"=0, then the set of solutions has the same basis as 7; and
we can then apply Theorem 7.1 and the algorithm (7.3).

For the maximum value of Q(x), we have Q(z)e (P, Z).

7.2. Convex programming. In this section we consider the following problem.
Let f be a continuously differentiable real valued function of » real variables
x=(x1,X2, ***, Xp) in a domain including an n dimensional rectangle
representable as an interval vector B =(B;, B, - - -, B,), Bi=[B, Bl i=1,
-+ -, n. We assume that f is strictly convex in B. We seek the point x in B such
that

(7.4) f(x)=min f(x).

xeB
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The existence of a unique such point is well known and easy to prove. R. Dussel
(N 2) has given an interval analytic method for finding the “smallest possible”
interval vector X containing ¥ and the ‘“smallest possible” interval F contain-
ing f(x). We will describe the method of Dussel.

We remark first that a sufficient condition for the strict convexity of f in B is

(7.5) 9°f(x)/3x;0x;>0 forallxin Bandallij=1,--,n.

We denote the gradient of f at x by f'(x). Thus f} (x) = (3f/dx;)(x). It is assumed
that f is continuously differentiable in B. We assume also that f and f}, i =1,
* + +, n, have inclusion monotonic, Lipschitz interval extensions F and F/ with
F(X) and F; (X) defined for all X < B. If F; (X)> 0 it follows that f(x)> 0 for
all x in X; similarly, F; (X) <0 implies f;(x)<O0 for all x in X. We define the
function

1 if0<Z(0<2),
(7.6) sign(Z)=40 if0eZ(Z=0=2),
-1 f0>Z(0>2)

for an interval Z =(Z, Z). For degenerate intervals, this reduces to the
ordinary sign function for real numbers.
We define the (n —1)-dimensional rectangles

H@,b)={x:xeB, x;=>b}

fori=1,2,---,nand B;<b<B.

We can represent H (i, b) by the interval vector (By, - - -, b, - - -, B,) where
B; = b. The function f has a unique minimum point in each such H (i, ). Dussel
(N 2) proves the following.

THEOREM 7.2. Suppose that f(y) = min f(x) for all x in H(i, b) and Z is defined
by (7.4); then

(7.7) sign (fi(y)) =sign (b —%)).

If it should happen that sign (f; (y)) = 0, then we would have y = ¥; otherwise
we have

X <b ifsign(fi(y))=1,
%i<b if sign (fi(y)=-1.

The method of Dussel consists of a cyclic sequence of bisections of B (cyclic
choice of coordinate directions), choosing the half at each bisection which still
contains X. We can determine which half this is by using (7.8). In order to
compute sign (f;(y)), we note that sign (F; (X)) = +1 implies sign (fi(y)) = £1
whenever y is in X. That is, if sign (F; (X)) # 0, then sign (F; (X)) =sign (fi (y))
if X contains y. The problem of finding y to minimize f(x) for x in H(i, b) is

(7.8)
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again a problem of the type (7.4), but of dimension n —1. We do not have to
find y accurately. We only need to know a region X containing y such that sign
(Fi(X))#0. We seek such a region by again applying cyclic bisection to the
region H (i, b). Dussel (N 2) gives a recursive procedure, written in Triplex-
Algol 60, for carrying out the method.

The procedure can be carried out in rounded interval arithmetic with the

bisections proceeding until, because of the finite representation of machine
numbers, a machine computed midpoint of an interval is no longer in the
interior of a computed interval vector containing . At this point the procedure
is terminated and we have found the smallest possible interval vector contain-
ing X which is representable in the chosen set of machine numbers.

The procedure was tried out by Dussel (N 2) on numerous examples using
the EL X8 at Karlsruhe University. One example, of dimension 4, was the
following. For f(x)=x}+coshx,+x3 +x4+xix3+x3xi with B=(-2.1,
2.9}, [-2.2, 2.8], [-2.3, 2.7], [-2.4, 2.6]), an interval vector containing the
exact solution of the minimization problem (7.4) was found of the form

feX =([-.108(107""),:497(107)], - - -, [-.226(10""), .228(10"')])

with w(X)=.852(10"""). The minimum value of f(x) was bounded by F(X) =
1+[-1.1107""), 1.9(107'")]. The computation required 310 bisections, of
which 171 were of the 4 dimensional region B and the rest were bisections of
lower dimensional regions required to find signs of gradient components.

Note that, for an n-dimensional problem of type (7.4), after np cyclic
bisections of B we will obtain a region X of width w(X)=2""w(B). Thus 164
cyclic bisections of B in the example just mentioned produce a region of width
about 27 *'w(B)=.2--- (107""). The discrepancy between this count and the
observed 171 may be accounted for by the termination criterion and by the
presence of slight increases in the bounding regions from the use of rounded
interval arithmetic.

7.3. Nonlinear optimization. An application of interval methods for

computing error bounds for an approximate Kuhn—-Tucker point of a nonlinear

program has been presented by S. M. Robinson (N 3). The method can be

applied to a general nonlinear programming problem of the form

(7.9) minimize ¢(x) for x in S, an open set in R", subject to the constraints:
g(x)=0, h(x)=0where ¢, g, and h are differentiable functions from S
into R, R™, R (respectively).

The functions ¢, g, and & are not necessarily convex. A numerical ‘‘solution” of

(7.9) is usually a triple (%, @, §) with x€ S, 7€ R™, 5 € R? at which the “first

order Kuhn-Tucker conditions”

') +uTg'(x)+v h'(x)=0

(7.10) .
gx)=0, ugx)=0, h(x)=0, u=0
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are approximately satisfied. Let Z = (%, i, ) be the p = n + m + q dimensional
real vector representing the approximate Kuhn-Tucker point. We can enclose
Z in a p-cube by forming Z = 7 + E, where E is a p-dimensional interval vector
with m(E)=0 and w(E;)=w for some w>0 forall i=1, 2, -+, p. Thus,
Z;=z;+[-1, 1]1(w/2). Robinson (N 3) gives computable sufficient conditions
for the existence of a unique point z in Z which satisfies (7.10) exactly.

In order to describe the method of Robinson, we need the following
additional notation. Let f be the mapping from R” into R” defined for z = (x, u,
v),xeR" ueR™, veR, p=n+m+gq,by

() +uTgx)+o R ), i=1,---,n,
(7.11) fi(z) ={ Ui—ngi-n(x), i=n+l, - . n+m,
hi—n—m(X), ' i=n+m+1,...’n+m+q=p'

FOI’ any interval C - [C, C I, deﬁne
C() {[ ’ ] 1 =

C otherwise;
(7.12)

c°—{[-c’ 0] if G=o0,
C otherwise.

Recall that strict complementary slackness is said to hold at a Kuhn-Tucker

point z = (x, u, v) if exactly one of the quantities u;, g;(x) is zero for each i =1,

-+, m. Suppose, for i, j=1, 2, - - -, p, we have inclusion monotonic interval

extensions Fj;(z) of (of;/df;)(z). We assume that ¢, g, and h are twice continu-

ously differentiable in S. Define the interval Newton operator N(z, Z), for

zeZ=X, U, V), xeX,uelU,veV,by

(7.13) N(z, Z)=z — Mf(z) where M is an interval matrix such that M, e M
for every real matrix M, which is the inverse of some real matrix
contained in the interval matrix F'(z, Z) with components F iz,
Z)=(af,‘/azl‘)(21, ttty Zj-1. Z,‘, cety, Zp)

Robinson proves the following (N 3).

THEOREM 7.3. Let G be an inclusion montonic interval extension of g and
suppose that 02 Gi(Z)oNU? for 1=i=m. Suppose further that F'(Z, Z)
contains no singular real matrix and that N(z, Z) < Z. Then N(Z, Z) contains a
Kuhn-Tucker triple z = (x, u, v) of (7.9) at which strict complementary slackness
holds with linear independence of the gradients to the active constraints;
furthermore, z is the only Kuhn—Tucker triple of (7.9) in Z.

The computationally verifiable condition, N(Z, Z) < Z, in Theorem 7.3 has
been shown (N 4) to imply the existence of a unique solution z in Z to
f(z) =0. This condition, which requires the computation of an interval matrix
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containing the set of inverses of real matrices in the interval matrix F'(z, 2),
can be replaced by the simpler condition K (Z) < Z, discussed at lengthin § 5.2,
which only requires an approximate inverse Y of the real matrix f'(Z), (or of the
real matrix m(F'(Z))). The condition || — YF'(Z)||< 1 (which follows automa-
tically from K(Z)< Z for a p-cube Z, (N 6)) implies the nonsingularity of
real matrices contained in F'(Z).

Some progress has been made using interval methods, toward the solution of
problems of global optimization in general nonlinear programming (N 7).
The cyclic bisection procedure (4.30) in § 4.4 can find the global minimum of a
function in an n-dimensional rectangle.

NOTES

1. SeeP.D.Roberts and A. Ben-Israel [83], B. Machost [49], N. F. Stewart [92], R. Krawczyk
[70, pp. 215-222).

2. R. Dussel [70, pp. 169-177], [13].

S. M. Robinson [84].

See K. Nickel [67]. The operator N(z, Z) was first considered by E. Hansen [24].
R. E. Moore [61], [63].

R. E. Moore [63].

7. SeeL.J.Mancini[51],L.J. Mancini and G. P. McCormick [52], R. E. Moore [60], and E. R.
Hansen [29].
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Chapter 8

Applications to Operator
Equations

8.1. Initial value problems in ordinary differential equations. In this section
we will consider some applications of interval methods to the construction of
global error bounds (for all t,=t=1t,) along with approximate solutions of
systems of ordinary differential equations of the general form

(8-1) xf(t)=f,(t, X1, x29"'axn)a i=la"',n’

with given initial values x;(f), 1 =i =n. We may write (8.1) in vector notation
as x'=f(t, x).

In § 5.3 we illustrated an application of Theorem 5.7 to a particular initial
value problem (5.29). The same type of application can be made to practically
any system of the form (8.1). All we need is inclusion monotonic interval
extensions of the functions f; in the system (8.1). We have discussed a large class
FC,(Xo) of functions f; for which this can be done easily in § 4.4. If F;(t, X1, X>,

-, X,,) is an inclusion monotonic, Lipschitz interval extension of f;(¢, xy, « - -,
x,) defined for to=t=+¢, and X;< (Xo);(i, j=1, - -+, n), then consider the
operator P given by

POXO() =x.~<to)+j Fls, Xi(s), -+ -, Xa(s)) ds,
(82) to

P(X)(1) = (P(X (D), - - -, P(X)a (1))

In vector notation, we have

(8.3) P(X)(t) = x(to) + j F(s, X(s)) ds.

to

If w(F(s, X(s)))=Lw(X(s)) for all {,=s5=1,, then
(8.4) sup w(P(X)(2))=L(t; —to) sup w(X(1)), LWh=t=t,

and the condition (5.28) of Theorem 5.7 is satisfied, for t(c=t=t,, if
93
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c=L(t;—ts)<1. It follows from Theorem 5.7 that, under these con-
ditions, (8.1) will have a unique solution contained in X(¢) for to=t=t, if
P(X)(t) < X (t)for to =t =t;. We can always find such an X (¢) for small enough
t, — to, namely any constant interval vector function

(8.5) X(t)=B suchthat B<x(t)<B; fori=1,---,n.

For any B satisfying (8.5) we will have P(B)(t) < B for small enough #; — to. The
solution will also be contained in P(B)(t) for to=t =1, (see Theorem 5.7).

We can use any of a variety of methods to improve the bounds on the solution
in [to, 11]; for instance we can make use of the methods of §§ 3.4 and 3.5 (as we
will show in examples to follow). Furthermore, having found a satisfactory
approximate solution x(¢) and global error bounds for all ¢ in [, #1], say
x(t)— (1) € E(t), we can continue the solution beyond ¢; by replacing x(f) in
(8.3) by £(t;) + E(t,) and by repeating the entire procedure, in order to find an
approximation and error bounds over a new interval [#1, t2]. We can continue in
a step-by-step fashion.

We will illustrate the method just outlined as applied to an initial value
problem discussed by W. F. Ames and E. Adams (N 1), namely:

xi =aix1(1-x2),
(8.6) x2 =—axx2(1—x1),

x1(0), x2(0) given.

The initial value problem (8.6) is Volterra’s model of conflicting populations
(N 1). To make things definite, we consider the same numerical coefficients
discussed by Ames and Adams. We take a; =2, a, =1, x1(0) = 1, x,(0) = 3. For
the interval extensions we can take Fi(¢, X1, X5)=a, X; (1-X5), Fx(t, X,
X:)=—-a, X, (1-X,). In this example, as is the case for any autonomous
system, the functions do not depend explicitly on the independent variable .
This is not essential, but does simplify things a little. For B in (8.5) we can take
B:=[0, w;] and B,=[0, w;] for any w;>1, w,>3. Clearly, F; and F, are
inclusion monotonic and Lipschitz for X < B.
We will have P(B)(t)< B for all to=0=t=1, if

1+2¢[1—ws, 1]w;1 [0, ],

8.7)
3—t[1—wy, 1w [0, wa]

for all 0=t =+¢,. This will be the case, for instance, for w, = L wo=4,1=8=
0.125.

For these numbers, it is not hard to show that we can take ¢ = 42<1in(5.28),
thus guaranteeing the existence of a unique solution of (8.6) for the given initial
conditions and constants for ¢ in [0, 0.125]. For the solution x (¢), we will have
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for0=¢=0.125,
xi(el1+[-8,5]y,

x2(r)e3+[-4,%]t

If we take %;(t) =13 r and %,(1) =3 —3% 1, then x1(t) — %1 (t) € E1(t) = ¥[-1, 1] ¢
and x,(f) — %,(¢) e §[-1, 1] ¢. Put another way, le(t)—fl(t)lé%‘i t and |x,(¢t) —
(1) =%+ So far these are very crude bounds on the solution. We can obtain
arbitrarily sharp bounds as follows.

From the crude bounds (8.8) we can determine that,in 0=t =0.125, we have
x1(t) € [0, 3] and x2(r) € [2.5,%2]. We can use these interval bounds to bound the
remainder in Taylor series expansions of the solution as follows. We refer to
§ 3.4 for the derivation of recursion formulas for the successive Taylor
coefficients in the form:

Ti=1-xa, (T = —(x2)k (k=1),

(8.8)

K
T,=x, T, (T2 = AZO (x 1) (T1)i—j,

ji=

(x)1=2 T, (x)e+1=2/(k + DUT2)k,
T3=1-x,, (T3)k = —(x1ks

(8.9)

K
Ts=x, T3, (T = X (x2){(T3)k—p

j=o
(x2)1=—Ts4, (x2)k+1=(=1/(k + D))(Ta)x-

The recursion formulas (8.9) can be evaluated either in ordinary machine
arithmetic or in rounded interval arithmetic. If we put X; =[0, 3] and X, =[2.5,
%] we can evaluate the formulas (8.9) in rounded interval arithmetic to find
intervals R’ and RY"’ containing, respectively, the range of values of the kth
Taylor coefficients of x;(¢) and x,(¢) for all £ in [0, 0.125]. We can also evaluate
the recursion formulas (8.9) in ordinary machine arithmetic, or in rounded
interval arithmetic (in order to bound round-off error) using the given initial
values x;(0)=1 and x,(0) =3. We obtain, in this way, interval polynomial
enclosures of the solution of the form (here, t,=0)

10X B="F elt—t0)* + RV (= 10)",
(8.10) k=0

N-1
0 eX ()= T (xault—t0)+ RS (1 —1)".
k=0
We can take (1) = m(X™(¢)) and E(1) = X ™(t) - m(X ™(t)). The recursion
formulas (8.9) are derived only once for a particular system of differential
equations. They can be used to evaluate the coefficients in Taylor expansions
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about any point. To find the Taylor coefficients (x), and (x2), fork =0,1,- - -,
N —1in (8.10) we compute and store, a column at a time, the elements in the
array, say for N =9, (carried out here in 8 decimal digit real arithmetic).

(x1)o=1 (x)1=—-4 (x1)2=8 (x1)s=127.10159 - - -
(x2)0=3  (x21=0  (x2)2=—-6 - (x2)s§=—64.77857 - - -
(T1)o=-2 (T1h=0 (T1)2=6

(T2)o=-2 (T2)1=8 (T2)2=-10

(T3)o=0 (T3)1=4

(T4)o=0 (Tah =12

If we want to find the intervals R(lN ) and R we can evaluate the same
recursion formulas (8.9) in interval arithmetic beginning with (X;)o = [0, %]and
(X2)o=[2.5, 2]. It is convenient, for scaling purposes, to compute the quan-
tities R{™ (11— 10)N and RY" (1, —1o)" in (8.10) directly. To do this we need
only modify the recursion formulas slightly, merely multiplying the expressions
for (x1)x+1 and (x2)k+1 by (f1— o). In this way we will obtain the quantities
(-)x(t1 — 10)* as we fill out the array. We obtain, for instance,

RY 125° <[-00007556, .00005833],
RY 125° <[-.00003125, .00004042].

To find R (¢ — t,)° we can evaluate ((f —10)/.125)°[—.00003125, .00004042].
For instance R .05° < [-.0000 000082, .0000 00011].

Using 8 decimal digit rounded interval arithmetic in (8.10) we obtained the
following intervals for the evaluation of X N (1) at t =0.125.

(8.11)

(N)
2

(8.12)

N x$N)0.125) Lwx§ 0.125)
1 [2.60..... ,3.13..... ] 265. ..

2 [2.8488...,3.0247...] .0879 ..

3 [2.89727..,2.95898..] .0308..

4 [2.912873.,2.93087..] .00899 ..

5 [2.919739 ., 2.92449 . ] .00237..

6 [2.920705 .,2.92287 . .] .00108 ..

7 [2.921161.,2.921854 ] .00034 ..

8 [2.921444 ., 2.921669.] .00011 ..

9 [2.9215249, 2.9215965] .000035 ..

By carrying enough precision in the rounded interval arithmetic and by using
any N = 1, we can compute arbitrarily sharp bounds on the values of the exact
solution for 0=¢=0.125, by subdividing the interval [0, #,]=[0, .125]. Let
£ = jh, where h =.125/M for some integer M >1. Thus {“=0and ™=
.125. We do not need to recompute the quantities R™ or RYY since these
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bound the N'th terms in the Taylor expansion at any ¢ in [0, .125]. If we
recompute the coefficients (x1)x, (x2)« for k=0, 1, - - -, N —1 using the initial
values at t =0 and using X1 (+'?), X (¢'”), from (8.10), at " for i=1,2,
-+ +,M —1, then we can obtain sharper bounds on the solution over the interval
[0, .125] than those provided by a single expansion of the form (8.10). In fact
the width of the resulting interval solution, using subdivisions, will be
decreased by a factor approximately equal to (1/M)" down to the point where
roundoff error “takes over”. For a fixed value of N, we could compute and
intersect the interval values of X;(¢) obtained for an increasing sequence
{Mc},=1,2,--- evaluated at any particular ¢ in [0,.125]. The process
would converge in a finite number of steps in rounded interval arithmetic
carried out in fixed precision. Sharper bounds would then require higher
precision arithmetic.

We can also apply the methods of this section to computing bounds on the set
of solutions to an initial value problem resulting from intervals of possible
values for constants in the differential equations and intervals of possible initial
values. The coeflicients (x1)x, (x2)&, * * *, (x.)x Will, in such a case, be intervals
from the outset. The condition (8.5) can be replaced by

(8.13) X (t)=B suchthat B<X(to)=X;(to))<B; fori=1,2,---,n.

The subdivision-intersection technique described in the previous paragraph
will, in this case, produce a sequence of intervals converging in a finite number
of steps to an interval containing the entire set of values of solutions at a
particular value of . For example, we can continue the interval solution of the
problem (8.6) from the new, interval initial conditions X ™M (125), XN (125).

Numerous additional studies of applications of interval methods to initial
value problems appear in the literature (N 2). An application of interval
analytic methods to the determination of periodic solutions of system of
ordinary differential equations has been discussed by U. Waushkuhn (N 3).

A difficulty arises in connection with the continuation of sets of solutions to
an initial value problem for a system of n ordinary differential equations.
Suppose a set of initial points x(0) is enclosed in a finitely representable set S
such as an interval vector, an ellipsoid, or a polytope. The set of solution points

Se={x(t)=(x1(8), - - -, x.(2)): x(0) € So}

for +>0 will, in general, not be exactly representable by the same type of
geometrical object as S,. Thus, if S, is enclosed again in an interval vector,
ellipsoid, or polytope, the resulting bounding region will contain extra points,
not in the solutions emanating from S,. This phenomenon has been dubbed
“the wrapping effect”” and has been studied in a variety of ways (N 24).
Successful attempts to reduce the growth of bounds due to the wrapping effect
have been based on various ideas including the following:

1. We can represent a bounding region by a triple (y*, M, Z) consisting of an
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approximate solution y*, a matrix (linear transformation) M, and an interval
vector Z—all time dependent—so that

S,cy*()+M@)Z(1).

This gives us the flexibility of carrying out the bounding computations in a
moving, nonrectangular coordinate system.

2. We can sharpen (but complicate) the representation of a bounding region
containing S, at appropriate values of ¢ by adding new faces to bounding
polytopes or new elements to finite coverings of S, with unions of bounding
regions.

3. We can carry out analytic changes of variables before or during the
computation to reformulate the differential equations in more convenient
variables so that the direction field is, to some extent, straightened out—
leading to less distortion of the types of bounding regions chosen (N 25).

4. We can use nonrectangular norms, for instance ellipsoidal norms.

5. We can make use of linearities and monotonicities for some systems of
differential equations to construct bounding regions from finite sets of parti-
cular approximate solutions (N 23).

6. G. W. Harrison has recently found a way to eliminate the wrapping effect
when solving a system of linear differential equations with interval valued
coefficients (N 27):

x'=Ax+r, x(0) given,
with A,’,’ §Aij éA,‘,‘ and_r,- =r=r;

ij=1,2,--,n

For the applications of interest to Harrison (linear compartmental models of
biological phenomena such as pharmacokinetics or nutrient cycling in eco-
systems), the diagonal elements of A are given by

Ai=—Ao— Y Aui

k#i

where Ay; x; is the “flow rate from compartment i to outside the system”.
Harrison proves the following.

Letp” denote the transpose of a vector p. Let ¢; denote the ith column of the
n X n identity matrix. Choose ¢, >0. Put p(#;) = ¢; and integrate

dp”/dt = —pTA*(1
backwards from t=1¢ to t=0 to get pT(O) and pT(O)x(O). Then integrate

d(p"x)/dt=p"r* with £(0)=x(0)

N e
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forward from t =0 to t =1, to get (p T%)(t1) = x;(1,) with the result that x1(t) =
%:(t;) where A* and r* are given by

Aij if pi(t)—p;(1) 20,

* =
Aji (1) {Aii if pi(1)—p;()<0

for i #j and i #0 and

Aé‘,([)= éoi lf pl(t)goy
Ao,‘ if p,(t)<0
and
Af()=-A%()—- T A%®)
k#i
and

Foif ()20
% (1) = Fioi ,
e {r if pi(r) <O0.

The same procedure, repeated with p(z;) = —e; yields x;(#;) such that x;(#;) =
x;(2). It is shown (N 27) that the bounds thus computed are sharp. It remains
to investigate the effects of roundoff and truncation error in approximate
solutions of the required equations.

A number of applications to initial value problems have been made of
successive Taylor series expansions with recursive generation of Taylor
coefficients (see § 3.4). We can carry out such a method in ordinary machine
arithmetic, omitting the remainder term, to obtain an approximate numerical
solution; or we can carry out such a method in interval arithmetic including the
remainder term to obtain rigorous upper and lower bounds on the solution.
Recursion relations for successive Taylor coefficients in the n-body problem in
Newtonian gravitational theory have been given (N 29) and used to reconfirm
a prediction of the theory of relativity concerning the motion of the perihelion
of Mercury over the real time period 1850-1950. Using 12th order Taylor
series expansions from step to step, we obtained excellent agreement with a
previous computation of the Newtonian prediction for the motion of Mercury,
which differs from the observed motion by almost exactly what is predicted by
relativity.

D. Greenspan (N 28) has used 8th order successive Taylor series expan-
sions with recursive generation of Taylor coefficients to find, approximately,
periodic solutions of van der Pol’s equation.

Recursive generation of Taylor coefficients is also used in eigenfunction
expansions of solutions of linear, separable partial differential equations on
rectangular regions by Y. F. Chang, G. Corliss, and G. Kriegsman (N 30).
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8.2. Two-point boundary value problems and integral equations. A two point
boundary value problem of the form

(8.14) y'=fty), y0)=y(1)=0,

can be written in the form of an integral equation
t 1

(8.15) y(e)=(- 1)j’ sf(s, y(s)) ds + tj (s = 1)f(s, y(s)) ds.
0 t

We can regard the right hand side of (8.15) as defining an operator p so that
(8.15) is an operator equation of the form y(¢) = p(y)(¢), discussed in § 5.3. If f
is in FC,(X,) (see § 4.4), then it has an inclusion monotonic interval extension
F. The interval operator P defined by

(8.16) P(Y))=(t— I)I sF(s, Y(s)) ds+tj (s=1DF(s, Y(s)) ds
0 t

is an inclusion monotonic interval majorant of p; see § 5.3. Suppose that
P(Y'?) is defined for some continuous interval function Y©(¢) for which
Y®0) and Y©(1) both contain the boundary value 0. Let B 2F((0, 1],
Y“([0, 1])). We have

P(YO) )< (t—1)(*/2)B—t((t—1)*/2)B
(8.17) c((t—1)t/2)tB+(1-1)B)
c((t—1)t/2)B for0=t=1.

Thus, if (t — 1)t/2) B < Y®(¢) for all £ in [0, 1], then we will have P(Y*) c Y'©
and Theorem 5.7 applies, at least through property (3). If (5.28) holds, then
(8.14) has a unique solution in P( YO) ) given by (5.27).

We find, for example, that the two-point boundary value problem

(8.18) y"=3(y +1+1.1261)> +.625t¢, y(0)=y(1)=0,

has a unique solution in P( YO) 1) =[-1.3755, —.2112](1 — t) t where Y© was
chosen as the constant interval [—.35, 0].

Similarly, applying the same techniques, we find that the two-point boundary
value problem

(8.19) y'=e”’,  y(0)=y(1)=0

has a unique solution in [—.582, —.5](1—¢) ¢. Here, Y was chosen as [—.15,
0], (N 4). This particular problem does have another solution; however, it is
not contained in the interval function shown, but goes outside to more negative
values.

Theorem 5.7 provides a basis via (5.26) for the computation of arbitrarily
sharp bounds on solutions of (8.15). Alternatively, for nonlinear problems, we
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could use the crude interval bounds as obtained above to select a starting
approximation for an iterative noninterval method such as a finite difference
method, a collocation method, or the ordinary Picard iteration method. In this
latter connection, see Theorem 5.8. For instance, we can take y(o)(t) =
m(P(YO(1))).

The techniques of § 3.5 are useful in interval iteration methods for improving
bounds on solutions of (8.15) using (5.26).

The same methods can be used to compute bounds on the set of solutions to
two-point boundary value problems and integral equations when constants in
the equations are allowed to vary over intervals of possible values. For
example, the problem

(8.20) y'=1+ct?)y+e”, y(0)=y(1)=0

when .9 =c =1.1and .8 =a =.9 hassolutions all of which can be shown, by the
methods just described, to lie in the interval function [—1.65, —.038] (1 —¢)¢ for
0=¢=1.

To do this, we put F(s, Y(s))=A(s)+B(s)Y(s) in (8.16) where

e“e€A(s) forallsin[0,1]andall a in[.8, .9],

1+cs’eB(s) forallsin[0,1]andall ¢ in[.9, 1.1].
We can take B(s)=1+[.9, 1.1]s and

A(s)=1+Ags+ - +(Aos)?/q!+A1(Aes)" /(g +1)!

for any nonnegative integer g, where Ag=[.8, .9] and A, is an interval
contaning [1, ¢°], say A, =[1, 2.5].

It is not hard to show that, for any q, we have A(s)<[1, 3.3]forall s in [0, 1]
and that B(s)€[1, 2.1]. Thus, we will have P(Y®)< Y© for any q if it is true
using A(s)=[1, 3.3] and B(s)=[1, 2.1].

If we put Y @(r)=[-.44, 0], for instance, then

P(YO)) {1, 3.31+[1, 2.1][—.44, O]}t — 1)1/2

for all ¢ in [0, 1]. From this, it follows that P(Y‘?)< Y” and so the interval
function [—1.65, —.038] (1 — #)¢ contains the set of all solutions to (8.20) for ¢ in
[.9,1.1]and a in [.8, .9].

The more general two-point boundary value problem

y'=f(ty, v,
gi(a, y(a), y'(a)) =0, 82(b, y(), y'())=0

is discussed by E. Hansen (N 6). By subdividing the interval [a, b] and using
finite difference methods, with error terms evaluated in interval arithmetic,

Hansen obtains arbitrarily sharp bounds on the solutions of problems of type
(8.21).

(8.21)
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An interval version of the Newton-Kantorovich method in function spaces is
discussed in the literature as well as other interval methods for two-point
boundary value problems (N 7). The use of methods from functional analysis
for the numerical solution of operator equations can be aided by interval
computation of bounds on norms of functions, norms of operators, etc. This
usually involves bounding the range of values of various functions or sets of
functions and can be carried out using the methods described in Chapters 3, 4,
and 5. This can be done both to verify sufficient conditions for existence and
convergence (for instance the so-called “‘Kantorovich conditions”’) as well as to
compute numerical bounds on the error in an approximate solution.

An interval method for certain Fredholm integral equations has been given
by W. Neuland (N 8).

8.3. Partial differential equations. Error bounds for an approximate solution
of a class of elliptic partial differential equations have been obtained with the
help of interval methods by W. Appelt (N 9). The results can be described as
follows.

Let G be a normal domain: an open, simply connected, bounded domain in
E? in which the Gauss integral theorem holds. Let G = G U 3G, where G is
the boundary of G.

Consider elliptic differential operators D on C’[G] of the form

(8.22) Du = oty + A11Uxy + Qo2lUyy + A1U, + A2U,,
where

@20,d11,402,41,d2€ C[G];

and having the following property (uniformly elliptic in G):
there is a constant m > 0 such that, for all (x,y) in G and all (¢3,&;) in E 2

azo(xy)’)ff + an(%}’)flfz"'aoz(xﬁ)'f% = m(f% +§%)

holds.
(The canonical_example of such an operator is the Laplacian u,, + u,,.)
Given f in C(G) and g in C(3G), consider the boundary value problem
Du=f inG,

(8.23)
u=g ondG.

A function u in C(G)N C*(G) which satisfies the boundary value problem is
called a solution.
For elliptic operators of the type considered, the minimum-maximum prin-
ciple holds:
Let u be a nonconstant function in C[G], then
(1) Du =0in G implies that the minimum value of u occurs on dG; and in
G, u(x,y) is strictly greater than this;
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(2) Du=0in G implies that the maximum value of u occurs on 3G ; and
in G, u(x, y) is strictly less than this.
It follows that, if the boundary value problem has a solution, it is unique.
If an approximate solution i to the boundary value problem can be found for
which 7 is in C[G]N C?’[G] and

Di = f in G,
u=g onadG
then the residual or defect of i is defined to be
g—&gondG and f-finG.
Suppose Q is another normal domain in E* for which G < Q and suppose ¢t is
in C[@QIN C*Q] and
Dt=-1 inQ,
t=0 ondQ

then, for all (x,y) in G, it follows from the maximum principle that

(8.24) lu—ﬁlémgx lg — g|+ t(x,y) max |[f— f].
2 G

Such functions ¢ can be found for a variety of domains G including any that
can be enclosed in a domain Q whose boundary is a circle, rectangle, or a sector
of a circular ring. The sharpness of the bound will depend on the size of the
enclosing region Q. For Laplace’s equation on the unit circle G=
{,y)x>+y* <1}, tlx,y)=3(1- x2- y2) satisfies the requirements for the
defect procedure on Q = G. Some discussion of optimality criteria for choosing
t and Q is given in the paper of Appelt (N 9).

A method for the construction of a twice continuously differentiable
approximate solution u to the boundary value problem is based on a bicubic
spline function interpolation of a discrete solution obtained by some finite
difference method. In order to take into account rounding errors in the
computation of the spline function coefficients, interval arithmetic is used so
that, finally, using interval spline functions, bounds are obtained for

a=max|f—f| and b=max|g—g]|
& oG

where f = Di and g = i@ on 3G. These computed bounds are then used in the
defect procedure which yields

(8.25) lu(x,y)—i(x,y)|=b+t(x,y)a inG.

The interval spline function S(x,y) that is to be used to contain a real valued
spline s(x,y) (in order to cover the effects of rounding errors in computing the
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coefficients of s(x,y)) must be derivative compatible (see § 4.5 and Note 13 in
Chapter 4); that is, the formal derivatives of S must contain the corresponding
derivatives of s. This will be the case if, in [x;,xi+1]X[y;y;+1], we have

(8.26) s(r,y)=s;(xy)= X 3aﬁi,m(x—xf)"'(y—yi)"
and
(8.27) S(xy)=S;(xy)= X 3A"n",m(x—x.<)"'(y—y,~)"
with

af{‘m € Aif,m.

Numerical results are given by Appelt for five examples including the
following two. The programs were written in FORTRAN IV and carried out
using double precision (16.8 decimals) on the IBM/370-165. Storage
requirements were some 250K using overlay-structure.

Example 1.
Du=u,, +u,,=0 in G=[0,1]x[0,1]},
(8.28) s 2
u=x"—-y +2 onaiG

Using successive overrelaxation, a discrete approximate solution was found
with square mesh of size h = 1 (49 interior points). The function ¢ was selected
as

tx,y)=i(x —x>+y-— yo).
The maximum resulting error bound on |u — | in G was about 10~°. Compu-

tation time was about 10 seconds.
Example 2. Here, G was taken as the interior of the figure shown:

+ly

NN

-1 +1 X

N
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Again, in this example as in the first,
Du=u,,+u,=0 inG,
u =x2—y2+2 on dG.

Here, ¢ was t(x,y) = 2-x*-— yz). The step size h = § was again used resulting
in 147 interior points. After interval spline functions were found the resulting
error bound on |u — i7| was less than 1077 in the whole region. Total compu-
tation time was about 54 seconds.

Other applications of interval methods to partial differential equations have
been made by F. Kriickberg and by R. Tost (N 10). Interval methods have
been used by E. Adams and W. F. Ames on a nonlinear parabolic partial
differential equation which is discretized and then solved iteratively (N 31).

8.4. Monotone operators and differential inequalities. Interval analysis pro-
vides more general methods for bounding solutions of operator equations than
some of the methods based on differential inequalities, isotone and antitone
operators, etc. (N 11). For example, Theorem 5.7 in § 5.3 includes, as special
cases, a number of such methods—as we will show in this section. We will also
discuss some other applications of interval methods in combination with results
from the theory of differential inqualities.

A set M, of real vector valued functions with common domain D can be
partially ordered by

(829) x=y ifandonlyif x;(t)=y(t)forallteD,i=1,- -, n.
Now suppose that u and v are in M, and that u = v. We define
(8.30) [u, v]={x:xeM,, u=x, x =v}.

Thus, [u, v] is the interval of functions in M, between u and v.

For each ¢ in D we denote, by [u(t), v(t)], the interval vector ([u,(¢), v1()],
oo, [un(t), va(6)]). Thus, [u, v]is an interval vector valued function Y with
values Y (¢) =[u(t), v(¢)]. We will not distinguish between u and [u, u]. Let M
be a set of M,-interval vector valued functions on D with M, < M. Thus, for any
u and v in M, with u = v, M contains the interval function [u, v].

Now suppose that x, y, u, v are elements of M, with x =y and u =v. We
consider the interval functions Y =[x, y] and V=[u, v]in M. If u =x and
y = v, then we will have Y < V (see (5.21)).

Consider an operator T,: M,-> M, and suppose that T: M ->M is an
inclusion monotonic interval majorant of T, (see § 5.3). For example, the
interval operator defined on the set M of intervals [u, v] with u, v in M, by

(8.31) Tlu, v]={Tx:u=x=v}
is such an operator. In fact, for u =x =y =v, with x, y, u, v in M,, we have

(8.32) T(x, yle T[u, v].
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Now suppose that a sequence of intervals is generated by
(8.33) [un+1, Ons1]=T L, v.], n=0,1,2,---,
with uo = uy = v, = vo. It follows from Theorem 5.7, that the sequence is nested :
(8.34) Un = Up1=Upi1=v, foralln.

These concepts from interval analysis include a number of results from the
theory of monotone operators as we will now illustrate.
Example 1 (L. Collatz (N 11)). Let

T*u=Twu+Tu+r
with
T, isotone: u=v implies Tiu=Tv
and
T, antitone: u=v implies Trv=Tru.
Define the sequences {u,}, {v.} by
Ups1= T1u, + Thv, +r,
(8.35)
Uns1=Tiv, + Tou, +r.

fuo=u1=v,=vo, then u,, = upi1 =0vn41 =0, for all n.

This result from the theory of monotone operators also follows from
Theorem 5.7, using (8.34), since the sequences (8.35) are both generated
simultaneously from (8.33) by the single inferval operator

Tlu, vl=Ti[u, v]+ Tolu, v]+r

where Ti[u, v]=[T1iu, Tyv]and To[u, v]=[T,v, Tou]. The operator T is of the
form (8.31) with T, = T* and does satisfy (8.32).
Example 2 (W. F. Ames and E. Adams (N 12)). A Volterra model for
conflicting populations p(¢) and g(¢) can be put into the form
p'=ap(1—gq),
q'=-cq(1-p)
with a, ¢ >0 and p(0), q(0) prescribed.
Define the sequences {p,}, {g.} by
p:.+1 =ap,+1(1—qx),
(836) q:t-i—l =_an(1_pn)’ t>0s
pn(0)=p(0),  q.(0)=q(0).
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Choosing po(t) =0, it is found (N 12) that (8.36) is a bilateral algorithm,
producing the results:
Po<p2<pa<-: <ps<p3<py,
Go<q2<qs<-- <qs<q:3<q.

These results also follow as a special case of Theorem 5.7, using (8.34), as we
will now show.
We define the real operators f and g by

£(p)=a(0) exp | et~ [ p(s) as)],
0
(8.37)

g(q)=p(0) exp [a(t—J‘OIq(s) ds)].

Clearly, f is isotone and g is antitone:
p1<pz implies f(p1)<f(p2),
q:<q: implies g(q1)>g(q2).

The composite mappings fgfg and gfgf are both isotone. From (8.36) and (8.37)
we have

Pn+2=g(f(g(f(pn)))),
qn+2=f(g(f(g(gn)))).

Now let 1 and v be the vector valued functions

«=(g) =)

and define the interval operator

639 7t )= (o) G}

Clearly, in this notation, (8.36) produces the same sequences, {p2n}, {q2n},
{P2n+1}, {q2n+1} as are produced by (8.33) with T defined by (8.39) if

U, = (pz") and v, = (pz"“).
q2n q2n+1

Of course, we need u, and v, to begin with; thus we need po, qo, ps, and g, to
start the interval iteration.

The operator T defined by (8.39) is of the form (8.31), where T, is given by

()~ Gt

(8.38)
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It can be verified that
T[uo, vol < [uo, vo]
since
Po<p2<p3<p: and @Go<q:<q:3<q.

It follows from Theorem 5.7, using (8.34), that for the sequences defined by

(8.36) we have
(Pzn) (P2n+2)s(Pzn+3> (P2n+1)
q2n q2n+2 - q2n+3 q2n+1
for all n.

An extensive study of ‘‘bilateral algorithms’’ has been carried out by W. F.
Ames and M. Ginsberg (N 19). In general, the sequences of pairs of alternat-
ing lower and upper bounds produced by such algorithms can also be produced
by the interval algorithm (8.33).

Example 3 (G. Scheu and E. Adams (N 13)). The initial value problem

IA
A

y,=f(t’Y)’ )’(to):a

is considered for m-dimensional real vector valued functions y and f. Assump-
tions are made on f so that the problem has a unique solution y(¢) for ¢ in [y, T'].
A pair of operators is defined by

t

V(u, v)(t)=a+é+J. max f(s, y(s)) ds,

(8.40)

t

Viw oX=a-¢+| min fls, y(s)ds

to USy=v

where ¢ and ¢ are positive vectors.
It is assumed that vector functions Yo and y, can be found such that

V(yo, 70)(1) = 7o(0),
yo(t) = V(yo, yo)(1)

for all ¢ in some interval [ty, T].
The sequences {y,}, {y.} are then defined by

(8.41)

¥n+1(t) = Y(Ym )_}n)(t)

)7n+1(t)= V(Ym yn)(t)’ n =O, 17 2’ T,

(8.42)

and the theory of differential inequalities and quasi-monotone operators is
used to show (N 13) that (8.41) implies that

IIA
<
o

IA
3 !
IIA
A
<

(843) yo=y; =Sy, =---SysSysj=---
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where y and y are the limits of the sequences {y,} and {y,} respectively and y is
the unique solution of the initial value problem.
This result is again a special case of Theorem 5.7 as we now show.
Consider the interval operator defined by

(8.44) Tlu, vl(t)=a+[—e, é]+J F(s, [u(s), v(s)]) ds
where ’
(8.45) F(s, [u(s), v(s)) 2 Tig f(s, y(s)), max fs, y(s)].

Here, F can be any inclusion monotonic interval extension of f. In particular,
equality is allowed in (8.45). In fact, for F defined by equality in (8.45), the
assumption (8.41) is satisfied if and only if

T(yo, yol(t) = [yo(t), yo(#)] for all ¢ in [1, T].
We consider the sequence of interval functions generated by

(8-46) [¥n+1; }7n+l] = T[Ym yn]-

The conclusions expressed in (8.43) now follow from Theorem 5.7. Using
equality in (8.45), we find that exactly the same sequences generated by (8.42)
are also generated by (8.46). Furthermore, the results expressed in (8.43)
follow by use of (8.46) even without equality in (8.45) as long as

Tlyo, ol(t) = [yo(?), yo(£)] for all ¢ in [to, T].

This is true even with ¢ =& =0 in (8.44) and even without assumptions on f
assuring a unique solution.

We now illustrate the remarks just made with a specific example.

Consider the initial value problem

(8.47) y'=ct’+y°,  y(0)=a,
where all we know about a, b, and c is that
0=a=.1, 2=b=.38, 33=c=3.6.

Notice that (8.47) does not satisfy the usual Lipschitz condition for a unique
solution when a = 0.
We define the interval operator

(8.48) T(Y)(H)=[0, .11+ Lt {[3.3,3.6]s>+ Y>3 (5)} ds.

Let Yo(t)=[0, B] for all ¢ in [0, #;] with B >0 and ¢, >0 to be determined, if
possible, such that

T(Yo)(t)< Yo(¢) forall ¢in [0, ,].
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From (8.48) we find that
1[0, B)(t) =[O0, .1]+‘[ {[3.3, 3.6)s2+[0, BI"**®} ds
0

=[0, .1]+[1.1, 1.2]F* +[0, BI***\.
Now we have
0,B?], O0<B=1,

[0, BI***= {Eo, B-32], 1=B.
For B =1 we will satisfy T[0, B](¢) < [0, B] for all ¢ in [0, ;] if
(8.49) 1+B?1n+1.26; =B.
We can take B =1 in (8.49), for instance, and find that

T[0, 1](r) [0, 1] for all ¢ in [0, #,]
where ¢, is any positive number such that
(8.50) n+120=.9.

We can satisfy (8.50) with ¢, = .6, for example. It follows, from Theorem 5.7,
that every solution to (8.47) is contained in the interval function

Y(t)=[0, 0.1]+[0, 1]¢+[1.1, 1.2)¢
for all ¢ in [0, 0.6]. Put another way, we have
(8.51) 1L18=sy(n=.1+1+1.2¢
for all ¢ in [0, 0.6] for any solution to (8.47) with
0=sa=.1, 2=b=.38, 33=c=3.6.

The bounds given by (8.51) can be sharpened and continued beyond ¢ = .6 by
the methods described in §§ 4.5, 5.3, and 8.1.

In addition to the applications of Theorem 5.7, there are other connections
between interval mathematics and the theory of differential inequalities as has
been pointed out recently by K. Nickel (N 14). An inverse isotone operator M
has the defining property:

Mv=Mw implies v=w.
For such an operator,
Mv=r=Mw implies v=u=sw
for any solution u of the operator equation
(8.52) Mu=r.

Such an equation is said to be of monotonic type (N 14).
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An example is the following linear parabolic boundary value problem
discussed by E. Adams and H. Spreuer (N 15):

Mu=u—u,+a(x,t) u—f(x,t)=0
onD={(x,1):-1<x<1,0<t=T};
u=0 onaD=D\D;a, feC**** (D),
fz0 onD;  f(x1,0)=0.

IEcan be shown (N 15) that Mv =Mw on D and v =w on dD imply v =w on
D. We now describe the method of Adams and Spreuer for the construction of
arbitrarily sharp upper and lower bounds for the solution to (8.53). The
description is simplified somewhat by using interval notation.

We discretize D with a uniform mesh {(x}, #:)} so that

tisi—t;=At=T/N and x;.,—x;=Ax=1/(2n) with

(8.53)

;=iAt and x;=jAx fori=0,1,---,N and j=-n,---,n.
We define the sets
Di={(x,1):-1<x<1,t;<t=t;1}.
Dji={(x, t):x; SEx = xj41, L St =t;1}.
We define the intervals

aa da
A,’+1,,‘+1 = a(x,-, t,')+AX—[Dﬁ]+ A[_[Dj,'],
ax at

(8.54) p p
;) d
Fiivivi=f(x;, t)+ AXE;[D;.'] + Ata[Dﬁ]

where

d d d

—a[Dj,-] = [min —g, max—a],

ox D; 0X Dp; 0X
etc.

Next, we define the interval functions

t—1t t—t
Aj(t)=(1——‘>Aﬁ+(_')A,',i+1 on Di,

Ar Al
=1t t—1
FO= (1) F+ (G )Fun onD,
(8.55)
Alx, 1) = (1 -"A—x"")A,.(t)+ ("A—"x"—")A,-H(t) on D,

F(x, )= (1 —"—A;’i")F,-(t) + (%{—"")mm on D;.
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We find that, for (x, ¢) in D;,

2a
w(A(x, t))= max {Ax o },
D;UD;_,
(8.56) f
w(F(x, t))= max {Ax Py +Ar Py }

D;UD;_,

Now, foryin S: = c* e (D)N C%**(D,), we define the interval operator
(mapping real valued functions into interval valued functions)

(8.57) Py =y, — yux + A(x,1)y — F(x,1).
Since a(x, t)€ A(x, t) and f(x, t) € F(x, t), it follows, using (8.53), that
(8.58) My € Py.

Thus, Py =0 implies My =0 and Py =0 implies My =0.
Lety,y, yeS. If

(8.59) Py=My=0=Py on D

andy=y=jyondD,theny=y=yon D since then we will have My =My =
0=My.

E. Adams and H. Spreuer (N 15) construct finitely representable functions
y and y which are cubic splines in x and which satisfy (8.59). In this way one can
compute upper and lower bounds, with second order convergence properties,
to the solution of (8.53).

Numerous other problems ‘‘of monotonic type” with inverse isotone opera-
tors have been discussed in the literature. H. Spreuer (N 26) presents a
method for constructing upper and lower bounds to solutions of linear elliptic
boundary value problems of the form

pu=—Au+c(x)u=f(x)
(8.60) inD={x:0<x;<1,j=1,2,---, n},
u(fc)=0 for x on aD.

The problem (8.60) is of monotonic type if ¢ = 0. Again, the numerical bounds
are computed using spline functions.

A large class of problems of monotonic type has been discussed by J.
Schroder (N 16). These include initial value problems, boundary value
problems for certain partial differential equations, and integro-differential

equations of the form
d(x)

8.61) —u"(x)+g(x, u(x), u'(X))+J K (x,tu(x),u(t),u'(x), u"(t) dt =0

c(x)

for 0<x <1, where u, g, and K are vector valued functions.
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U. Marcowitz (N 17) has used interval methods in combination with the
methods of J. Schréder to compute rigorous error bounds for numerical
solutions of the re-entry problem for an Apollo type spacecraft. The bounding
methods for problems of type (8.61) discussed by Schréder (N 16) include the
following applications:

(1) A boundary value problem describing the bending of a beam:

(8.62) —u"—ku(1-u?"?=0, w(0)=u'(1)=0;
is there a nonnegative solution u for k > 2/4?

(2) A nonlinear eigenvalue problem occurring in the study of vibrations of
aircraft structures:

(8.63)  u”+(w"’)'—ku=0 (0<x<1)

k>7',  w(0)=u"0)=u(l)=u"(1)=0
is there a nonnegative solution u?
(3) The Fermi-Thomas problem, occurring in atomic physics:

8.64) —uw'+x V=0 (0<x<o),

u(0)=1, lim u(x)=0.

The application of interval methods to the computation of the defect in an
approximate solution (for instance P(y) in (8.57) for an approximate solution y
for (8.53)) to a boundary value problem in partial differential equations was first
pointed out by F. Kriickeberg (N 18).

An interesting discussion of applications of methods based on the theory of
differential inequalities and also those based on interval analysis to dynamical
models of ecosystems with uncertain parameters has recently been given by
G. W. Harrison (N 20); he has pointed out correctly the importance of dealing
with a difficulty, which has come to be known (N 21) as the “wrapping effect”,
inherent in all methods for following sets of solutions to initial value problems
with uncertain parameters or uncertain initial values (see § 8.1).

Using concepts and notation from interval mathematics, K. Nickel (N 23)
has recently clarified a “lemma” of M. Muller and extended it to functional-
differential equations of the type

u'(ty=1£(=t, u(t), u), O0<t=T,
u(0)=a

where u, f, and a are n-dimensional vectors and, for each k and ¢, fi (¢, u(t), u)
is a “Volterra” functional on u depending only on the values u(s) for0=s=1.
Using the notation

(8.65)

(8-66) U= (U1, Uz, = * 5 Uk—1, Uk+1, " " 7, un)’

Nickel proves the following.
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Suppose that v and w are differentiable functions on (0, T] such that v = w
and v(0)<a <w(0) and, for all ¢ in (0, T] and each k, we have

vk (t) <filt, y©), [v, w]) for all y* such that

(8.67) w=y“=w and yi’=uv and
wi(0)>fi(t, 21), [v, w]) for all 2 such that
w=,z¥=w and z{ =w,.
Then any solution u of (8.65) is bounded by
(8.68) v()=u(®)=w() foralltin[0, T].

This result, which resembles an application of Theorem 5.7 to (8.65), but
does not seem to follow from Theorem 5.7, has also been extended by Nickel to
strongly coupled systems of parabolic function-differential equations (N 23).

E. Adams and W. F. Ames (N 31) obtain contracting interval iteration
methods for nonlinear problems in R" by constructing an auxiliary, inverse
isotone operator in R>". The methods are then applied to discretizations of
boundary value problems.
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1. See W.F. Ames and E. Adams [70, pp. 135-140].
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Vol. I, pp. 103-140}; F. Kriickeberg [25, pp. 91-97]; K.-H. Bachmann [8]; J. W. Daniel and R. E.
Moore [11]; J. Avenhaus [7]; S. Hunger [34]; N. F. Stewart [91], [93].
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Chapter 9

An Application in Finance:
Internal Rates-of-Return

One way of measuring the profitability of a proposed investment is to compute
the project’s internal rate-of-return (IRR). The IRR, r*, is a solution of the
equation

Co+ Ci(1+r) '+ +Cn(A+) VN =Ro+ R, (141 "+ -+ Ry(1+1r) "

where C; is the investment made in the project in year i and R; is the return
received from the project in year i.

We can define the net transfer n; = C; — R; in the ith year (investments minus
returns). It will be assumed that all transactions are made on the first of the
year. Actually, any time period could be used in place of a year (a month, a day,
etc.). The present value of the total project at discount rate r at the start of the
year i is p;(r)/(1+r)' where the polynomials p;(r) satisfy the recursion relation

(9-1) Pi(r)=n,-+(l+r)p,~_1(r) fOI’i=1,2,~--,N,

where po(r) = no >0 for a positive initial investment.
We can also express the sought-after internal rate-of-return 7* as a root of
the polynomial

9.2) pn(r)=nn +nn_1(1+r)+- - -+ no(1+r)N.

We assume that ny is negative so that there is a final return to close out the
investment. The net transfers ny, n,, - -+, Ax—1 can be of either sign (positive or
negative or even zero) with as many sign changes as desired.

The same polynomials p;(r) and pn(r) defined by (9.1) and (9.2) can also be
interpreted as the current balances at years i (or N, respectively) for a savings
account. In this analogy, the net transfer n; would be the difference between
deposits and withdrawals at the beginning of year i. Here, r would be the
(annual) interest paid on the account, to be closed out at year N. The ordinary
requirement that the current balance in a savings account be kept nonnegative
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can be expressed by the conditions
©9.3) p(r*)20 foralli=0,1,2,---,N,

where r* is the actual interest rate paid. The analogous condition for a
proposed investment would be

(Co—Ro)+(Ci—R)A+r*) "+ -+ (Ce—RIA+r*) ™20

forallk=0,1,2,---,N.

We will assume the conditions (9.3) in this chapter. If we find a root of (9.2)
we can check the conditions (9.3). Under the assumptions that no>0 and
nx <0, the polynomial py (r) given by (9.2) will clearly have at least one real
root in (—1, o) since pn(—1) =nx <0 and pn(r) >0 for very large positive r.
Note that r* could be positive or negative (but >—1).

We now prove the following useful result.

LEMMA 9.1. The polynomial (9.2) has at most one root r* in (—1, ©) which
satisfies (9.3). If it has such a root r*, then there are no roots (whether or not they
satisfy (9.3)) beyond it (>r*) and Newton’s method converges to r* from any
ro= r*.

Proof. Suppose that px(r*) =0 for some r*>—1, and that py(r*) satisfies
(9.3). By repeated differentiation of (9.1) we find that

po(r)=0,

pi(N=piaa()+A+rpia(r), i=1,---,N;
p®P(r)=0 fori=0,1,---,k—1,

P =kp* V(N +A+rpE(, i=k---,N.

It follows from (9.3) that, for r = r*, we have (since po(r*)>0)

9.4)

(9.5) pr*>0 fork=1,2,---,N.

Thus, pn(r) can be represented in the form (since pn(r*) =0)
N
(9.6) pu(r)= T (1/kp ()r=r*)
i=

and so pn(r)>0 for r > r*. Similarly, we have
9.7) pn(r)>0 forr>r* and pi(r)>0 for r>r*.

It follows from p/x(r) > 0, pf(r) >0, px (r)> O for r > r* that there is no real root
of pn(r) greater than r* and that Newton’s method converges to r* from any
ro>r*. There cannot be two distinct values of r* which are roots of pn(r) and
satisfy (9.3) for then we would have a contradiction of (9.7) for some r between
them. This completes the proof of the lemma.
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Before we discuss the application of Lemma 9.1 to the analysis of internal
rates-of-return, it is worth noting that by the evaluation of (9.1) in interval
arithmetic for some trial interval, R, can show that there is no root in R which
satisfies (9.3) if, for some i, we have p;(R) < 0. We can use such a test to search
for intervals R which may contain a root of (9.2) which satisfies (9.3) by
excluding parts of the interval (-1, ) which do not (N 1). Note further
that py(0) >0 implies that there is a real root of py(r) in (—1, 0); whereas
pN(0)=nn+nn_1+---+no<0 implies that there is a positive real root of
pw(r). Put another way, if the sum of investments (costs) is less than the sum of
returns (benefits) then there is a positive rate-of-return. It is not hard to show
that if there is a positive rate-of-return r* which satisfies (9.3), then py (0) <0.
Therefore, if nn + nn_1+ - - +no =0, then there is no positive rate-of-return r*
which satisfies (9.3). We can show this as follows. If px (r*) = 0 for r* > 0, with
pi(r*)=0fori=1,2,--+,N—1 and po(r) = no>0, then it follows that (from
9.1)):

AN +(1+r*)py_1(r*)=0
)
—nn/PN-1(rF)=1+r*>1 and O0=pn_(r*)<-nn.
Similarly, 0= nx_1+ (1 +r*)pn_2(r*) < —ny implies
0<r*<(—nnx—nn_1=pn-2(r*))/pn—_2(r*);
therefore
0= pN_z(r*) <—hAN—AN-_1.
Continuing in this way, we obtain 0 <no<—ny —nn_1—* - - —n;. This shows
that py(0) =ny +nn_1+- - - +ne<0is a necessary condition for the existence
of a positive rate-of-return r* which satisfies the conditions (9.3).
We next discuss the application of Lemma 9.1 to a real world problem arising

in connection with the World Bank’s evaluation of a proposed investment in a
forestry project (N 1). The projected cost-benefit stream was as follows:

no=40,000.
n,=20,000.
n,=10,000.
ny=---+=n,3=5,000.
ni9 = —480,000.
nzo=20,000.

nz1 = 10,000.
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Ny ="+ +=ns3g=15,000.
nso = —480,000.
nao=10,000.

Na1 =+ = n4g=15,000.
nae = —500,000.

Notice that, here, we have N =49 and that there are five changes of sign in the
cost-benefit stream. After computing that p4s(0) <0, we know that there is a
positive root of pso(r). We try ro=0.1, 0.2, etc. until pso(ro) >0. We find that
p4s(0.1)>0 and so we try ro= 0.1 as a starting point in Newton’s method for
finding a root of pso(r) with the coefficients as given. We use the recursive
evaluation of polynomial values and derivative values as given by (9.1) and
(9.4) and program Newton’s method, for this example in FORTRAN as follows:
(with P for p, PP for p’, and C(I) for n;)

DIMENSION C(50)
DATA C/40., 20., 10., 16*5., —480., 20., 10., 17*5.,

$ —480., 10., 8*5., —500./
K=0
R=.1
10 P=C(1)
PP=0.
DO201=2,50

PP=P+(1.+R)*PP
20 P=C(D+(1.+R)*P

PRINT*, K, R, P, PP

R1=R-P/PP

IF(R1. GE. R) STOP

R=R1

K=K+1

GO TO 10

END

(Note that the scaling of the coefficients does not appreciably affect the results.)

The execution of this program converged monotonically downward in four
iterations (on the University of Wisconsin UNIVAC 1110 computer) to the
value (R = r*, given here to five places) r* =.09116.

We can check that p;(r*)=0asin (9.3)fori =0, 1, - - -, 49. We will return to
this point later. The stopping criterion ry; = r, for a monotonically decreasing
(mathematically) sequence {r.}, computed in finite precision machine arith-
metic, will always be successful because there are only a finite number of
machine numbers (in any finite precision representation). Put another way,
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roundoff error will cause the machine-computed sequence to lose monoton-
icity after some finite number of steps—four in the example at hand.

Another question of interest in connection with rates-of-return is that of the
sensitivity of the rate-of-return with respect to percentage variation (plus or
minus) in the coefficients of the cost-benefit stream. If the values of n; for
i=0,1,---, N are allowed to vary independently plus or minus 5%, 10%, or
15%, then how much will the rate-of-return vary?

In this case, we can regard the coefficients of the polynomial px (r) given by
(9.2) or by (9.1) as intervals: n; =[n,, ii;], with

m=n¥—aln¥| and A =nf+aln?|

for i=0,1,---,N. For 5%, 10%, or 15% variations in the coefficients, we
would put a =.05, .10, or .15, respectively. Here, n¥ for i=0,1,---, N are
the coefficients as originally given (leading to a rate of return r*).

The resulting interval polynomial P(r) can be represented, for values of
r>—1 (so that (1+r) is positive) by

(9.8) P(r)=[P(r), P(r)]

where
N . - N .
P(r)=Y n(1+r) and P(r)= Y A;(1+r).
i=0 i=0
We can compute the values of the polynomials P(r) and P(r), and their
derivatives P'(r) and P’(r) using
Pi(r)=ni+(1+r)Pi-1(r),  Po(r)=no;
Pi(r)=r+(1+r)P,_(r), Po(r) = fio;
Pi(r)=P;,_1(r)+(1+1r)Pi_1(r),  Po(r)=0;
Pi(r)=Pi_i()+(1+nPi_(r), Py(r)=0;

9.9)

with P(r) = Px(r) and P(r) = Px(r).

A fast way to find the range of values [ r, 7] of the rate-of-return correspond-
ing to variations in the coefficients of the cost-benefit stream, as represented
above, is the following. First we find r* such that py(r*) =0 (approximately)
using pn (r), with coefficients n¥,i =0, 1, - - -, N, given by (9.2) or (9.1). Next,
we use the iteration formulas

non=n—P(r)/P(r), ro=r*

Fiv1= P — P(7)/P'(Fi), Fo=r*.

(9.10)

We iterate the formulas (9.10) until k=2 and 7 = F+1 = F.. We then put
r =ri+1 as well. If the variations of the coefficients in the cost-benefit stream are
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reasonably small, then this procedure should give rapid convergence to the
range of values of possible rates-of-return. If we carry this procedure out for
several different percentage variations, we will get a picture of the sensitivity of
the rate-of-return with respect to variations in the cost-benefit stream.

Again, we can check that the conditions (9.3) are satisfied for the resulting
roots r and 7 (of the polynomials P(r) and P(r), respectively). It is not necessary
that (9.3) be satisfied for the iterates during the computation of r and 7, but only
for the final “converged” values. In this case we will have good approximations
to the actual range of values of the rate-of-return.

The procedure described above has been applied to the forestry project,
discussed earlier in this chapter, with the following results.

% variation in n; I F # iterations of (9.10)
5% .085016 09737 4
10% .078891 .10366 7
15% 072760 .11007 6

The conditions (9.3) are satisfied for these results, produced from the following
FORTRAN program.

DIMENSION C(50), CL(50), CU(50)
DATA C/40., 20., 10., 16*5., —480., 20., 10., 17*5,,

$ —-480., 10., 8*5., —500./
DO30J=1,3
A=J*05
DOS5I=1,50

CL(I) = C(I) - A*ABS(C(I))
5 CuU{)=CI)+A*ABS(C(I))

K=0

RL=.09116

RU=.09116
10 PL=CL(1)

PU=CU(1)

PPL=0.

PPU =0.

DO 201=2,50

PPL=PL+(1.+RU)*PPL
PPU =PU+(1.+RL)*PPU
PL=CL()+(1.+RU)*PL
PU=CU(@I)+(1.+RL)*PU
20 PRINT* PL, PU

PRINT*, K, RL, RU
R1=RL-PU/PPU
R2=RU-PL/PPL
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IF(K.GE.2.AND.R2.GE.RU)GO TO 30
RL=R1
RU=R2
K=K+1
GO TO 10
30 CONTINUE
END

In this program, we use the notation CL(I) for n,, CU(I) for 7, RL for r, RU for
7, PL for P, PU for P, PPL for P’, and PPU for P )

It should be clear that the polynomial P(r) lies below the polynomial py(r)
and will cross the r axis to the right of r*; while the polynomial P(r) lies above
the polynomial px (r) and will cross the r-axis to the left of r* This is why RU is
used in the iteration formulas with PL and PPL whereas RL is used in the
iteration formulas with PU and PPU.

NOTES

1. P. Gutterman, Computer Activities Dept., The World Bank, Washington, DC, personal
communication.



Appendix:A BIBLIOGRAPHY ON
INTERVAL-MATHEMATICS,*
by Fritz Bierbaumf{ and Klaus-Peter Schwiertzt+

At the appearance of this bibliography we want to thank warmly all those
who helped us in collecting the titles by sending us reprints, preprints, and
manuscripts of unpublished papers. The bibliography on interval-mathe-
matics contains about 760 titles arranged alphabetically by the names of
the authors. The publications of the same author are arranged by the year
of publication. The abbreviations of the journals are in agreement with
those prescribed in Mathematical Reviews 44, 1606-1628 (1972). If the
name of a journal has changed the old name is inserted next to the new in
parentheses, (for example: Angewandte Informatik (Elektron. Datenverar-
beitung) ). Citations from books have been designed in the following man-
ner: title of the chapter, ‘title of the book’, editor, publisher, number of
pages (year). The abbreviation GMD denotes the Gesellschaft fiir Mathe-
matik und Datenverarbeitung, D-5202 Birlinghoven bei Bonn, Schloss.

At the Institut fiir Angewandte Mathematik der Universitit Freiburg
there exists an “Internal-Library” containing nearly all the titles of the
bibliography. It is open to all users.

This library and the bibliography are attended now by the second author.
It is always possible to get a continuation of the bibliography from him.

We want to thank all readers sending us corrections of the bibliography.
Finally, we would like to ask all those working in interval-mathematics to
send any new papers to the second author.

*Reprinted in its entirety from Journal of Computational and Applied Mathematics, 4 (1978),
pp. 59-86.

tInstitut fir Praktische Mathematik der Universitat Karlsruhe, Englerstr. 2, D-7500
Karlsruhe, Fed. Rep. of Germany.

t1Institut fiir Angewandte Mathematik der Universitit Freiburg i.Br., Hermann-
Herderstr. 10, D-7800 Freiburg i.Br., Fed. Rep. of Germany.
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