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Preface

As suggested by the title of this book Numerical Toolboz for Verified Computing, we
present an extensive set of sophisticated tools to solve basic numerical problems with
a verification of the results. We use the features of the scientific computer language
PASCAL-XSC to offer modules that can be combined by the reader to his/her
individual needs. Our overriding concern is reliability — the automatic verification
of the result a computer returns for a given problem. All algorithms we present are
influenced by this central concern. We must point out that there is no relationship
between our methods of numerical result verification and the methods of program
verification to prove the correctness of an implementation for a given algorithm.
This book is the first to offer a general discussion on

o arithmetic and computational reliability,
¢ analytical mathematics and verification techniques,
¢ algorithms, and

¢ (most importantly) actual implementations in the form of working computer
routines.

Our task has been to find the right balance among these ingredients for each topic.
For some topics, we have placed a little more emphasis on the algorithms. For other
topics, where the mathematical prerequisites are universally held, we have tended
towards more in-depth discussion of the nature of the computational algorithms,
or towards practical questions of implementation. For all topics, we present exam-
ples, exercises, and numerical results demonstrating the application of the routines
presented.

The different chapters of this volume require different levels of knowledge in nu-
merical analysis. Most numerical toolboxes have, after all, tools at varying levels
of complexity. Chapters 2, 3, 4, 5, 6, and 10 are suitable for an advanced under-
graduate course on numerical computation for science or engineering majors. Other
chapters range from the level of a graduate course to that of a professional reference.
An attractive feature of this approach is that you can use the book at increasing
levels of sophistication as your experience grows. Even inexperienced readers can
use our most advanced routines as black boxes. Having done so, these readers can
go back and learn what secrets are inside.

The central theme in this book is that practical methods of numerical computa-
tion can be simultaneously efficient, clever, clear, and (most importantly) reliable.
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We firmly reject the alternative viewpoint that such computational methods must
necessarily be so obscure and complex as to be useful only in “black box” form
where you have to believe in any calculated result.

This book introduces many computational verification techniques. We want to
teach you to take apart these black boxes and to put them back together again,
modifying them to suit your specific needs. We assume that you are mathematically
literate, i.e. that you have the normal mathematical preparation associated with
an undergraduate degree in a mathematical, computational, or physical science, or
engineering, or economics, or a quantitative social science. We assume that you
know how to program a computer and that you have some knowledge of scientific
computation, numerical analysis, or numerical methods. We do not assume that you
have any prior formal knowledge of numerical verification or any familiarity with
interval analysis. The necessary concepts are introduced.

Volume 1 of Numerical Toolboz for Verified Computing provides algorithms and
programs to solve basic numerical problems using automatic result verification tech-
niques.

Part I contains two introductory chapters on the features of the scientific com-
puter language PASCAL-XSC and on the basics and terminology of interval arith-
metic. Within these chapters, the important correlation between the arithmetic
capability and computational accuracy and mathematical fixed-point theory is also
discussed.

Part II addresses one-dimensional problems: evaluation of polynomials and gen-
eral arithmetic expressions, nonlinear root-finding, automatic differentiation, and
optimization. Even though only one-dimensional problems treated in this part,
the verification methods sometimes require multi-dimensional features like vector or
matrix operations.

In Part III, we present routines to solve multi-dimensional problems such as linear
and nonlinear systems of equations, linear and global optimization, and automatic
differentiation for gradients, Hessians, and Jacobians.

Further volumes of Numerical Toolboz Jor Verified Computing are in preparation
covering computational methods in the field of linear systems of equations for com-
plex, interval, and complex interval coefficients, sparse linear systems, eigenvalue
problems, matrix exponential, quadrature, automatic differentiation for Taylor se-
ries, initial value, boundary value and eigenvalue problems of ordinary differential
equations, and integral equations. Editions of the program source code of this vol-
ume in the C++ computer language are also in preparation.

Some of the subjects that we cover in detail are not usually found in standard
numerical analysis texts. Although this book is intended primarily as a reference text
for anyone wishing to apply, modify, or develop routines to obtain mathematically
certain and reliable results, it could also be used as a textbook for an advanced
course in scientific computation with automatic result verification.

We express our appreciation to all our colleagues whose comments on our book
were constructive and encouraging, and we thank our students for their help in test-
ing our routines, modules, and programs. We are very grateful to Prof. Dr. George
Corliss (Marquette University, Milwaukee, USA) who helped to polish the text and
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the contents. His comments and advice based on his numerical and computational
experience greatly improved the presentation of our tools for Verified Computing.

Karlsruhe, September 1993 The Authors

The computer programs in this book

are available in several machine-readable formats. To purchase diskettes in IBM-PC
compatible format, use the order form at the end of the book. The source code is
also available by anonymous ftp from

iamk4515.mathematik.uni-karlsruhe.de (129.13.129.15)
in subdirectory
pub/toolbox/pxsc.

Technical questions, corrections, and requests for information on other available
formats and software products should be directed to Numerical Toolbox Software,
Institut fir Angewandte Mathematik, Universitit Karlsruhe, D-76128 Karlsruhe,
Germany.
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Chapter 1

Introduction

This is a reference book for numerical methods with automatic result verification.
The methods presented here are practical, reliable, and elegant. We provide the-
ory, algorithmic descriptions, and implementations for methods to solve some basic
numerical problems in a reliable way. Also, this book can help you learn how to
develop such methods and how to proceed for other problems beyond the scope of
the book.

We warn of potential computational problems of standard numerical routines,
but we do not claim that our advice is infallible! Therefore, we offer our practical
judgment on solving many basic numerical problems with automatic result verifica-
tion. As you gain experience, you will form your own opinion of how reliable our
advice is.

We presume that the reader is able to read computer programs in PASCAL
and/or PASCAL-XSC (i.e. PASCAL eXtension for Scientific Computation), the
language in which all the “tools” in this edition of Numerical Toolboz for Verified
Computing are implemented. Its wide range of concepts for scientific computation
makes PASCAL-XSC especially well suited as a specification language for program-
ming with automatic result verification. We discuss the features of PASCAL-XSC
in Chapter 2.

In the following sections, we first give some hints on the methodology and struc-
ture of this book. Then we explain the textual and algorithmic notation we use.
We also describe the basic concepts and form of our implementations, and we make
some comments on the computational environment. We conclude with a section on
the motivation and the necessity of methods with numerical result verification.

1.1 Advice for Quick Readers

This book is organized in three parts:

1. the preliminaries,
2. the one-dimensional problems, and
3. the multi-dimensional problems.
The preliminaries give an overview on the extensions of the programming language

PASCAL-XSC and on the properties and advantages of interval arithmetic. The
reader with little experience with numerical verification and interval techniques
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should read the section on interval arithmetic with care and interest. Its intro-
ductory character shows what arithmetic improvements can do for the reliability of
computed results.

We discuss only basic one- and multi-dimensional problems in parts II and III,
respectively. We especially direct the attention of readers unfamiliar with numerical
result verification to the following chapters:

o Linear Systems of Equations (Chapter 10),

e Evaluation of Polynomials (Chapter 4),

e Automatic Differentiation (Chapter 5), and

e Nonlinear Equations in One Variable (Chapter 6).

Some other chapters, e.g. optimization, require a little more background knowledge
on numerical verification and interval techniques. These algorithms sometimes use
the basic algorithms mentioned above (e.g. the linear system solver).

1.2 Structure of the Book

In order to make this Numerical Toolboz easy and efficient to use, we have chosen
some general standards to keep the different chapters of this book uniform. This
will help you find the important information on each topic, e.g. the theoretical back-
ground or the implementation of a desired algorithm, without necessarily reading
the whole chapter.

Each chapter starts with an introduction to describe the numerical and math-
ematical problem and to motivate a strategy for its solution. A comprehensive
discussion of the theoretical basis necessary to solve the problem and to verify the
computational result is given in the section “Theoretical Background”. Under the
heading “Algorithmic Description”, we present the complete algorithm in a very
short, clear, and consistent way.

A very important part of each chapter is the section “Implementation and Ez-
amples” where an actual implementation for the topic discussed in the chapter is
presented. As promised in the title, all routines are designed as “tools” that can
be combined in several ways to satisfy your needs in solving a specific numerical
problem. The routines are built of different modules so they may be integrated in
an existing program, e.g. to overcome a numerical trap at a certain point of your
own complex problem-solving algorithm. All algorithms presented in this volume
are available on a floppy disk and via ftp (see Page vii) to help you use the ver-
ification algorithms immediately for testing or for integrating them into existing
applications. To demonstrate the effectiveness of each algorithm, we present sample
programs that solve practical problems. We point out the superiority of verification
methods and precisely defined machine arithmetic over most standard numerical
problem-solving strategies.

Most chapters include some “FEzercises” to encourage you to study the behavior
or to improve the algorithms we present. The section “References and Further
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Reading” at the end of each chapter points out to some similar or more sophisticated
and specialized algorithms. The appendix contains basic modules that are used by
certain verification algorithms.

1.3 Typography

We use the following type faces for certain words, names, or paragraphs:

italics emphasizes certain words in the text.

boldface marks reserved words of PASCAL-XSC (e.g. begin, module) in the
text or in excerpts of programs.

slanted characterizes predefined identifiers of PASCAL-XSC (e.g. integer,
real) and identifiers from programming examples when they appear
in the body of the text.

typewriter distinguishes listings and run-time results of programs, including

some kind of pretty-printing to improve the readability (see Section
1.5).

References are always indicated as [nr], where the number nr corresponds to an
entry in the bibliography.

1.4 Algorithmic Notation

The algorithms presented in Parts II and III of this book are specified in a pseudo-
code similar to PASCAL code, including mathematical notation (cf. Chapter 3)

wherever this is possible. Algorithm 1.1 is a simple example of our algorithmic
notation.
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1.6 Computational Environment

We intend to make the programs in this book as generally useful as possible, not
just in terms of the subjects covered, but also in terms of their degree of portabil-
ity among very different computers. Specifically, we intend that all the programs
should work on mainframes, workstations, and on personal computers. We selected
PASCAL-XSC (language reference [44] and [45]) as the implementation environ-
ment for our algorithms, because it was designed with this type of portability in
mind. The PASCAL-XSC system is available from Numerik Software GmbH (65].

All our programs have been run and tested with the PASCAL-XSC Compiler
version 2.02 on PCs 386/486, on Sun SPARCstations, and on HP9000 workstations.
Our programs contain no known bugs, but we make no claim that they are bug-free
or that they are immediately suitable for any particular application. This book has
the benefit of about ten years of developments in the field of scientific computation
with result verification, and we have been very careful in implementing and testing
our routines. Comments for improvements of text and programs are welcome.

1.7 Why Numerical Result Verification?

Floating-point arithmetic is the fast way to perform scientific and engineering cal-
culations. Today, individual floating-point operations on most computers are of
maximum accuracy, in the sense that the rounded result differs at most by 1 unit
in the last place from the exact result. However, after two or more operations, the
result can be completely wrong. Computers now carry out up to 10*! floating-point
operations in a second. Thus, particular attention must be paid to the reliability of
the computed results. In recent years, techniques have been developed in numerical
analysis which make it possible for the computer itself to verify the correctness of
computed results for numerous problems and applications. Moreover, the computer
frequently establishes the existence and uniqueness of the solution in this way. For
example, a verified solution of a system of ordinary differential equations is just as
valid as a solution obtained by a computer algebra system, which still requires a
valid formula evaluation. Furthermore, the numerical routine remains applicable
even if the problem does not have a closed-form solution.

In the rest of this section, we give some historical remarks, some details on the
prerequisite knowledge, and some motivation for the methods presented in this book.

1.7.1 A Brief History of Computing

Methods of calculation have put their stamp on mathematics throughout history.
Progress in connection with numbers has meant progress in mathematics also. The
invention of mechanical calculating machines by B. Pascal, G. W. Leibniz, and
others, of logarithms and the slide rule, and of many other mechanical and analog
computational aids, represent significant milestones in scientific computing.

1.7 Why Numerical Result Verification? 7

A great leap in development took place about 50 years ago with the development
of the first electronic computers. This technology immediately made it po§sible to
perform arithmetic operations faster than its mechanical or electromechanical pre-
decessors by a factor of about 1000. The great technological gains of this century
would have been impossible without modern computation. Today’s automobile, air-
plane, space travel, modern radio and television, and not least the rapid further
development of the computer itself were enabled by enormous computational capac-
ity. On the other hand, advances in computer hardware gave massive stimulation
to further development of algorithmic and numerical mathematics.

Further development of circuit technology, which again would not have been pos-
sible without the computer, has increased the computational capacity of a processor
by a factor of about 10%, compared to the first electronic computers of the 1950’s.
Comparison of the numbers 10 and 10° shows that the real computer revolution
took place after the development of the first electronic computers. Remarkably,
there was nothing equivalent to this development on the arithmetical-mathematical
side. The enormous advances in computer technology really suggested an attempt
to make the computer also more powerful arithmetically. On this, however, math-
ematicians exerted hardly any influence. In the area of scientific and engineering
applications of concern here, the computer is used today in essentially the same
way it was in the middle 1950’s. Only the four floating-point operations of addi-
tion, subtraction, multiplication, and division are still being performed, albeit much
faster.

As more and more computations can be done faster and faster, larger scien-
tific problems can be addressed, and it becomes increasingly critical to make scien-
tific computation more trustworthy than the exclusive use of ordinary floating-point
arithmetic. This development began about 25 years ago and has gained a con-
siderable following (see, for example, the extensive bibliographies in [64] or [28]).
However, methods for validated computation have yet to achieve universal accep-
tance.

1.7.2  Arithmetic on Computers

Usually, electronic computers now have two different number systems built into
their hardware: integers and floating-point numbers. Integer arithmetic operates
over a limited range of integers. To the extent that the hardware (and also the
software) are intact, integer arithmetic and its software extensions operate without
error. For example, a rational arithmetic or a multiple-precision arithmetic can be
constructed using integer arithmetic. In this way, the computer carries along as
many digits as necessary to represent the result of an operation exactly. In number
theory or computer algebra, this is the preferred method for arithmetic. Also, most
applications in computer science can be carried out error-free with integer arithmetic.
Examples are compilation or other forms of translation, and algorithms for searching
or sorting.

On the other hand, in numerical or scientific analysis, one works with real num-
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bers. A real number is represented by an infinite decimal or binary fraction. For
numerical or scientific computation, real numbers must be approximated by a fi-
nite fraction in a computer, ordinarily, by floating-point numbers. Floating-point
arithmetic is built into the hardware, and is consequently very fast. However, each
floating-point operation is subject to error. Allthough, each floating-point opera-
tion on most modern computers is of maximum accuracy, the result after only a few
operations can be completely wrong. We consider two simple examples.

Example 1.1 Let the two real vectors ¢ = (10%°,1223,10',10'%,3, —10'2) and
y = (10%,2,~10%2,10'%,2111,10'®) be given. Let the scalar product be denoted
by z -y (the corresponding components are multiplied, and all the products are
summed). This gives (using exact integer arithmetic)

z -y = 10% + 2446 — 10% 4+ 10% + 6333 — 10?8 = 8779.

In contrast, floating-point arithmetic on every computer (including those with IEEE-
arithmetic) gives the value zero for this scalar product. The reason for this is
that the summands are of such different orders of magnitude that they cannot be
processed correctly in ordinary floating-point format. This catastrophic error occurs
even though the data (the components of the vectors) use up less than 5% of the
exponent range of small and medium size computers!

Example 1.2 For the second example, we consider a floating-point system with
base 10 and a mantissa length of 5 digits. We want to compute the difference of
the two numbers z = 0.10005 - 10° and y = 0.99973 - 10* in the presented floating-
point arithmetic. This time, both operands are of the same order of magnitude. The
computer gives the completely correct result z—y = 0.77000-10. Now, suppose that
the two numbers = and y are the results of two previous multiplications. Since we
are dealing with 5-digit arithmetic, these products of course have 10 digits. Suppose
the unrounded products are

) - £ = 0.1000548241 - 10° and y; -y, = 0.9997342213 - 10%.

If we subtract these two numbers, normalize the result, and round it to 5 places, we
get 0.81402 - 10, which differs in every digit from the result computed in floating-
point arithmetic. In the second case, the value of the expression z; - 23 — y; - y, was
computed to the closest 5-digit floating-point number. In contrast, pure floating-
point arithmetic with rounding after each individual operation gave a completely
wrong result.

One should be very, very careful with the argument, “nothing like that happens in
my calculations.” It is very difficult to know all the data that enter as intermediate
results into an hour-long computation on a workstation or a supercomputer. Many
computer users appear to be like a wood carver who is forced to carve a work of art
with a dull knife, even though it is so easy to sharpen a knife!

In classical error analysis of numerical algorithms, the error of each individual
floating-point operation is estimated. It is evident that this is no longer practically
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possible for an algorithm for which 10 floating-point operations are performed in
an hour: Thus, an error analysis is not usually performed. Indeed, the fact that the
computed result could be wrong is often not taken into consideration.

From the mathematical point of view, the problem of correctness of computed
results is of central importance because of the high computational speeds attainable
today. The determination of the correctness of computed results is essential in many
applications such as simulation or mathematical modeling. One needs an assurance
of correct computational results to distinguish between inaccuracies in computation
and actual properties of the model. A mathematical model can be developed sys-
tematically only if errors entering into the computation can be essentially excluded.

1.7.3 Extensions of Ordinary Floating-Point Arithmetic

In the past, scientific computations were carried out using a slide rule or tables of
logarithms of numbers and standard functions. The use of logarithms avoids the
necessity of keeping track of exponents, as when using a slide rule, but precision is
limited in either case. A modern mathematical coprocessor chip can be viewed as
automating computation using logarithm tables with a large (but fixed) number of
places, including addition and subtraction logarithms. It is so fast, however, that
there is no way to observe the cumulative effect of the neglect of small quantities or
of cancellation errors.

Early scientific computation can be characterized as multiplication-division in-
tensive. In contrast, accountants and bookkeepers labored with addition and sub-
traction of long columns of numbers of various magnitudes. Errors in these addition-
subtraction intensive computations were not tolerated, and various methods of val-
idation (such as double-entry bookkeeping) were developed to ensure that answers
are correct to the penny. In order to handle potentially millions of additions and
subtractions accurately, it is evident that the “slide-rule whiz” capabilities of ordi-
nary floating-point arithmetic have to be augmented by the abilities of a patient
accountant. Given the state of the art, there is no reason why this cannot be done
on a single chip.

Computers were invented to take on complicated work for people. The evident
discrepancy between computational power and control of computational errors sug-
gests also turning over the process of error estimation itself to the computer. This
has been done successfully for practically all the basic problems of numerical anal-
ysis and many applications. To achieve this, the computer arithmetic has to be
made more powerful than is ordinarily the case. One thus proceeds from the above
observations: In floating-point arithmetic, most errors occur in accumulations, that
15, by execution of a sequence of additions and subtractions. On the other hand,
multiplication and division in floating-point arithmetic are relatively stable opera-
tions. In fixed-point arithmetic, however, accurnulation is performed without errors.
One only has to provide a fixed-point register in the arithmetic unit which covers
the entire floating-point range. If such a hardware register is not available, then it
can be simulated in the main memory by software. The resulting loss of speed in
Mmany cases is outweighed by the gain in certainty.



10 1. Introduction

If this register is made twice as long as the total dynamic range of the floating-
point number system, then dot products of vectors of any finite dimension can always
be computed exactly. The products (the summands in the dot product) have double
mantissa lengths, and the exponent range is also doubled. For the IEEE arithmetic
standard data format, about four times as many bits or bytes are necessary because
of its substantially greater exponent range. Even this relatively long fixed-point
register presents no problem to modern technology. The possibility of exactly com-
puting the dot product of floating-point vectors of any finite dimension opens a new
dimension in numerical analysis. In particular, the optimal dot product proves itself
to be an essential instrument in attaining higher computational accuracy.

With the dot product, all operations between floating-point numbers, operations
for complex numbers,! and in particular, all operations on vectors or matrices with
real or complex components can be carried out with maximum accuracy, that is, with
only a single rounding in each component by performing the operations in the fixed-
point register and then rounding once to store the result back into the appropriate
floating-point format. Only a few years ago, just the error-free computation of
the product of two floating-point matrices was considered to be harder than the
calculation of the eigenvalues of a symmetric matrix! We view the optimal dot
product as a basic arithmetic operation. In addition, higher precision floating-point
arithmetic can be based on the optimal dot product.

In order to adapt the computer also for automatic error control, its arithmetic
must be extended with still another element. All operations on floating-point num-
bers (addition, subtraction, multiplication, division, and the dot product of floating-
point vectors) must be supplied with directed roundings, that is, rounding to the
nearest smaller and larger floating-point numbers. An interval arithmetic for real
and complex floating-point numbers, as well as for vectors and matrices with real
and complex floating-point components can be built with these operations. Inter-
vals bring the continuum into the computer and open a completely new dimension in
numerical analysis. An interval is represented in the computer by a pair of floating-
point numbers. It describes the continuum of real numbers bounded between these
two floating-point numbers. Operations on two intervals in the computer result from
operations on two appropriately chosen endpoints of the operand intervals. In this,
the computation of the lower endpoint of the result interval is rounded downward,
and the computation of the upper endpoint is rounded upward. The result is certain
to contain all results of the operation considered applied individually to elements
of the first and second operand intervals. The interval evaluation of an arithmetic
expression such as a polynomial costs about twice as much as the evaluation of the
expression in simple floating-point arithmetic. It provides a superset of the range of
the expression or function in the given interval of arguments.

1For complex division, an additional consideration is necessary.
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1.7.4 Scientific Computation with Automatic Result
Verification

With these two arithmetic aids (optimal dot product and interval arithmetic), we
are able to perform scientific computations with automatic result verification. We
will illustrate this by two simple examples.

Example 1.3 We first address the question of whether a given real function de-
fined by an arithmetic expression has zeros in a given interval [z]. This question
cannot be answered with mathematical certainty if only floating-point arithmetic is
available. One can evaluate the function say 1000 times in the interval [z]. If all
computed function values turn out to be positive, then the probability is high that
the function does not have any zeros in [z]. However, this conclusion is certainly
not reliable. Because of roundoff errors, a positive result could be computed for a
negative function value. The function could also descend to a negative value which
was not detected due to the choice of the evaluation points. On the other hand, a
single interval evaluation of the function may suffice to solve this problem with com-
plete mathematical certainty. If the computed interval result does not contain zero,
then the range of values also cannot contain zero, because the computed interval
result is a superset of the range. As a consequence, we conclude that the function
does not have any zeros in the interval {z]. An interval evaluation of the range of
the function may fail to validate that the function has no root either because the
function really does have a root or because of overestimation of the range. In many
cases, however, a single interval function evaluation (costing the same as about

two floating-point evaluations) provides a guarantee not available from hundreds,

thousands, or millions of floating-point evaluations (see Figure 1.1).

f(=)
floating-point
N evaluations f
f([%
interval ] | not possible due to the
evaluation | | interval evaluation
e
————% T

[2] ¥

Figure 1.1: A single interval evaluation provides the guarantee that f does
not descend to negative values (dashed graph)

Example 1.4 As a second example, we sketch a method by which one can verify
the correctness of the computed solution for a linear system of equations A -z = b.
First, an approximation for the solution is computed, for example by Gaussian
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elimination. This approximation is expanded by augmenting it with a small number
+e¢ in each component direction, giving an n-dimensional cube [2] with the computed
approximation as its midpoint. This cube is just an interval vector consisting of
intervals in each coordinate direction. Now, one transforms the system of equations
in an appropriate way into a fixed-point form z = B-z+c, where one naturally makes
use of the fact that one has already computed a presumed approximate solution. For
example, one might get B and c from the residual form of A -z = b ag discussed in
Chapter 10. Then the image [y] := B [z] + ¢ is computed. If [y] is contained in [z],
which can be verified simply by comparison of endpoints, then [y] contains a fixed-
point of the equation z = B - z + ¢ by Brouwer’s fixed-point theorem (cf. Theorem
3.1). If [y] is strictly contained in [z], so that the endpoints do not touch, then the
fixed-point is unique. That is, the computer program has verified computationally
that the original matrix A of the system of equations is nonsingular. By iteration
using the optimal dot product, the fixed-point can then be determined to arbitrary
accuracy in practice. This example illustrates that validation (Az = b has a unique
solution in [y]) is distinct from achieving high accuracy (iterating [z] := B - [z] + ¢
until the width of the interval components of [z] are small). In this way, the user
obtains a mathematically certain and reliable result.

Examples 1.3 and 1.4 of numerical computation with automatic result verification
described here leave open the question of what to do if the verification step fails.
For rootfinding (Example 1.3), solving linear systems (Example 1.4), and many
other problems, refined methods have been developed which allow valid assertions.
A great advantage of automatic result verification is that the computer itself can
quickly establish that the computation performed has not led to a correct and usable
result. In this case, the program can choose an alternative algorithm or repeat the
computation using higher precision.

Similar techniques of automatic result verification can be applied to many other
algebraic problem areas, such as the solution of nonlinear systems of equations, the
computation of zeros, the calculation of eigenvalues and eigenvectors of matrices,
optimization problems, etc. In particular, valid and highly accurate evaluation of
arithmetic expressions and functions on the computer is included. These routines
also work for problems with uncertain or interval data.

The technique of enclosing function values with high accuracy is an essential aid
for scientific computation. Newton’s method for the computation of the roots of a
system of equations is frequently unstable in a neighborhood of a root, for example
when a root results from the mutual cancellation of positive and negative terms.
In the immediate vicinity of a root, these terms are only approximately equal and
cancellation occurs in ordinary floating-point arithmetic. However, in the case of
insufficiently accurate function evaluation, Newton’s method can easily overshoot
its goal, possibly into the domain of attraction of another root. An iteration process
which converges to a solution z in the real numbers thus may not converge to the
value z in floating-point arithmetic. The iteration can swing over to an entirely

different root. A concluding verification step is thus also indicated for iteration
processes.
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The techniques sketched here for numerics with automat%c result \{eriﬁca,"ui?n use
the optimal dot product and interval a.rithr‘netic as essential to?ls in addition to
floating-point arithmetic. Interval arithmetic pern}xts chputatlon of guaranteed
bounds for the solutions of a problem. One obta.lr'xs high accuracy by means of
the optimal dot product. The combination of both. mstrumer.xts is n.1deed a break-
through in numerical analysis. Naive application of interval arithmetic alone a,l'wa,ys
leads to reliable bounds. However, these can be so wide that they are pra.ctlca:IIy
useless. This effect was observed 20 years ago by many numerical analysts, leading
frequently to the rejection of this useful, necessary a'nd bla,m.eless tool. 'But tl{ere are
applications, e.g. global optimization methods, which use 1nt¢.3rva,l arithmetic w1t.h
only low accuracy as an essential tool. On the other hand, high accuracy alone. is
a waste. Validation by interval arithmetic is necessary to finally get results of high
and guaranteed accuracy.

As already mentioned, interval arithmetic allows us to bound the range of a
function over a continuum of points, including those points that are not finitely
representable. Hence, interval analysis supplies the prerequisite for solving global
problems like the problem of finding all zeros of a nonlinear function or the global
optimization problem with guarantee, that the global minimum points and the global
minimum values have been found.

With automatic differentiation as an essential tool, researchers also have devel-
oped methods with automatic result verification for problems of numerical analysis
including numerical quadrature or cubature, integral equations, ordinary and par-
tial differential equations. Experimentation with verified solutions of differential
equations proves to be very interesting. For example, a “solution” computed by
conventional methods for estimation can follow completely different trajectories if
only two places of accuracy are lacking at a critical location, which cannot be rec-
ognized by an ordinary approximate method. In the case of a verified method, the
width of the inclusion explodes at such a location, indicating that the accuracy must
be increased.

In recent years, reliable solutions have been computed for a number of engi-
neering and scientific problems with problem-solving routines with automatic result
verification. Frequently, problems for which ordinary solvers and solution methods
fail are handled. GAMM (Gesellschaft fiir Angewandte Mathematik und Mechanik)
and IMACS (International Association for Mathematics and Computers in Sim-
ulation) have held symposia on the theme “Computer Arithmetic and Scientific
Computation with Automatic Result Verification” regularly since 1980. Proceed-
ings of many of these meetings have appeared ([6], [37], [57], [55], [56], [53], [63],
(86], [87]). Applications belong to a wide variety of scientific fields including high-
speed turbines, filter calculations, plasma flows in a rectangular channel, gear-drive
vibrations, high-temperature superconductivity, infiltration of pollution into ground
water, inductive drives for buses, periodic solutions of the oregonator (chemical ki-
netics), geometric modeling, dimensioning of sewers, verified quadrature in chemical
transport engineering, nonlinear pile driving, refutation of certain “chaotic” solu-
tions in the three-body problem of celestial mechanics, development of solutions of
the Schrédinger equation in wave functions, calculation of magnetohydrodynamic
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flows for large Hartmann numbers, optical properties of liquid crystal cells, sim-
ulation of semiconductor diodes, optimization of VLSI circuits, rotor oscillations,
geometric methods for CAD systems, centered beam fracture, and robotics. A doc-
umentation of these applications and an extensive bibliography is found in [1].

1.7.5 Program Verification versus Numerical Verification

In conclusion, it does not follow in general that if an algorithm has been verified to
be correct in the sense of computer science, then a numerical result computed with
it will be correct. In this connection, recall the examples above. Here, numerics with
automatic result verification is an important additional, simple tool. Naturally, with
it alone, one still is not absolutely certain, because the verification step could still
lead to a positive result because of a programming error. Verification of the algo-
rithm, compiler, the operating system, and also the computer hardware can never
be made superfluous by interval arithmetic. Another useful situation occurs when
interval techniques yield a guarantee that the wrong answer has been computed.
This demands further debugging. In case of success, numerical result verification
at least implies with high probability that all these components have furnished a
correct result. Additionally, this result is certainly generally independent of whether
a program verification has been carried out or not. On the other hand, when the
computed result cannot be verified to be correct, this also has a positive value. This
result is established quickly and automatically by the computer, without anything
having to be done externally. The user can provide program alternatives in this
case, for example, choice of different algorithms or methods, or a change to higher
precision.

Part I

Preliminaries



Chapter 2
The Features of PASCAL-XSC

In this chapter, we give a short overview of the new concepts of the programming
language PASCAL-XSC, a universal PASCAL eXtension for Scientific Computation
with extensive predefined modules for scientific computation. For a complete lan-
guage reference and examples, we refer to [44] and [45].

PASCAL-XSC is available for personal computers, workstations, mainframes
and supercomputers. Its modern language concepts make PASCAL-XSC a powerful
tool for solving scientific problems. The mathematical definition of the arithmetic
is an intrinsic part of the language, including optimal arithmetic operations with
directed roundings that are directly accessible in the language. Further arithmetic
operations for intervals and complex numbers and even for vector/matrix operations
provided by precompiled arithmetical modules are defined with maximum accuracy
according to the general principle of semimorphism (see Sections 3.5 and 3.6).

PASCAL-XSC contains the following features:

e ISO Standard PASCAL

o Universal operator concept (user-defined operators)
e Functions and operators with arbitrary result type

o Overloading of procedures, functions, and operators
o Overloading of the assignment operator

¢ Module concept

e Dynamic arrays

o Access to subarrays

e String concept

¢ Controlled rounding

¢ Optimal (exact) scalar product

o Predefined type dotprecision (a fixed-point format to cover the entire range of
floating-point products)

e Additional predefined arithmetic types such as complex, interval, rvector,
rmatrix etc.
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e Highly accurate arithmetic for all predefined types
e Highly accurate mathematical functions

¢ Exact evaluation of expressions (#-expressions)

These new language features are discussed in the following sections.

2.1 Predefined Data Types, Operators, and
Functions

PASCAL-XSC adds the following numerical data types to those available in Stan-
dard PASCAL:

complex interval cinterval
rvector cvector ivector civector
rmatrix cmatrix Iimatrix cimatrix

Here, the prefix letters r, i, and c are abbreviations for real, interval, and complex.
Hence, cinterval means complex interval, cimatrix denotes complex interval matri-
ces, and rvector specifies real vectors. The vector and matrix types are defined as
dynamic arrays and can be used with arbitrary index ranges.

PASCAL-XSC also supplies the data type dotprecision representing a fixed-point
format covering the entire range of floating-point products. The type dotprecision
allows scalar results — especially sums of floating-point products — to be stored
exactly. It is used in connection with accurate expressions (see Section 2.7).

Many operators are predefined for these types in the arithmetic modules (see
Section 2.9). All of these operators, as well as the operators for type real, deliver
results of maximum accuracy.

PASCAL-XSC provides 11 new operator symbols beyond those provided by
Standard PASCAL. These are the operators o< and o>, with o € {+—*/}
for operations with downwardly and upwardly directed rounding, and the operators
**x, +*, >< needed in interval computations for the intersection, the interval hull,
and the test for disjointness, respectively.

Tables 2.1, 2.2, and 2.3 show all predefined operators in connection with the
possible combinations of operand types. In Tables 2.1 and 2.3, the symbol < is used
as an abbreviation: < € {=, <>, <, <=, >, >=}. The operators of the first row
of Table 2.2 are monadic, i.e. there is no left operand. Let o € {+,~,%,/}, and
® € {4, —,*}. For vector and matrix types, * denotes the scalar or matrix product.

All usual operations, even those in the higher mathematical spaces, have been
realized as operators and can be used in conventional mathematical notation to
make programs more easily readable.
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Table 2.1: Predefined basic operators (4 € {=, <>, <, <=, >, >=})

right
lege N\Operand integer | boolean | char | string set
operand
monadic +,— not
+: ¥ / )
integer div, mod, in
<
or, and,
boolean =, <>, in
=, >=
+ + .
char . in
Q 4,in
. + +
string .
q <,in
+v = *
set =, <>,
<=, >=
enumeration .
in
type

Table 2.2: Predefined arithmetical operators (o € {4, —, *, [}, e €{+,—,*})

right | integer . . . . .
operand real interval rvector 1vector rmatrix 1matrix
left cinterval cvector civector | cmatrix | cimatrix
operand complex
monadic +,— +,— +,— +, ~ +,— +,—
integer
o o — %
real 100>, 4=/, * k<, x> * *, k<, k> *
+% +* ’

complex

i.nterval +;_s*:/: +v_x*1/: * * * *
cinterval 4% 4%, k%

rvector *, k<, D>, e, 0,0, [+, — %,

*!

cvector [, /<, /> ++ +*

ivector +ok %

. * *
civector o/ o/ +x* +¥, Hok
rmatrix *, k< kD> o, 0, 0>, [+, —, %,

. * k< kD> *

cmatrix 51<./> o/ Y +* +*
imatrix +, =, %, +, %,

. . * * * * -
cimatrix o/ o/ +% —

In Table 2.3, the operators <= and < denote the subset relations, whereas >= and
> denote the superset relations if the operands are interval data types. As already
mentioned, >< denotes the test for disjointness for interval types. The operator in
tests for membership of a point in an interval or for strict enclosure of an interval
in the interior of another interval. We also call this the inner inclusion relation (see
Section 3.1 for details).
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Table 2.3: Predefined relational operators (< € {=, <>, <, <=, >, >=})

right || integer
left operand real
operand complex

interval | rvector | ivector |rmatrix | imatrix
cinterval | cvector | civector | cmatrix | cimatrix

integer
real <
complex
interval in, ><,
cinterval q
rvector in
cvector =,<>
ivector in, ><,
civector =<2 q
rmatrix in
cmatrix =<>
imatrix in, ><,
cimatrix q

in
= <>

Compared with Standard PASCAL, PASCAL-XSC provides an extended set of
mathematical functions (see Table 2.4). These functions are available for the types
integer, real, complex, interval, and cinterval with generic names and deliver results
of maximum accuracy.

Table 2.4: Predefined mathematical functions

[ Function ] Generic Name | | Function | Generic Name |
Absolute Value abs
Square sqr Square Root sqrt
Exponential Function exp Natural Logarithm (Base e) In
Power Function (Base 2) exp2 Logarithm (Base 2) log2
Power Function (Base 10) expl0 Logarithm (Base 10) log10
Sine sin Arc Cosine arccos
Cosine cos Arc Sine arcsin
Tangent tan Arc Tangent arctan
Cotangent cot Arc Cotangent arccot
Hyperbolic Sine sinh Inverse Hyperbolic Sine arsinh
Hyperbolic Cosine cosh Inverse Hyperbolic Cosine arcosh
Hyperbolic Tangent tanh Inverse Hyperbolic Tangent artanh
Hyperbolic Cotangent coth Inverse Hyperbolic Cotangent arcoth

PASCAL-XSC provides type transfer functions intval, inf, sup, compl, re, and im
for conversion between and access to the components of the numerical data types
(for scalar, vector and matrix types). Also, some additional functions like diam,
mid, or transp for computing diameter and midpoint of an interval or the transpose
of a matrix are provided.
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2.2 The Universal Operator Concept

PASCAL-XSC makes programming easier by allowing the programmer to define
functions and operators with arbitrary result type. The advantages of these concepts
are illustrated by the simple example of polynomial addition. If we define the type
polynomial by

20;

const max_degree
array [0..max_degree] of real;

type polynomial

in Standard PASCAL, then the addition of two polynomials is implemented as a
procedure

procedure add ( a, b : polynomial; var c : polynomial );
{ Computes ¢ = a + b for polynomials }

var
i : integer;
begin
for i := 0 to max_degree do c[i] := a[i] + b[il;
end; ’

Several calls of add have to be used to compute the expression z = a+ b+ c+ d:
add(a,b,z);

add(z,c,z);
add(z,d,z);

In PASCAL-XSC, we define a function with the result type polynomial

function add ( a, b : polynomial ) : polynomial;
{ Delivers the sum a + b for polynomials }

var
i : integer;
begin
for i := 0 to max_degree do add[il := al[i] + b[il;
end;

Now, the expression z = a + b + ¢ + d may be computed as
z := add(a,add(b,add(c,d)));
Even clearer is the operator in PASCAL-XSC

operator + ( a, b : polynomial ) result_polynomial : polynomial;
{ Delivers the sum a + b for polynomials }

var

i : integer;
begin

for i := 0 to max_degree do result_polynomialli] := al[il] + b[il;
end;

Now, the expression may be written in the common mathematical notation

Z :=a+b+c¢+d;

A programmer may also define a new name as an operator. A priority is assigned
in a priority declaration.
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2.3 Overloading of Procedures, Functions, and
Operators

PASCAL-XSC permits the overloading of function and procedure identifiers. A
generic name concept allows the programmer to apply the identifiers sin, cos, exp, In,
arctan, and sqrt not only for real numbers but also for intervals, complex numbers,
or elements of other mathematical spaces. Overloaded functions and procedures are
distinguished by number, order, and type of their parameters. The result type is
not used for distinction.

As illustrated above, operators also may be overloaded. Even the assignment
operator (:=) may be overloaded so that the mathematical notation may be used
for assignments:

operator := ( var p : polynomial; r : real );
var
i : integer;
begin
plo] :=r;
for i := 1 to max_degree do p[i] := 0;
end;

var
X : real;
q : polynomial;
begin
X

q
end.

1.5;
X; { Polynomial with constant value 1.5 }

The overloading concept also applies to the predefined procedures read and write
in a slightly modified way. The first parameter of a newly declared input/output
procedure must be a var-parameter of file type. The second parameter represents
the quantity that is to be input or output. All following parameters are interpreted
as format specifications. One could provide an overloaded output facility for poly-
nomials as

procedure write ( var t : text; p : polynomial; w : integer );
var

i . integer;
PolylsZero : boolean; { Signals ’p’ is a zero polynomial }
begin
PolylsZero := true;
for i := 0 to max_degree do
if (pli] <> 0) then
begin
if PolyIsZero them write(t,’ ’) else write(t,’+ ’);
writeln(t,p[il:w,’ * xt’,i:1);
PolyIsZero := false;
end;
if PolyIsZero them writeln(t,’ 0 (= zero polynomial)’);
end;

The file parameter is omitted from the calling of an overloaded input/output proce-
dure if the standard file input or output is assumed. The format parameters must be
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introduced and separated by colons. Moreover, several input or output statements
can be combined to a single statement as in Standard PASCAL.

. real;
: polynomial;

write(p : 7, r : 10, r/5);

2.4 Module Concept

The module concept allows the programmer to separate large programs into modules
and to develop and compile them independently of each other. The control of syntax
and semantics may be carried out beyond the bounds of the modules. Modules are
introduced by the reserved word module followed by a name and a semicolon. The
body of a module is built up quite similarly to that of a PASCAL program. The
significant exception is that the objects to be exported from the module are identified
by the reserved word global directly in front of the reserved words const, type, var,
procedure, function, and operator and directly after use. Moreover, if global
is placed after the equality sign in a type declaration, then the module exports both
the type identifier and the internal structure (e.g. names of components, component
types) of the type, which is then called a non-private type. Without this second
global, types are called private.

Modules are imported into other modules or programs via a use-clause. The
semantics of the use-clause are that all objects declared global in the imported
module are also known in the importing module or program.

The example of a polynomial arithmetic module illustrates the structure of a
module:

module poly;

use { Other modules ... }

utility;

{ Local declarations }

{-- 3

const

max_degree = 20;

var
LocalVariable : integer;

function LocalFunction : real;

var
Value : real;

begin
1 Do some computations ... }
LocalFunction := Value;

end;
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procedure LocalProcedure;
begin { Do something ... } end;

{ Other local declarations ... }

{ Global declarations }
{ }
global type polynomial = array [0..max_degreel of real;

global procedure read ( var t : text; var P : polynomial );
begin { Input statements ... } end;

global procedure write ( var t : text; P : polynomial );
begin { Output statements ... } end;

global operator + ( a, b : polynomial ) result_polynomial : polynomial:;
{ Delivers the sum a + b for polynomials } )

var
i : integer;
begin
for i := 0 to max_degree do result_polynomialli] := a[i] + b[i];
end;
{ Other global declarations ... }

{ Initialization part of the module }
{

begin
LocalVariable := 10;
end. { module poly }

2.5 Dynamic Arrays and Subarrays

The concept of dynamic arrays enables the programmer to implement algorithms
independently of the length of the arrays used. The index ranges of dynamic arrays
are not defined until run-time. Procedures, functions, and operators may be pro-
grammed in a fully dynamic manner, since allocation and release of local dynamic
variables are executed automatically. Hence, the memory is used optimally.

For example, a dynamic type dyn_poly may be declared:

type dyn_poly = dymamic array [*] of real;

When declaring variables of this dynamic type, the index bounds have to be specified:

var p, q : dyn_poly[0..2%n];

where the values of the expressions for the index range are computed during program
execution. The two functions Ibound(...) and ubound(...) and their abbreviations
Ib(...) and ub(...) access the bounds of dynamic arrays which are specified only
during execution of the program. The multiplication of two polynomials may be
realized dynamically as follows:

operator * ( a, b : dyn_poly ) product : dyn_poly[0..ub(a)+ub(b)];

{ Delivers the product a * b of tyo dynamic polynomials a, b }

var
i, j : integer;
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result : dyn_poly[0..ub(a)+ub(b)];

begin
for i := 0 to ub(a)+ub(b) do
result[i] := 0;

for i := 0 to ub(a) do
for j := 0 to ub(b) do
result[i+j] := result[i+j] + alil * b{j]l;
product := result;
end;

A PASCAL-XSC program using dynamic arrays for polynomials follows the tem-
plate

program dynatest (input, output);
type dyn_poly = dynamic array [*] of real;

operator * ( a, b : dyn_poly ) product : dyn_poly[0..ub{a)+ub(b)];
var

i, J : integer;
result : dyn_poly[0..ub(a)+ub(®)];
begin
{ Statements for the computation of the product ... }
product := result;
end;

procedure read ( var f : text; p : dyn_poly );
begin { Input statements ... } end;

procedure write ( var f : text; p : dyn_poly );
begin { Output statements ... } end;

procedure dyn_work (degree: integer);
var

P, q : dyn_poly[0. .degree];

r : dyn_poly[0..2*degree] ;
begin

writeln(’Enter p: ’); read(p);

writeln(’Enter q: ’); read(q);

T :=p*gq;
writeln(’p*q = ', r);
end;
var

actual_degree : integer;

begin { Main program }
write(’Enter actual degree: ’'); read(actual_degree);
dyn_work(actual_degree);

end.

The following example demonstrates that it is possible to access a row or a column
of dynamic arrays as a single object. This is called slice notation.

program slice;

var
v : rvector[t..5];
A : rmatrix[1..5,1..5];
begin
v := Af2]; { 2nd row of 4 }
A[*,3] := v; { 3rd column of A }
end.
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2.6 Data Conversion

This section is critical to the appropriate use of every routine in this book. The
concept is simple: People work in a decimal notation, while computers use a binary
representation for numbers. The most common error made by even the most experi-
enced interval guru is to forget that numbers such as 0.1 in input data or as literals
in the code are not what they seem!

Numerical computations nearly always are executed on non-decimal floating-
point systems. The floating-point format usually used is a binary format, so it
is inevitable that literal real constants must be converted into that data format.
This conversion can cause an error. For example, the literal constant 1.1 is not
exactly representable in a binary format (see Section 3.7 for details). To execute
this conversion in a controlled way, an additional notation for real literal constants
is necessary. While the usual PASCAL notation of real numbers implies the conver-
sion with rounding to the nearest floating-point (machine) number, it is possible to
specify real constants that are converted with rounding to the next-smaller or the
next-larger floating-point number by the notations

(< % Mantissa E Exponent ) and (> + Mantissa E Exponent ) ,

respectively. The E and Exponent may be omitted as usual, in which case Mantissa
must contain a.decimal point. The parentheses are mandatory. For example, we
can program

program round_input;

use i_ari;

var
X, ¥y : real;
z : interval;

begin
x = (< 1.1); { Round 1.1 downwardly }
y := (> 1.0E-1); { Round 0.1 upwardly 7}
z := intval( (< 0.1), (> 0.1) ); { Enclose 0.1 in an interval }

end.

To realize a controlled rounding when entering real data from the console or from
a text file, the procedures read (or readln) provide an additional format control
parameter r. This integer parameter specifies the rounding mode of the real value
during the input process. The value of a variable x of type real can be entered by

read(x : r);

which causes the value to be rounded (cf. Section 3.5):

r<o0 round to the next-smaller representable number,
r =0 (or absent) round to the nearest representable number, or
r>0 round to the next-larger representable number.

A rounding parameter can also be used to convert a string representing a literal real
constant into a real value. Moreover, similar rules apply to the output of real values
and to their conversion into strings.
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2.7 Accurate Expressions (#-Expressions)

The implementation of algorithms with automatic result verification or va,lida,ti(?n in
this book makes extensive use of the accurate evaluation of dot pr(.)dflct expressions,
i.e. expressions which can be reduced to a single dot product. This includes matrix
and vector expressions, where the computation of each component can be reduced
to such a dot product form.

To evaluate this kind of expression, the new data type dotprecision was in-
troduced. This data type accommodates the full ﬂoating~poin.t range with double
exponents (see [54] or [53]). Accurate expressions (#-expressions) can be formed
based on this data type by an accurate symbol (#, #x*, #<, #>, or #+#) followed
by an ezact expression enclosed in parentheses. The exact expression must ha\fe
the form of a dot product expression in scalar, vector, or matrix structure and is
evaluated without any rounding error. Because of this, the result of an accurate
expression is of maximum accuracy in the sense that in every component of the
result there is no floating-point number between the exact value and the computed
one. That is, the rounded and the exact result differ at most by 1 unit in the last
place of the mantissa. '

To obtain the unrounded or correctly rounded result of a dot product expression,
you need to parenthesize the expression and precede it by the symbol #, optiona'.lly
followed by a symbol for the rounding mode. Table 2.5 shows the possible rounding
modes for the dot product expression form.

Table 2.5: Rounding modes for accurate expressions

| Symbol Expression Form Rounding Mode !
#x scalar, vector or matrix nearest
#< scalar, vector or matrix downwards
#> scalar, vector or matrix upwards
## scalar, vector or matrix | smallest enclosing interval
# scalar only exact, no rounding

In practice, dot product expressions may contain a large number of terms ma.k'ing
an explicit notation very cumbersome. To alleviate this difficulty in ma.t_hema,tlcs,
the symbol Y is used. For instance, if A and B are n-dimensional matrices, then
the evaluation of

d= zn: N
k=1

represents a dot product expression. PASCAL-XSC provides the equivalent short-
hand notation sum for this purpose. The corresponding PASCAL-XSC statement
for this expression is

d := #( for k:=1 to n sum( A[i,k] * B[k,j1 ) );

where d is a dotprecision variable.
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Accurate or dot product expressions are used mainly in computing a residual. Iy,
the case of a linear system Az = b, A€ R™", z,be R, with Ay=b, an enclosure
of the residual 5 — Ay can be computed as

#(b - A xy);
We emphasize that there is only one interval rounding operation per component,
To get verified enclosures for linear systems of equations, it may be necessary to

evaluate an enclosure of the residual I — RA where R ~ A-! and [ is the identity
matrix. This can be programmed as

##( id(A) -~ R * A );
where an interval matrix is computed with only one rounding operation per com-

ponent. The function id(...) generates an identity matrix of appropriate dimension
according to the shape of A (see Section 2.9).

2.8 The String Concept

The tools provided for handling strings in Standard PASCAL do not allow convenient
text processing. For this reason, PASCAL-XSC includes a string concept for the
convenient handling of textual information and symbolic computation. With this
new data type string, you can work with strings of up to maxint characters, by
specifying a maximum string length less than maxint in the declaration part. Thus,
a string s declared by

var s : string[40];
can be up to 40 characters long. The following string operations are available:

e concatenation of strings (operator +)
¢ actual length of a string (function length)

® conversions string — real, string — integer, real — string, and integer —
string (functions rval, ival, and image)

o extraction of substrings (function substring)
e position of first appearance of a string in another string (function pos)

e comparisons (relational operators <=, <, >=, >, <>, =, and in)

2.9 Predefined Arithmetic Modules

The following predefined arithmetic modules are available:

e interval arithmetic (i_ari)

¢ complex arithmetic (c_ari)
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e complex interval arithmetic (ci_ari)
o real matrix/vector arithmetic (mv_ari)
e interval matrix/vector arithmetic (mvi_ari)
e complex matrix/vector arithmetic (mvc_ari)
o complex interval matrix/vector arithmetic (mvci_ari)
These modules may be imported via the use-statement described in Section 2.4.

As an example, Table 2.6 shows the operators provided by the module for interval
matrix/vector arithmetic.

Table 2.6: Predefined arithmetic and relational operators from module mvi_ari

right [}
left perand m::fler interval{ rvector ivector rmatrix imatrix
operand
monadic +,— -
m::fler . .
interval * * - -
+x,
rvector *,/ +* +,—, %,
in,=, <>
+x, +x, %x,
i + -
1vector * * - . ’
C W/ 3/ ': <,;, in,=,<>,><,
i <5, 555>
. +x,
rmatrix *,/ * - +y =y %,
in, =, <>
%, +x, gk,
imatrix *,/ */ * * += % |, +, =%,
=,<> {I=<3,5,
i <=5=,>

In addition to these operators, the module mvi_ari provides the following generically
named standard operators, functions, and procedures

intval, inf, sup, diam, mid, blow, transp, null, id, read, and write.

The function intval is used to generate interval vectors and matrices, whereas inf
and sup are selection functions for the infimum and supremum of an interval object.
T'he diameter and the midpoint of interval vectors and matrices are determined via
diam and mid. Blow yields an interval inflation, and transp is used to get the
transpose of a matrix (refer to Chapter 3 for details on the mathematical meaning
of these terms).

_Zero vectors and matrices are generated by the function null, while id returns
an identity matrix of appropriate shape. Finally, there are the generic input/output
Procedures read and write, which may be used in connection with all matrix/vector
data types defined in the modules mentioned above.
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2.10 Why PASCAL-XSC?

As already said in the introduction of this book, PASCAL-XSC is the language
in which all our “tools” are implemented. The reason for this is that its wide
range of modern language concepts for scientific computation makes PASCAL-XSC
a powerful tool for solving scientific problems and especially well suited as a spec-
ification language for programming with automatic result verification. Moreover,
PASCAL-XSC is available for personal computers, workstations, mainframes and
supercomputers, and so it supports a high degree of portability among very different
computers for all our routines, modules, and programs.

Chapter 3
Mathematical Preliminaries

Interval arithmetic is the basic mathematical tool in verified numerical computing.
This chapter summarizes the mathematical terms used in this book. After an intro-
duction to real, complex, and extended interval arithmetic, we make some comments
on the realization of arithmetics on a digital computer. We also touch on the prob-
lem of data conversion. Finally, we point out how to use fixed-point theorems to
derive algorithms for verified numerical computing.

Let us start with some remarks on our notation. If M is an arbitrary set, then
M™ and M™™ denote the sets of n-dimensional vectors and n x m matrices over
M. Vectors are defined to be column vectors. The identity matrix is denoted by I.
The maximum norm of vectors and matrices is denoted by || - leo- To specify the
index of iterates, we use raised indices enclosed in round brackets: z(¥),

3.1 Real Interval Arithmetic

Detailed treatments of interval arithmetic are given in the standard textbooks of
Moore [61], Alefeld and Herzberger 2], [3], or Neumaier[64]. Here, we give only an
introduction and some examples.
A real interval, or just an interval, is a closed and bounded subset of the real
numbers IR
o) =7 = {re Rlz < <3},

where z and 7 denote the lower and upper bounds of the interval [z], respectively. A
real interval covers the range of real numbers between its two bounds. Sometimes,
lower and upper bounds are also called the infimum and the supremum, respectively.
The set of real intervals is denoted by IIR. An interval is called thin or a point
tnterval if g = Z. It is called thick if £ < Z. For a thin interval, we may write z
instead of [z]. That is, a thin interval is just another notation for a real number.
Since intervals are sets, the terms equality (=), membership (€), subset (C),
proper subset (C), superset (D), proper superset (D), and intersection (N) are de-
fined in the usual sense of set theory. For instance, the proper subset relation
[z] C [y] is defined as [z] C [y] and [z] # [y]. An interval [z] is said to be contained

in the interior of [y]ify <z and Z < 7. In this case, we write [z] ¢ ly]. We also

.call this relation the wnner inclusion relation. Sometimes, we need the hull of two
ntervals defined by

[2] Y [y] := [min{g, y}, max{z, 7}].
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Example 3.1 Let [z] = [1,3], and [y] = [1, 7r] Then the following relations are

true: % € [z], [z] C [y], and [y] D [z]. But [z] ¢ [y] since z = y. Moreover, we have
[e] U [4,5] = [1,5], and [z} N [y] = [al.

The terms diameter, radius, and midpoint of an interval [z] are defined as
d([e]) = diam([e]) := T — 2,

T—z

r([z]) := rad([z]) := , and

2

z+

m(e]) !

Thus, the membership relation z € [z] may be expressed as |z — m([z])| < r([z])

using the radius and midpoint notation. In this sense, the radius of [] is an upper

bound for the absolute error of the midpoint m([z]) considered as an approximation
of an unknown number z € [z].

The smallest and the greatest absolute value of an interval [z] are denoted by

([=]) :
|[=]] :

Thus, ([z]) = 0 if 0 € [z]. We note that ([z]) and |[[z]| are real numbers. However,
the absolute value of an interval is an interval and is denoted by abs([z]). Hence,
abs([z]) is an elementary interval function, as discussed below. The attributes of an
interval are shown graphically in Figure 3.1.

AN ) e

W_ R
" : r([a]) °

8|

mid([z])

min{|z] | z € [z]}, and
max{Je| | = € (o]} = max{z], |7[}. (31

d([=])

Figure 3.1: Attributes of an interval [z]

Suppose [z] is an enclosure of a real number z, the exact value of which is
unknown. To get a measure for the quality of the enclosure [z], we define the
relative diameter of an interval [z] by

G
dalle]) :={ ) o¢ll

d([z]) otherwise.

(3.2)

The relative diameter is an upper bound of the relative error of z with respect to
an arbitrary element of [z].
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The distance ¢(|z], [y]) between two intervals [z] and [y] is defined by

q([z], [y]) := max{|z — g, |z - 7l}- (3-3)

The distance is nonnegative and vanishes if and only if [z] = [y]. It does not depend
on the order of its arguments, and the triangle inequality holds. Thus, ¢ is a metric,
and the set IIR provided with the metric ¢ is a metric space. Moreover, (IR, q) is a
complete metric space. See Figure 3.2 for a graphical interpretation of the distance

between two intervals.
; e
I g 7
z: . -1

N —q(lebl) : :°

<@
|
&

Figure 3.2: Distance between two intervals [z] and [y]

Since (IR, q) is a metric space, the concepts of convergence and continuity may
be introduced in the usual manner. A sequence {[z](*¥)} of intervals converges to an
interval [z] if and only if the sequences of their bounds converge to the bounds of
[z]. More precisely, we have

im® =[] & lim g([e]®,fe]) =0

& ( limz® =z A lim z® =E).
k—oo k=00
The elementary real operations o € {+,—,-,/} are extended to interval argu-
ments [z], [y] by defining the result of an elementary interval operation to be the set
of real numbers which results from combining any two numbers contained in [z] and
n [y]. That is,
(aloly) = {zoy| = € [¢],y € [y]}. (3.4)

Of course, the definition of [z]/[y] is restricted to intervals [y] with 0 ¢ [y]. The
operator - is used for clarity only and will be dropped, in general. The right-hand
side of (3.4) is an interval, since the corresponding real operations are continuous.
By using monotonicity properties, we get the more convenient formulae

(@] + [v] = 2+ y,T+7],

(o] ~ 4] = [~ 5,7 — 3]

(] - ] = [min{zy, 27, 7y, 57}, max{ay, 27,7, 57)], and )
(€] / 4] = o] (1/5, 1/, 0 ls]

For each elementary operation, the bounds of the resulting interval may be expressed
in terms of the bounds of its left and right operands. The rules given here for
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Table 3.1: Multiplication of intervals [z] - [y]

[2]-Iy] | 0<y ¥y<0<7g y<o0
0<z | [zy,77] [zy, 7] (zy, zY]
z<0<7|[zy,7y] [min{zF Ty}, max{zy,Zy}] [Zy,zy]
<0 | [z7,7y (27, zy] 7Y, zy)

Table 3.2: Division of intervals [z]/[y] with 0 ¢ [y]

[2/ly] | 0<y <o

0<z |lz/3,%/y] [2/7,2/y]
z<0<7|[z/y,7/y] [Z/¥,2/7]

<0 | [z/y,2/7] [F/y,2/7]

elementary interval operations assume exact arithmetic. We describe a floating-point
interval arithmetic in Section 3.6. We give the more compact rules for multiplication
and division in Tables 3.1 and 3.2.

Example 3.2 Those readers not yet familiar with interval arithmetic should check
the following equalities by applying Equations (3.5) and Tables 3.1 and 3.2:

[_170] + [0’7'.] = [—1,71'],
[1a4] - [1,4] = ["‘37 3]7
%a 1] - [0’ %] = [%’ 1]7

2,4] -3 =[-1,1],

-1-[2,5] = [-5,-2],
[-2,3][-2,3] = [-6,9],
L v2[-1,1] = [-v2, V2],
[1,21/[-2,-1] = [-2,—3].

It is very important that the elementary operations are inclusion isotonic. That
means, if [z] is contained in another interval [2'], and [y] is contained in [y'], then
the combination of [z] and [y] is contained in the interval computed by combining
the bigger intervals [z] and [y’]. More precisely,

[p1Cl) BICl] = ol Cleloly], oe{+ -/}

By Definition (3.5), the operations of addition and multiplication satisfy the
commutative and associative laws

[y] o [2], and
(elo[yDolzl, o€ {+,}.

[z] o [y]
[z] o ([y] e [2])

]
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The neutral elements of addition and multiplication are the thin intervals [0} = 0
and [1] = 1, respectively. Thus, we get —[z] = 0 — [¢] = [T, —z]. In general, there
exists neither an additive nor a multiplicative inverse element. On the other hand,
have
e 0=[0]  [¢] - [z], and
1=0] € [z] / [a],

where equality holds if and only if [z] is a thin interval. It is another important
property of interval arithmetic that the distributive law is not generally satisfied.
However, there is a weaker form called the subdistributive law

[2] - ([y] + [2]) < [2] - [y] + [} - [2]. (3.6)

Equality holds only in special cases. For instance, equality holds in (3.6) if both
intervals [y] and [2] have the same sign (see Ratschek [70] and Spaniol [81]).

Example 3.3 With [z] = [1,2], [y] = [2, 3], and [2] = [—4, —3], a short computation
yields
2] - ([v] + [2]) = [-4,0] C [-6,3] = [2] - [y] + [«] - [2].

Let ¢ : D C IR — IR denote a real-valued elementary function, continuous on
every closed interval in its domain ). We extend ¢ to interval arguments [z] € D
by

e([=]) = {p(z) | = € [2]}. 3.7)
That is, ¢([z]) denotes the range of the real-valued function ¢ over [z]. Since ¢
was assumed to be continuous, ¢([z]) is an interval. By definition, an elementary
interval function is inclusion isotonic, i.e. [z] C [y] = ¢([z]) C ¢([y]). We use the
set of elementary functions listed in Table 2.4 supplemented by the power function
[z]* defined in Example 3.5. It is possible to express the interval result of most
elementary functions in terms of the argument bounds.

Example 3.4 By using monotonicity properties of the corresponding real-valued
function, where [z] is restricted to the domain of ¢, we get

abs([z]) = [([z]),[=]l],
o(lz]) = [p(z),»(T)], ¢ € {arctan,arsinh,ln,sinh},
¢([z]) = [p(@),¢(z)], ¢ € {arccot,arcoth},
sar([z]) = [([=])% I[=]P],
sart([e]) = [VE V7],

exp([z]) = [e%€].

[2]?
VIz]

ol

I

We remark that [—1,2]% = [0,4] # [—1,2]-[-1,2] = [~2,4]. We get only [z]* C [z]-[z]
if 0 € [z]. Thus, it is highly recommended to use the square function instead of a
multiplication to get a narrow enclosure of z? for = € [z].
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Example 3.5 The real power function z" with positive integer exponent n € IV is
increasing for z > 0 and n even, or for all z with n odd, and decreasing otherwise.
Thus, we get

[z™,T"] if 0 < z or n odd,
[z = < [0,|[z]|*] i 0 € [z] and n even,
™, 2" if 7 < 0 and n even.

For negative exponents with 0 ¢ [z], a brief computation yields [z]* = 1/[z]™". For
a zero exponent, we set [z]® = 1.

Perhaps the fundamental problem of interval arithmetic is to compute an enclo-
sure with only a slight overestimation of the range of a function f : D C IR — IR de-
fined by an arithmetic expression f(z) including arithmetic operations and elemen-
tary functions (see Alefeld and Herzberger [3], Ratschek and Rokne [71], Moore [62],
or Mayer [59]). It is easy to get an enclosure of f([z]) by simply substituting [z] for
z in the defining expression of f, and then evaluating f using interval arithmetic,
Assuming all interval arithmetical operations are well defined, this kind of evalua-
tion is called an interval evaluation or an interval extension of f and is denoted by
fu([z]). By definition we have

f(le]) € fu(le]),

where equality holds only in rare cases. Unfortunately, an interval extension usually
overestimates the range. It is more difficult to get a tight enclosure.

An interval extension is inclusion isotonic, since elementary interval operations
and functions are inclusion isotonic, i.e. [z] C [y] = fy([z]) C f;([y]). A real-valued
function may have several interval extensions, since it may be defined by several
equivalent arithmetic expressions. Mathematically equivalent expressions do not
necessarily give rise to equivalent interval extensions, as Example 3.6 shows.

Example 3.6 Let us consider three different, but mathematically equivalent, ex-
pressions of a real-valued function f (see Figure 3.3)

1 1 4 4
flz) = 2——x+2+z iy i for jz| < 2.
LAl N e’ N o’

=:f(1)(z) =:f(2)(z) =:f(3)(:c)

Since f is symmetric, decreasing for # < 0, and increasing otherwise, the range of

f for [z] € (=2,2) is given by f([z]) = [f({[z])), f(I[z])]. Let [z] = [-1,2]. If we
evaluate the interval extensions of f), i =1,2,3, we get

) = 12,8 > £ =125,%] > () =11, %).

The true range f([z]) = j‘[(]3)([:c]) In general, it is difficult to find the best possible
interval extension. However, it is an empirical fact that the fewer occurrences of
[z] within an expression, the better is the result of the corresponding interval eval-
uation. If {z] appears only once in the expression, and there are no interval-valued
parameters (as in f[(]a)([x])), then Moore [62] showed that the naive interval extension
yields a tight enclosure.
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2 1
A I

Figure 3.3: Different interval extensions of f(z) as defined in Example 3.6

We have seen that, in general, the range of a function f over some interval [z] is
overestimated by evaluating its interval extension. There are different approaches
to reduce this overestimation. Centered forms often are used to get a narrower
enclosure for sufficiently small [z] (see Alefeld and Herzberger [3], Neumaier [64] or
Ratschek and Rokne [71]). A centered form is derived from the mean-value theorem.
Suppose f is differentiable on its domain D. Then, f(z) = f(c) + f'(€)(z — ¢) with
some fixed ¢ € D and ¢ between  and c. Let ¢,z € [z}, so £ € [z]. Therefore

f@) = f@+F(E)a=-0) € fe)+f(al)z—0)
C [+ ()l -¢), coclz (38

=:f ell2])

Here, fy.([z]) is called a standard centered form of f on [z] with center c. Since
3.8) does not depend on z € [z], the centered form is an enclosure for the range of
fon [z]. If ¢ = m(z), we write fjm([2]) and call f;n([z]) the mean-value form of
f. A centered form is not inclusion isotonic unless the midpoint is used as center.
We only use the mean-value form in this book. A centered form does not depend on
the expression of f, but it depends on the interval evaluation of f'. Thus, different
expressions for f’ lead to different values of the centered form.

Example 3.7 Let f(z) = « + sin(z), and [z] = [2.7,3]. Since f is monotonically
Increasing, its range on [z] is given by f([z]) = [f(z), f(Z)]. Hence, we have f ([z]) =
[2.7+sin(2.7),3 +sin(3)] C [3.127,3.142). Table 3.3 gives some enclosures computed
for different interval arguments [y] containing (] using both interval evaluation of

f and its mean-value form with f'(¢) = 1 + cos(z). The results are rounded to 4
decimal digits.

) Example 3.7 shows that for rough interval arguments, the mean-value form may
Yields overestimated enclosures, too. For the arguments in the first row of Table 3.3,



38 3. Mathematical Preliminaries

Table 3.3: Interval evaluation compared to the mean-value form

(3] fu(ly) | Sum(ly])
[0, 7] C [0.000,3.142] [0,7 +1] C [0.000,4.142] | 1 + [-%, 3] C [-1.571,4.713]
[5,7] C [1.570,3.142] |  [E,7+1] C [L.570,4.142) | 2 4[Z,x]C [2.277,3.849]
[3x,7] C [2.356,3.142] | [37,7 + 3@] C [2.356,3.849] | F(Z7) + Z(1 + cos(3w))[-1,1]
C [3.016,3.247]

the standard interval evaluation delivers significantly tighter results. The effect
changes as the diameter of the argument gets smaller. Thus, the mean-value form
is recommended for narrow interval arguments. More precisely, the following in-
equalities relate the quality of an interval evaluation to the quality of a centered
form:

AN

¢(f([=]), fu(l#))) < ed([z]), and (3.9)
o(f(l2]), fum((2])) < B ([a]), (3.10)

where a and 3 are nonnegative constants independent from [z]. In this sense, an
interval extension approximates the range of f linearly, whereas a centered form
approximates it quadratically as the width of the argument tends to zero.

3.2 Complex Interval Arithmetic

In this section, we will introduce complex intervals, i.e. intervals in the complex
plane. We only summarize those terms which are required for the understanding of
the following chapters of this book. See Alefeld and Herzberger [3] for more details.
Let [ye], [zim] € IIR. Then the set

[(I)] = [wre] + i[mim] = {x = Tre + iwim I Tre € [mrelv Tim € [xim]}

is called a complez interval, where i denotes the imaginary unit. The set of complex
intervals is denoted by I€C. A complex interval [z] is said to be thin or a point interval
if both its real part [z.] and its imaginary part [ziy,] are thin. It is called thick
otherwise. A complex interval may also be written as an ordered pair ([re], [Zim])
of real intervals. We use rectangular intervals with sides parallel to the coordinate
axes, but a complex interval could also be defined as a disk in the complex plane
given by its midpoint and its radius. See Alefeld and Herzberger [2], [3] for more
details concerning circular interval arithmetic.

Let [z], [y] € IC. Relations like the equality relation or the inner inclusion
relation are valid if and only if they are valid for both the real and the imaginary
parts of their operands, i.e.

(2] 0 [y] : ([2xe] © [te] A [Tim] © [yim]), © € {=,C,C}. (3.11)
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However, the proper subset relation is defined by [z] C [v] :& ([z] € [y] A [#] # [y])-
Figure 3.4 illustrates some subset relations.

(4] [y]

;
Figure 3.4: Some subset relations: [y] C [2] and [y] C [z}, but [y] §°Z [z]
The lattice operators for the intersection and the interval hull of two complex

intervals may also be defined by reduction to the corresponding operators for the
real and the imaginary parts, 1.e.

[2] 0 [y] := ([re] © [tre]) + i([im] 0 [tim]), o €{N, U}. (3.12)
See Figure 3.5 for a graphical illustration of an intersection of complex intervals.

[y]

2 (a1 [y]

Figure 3.5: Intersection of complex intervals

As for real intervals, we may define a distance in I€ (cf. Definition 3.3). It is
easy to prove that JC provided with an appropriate distance is a complete metric
space, so the concepts of convergence and continuity may be transferred to the
space of complex intervals, too. For more details, we again refer to Alefeld and
Herzberger [2], [3].

Let us now define the elementary operations +, —, -, and / for complex intervals.
Let [z], [y] € IC. According to the standard rules of complex arithmetic, we get

[2] + [y] = [@re] + [yre] + i([2im] + [gim]),
[¢] - [v] = [Zre] — [Yre] + i([Fima] — [Yim]),

[2] - [¥] = [@re]lyre] = [im] [Yim] + é([2re] [Yim] — [Zimm](3e]), and (3.13)
z . [Zre][Yre] + [Zim] [Yim] Z[xun] [tre] = [Zrel [Yim]
= P mP T Gl P

Of course, the definition of {z]/[y] is restricted to intervals with 0 & [yre]? + [4im]?.
We point out that [z]/[y] is evaluated using the elementary interval square function
% guarantee 0 ¢ [yec]? + [yim]” for [y] with 0 ¢ [y].
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Example 3.8 Let [y] = [-2,1] + :[1,2]. Then 0 = (0,0) ¢ [y], and thus ¢ ¢
[4re]® + [im)? = [1,8]. Using multiplications instead of elementary square functions
yields 0 € [yre][yre] + [Yim)[¥im) = [~1,8]. Thus, the division would fail.

There is an important difference between the definitions of elementary operations
for real and complex intervals. The continuous image of a complex interval is not
necessarily another complex interval. In Equation (3.4), the result of an elementary
real interval operation was defined as the set {z oy | z € [z],y € [y]}, with 2],
[¥] € IR. By definition, this set is a real interval. However, for [z], [y] € IC the
set §:= {zoy |z € [z],y € [y]} is not necessarily a complex interval. That is, S
may not be a rectangle with sides parallel to the coordinate axes (see Example 3.9).
To get a result in I€, we take the smallest rectangle enclosing S with sides parallel
to the coordinate axes. This is established by Definition (3.13). In this way, we
get easily implementable rules for complex interval arithmetic. Unfortunately, we
have a loss of information by overestimating the true shape of S. This effect of
overestimation is known as the wrapping effect (cf. Moore [62]).

Example 3.9 Let [z] € I€ be a thick interval, and let y = cosa + isina € € be
a thin complex interval. Multiplication of any = € [z] with y results in a rotation
of z by the angle a. Thus, unless « is a multiple of 2, the set S = {z -y | z € [z]}
is a rectangle with sides not parallel to the coordinate axes. The complex interval
multiplication [z] - y wraps the set S in a rectangle with sides parallel to the axes as
shown in Figure 3.6.

S={z-ylzelal}

[«] | o]y

Figure 3.6: Wrapping effect caused by multiplication by the thin complex
interval y = cosa + isina

3.3 Extended Interval Arithmetic

So far, we have introduced real and complex interval arithmetic and given easy-to-
implement rules in Tables 3.1 and 3.2 and Equations (3.13). For these rules, we
excluded a division by zero. We will now describe how to remove this restriction
by defining a special kind of eztended interval arithmetic. It is sufficient for our
needs in this book to extend the definition of real intervals only. We extend the

real number system by adjoining the two ideal points plus and minus infinity JR* :=
R U {—00} U {+00}. We now permit the infimum and the supremum of a real
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interval to be an ideal point. The set of extended real intervals is
IR := IRU {[~00,r] | r € R}U {l, +oo] |l € R} U {[~00, +oo]}.  (3.14)

That is, IIR* is the set of real intervals completed by those intervals whose lower
and/or upper bound tends to infinity. For instance, [~00,1] is another notation for
the set {z € IR |z < 1}, and [~00, +00] denotes the entire real axis. We give an
example to motivate the rules of extended interval arithmetic. See Ratschek and
Rokne [72] for a detailed discussion of extended interval arithmetic.

Example 3.10 Let [z], [y] € IR with [z] = [4,5] and [y] = [-1,2]. By Definition
(3.4), the quotient [z]/[y] is the set S := {z/y | = € [z],y € [y]}. Let us now split the
denominator at 0 to get [y] = [y1]U{ya] = [-1,0]U[0,2]. S is divided into two subsets
§={efy|z€lz],y€n]}U{z/y |z €[z],y € [y]}. Since z € [4,35], the quotient
z/y tends to —oo for y — 07, and it tends to 400 for y — 0*. Thus, the set § may
be represented as the union of two extended real intervals, S = [—oc0, —4] U[2, +00)].

Example 3.10 is typical for the common case of an extended interval division. Its
result may be represented by one or two extended intervals and may be illustrated
by punching out a little gap around the origin of the real axis. For finite intervals
[z], [y] € IIR with 0 € [y], the extended interval division is

[~00, +00] ifr<0<ZTorfz]=0o0r[y]=0
[Z/y,+o0] fZ<0andy<7=0
[—00,Z/y] U [Z/y,+o0] ifT<0andy<0<y

[z]/[y] := { [—00,7/¥] fZ<0and 0=y <y (3.15)
[~o0,2/y] f0<zandy<y=0
[—o0,z/y] U [2/7,+00] if0 <zandy<0<7
[z/7,+00] f0<zand0=y<7

In the first case of Definition (3.15), we can not decide whether z/y with z € [z]
and y € [y] tends to plus or minus infinity. Thus, we return the entire real axis
[-00,+00] as result. All the other cases are treated as in Example 3.10. In our
algorithms, an extended arithmetic division often is followed by an intersection with
some finite interval (see Chapter 6). The result after intersection is an empty set or
one or two finite intervals. In this sense, extended arithmetic is a tool to generate
and deal temporarily with infinite intervals.

Exam.ple 3.11 Consider Example 3.10. We look for ([z]/[y]) N [—5,4]. The divi-
sion yields [~oco, ~4] U [2, +00]. Intersection with [—5,4] yields two finite intervals
[~5,~4] U 2,4). Similarly, (2]/[31) \ [~2,4] = [2,4], and (fal/[s]) " [3,1] = 0.

In addition to the operation of an extended division, we only need one more
extended operation in this book. If z € R, i.e. £ may be interpreted as thin interval,
and [y} € JIR* has at least one infinite endpoint, we define

[_001 +°°] if [y] = [-007 +°°]
¢—[y]:=1 [-o0,z—y] if[y]=[y,+oo] (3.16)
[z — ¥, +00] if [y] = [~00,7].
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An extended arithmetic for complex intervals may be defined using the rules
above for the real and imaginary parts.

3.4 Interval Vectors and Matrices

An interval vector is a vector whose elements are intervals. An interval matriz is a
matrix whose elements are intervals. The sets of all n-dimensional real or complex
interval vectors are denoted by IIR" or IC", respectively. In the same manner,
IR™™ and IC™™™ denote the sets of all real and complex n x m interval matrices,
respectively. We use the notations

[z] := ([2]:)i=1,..m = ([z]1y- - ., [z]n)T for [z] € IR" or IC™
and

[11]11 e [a]lm

(4] := ([ali5) i=1,n 2= for [A] € IR™™™ or IC™™,

=1,...m :
! [@]n1 .- [a]um

A real interval vector may be interpreted as the set of points in the n-dimensional
space bounded by a parallelepiped with sides parallel to the coordinate axes (see
Figure 3.7). For this reason, we often speak of a bozr as a synonym for an interval
vector.

T3

[z] € IR®

f 1

Figure 3.7: A three-dimensional real interval vector or box

The relations =, &, and C are defined componentwise. For instance, the inner
inclusion relation is defined by [z] ¢ lv] & [z): c [y, 2 =1,...,n, for [z], [y] €
IIR". On the other hand, the proper subset relation is defined by [z] C [y] :& ([z] €
[y]Alz] # [y]). The midpoint and the diameter of an interval vector or matrix are also
defined componentwise. For example, m([z]) := (m([z];)), and d([A]) := (d({a];;)),
for [z] € IR", [A] € IR"™™. The mazimum norm is extended to real interval
vectors and matrices by

el = max lls]for [e] € I, and
IAlloo == 1‘2‘;’;2 l[ali;| for [A] € TIR™™.
J=
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Finally, we introduce notations for that component of a real interval vector with
maximum absolute or relative diameter

doo([z]) := mpax d([z];), and

draoo{[Z]) 1= max dra([z];) for [z] € IIR".

1<i<n

3.5 Floating-Point Arithmetic

Computers support only finite sets of numbers. In general, these numbers are rep-
resented in a semilogarithmic manner as floating-point numbers. A floating-point
or machine number is of the form

z=2m-b°=X0.mymy...m;- b

where m is a signed mantissa of fixed length [, b is the base, and e is the exponent.
The digits of the mantissa are restricted to 1 < m; < b—1,and 0 < m; < b1,
i =2,...,0. Because % < m < 1, ¢ is called a normalized floating-point num-
ber. Its exponent is bounded by emim < € < emax. Floating-point numbers are
usually represented in binary format, i.e. with base b = 2. The set of numbers
is characterized by the above conditions, with +0.0...0 - 4*=i» as the unique rep-
resentation of zero, and forms a floating-point system R = R(b,l, emin, €max). The
elements of smallest and largest absolute value in R are zm, = 0.10...0 - b*=i» and
Tmax = 0.(0—1)(b—1)...(b—1) - bm==. A floating-point system R is also called a
screen for all real numbers lying in the interval [—Zmax, +ZTmax]- Obviously, the ele-
ments of /2 are not uniformly distributed on the screen, but they are symmetrically
ordered around zero. The IEEE standards 754 and 854 provide detailed descriptions
of binary and radix-independent floating-point systems [4], [5].

Since it is our aim to carry out arithmetic calculations on a digital computer,
we have to approximate real numbers by floating-point numbers. This is done by a
special mapping, called a rounding O : R — R, defined by the two conditions

Q=2 forallz € R, and (3.17)

z<y = QOz<Qy for all z,y € R. (3.18)

The first condition guarantees that elements of the screen are not changed by a
rounding. The second condition means that a rounding is monotone, i.e. the order
of elements is maintained if they are rounded. We distinguish the roundings

O: Rounding to the nearest element of the screen
v: Rounding toward —oo or downwardly directed
A: Rounding toward +oo or upwardly directed

Figure 3.8 illustrates how the different roundings map an element of IR to an element
of the screen R.
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| i | /l
vz Az,Oz

Figure 3.8: The different roundings: To the nearest number (1), downwardly (v7),
and upwardly (A) directed. The elements of the screen R are sketched
in as vertical lines.

A rounding is said to be antisymmetric if it has the property
O(—z)=—-0r forallze R. (3.19)

Thus, the rounding to the nearest number is antisymmetric, but the directed round-
ings v and A are not antisymmetric. Instead, we have 7(-z) = —Az, and
A(—z) = —z. The directed roundings satisfy the additional conditions vz < «,
and z < Az for all z € R.

One of the essential assumptions in verified numerical computing is that the
elementary floating-point operations @ with o € {+,—,-,/} and O € {v, 4,0}
satisfy the condition

z@y=0(zoy) for all z,y € R. (3.20)

Formally, Equation (3.20) means that the result of a floating-point operation is
defined to be the rounded result of the exactly computed real operation. In general,
the exact result is not representable on the number screen of the computer. Thus,
for an actual implementation, an auxiliary result £ 6y is computed which satisfies
z2®y = Oz oy) = O(zdy). That is, we compute an approximate result that is
rounded to the same floating-point number as the exact result.

A mapping satisfying Properties (3.17)-(3.20) is called a semimorphism. The
principle of semimorphism may also be applied to define arithmetic operations for
complex floating-point numbers as well as for real and complex floating-point vectors
and matrices. For this purpose, the set of arithmetic operations +, —, -, and / is
augmented by a fifth operation, the exact dot product, defined according to (3.20)
by

zQy=0Qfcx-y) forall z,y € R". (3.21)
A complez floating-point number is a complex number whose real and imaginary

parts are elements of a floating-point system R. We denote the set of complex
floating-point numbers by

C={z €|z, zim € R}.

Any operation defined according to the principle of semimorphism delivers a
result of maximum accuracy. That is, there is no element of the screen lying be-
tween @y and z oy. In case of operations for complex or higher dimensional
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operands, this is to be understood componentwise. For a detailed discussion of a
semimorphic definition of computer arithmetics and their implementation on digi-
tal computers, we refer to Kulisch [52] and Kulisch and Miranker [54]. We stress
that all arithmetic operations provided by PASCAL-XSC are implemented semi-
morphically. Moreover, PASCAL-XSC comes with a more sophisticated tool, the
accurate expressions (see Chapter 2.7), which may be used to compute certain al-
gebraic expressions with maximum accuracy. For instance, accurate expressions are
used to realize a semimorphic implementation of the operators for vectors and ma-
trices. In our algorithms, we use the notation CI(...) to indicate that an expression
is evaluated with maximum accuracy.

According to Property (3.20), the floating-point implementation ¢, of an ele-
mentary real function ¢ : D C IR — IR should satisfy the condition

wa(z) = O(p(z)) forallze DNR.

Thus, @q delivers a result of maximum accuracy, too. An equivalent condition should
hold for the floating-point implementations of complex elementary functions. Again,
we emphasize that the elementary functions provided by PASCAL-XSC (see Table
2.4) satisfy this condition.

To point out that an arithmetic expression f composed of elementary operators
and functions is to be evaluated using floating-point arithmetic, we provide it with
a subscript O-symbol.

Example 3.12 Let f(z) = sin(z)++/Z — z be a real-valued function. By specifying
fa(z) = sin(z) ++/z —z, we indicate that the argument of f, is a floating-point num-
ber, and that the operations on the right-hand side of the equality sign are floating-
point operations. For clarity, we even might write fa(x) = sina(x) 8 sqrto(x) 8 x.

3.6 Floating-Point Interval Arithmetic

Interval arithmetic as introduced in the earlier sections assumed exact arithmetic
to compute the endpoints of the resulting intervals. Now, we must build it on
an actual machine. A floating-point or machine interval is a real interval whose
endpoints are floating-point numbers. Let R be a floating-point system. Then the
set of floating-point intervals over R is denoted by

IR={[z] € IR |z,T € R}

A machine interval [z] € IR denotes the continuum of numbers lying between its
bounds. It is a very important fact that, though z and T are elements of the basic
number screen R, [z] contains not only every floating-point number between z and
T, but also every real number within that range (see Figure 3.9). That is, if we have
proved a certain property to hold for a floating-point interval, this property holds
for any real number lying in that interval.

To compute with a computer representation of intervals, we introduce a rounding
<& IR — IR which maps an interval to a machine interval. This interval rounding
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[z] € IR z€R

Figure 3.9: A floating-point interval [z] € IR contains not only elements of R
(vertical lines), but also any real number z with z < 2 < 7.

is assumed to satisfy the Conditions (3.17)-(3.19), where the real spaces IR and
R and the relation < are replaced by IIR, IR, and the C relation, respectively.
Additionally, we assume

[2) CO([z])  for all [z] € IR. (3.22)

This assumption is quite natural since the rounded image of an interval should
always contain its original.
According to Property (3.20), an elementary floating-point interval operation is
defined by
(2] Iyl = Olzlo fy)  for all [al, [y] € IR. (3.23)

The principle of semimorphism implies that any operation defined by (3.23) delivers
a result of maximum accuracy in the sense that the resulting interval is the smallest
machine interval which contains {z] o [y]. For an actual implementation of (3.23), we
may use the rules given in (3.5), using directed-rounding operations to get proper
lower and upper bounds.

Example 8.13 Let [z], [y] € IR. Applying (3.5) for the difference of machine inter-
vals with directed-rounding operations yields [z] & [y] = O([z] - [y]) = [zv ¥, TAY].

A complez floating-point interval is an interval whose real and imaginary parts
are floating-point intervals. We denote the set of complex floating-point intervals by

IC = {[z] € IC | [2)res [z}im € IR}.

See [52] and [54] for a detailed discussion of how to implement a semimorphic
floating-point arithmetic for complex intervals and for real and complex interval vec-
tors and matrices. All real and complex interval operations provided by PASCAL-
XSC are implemented semimorphically. The notation (. ..) used in our algorithms
indicates that the specified interval expression is evaluated with maximum accuracy.

According to Definition (3.23), the floating-point implementation ¢ of an ele-
mentary interval function ¢ : D C IIR — IIR should satisfy the condition

eo([z]) = O(e([z]))  forall [z] € DNIR.

Thus, o also delivers a result of maximum accuracy. An equivalent condition
should hold for the floating-point implementations of elementary complex interval
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functions. All elementary interval functions provided by PASCAL-XSC (see Table
2.4) satisfy this condition.

As already mentioned, we use fs to indicate that an expression f is to be eval-
uated using floating-point arithmetic. We introduce an equivalent notation with a
subscript {-symbol to indicate that the expression is to be evaluated using interval
floating-point arithmetic.

Example 8.14 The notation fo([z]) = (el — 1) - [¢] indicates that the argument
of fo is a floating-point interval and that floating-point interval operations are to
be used for evaluation. For clarity, we might write fo([z]) = (expo([z]) © 1) & (z].

In Section 3.8, we will see that sometimes it helps to accelerate certain verification
steps by slightly enlarging a given interval. Let ¢ € R be some positive machine
number. The epsilon inflation or e-inflation of a real floating-point interval lz] € IR
is defined by

osem { [ Fete dle) o) o -

(2] + [~ Zmin, +2min] otherwise,

where, Tmin denotes the smallest positive element of the floating-point system R
as defined in the preceding section. The e-inflation is defined componentwise for
complex intervals and interval vectors and matrices.

We conclude our discussion of machine interval arithmetics with the definition of
a measure for the accuracy of a floating-point interval. A real floating-point interval
with non-vanishing diameter is said to be accurate to n ulp if its interior contains
n — 1 or fewer elements of the basic number screen R. Thus, an accuracy of one
ulp is equivalent to maximum accuracy, since the infimum and the supremum of the
interval are successive elements of the number screen. An accuracy of n ulp indicates
that the infimum and the supremum differ in at most n units in the last place of their
mantissae. The ulp-accuracy of complex intervals and higher dimensional interval
types is defined to be the maximum of the ulp-accuracies of their components.

fExample 3.15 The shaded interval (] marked in Figure 3.9 has an accuracy of
our ulp.

3.7 The Problem of Data Conversion

It is. critical that you understand this section in order to use any of the toolbox
routines in this book to achieve the validation they promise. The problem of data
conversion is a common problem in numerical computing. It is based on the fact that
Ilu_merical computations are executed in almost every case on non-decimal floating-
Point systems. A programmer and, most important, a user of numerical software
§h0uld always be aware of the facts discussed below, yet even the most experienced
H‘lterval expert gets trapped from time to time by forgetting data conversion ques-
tions. Be warned! We emphasize that the problem of data conversion is less a
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problem of verified numerical computing than of all digital computing (see Auzinger
and Stetter [7]).

The floating-point format used internally by almost all modern digital computers
is a binary format. For instance, the runtime system of PASCAL-XSC is based on
the IEEE standard format for binary floating-point numbers [4] with a mantissa of 53
binary digits and an exponent range from 27192 to 213, R = R(2,53, -1021,1024).

Since people are accustomed to thinking in decimal notation, we must convert
the decimal numbers of our thoughts to binary numbers the computer can use. Any
real constant or input data specified in a user’s program has to be converted at
runtime. This is done by a rounding O € {0,7, A}. In general, a decimal number
has no binary representation of finite length. Thus, the conversion of constants
and input data is generally afflicted with a small conversion error. It is a common
misapprehension, as the following example demonstrates, that decimal numbers with
a short mantissa may be converted without conversion error.

Example 3.16 The decimal number z = 0.1 has no exact representation in any
binary floating-point system with a fixed-length mantissa. Since

i 3 3 1 1
E: —4k —(4k+1)=_§: -4k _ 2 _ - =
k=12 * '2k=1(2 ) 2(1—2_4 1) 10 ”

the unique, but infinite, binary representation of = is 0.0001100;. Thus, conversion
of the mantissa to any finite length results in a conversion error.

It is another common fallacy that integers may always be converted exactly to
a binary floating-point format. Large integers also may be afflicted by a conversion
error, because the mantissa of the objective format is of finite length.

Example 3.17 R = R(2,53,—1021,1024) is the binary floating-point system used
by PASCAL-XSC. Let

z = 9007199254740993 = 25% + 2° = 100000. . . 000001 .
e s’
54 digits

Error-free conversion of z to the internal binary format requires at least 54 binary
digits in the mantissa. Thus, the real value z cannot be mapped exactly to an
element of R.

If R(b, !, emin, €max) is the objective floating-point system, then any integer within
the range of £b' is converted without error. There are other integers outside that
range which are also exactly representable in R, but most integers between &' and
Tmax (OF —Zmax and —b') are subject to conversion errors. For the floating-point sys-
tem used by PASCAL-XSC, we have b = 9007199254740992 and ., ~ 1.8 - 1038,

How can we check at runtime if a real input parameter was converted exactly? At
first glance, it appears one could enter the real value, write it to a file, and compare
these two values. However, this is not the correct way to solve our problem, since the
method described above results in two successive conversions — one from decimal
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to binary format and the other from binary to decimal format. Unfortunately, in
general, these two conversions cancel each other out.

To solve the problem correctly, PASCAL-XSC allows you to enter a real data
as an interval. This guarantees that its exact value will be enclosed in a machine
interval. If the diameter of that interval is zero, the parameter was exactly repre-
sentable. The following sample program may be used to check if a real number was
converted without error.

program Check_For_Conversion Error;

use i_ari;
var x : interval;
begin

write(’Enter x: '); read(x);
if (diam(x) = 0) then writeln(’--> x is exactly representable’)
else writeln(’--> x is not exactly representable’);
end.

This test program produces the results below:

Enter x: 0.1
--> x is not exactly representable

Enter x: 36452346
--> x is exactly representable

Enter x: 0.50390625
--> x is exactly representable

Enter x: 1E50
--> x is not exactly representable

As you use the modules and programs of the following chapters, you should
always remember the problem of input conversion. If some of the input data are
afflicted with conversion errors, you should be aware that the results of a verification
procedure are proved for the converted input data only, but not for the original
decimal problem. To avoid confusion about the results, you may wish to check
whether the input parameters are exactly representable as demonstrated in the
above program. However, this is no restriction in the common case, where the input
parameters of a verification procedure result from previous computations.

Some of the problem-solving routines of the following chapters accept interval
input parameters. They may be used to solve point problems by entering thin
interval parameters. In this context, we want to point out some pitfalls in specifying
interval expressions in PASCAL-XSC. Except at input (see the program above), real
data are treated as thin intervals.

Example 3.18 Let r € R and [z}, [y], (2] € IR be variables

var
r : real;
X, ¥, 2z : interval;

Then the following statements

0.1;
intval(r);
r;

0.1,

Nw< X H
W
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result in identical thin (!) intervals for [z], [y], and [z], none of which contains the
real number 0.1! The literal constant 0.1 is rounded to the internally used binary
format before being used for an assignment. Thus, actually, we get [z] = [y] = [2] =

[(0.1)] = [3(0.1), O(0.1)].-

It is not our intention to cause confusion, but we have to remark that any of
the intervals of the previous example, printed using the standard write procedure is
printed as

[ 1.000000000000000E-001, 1.000000000000001E-001 J.

Hence, it appears that 0.1 is contained in [z}, for instance. But remember, to
display [z] which actually is a thin interval stored in binary format, its lower and
upper bounds are converted to a decimal format using the downwardly and upwardly
directed roundings, respectively. Thus, the conversion error from decimal to binary
format was canceled out by the subsequent rounding from binary to decimal format.
This demonstrates that the effects of conversion are small, but they may not be
neglected in a program claiming to produce validated results.

For the special case of literal constants, PASCAL-XSC also provides the nota-
tions (< ...) and (> ...) to force downwardly and upwardly directed roundings for
literal constants to get a proper interval enclosure. So, specifying

x := intval( (<0.1), (>0.1) );

results in an interval [z] = [7(0.1), A(0.1)]. That is, the binary representation of
[z] is a proper enclosure of the decimal literal constant 0.1. In practice, the most
natural notation to achieve an enclosure of 0.1 is probably

x := 1 / intval(10);

This notation emphasizes the role of type recognition for overloaded operators.

Our final remark on the problem of conversion concerns the evaluation of arith-
metic expressions. Since PASCAL-XSC supports operator and function overloading,
one should always bear in mind that the type of an operator or function is defined by
the type of its operands. Thus, we must be careful in specifying expressions which
include both real and interval operands if we want to compute enclosures for these
expressions.

Example 3.19 Let [z], [y], and [2] be defined as in Example 3.18. The statements

y + exp(1/3);
y + exp(intval(1)/3);

X
z

are not equivalent. Since the operands of the exponential’s argument in the first
expression are both of type real, it corresponds to [z] = [y] & [exp,(1 71 3)]. In
particular, the second summand is not an enclosure of exp(1/3), but a thin interval.
On the other hand, the second statement corresponds to [2] = [y] @ expo(O(1) P 3).
Here, the second summand is a proper enclosure of exp(1/3).

The example demonstrates that it is recornmended to convert any integer or real
operands to intervals before they are used within an expression of type interval.
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3.8 Principles of Numerical Verification

The automatic verification of numerical results is based on two major prerequisites:

1. the theory of interval arithmetic,

2. appropriate algorithms.

The easiest technique for computing verified numerical results is to replace any real
or complex operation by its interval equivalent and then to perform the computa-
tions using interval arithmetic. This procedure leads to reliable, verified results.
However, the diameter of the computed enclosures may be so wide as to be prac-
tically useless. We need more sophisticated methods which combine the benefits
of interval arithmetic with a mechanism for refining already computed, but rough,
enclosures.

In developing algorithms for validated enclosures, we must be careful what we
compute an enclosure of. For example, if we take a program for the approximate
solution of initial value problems in ordinary differential equations by a Runge-
Kutta method and replace all floating-point computations by computations with
floating-point intervals, we get an enclosure, as suggested in the preceding paragraph.
However, we get an enclosure not of the solution to the differential equation, but
of the Runge-Kutta approximation. We have enclosed the roundoff errors but not
the truncation errors. An algorithm must enclose all sources of error that come into
the computations, including conversion errors discussed in Section 3.7, in order to
achieve validated enclosures of the desired answer.

A simple mechanism for the verified solution of point problems, i.e. problems with
non-interval input data, is the principle of iterative refinement. After computing a
first approximation, its error is enclosed using machine interval arithmetic. If the
diameter of the error interval is less than a desired accuracy, then a verified enclosure
of the solution is given by the sum of the approximation and the enclosure of its error.
Otherwise, the approximation may be refined by adding the midpoint of the error
interval and repeating the process. See also Stetter [82]. We use iterative refinement
methods in this book for the accurate evaluation of polynomials (Chapter 4) and
arithmetic expressions (Chapter 8).

Many algorithms for numerical verification are based on the application of well-
known fixed-point theorems with respect to interval sets. As an example, we cite
the following theorem (cf. [64]).

'I"heorem 3.1 (Brouwer’s Fixed-Point Theorem) Let f : IR* — IR" be a con-
tinuous mapping and X C IR™ be a closed, convex, and bounded set. If f (X)C X,
then f has at least one fixed-point z* in X.

Let X = [z] € IR" be a machine interval vector. As a box in the n-dimensional
Space, [z] satisfies the conditions of Brouwer’s Fixed-Point Theorem. Suppose we
¢an find a box with f([z]) C [z]. Then [z] is proved to be an enclosure of at least one
fixed-point z* of f. The assertion remains valid if we replace f by its floating-point



52 3. Mathematical Preliminaries

interval evaluation fo because fo([z]) C (2] implies f([z]) C [z}, since fo([z])is a
superset of f([z]).

Viewing the Brouwer Fixed-Point Theorem in an interval context motivates a
template for the design of algorithms that compute a verified solution of numerical
problems. First, find a fixed-point form & = f(z) equivalent to the original problem.
As an example, we refer to Newton’s method for problems of finding a zero. Replace
the generating function of the right-hand side by its floating-point interval extension
fo. Start the following iteration scheme with some approximate solution [z](®

(2] = fo([e]®)  for k=0,1,2,... (3.25)

Stop the iteration if [z]*+) C [z]®) for some k > 0. If the iteration succeeded, then
we have proven in the mathematical sense that the original problem has at least one
solution z* contained in [z](*).

We distinguish a priori and a posteriori methods for the starting approximation
of (3.25). For an a priori method, the starting approximation already includes the
fixed-point desired. For this case, the iteration scheme (3.25) may be modified by
intersecting successive iterates, that is,

[.’L‘](k+1) — fo([ic](k)) N [x](k) for k = 0,1,2,...

The iteration is halted if there are two successive iterates of same value or if a
maximum number of iterations is exceeded. Figure 3.10 gives an illustration of how
an a prior: interval iteration works. Examples for a priori methods are found in
Chapters 6 and 7.

[:t](kH)

T2 [-T](kH)
2] / [2]®

T I

Figure 3.10: A priori method without (left picture) and with intersection

The starting approximation for an a posterior: method does not necessarily have
to contain a desired fixed-point. Here, the hope is that successive iterates come
closer and closer to a fixed-point and finally will enclose it. Of course, the better
the starting approximation is, the faster the iteration will converge. However, in
practice the iterates come closer and closer to the fixed-point, but they rarely catch
it. A simple trick saves the method. Before starting a new iteration step, the actual
iterate is slightly enlarged by means of the e-inflation, as defined in Section 3.6.
Thus, for an a posteriori method, the iteration scheme (3.25) is modified to

G = (o] b

)+ — 2109 for k=0,1,2,...
(=] fo([=]™)
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Figure 3.11 illustrates the effects of an e-inflation on an a posteriori method. Ex-
amples of a posteriori methods appear in Chapters 10 and 11.

[x](k) /

2]+ . (2] ba e

[m](lc-i-l)

A} Ty

Figure 3.11: A posteriori method without (left picture) and with e-inflation

Fixed-point methods may even be modified for some problems to prove the
uniqueness of a fixed-point. For example, in Chapter 10 the uniqueness of the
solution of a system of linear equations is proved by simply changing the stopping
criterion of the fixed-point iteration to [z]*+1) & [z]®).

So far, we have introduced the mathematical basics for verified numerical com-
puting. We have defined the basic terms of real, complex, and extended interval
arithmetics and have discussed aspects of an implementation on a computer. We
also have discussed the problem of data conversion. Finally, we have introduced the
principles of numerical verification by iterative refinement, a priori, and a posteriori
methods. All these terms are used in the following chapters to describe algorithms
that compute verified solutions of problems from numerical analysis.
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Chapter 4

Evaluation of Polynomials

In this chapter, we consider the evaluation of a polynomial function of a single
variable. We usually compute the value of an arithmetic function by replacing
each arithmetic operation by its corresponding floating-point machine operation
(see Section 3.5). Roundoff errors and cancellations sometimes cause the calculated
result to be drastically wrong. For similar reasons, a naive interval evaluation of a
polynomial may lead to intervals so large as to be practically useless. Roundoff and
cancellation errors are especially dangerous if we are evaluating a function close to
a root, as we will see in Chapter 9 when we compute verified enclosures of zeros of
polynomials.
We present an algorithm to evaluate a real polynomial p : IR — IR defined as

p(t) = Zp;t‘, Pt €R, i=0,.,n, p,+#0. (4.1)

i=0

We assume the coeflicients p; to be representable in the floating-point number sys-
tem of the host computer. The algorithm achieves maximum accuracy, even in the
neighborhood of a root where cancellation dooms an ordinary floating-point evalu-
ation.

4.1 Theoretical Background

4.1.1 Description of the Problem

The basic idea of the algorithm is to transform the evaluation of a polynomial into
a linear system of equations. The linear system can be solved efficiently and with
maximal accuracy using vector and matrix operations based on the accurate scalar
product.

We rewrite the polynomial p(t) in Horner’s nested multiplication form

p(t) = (- (Pat + Pa-1)t + - -+ + p1)t + po. (4.2)

Labeling the intermediate results in Equation (4.2) as

In = Pn
; = zipal+p, i=n—1,...,0, (43)
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we get the linear system
Az =p (4.4)
with A € R+Vx("+1) & and p € R™! where

-t 1 In Pn
A= o ,oa=| i |, and p=| :

_;5 1 Zo Po

The last unknown g is the desired value of the polynomial p(t). There are well
known techniques and algorithms to solve a linear system of equations with maxi-
mum accuracy and verification of the result (see Chapter 10), but a special method
for this very special bidiagonal Toeplitz form of A is much faster than the general
methods.

4.1.2 Iterative Solution

First, we compute an approximation Z € IR™*! for the solution of (4.4) by direct
forward substitution in floating-point arithmetic

:'En = DPn
Z; = Zipa-t+p, t=n-1,...,0,

such that Z¢ = p(t). We will use a residual iteration to improve this approximation,
to achieve the desired maximum accuracy, and to get verified bounds for the result.
To determine the accuracy of the first approximation ¥, we have to calculate an
enclosure of the residual with sharp bounds (in floating-interval arithmetic)

[V = O(p — 43).

The dot product operation is essential to avoid both catastrophic cancellation and
gross overestimation of the residual.

Let z* denote the true solution to the system Az = p. Let the error in the
approximate solution be y := z* —Z. Then p = Az* = A(T+y) = AT+ Ay, and the
residual r := p— AT = Ay. Now the true residual r € [r]V) := O(p— AZ) (evaluated
in floating-interval arithmetic), so the true error y is contained in the solution (using
floating-interval arithmetic) to the linear system

Ayl = [® (4.5)

Because of the special form of A, Equation (4.5) can be solved using the same forward
sweep as used to determine T, except that we use floating-interval arithmetic.

W = [
WY = WG t+r0, i=n-1,...0
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It is guaranteed that the exact value of p(t) lies in the interval [2] = T + [y]gl).
If the diameter of this interval is not sufficiently small, the residual iteration is
continued. Let y = m([y]®) denote the midpoint of the vector [y](), and use
% + y( as the new approximation for the solution of the linear system.

Let y© := F. At the beginning of the (k + 1)* iteration step, we have k + 1
vectors (9, ..., y*) determining the approximate solution Ef:o y©) for Az = p.
The residual of this approximation is enclosed in the interval vector

k
[r](k+1) =0 (p_A.Zy(j)) e IIR™.
=0

The solution of the linear system Ay(*+1) = r(*+1) j5 enclosed by the solution of
the linear system A[y]*+Y) = [r](**1), Hence, the enclosure

k
pt)=z5ele =y + &

is always guaranteed. It is easy to prove that the sequence of interval vectors [y]*)
converges towards the zero vector for £ — oo as Zi;oy(]) approximates z* (see

[10]). With this we have

k
Jim ( Yow ) = 25 = p(t)
j=0

as an exact evaluation of polynomial (4.1) at the point ¢. The rate of convergence
o0 . o)

of the sequence ( [y]$ )k . to zero, or of ( E;;O y$ )k to p(t) is linear and is
— =0

proportional to the condition number of matrix A. In fact, the number of resid-

ual iterations necessary to achieve maximum accuracy is a rough indicator for the

condition number of A.

The complexity of the algorithm is only linear in the degree of the polynomial
because of the special form of matrix A. However, execution time tends to grow
faster than linearly because the condition number of A tends to grow with the degree,
forcing more iterations to achieve maximum accuracy.

4.2 Algorithmic Description

We present, the algorithm RPolyEval for the evaluation of a real polynomial p(t) =
Yoo pitt with maximum accuracy. Except for the special cases n = 0 and n = 1,
which can be calculated directly, an iterative solution method is used. As described
in the preceding section, we first compute a floating-point approximation of p(t). We
then carry out a residual iteration by solving a linear system of equations. Because
of the shape of the matrix A (see (4.4)), this can be done by a direct forward
sweep. The new solution interval determined in the next step is checked for being of
Mmaximum accuracy, i.e. for being exact to one unit in the last place of the mantissa
(1 ulp) (see Section 3.6).
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Applicability of the Algorithm

The theoretical statement about the convergence of the sequence of iterates [y]®
in Section 4.1.2 is also true when the calculations are done on a computer, if a
precisely defined interval arithmetic as the one of PASCAL-XSC is used. Since
all components of the residual interval vectors [7]®) are results of scalar produc‘zlsc;
they can be calculated with maximum accuracy. That is, each component of {r]

is calculated with just one rounding. This guarantees that the upper and lower
bounds of each interval component [r]fk) are identical or adjacent machine numbers.

Even if the width of [y]gkﬂ) vanishes, the PASCAL-XSC runtime system returns an
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enclosure of the floating-point element of smallest absolute value (see Section 3.5).
With this we always obtain a true enclosure of the defect.

If the condition number of the matrix A is extremely large, then the convergence
of the residual iteration is slow. To avoid the possibility of an unbounded number
of iterations at Step 2b, we halt after kmax iterations. Qur implementation uses
kmax = 10. This is large enough to achieve maximal accuracy unless the condition
number of A is larger than about 10° - ||p(2)]].

4.3 Implementation and Examples

4.3.1 PASCAL-XSC Program Code

We list the PASCAL-XSC: program code for the evaluation of a real polynomial
with maximum accuracy. Interval data are named with double characters, e.g.
rr{i] denotes the interval {r};.

4.3.1.1 Module rpoly

The module rpoly supplies a global type definition for the type RPolynomial repre-
senting a real polynomial p(t) = 3" p;t'. The routines read and write for the input
and output of real polynomials are defined and exported. Since no operations on
polynomials are requested by Algorithm 4.1, no operators have been implemented
in this module.

{
{ Purpose: Declaration of data type for representation of a real polynomial
{ by its coefficients, and of I/0 procedures for this data type.

{ Global types and procedures:

type RPolynomial ! representation of real polynomials

procedure read(...) : input of data type RPolynomial

procedure write(...) : output of data type RPolynomial

{ Remark: Variables of type ’'RPolynomial’ should be declared with lower

E bound 0 (zero).

sy

o e e e e S e e Yy

module rpoly;

use
iostd; { Needed for abnormal termination with ’exit’ }

global type
RPolynomial = global dynamic array[*] of real;

global procedure read ( var t : text; var p : RPolynomial );

var
i : integer;
begin
if (1b(p) <> 0) themn
begin

write(’Error: Variable of type RPolynomial was declared with ’);
writeln(’lower bound <> 0!’);
exit(-1); { Abnormal program termination }

end;

write(’ xt0 * ’); read(t,pl0]);
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for i := 1 to ub(p) deo { - - }
begin write(’+ x1’,1:0,’ * *y; read(t,pli]) end; { Error codes used in this module. In the comments below p[0],..., pln] are }
end: { the coefficients of a polynomial p. >
; {- >
global procedure write ( var t : text; p : RPolynomial ) const
var NoError = 0; { No error occurred >
i : integer; ItFailed = 1; { Maximum number of iterations exceeded >
PolyIsZero : boolean; { Signals ’p’ is a zero polynomial } I11Prob = 2; { Illegal Problem, i.e. polynomials with lower }
begin { bound <> 0 was passed to procedure RPolyEval. }
PolylsZero := true;
for i := 0 to ub(p) do {- - }
if (p[i] <> 0) then { Error messages depending on the error code. }
begin {- }
gt PolyIlsZero then write(t,’ ') else write(t,'+’); global function RPolyEvalErrMsg(Err : integer) : string;
writeln(t,p[il,’ * x1’,i:1); var .
PolyIsZero := false; M;g : string;
end; begin
if PolyIsZero them writeln(t,’ 0 (= zero polynomial)’); case Err of
end: NoError : Msg := ’’;
' ItFailed: Msg := ’'Maximum number of iterations (=’ + image(kmax,0) +
3 ’) exceeded’;
{ Module initialization part 2 I11Prob : Msg := ’'Illegal polynomial with lower bound <> 0 occurred’;
{ 3 else : Msg := ’Code not defined’;
begin ?nd;
{ Nothing to initialize } if (Err <> NoError) themn Msg := ’Error: ’ + Msg + ’!’;
end. RPolyEvalErrMsg := Msg;
end;
{ 3
4.3.1.2 Module rpeval «fPurposg: Determination of p(t) (a polynomial p with argument t) with 3}
. . . maximum accuracy.
The module rpeval supplies the global routine RPo]yEva] to determine an enclosure { Parameters: 4 i
e value of the real polynomial p(t) = " pt'in a point ¢ € R with maxi- { In : ’p’ : represents a real polynomial by its coefficients }
of t poiy p i=0 P p { ’t’ : specifies the point of evaluati }
N . . : uation
\7 s, ; X
mum accuracy according to Algorithm 4.1. The global function RPolyEvalErrMsg { Out : 'z’ : floating-point approximation computed by Horner’s scheme }
is defined to get an error message for the error code returned by RPolyEval. { 'zz’' : enclosure of p(t) 3
. . . . ’ + . 3 S
If no error occurred during the calculation, RPolyEval returns a floating-point } ,Iérr' : gﬁﬁ;rfgiglteranons needed ;
approximation of P(t) computed by the Horner’s scheme and an enclosure with { Description: The polynomial ’‘p’ is defined by its coefficients and, ’t’ }
maximum accuracy of the exact value of p(t). {  denotes the evaluation point. Horner’s scheme for evaluating p is equi- }
{ valent to computing the solution of a linear system of equations }
‘ 3 { A(t)*x = p, where A(t) is a bidiagonal, Toeplitz matrix and }
{ Purpose: Evaluation of a real polynomial p with maximum accuracy. } { X -f(X_n, . ..,X_Q). The component x_0 of x is equal to p(t). The solution }
{ Method: Transformation of Horner's scheme for evaluating p(t) to a linear } { x is enclosed in an interval vector [x] by iterative refinement. The 3
{ system of equations A(t)*x = p, where A(t) is a bidiagonal, Toeplitz 3 { first element of [x] is an enclosure of p(t). It is returned in the 3
{  matrix and x = (x_n,...,x_0). By iterative refinement the floating- } {  variable ’zz’. A floating-point approximation computed by Horner'’s }
{  point approximation is improved and the exact solution x is enclosed in } {  scheme is returned in ’'z’. The number of iterations is returned in 'k’ }
{ an interval vector [x]. ¥ { and the state of success is returned in ’Err’. }
{ Global procedures and functions: } { Remark: The polynomial’s coefficients and the argument are assumed to be }
{ procedure RPolyEval(...) : computes an enclosure for the exact } % exact floating-point numbers! >
{ value p(t) with maximum accuracy } - ‘ 3}
{  function RPolyEvalErrMsg(...) : delivers an error message text ; global procedure RPolyEval (  p : RPolynomial;
t : real;
module rpeval; { Real polynomial evaluation } var z : real;
{ - _ ———— 3} var zz . interval;
ase var k, Err : integer ),
rpoly, { Real polynomials ¥ var ' ‘
i_ari, { Interval arithmetic 3 1, j, n : integer; : { The j-th column of the matrix }
i_util, { Utilities for type real } Tr, yy : ivector[0..ub(p)]; { 'y’ is used to store the j-th }
mv_ari, { Matrix/Vector arithmetic 3 X : rvector[0..ub(p)]; { correction for the solution of }
mvi_ari; { Matrix/Vector interval arithmetic } begin : rmatrix[0..ub(p),0. kmax]; g Alt)*y = p.
}
const Err := NoError; n := ub(p); k := 0; { Initialization }

kmax = 10; { Maximum number of iteration steps } . >
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if (1b(p) <> 0) them

Err := Il1llProb

else { 1b(p) =0 }

begin

it (n = 0) then

{ Illegal polynomial declaration }
{ }
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to be evaluated in the neighborhood of the real value ¢ = 1.000005. To make sure

that the arguments are representable on the computer, we use the machine numbers
¢t = [(2.0001), and ¢ = 0O(1.000005) respectively.
To illustrate the difficulties that may occur with the calculation of a polynomial

begi 1= 0], 1= 0l; d . . . . . .
01325;.3 (le = 1}; [tilxen =2 = Lok en value using floating-point arithmetic, these two polynomials have been evaluated
begin in floating-point arithmetic for 100 values in the neighborhood of their roots. The
;Z it x;g ,t;:g Eg : gEg% g corresponding plots are given in Figures 4.1 and 4.2.
end 1
else {n > 1} 6.57-10
begin L ‘Horner’” —
x = Null(x); y := Null(y); { Initialization x := 0 andy := 0 } ‘exact’ ——
}
x[n] := pinl; { Computation of a first approximation }
for i := n-1 downto 0 do { using Horner’s scheme }
x[1) := x[i+13*t+p[il; { ¥
z = x[0];
y[x,0] := x; { Iterative refinement for the }
repeat { solution of A*x = p 3}
}
if (k > 0) then { If a residual was computed, its middle is } A M
y[*,k] := mid(yy); { stored as the next correction of ’'y’. _; AT \/\/ ey
- 14|
yy[nl := 0; { Computation of the residual [r] and } -0.71-10
\t,:;i; 7 71 domnto 0 do f ZI‘}ﬁaﬁ“Zﬁff the interval system i Figure 4.1: Polynomial p(t) for ¢ € [1.9995, 2.0005]
{ }
rrli]l := ##( p[i]l - for j := 0 to k sum( y[i,jl )
+ for j := 0 to k sum( txy[i+1,j]1 ) ); 1.10-15
yy[il := yy[i+1]*t + rr(il
. ‘Horner’ —
end;
" ‘exact’ ——
{ Determination of a new enclosure [z] of p(t) }
zz := ##( for j := 0 to k sum( y[0,j] ) + yy[ol );
k:=k+1;
until UlpAcc(zz,1) or (k > kmax); A/\ A A ADA
if not UlpAcc(zz,1) then Err := ItFailed; V\j V
end; {n>113}
end; { 1b(p) = 0 }
end; { procedure RPolyEval }
}
{ Module initialization part }
} —1.10-18

begin

{ Nothing to initialize }

end.

4.3.2 Examples

We consider the polynomials

p(t) = t* — 8t + 24¢* — 32t + 16

to be evaluated in the neighborhood of the real value ¢t = 2.0001, and

qit) = - +3t2 -3t +1

Figure 4.2: Polynomial ¢(t) for ¢ € [0.99999, 1.00001]

These two examples are solved reliably using the following sample main program

to call RPolyEval.

program rpeval_example(input, output);

use
i_ari, { Interval arithmetic }
rpoly, { Real polynomials }
rpeval; { Polynomial evaluation with maximum accuracy }

Procedure main(n : integer);

var
ErrCode, No : integer;
t, ¥y : Treal,;
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yy . interval;
P : RPolynomiall0..n];
begin
writeln(’Enter the coefficients of p in increasing order:’); read(p);
writeln;

write(’Enter the argument t for evaluation: '); read(t); writeln;

No := 0;
RPolyEval(p, t, ¥y, ¥y, No, ErrCode);

if (ErrCode = 0) then
begin
writeln(’Polynomial: ’); writeln(p);
writeln(’Floating-point evaluation of p(t) using Horner’’s scheme:’);

writeln(’ ’,y); writeln;
writeln(’Verified inclusion of p(t): ’); writeln(yy); writeln;
writeln(’Number of iterations needed: ’, No);
end
else

writeln(RPolyEvalErrMsg(ErrCode));
end; { procedure main }

var
n : integer;

begin
n := -1;
while (n < 0) do
begin
write(’Enter the degree of the polymomial (>=0): ’);
read(n); writeln;
end;
main(n);
end.

Our implementation of Algorithm 4.1 produces the output listed below. In both
cases the floating-point approximation, naively using Horner’s nested multiplication
form, does not lie within the verified enclosure of p(0(t)) and ¢(0(t)). An even
worse side effect of rounding errors occurring during the evaluation using Horner’s
scheme is that the standard algorithm returns not only wrong digits but also an
incorrect sign for the values of p(01(2.0001)) and ¢(C3(1.000005)). To avoid an
incorrect interpretation of the resulting interval, we stress that this interval is nu-
merically proved to be an enclosure of the exact value of the given polynomials for
the machine numbers ¢ = [J(2.0001) and ¢ = 1(1.000005).

Output for polynomial p(t) = t* — 8t + 2412 — 32t + 16:
Enter the degree of the polynomial (>=0): 4

Enter the coefficients of p in increasing order:

X"0 * 16

- -32

24

-8
1

+ o+ A+
P
Bw N

*
*
*
*

Enter the argument t for evaluation: 2.0001
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Polynomial:
1,.600000000000000E+001
+ -3.200000000000000E+001
+ 2.400000000000000E+001
+ -8.000000000000000E+000
+ 1.000000000000000E+000

* K X X ¥
%NN)N%
W= o

Floating-point evaluation of p(t) using Horner’s scheme:
-3.552713678800501E-015

Verified inclusion of p(t):
[ 1.000000000008441E-016, 1.000000000008442E~016 ]

Number of iterations needed: 2

Output for polynomial ¢(t) = —t® + 3t2 -~ 3¢t + 1:
Enter the degree of the polynomial (>=0): 3

Enter the coefficients of p in increasing order:
X0 * 1

Enter the argument t for evaluation: 1.000005

Polynomial:
1.000000000000000E+000
+ -3.000000000000000E+000
+ 3.000000000000000E+000
+ -~1.000000000000000E+000

* X ¥ *

Floating~point evaluation of p(t) using Horner’s sch :
1.110223024625157E-016 & e

Verified inclusion of p(t):
[ -1.250000000024568E-016, —1.250000000024566E~016 ]

Number of iterations needed: 2

4.3.3 Restrictions and Hints

Ours is a method for evaluating real polynomials, so we must be careful that the
coefficients of p used for evaluation are exactly representable on the computer’s
number screen. To get an exact representation of real coefficients p; such as 0.01
the entire polynomial might be scaled by a factor of 100. For more details about
conversion of input data, see the remarks in Section 3.7.

4.4 Exercises

Exercise 4.1 Let p(t) = 543339720¢3 — 768398401t — 1086679440t + 1536796802
a.n;l q(t) = 67872320568t> — 95985956275t — 135744641136t + 191971912515 be real
Polynomials. Evaluate them at the machine number nearest to t = \/5, le. t =
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O(v/2). Compare the results of floating-point evaluation, high accuracy evaluation
by residual correction, and the interval enclosure of the exact value.

Exercise 4.2 Let p,(t) = > i_,t'/i! be the truncated Taylor series for ef. Use the
example program to evaluate p, (—100) for various n. Graph the execution time as a
function of the degree n. Can you ever elicit the error message “Maximum number of
iterations exceeded”? Note that the coefficients t'/:! are not exactly representable.
Therefore, you may either evaluate an approximation to p,(t), or else follow the
suggestion of Section 4.3.3 and evaluate n!-p,(t). Is the enclosure for p,(—100) also

an enclosure for e1%07

4.5 References and Further Reading

A first algorithm for the evaluation of polynomials with maximum accuracy was
given by Béhm in [10] and [57] and later by Kramer [49]. This algorithm is easily
modified for rational expressions. A more general approach which also includes the
evaluation of certain arithmetic expressions is described in Chapter 8. Finally, we
remark that there are similar commercial implementations of Algorithm 4.1 in the

subroutine libraries ACRITH from IBM [32] and ARITHMOS from SIEMENS {80].

Chapter 5

Automatic Differentiation

In many applications of numerical and scientific computing, it is necessary to com-
pute derivatives of functions. Simple examples are methods for finding the zeros,
maxima, or minima of nonlinear functions. There are three different methods to
get the values of the derivatives: numerical differentiation, symbolic differentiation,
and automatic differentiation.

Numerical differentiation uses difference approximations to compute approxima-
tions of the derivative values. Symbolic differentiation computes explicit formulas
for the derivative functions by applying differentiation rules. Those formulas must
be evaluated afterwards to get numerical values. Automatic differentiation also
uses the well-known differentiation rules, but it propagates numerical values for the
derivatives. This combines the advantages of symbolic and numerical differentia-
tion. Numbers instead of symbolic formulas must be handled, and the computation
of the derivative values is done automatically together with the computation of the
function values. The main advantage of this process is that only the algorithm or
formula for the function is required. No explicit formulas for the derivatives are
required.

In this chapter, we deal with automatic differentiation based on interval oper-
ations to get guaranteed enclosures for the function value and the derivative val-
ues. Automatic differentiation is a fundamental enabling technology for validated
computation since so many interval algorithms require an enclosure for high-order
derivative terms to capture truncation errors in the algorithms.

5.1 Theoretical Background

Automatic differentiation evaluates functions specified by algorithms or formulas
where all operations are executed according to the rules of a differentiation arith-
metic given below (see also [66], [68]).

First Derivatives

In the one-dimensional case, first order differentiation arithmetic is an arithmetic
for ordered pairs of the form

U= (u,v') with u,u’ € R.
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The first component of U contains the value u(z) of the function u : IR — IR at the
point z € IR. The second component contains the value of the derivative u’(x). The
rules for the arithmetic are

U +V = (uu) + (v,v’; = Eu+v,u'+v’)

U -V = (uyu) — (v,v) = (u—v,u —v)

v - v = (u,v) (v,v') = (v-v,u-v'+v'-v) (5.1)
U | Vo= () [ (o) = (wfo,(—ufo-0)/v), o0,

The familiar rules of calculus are used in the second component. The operations
inside the parentheses in these definitions are operations on real numbers. An inde-
pendent variable z and the arbitrary constant ¢ correspond to the ordered pairs

X = (z,1) and C ={(c,0),
because %;— =1, and g—: =0.
Let the independent variable z of a formula for a function f : IR — IR be replaced
by X = (z,1), and let all constants c be replaced by their (c, 0) representation. Then
evaluation of f using the rules of differentiation arithmetic gives the ordered pair

f(X) = f((z,1)) = (f(=), f'(=))-
Example 5.1 We want to compute the function value and the derivative value of

the function f(z) = z- (4 + z)/(3 — z) at the point z = 1. Using the differentiation
arithmetic defined by (5.1) we get

fX) = (£ = @1 (40 +(=1)/(3,0) - (z,1))
= (L1)-((4,0)+(1,1)/(3,0) - (1,1))
= (1,1)-(5,1)/(2,-1)

(5,6)/(2,-1)
= (2.5,4.25).

That is, f(1) = 2.5, and f'(1) = 4.25.
For an elementary function s : IR — IR (see Section 3.1 for the set of elementary

function used within this scope), the rules of differentiation arithmetic must be
extended using the chain rule

s(U) = s((u,u)) = (s(u), ' - 8'(u)). (5.2)
For example, the sine function is defined by

sin U = sin(u,v’) = (sinu, v’ - cosu).
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Second Derivatives

For a second order differentiation arithmetic, we use triples
U= (u,v,u"), withu,u/ u" € R,

for the description of the arithmetic rules. Here u, u’, and u” denote the func-
tion value, the value of the first derivative, and the value of the second derivative,
respectively, each evaluated at a fixed point z € IR. For the constant function
u(z) = ¢, we set U = (u,u’,u") = (c,0,0). For the function u(z) = z, we define
U = (u,v',v") = (z,1,0).

We define the arithmetic operations W = U o V with o € {+,—,-,/} for two
triples U = (u, v/, u") and V = (v,’,v") using the rules of first order differentiation
arithmetic in the first and second components. The third components are defined
by

+

wll — ull + 'U”,

w" = u” — v,

< <<
LR

(5.3)

wllzu.vll+2.ul.vl+v_ull,
=U [V = o=w-2vvV-w ") v, v#£0.

TIIEE
I
SESEN

For an elementary function s: IR — R and U = (u,u/,u"), we define
s(U) = (s(u), §'(u)- o', s'(u)-u” +8"(u) - («)?). (5.4)

Here s’ : IR — IR and s” : IR — IR are the first and second derivatives of s, assuming
they exist.

We compute enclosures for the true values of the function and its derivatives
using a differentiation arithmetic based on interval arithmetic. That is, the com-
ponents u, u’, and u” are replaced by the corresponding interval values, and all
arithmetic operations and function evaluations performed to compute the compo-
nents are replaced by the corresponding interval operations and function evaluations.
The evaluation of a function f : R — IR for an argument [z] € IIR using interval
differentiation arithmetic delivers

f(X) = £(([], 1,0)) = ({1, [, [F"])
satisfying
f=) i), Fl=) <l and f([]) €[]

5.2 Algorithmic Description

We now give the description of the algorithms for the elementary operators +,
=, -, and /, and for an elementary function s € {sqr, sqrt, power, exp, In, sin,
cos, tan, cot, arcsin, arccos, arctan, arccot, sinh, cosh, tanh, coth, arsinh, arcosh,
artanh, arcoth}. For the operands and arguments U, we use the triple representation
.U = ([ug, [uad, [wdad) with [ug, [uad, [waad € IIR to be close to the notation of our
implementation.
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In Algorithm 5.4, we do not take care of the case 0 € [vg] because it does not make
sense to go any further in computations when this case occurs. In an implementation,
the standard error handling (runtime error) should be invoked if a division by zero
occurs while computing the function value. We chose a special form of the rule for
the differentiation of a quotient to be close to our implementation, where this form
can save some computation time.

In Algorithm 5.5, the derivative rules for the elementary functions are applied to
compute the temporary values. For a better understanding of our implementation,
these functions are listed in Table 5.1. There we use tan® 41 as the derivative of
tan z to avoid a separate evaluation of cos z.

Except for \/6, we do not have to consider non-differentiability because all of
these elementary functions are differentiable whenever they are defined. That is,
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Table 5.1: Elementary functions and their derivatives

5(x) s'(z) s'(z) s(z) §'(z) §'(z)
z* kzk-t k(k - 1)z*-2 & e® e
Vi | 1/(2v7) -1/(4/z") Inz 1/z ~1/2?
sinz cosz —singz sinhz cosh z sinhz
cosz —-sinz —cosz cosh z sinhz cosh
tanz tan?z+1 | 2(tandz + tanz) tanhz | 1—tanh?®z | —2(tanh3z — tanhx)
cotz | —cot?’z—1 | 2(cot®z + cot z) cothz | 1—coth’z | ~2(coth3z — cothz)
arcsinz | 1/v1—=z? z/(1-z%)} arsinhz | 1/vzZ4+1 —z/(z? +1)3
arccosz | —1/v/T—22 | —z/(1—2%)} arcoshz | 1//22 -1 —z/(z% - 1)}
arctanz | 1/(1+2%) | —2z/(1+2%)? artanhz | 1/(1 - z?) 2z/(z? - 1)?
arccotz | —1/(1+2%) | 22/(1+ £?)? arcothz | 1/(1—z?) 2z/(z? - 1)2

except for sqrt, the domains for s, s’, and s" are the same. However, note that many
derivative values may overflow, even when the function values are evaluated safely.
In an implementation of Algorithm 5.5, the standard error handling of interval
arithmetic should be invoked for domain violations in step 1 (or step 2 for sqrt). For
details on the domains of the interval functions, see [65].

The computational complexity of this forward mode of differentiation arithmetic
depends somewhat on the mix of arithmetic operations and elementary functions.
The cost of computing first and second derivatives is at most a small multiple of the
cost of evaluating f itself.

5.3 Implementation and Examples

5.3.1 PASCAL-XSC Program Code

5.3.1.1 Module ddf_ari

The module ddf.ari supplies type definition, operators and elementary functions
for an interval differentiation arithmetic for derivatives up to second order. The
?Ocal variable DerivOrder is used to select the highest order of derivative which
1s computed up to second order. This enables the user to save computation time
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computing only the function value or the first derivative. The default value of
DerivOrder is 2, so normally the first and the second derivatives are computed. The
procedures fEval, dfEval, and ddfEval simplify the mechanism of function evaluating
and automate the setting and resetting of the DerivOrder variable. For a function of
type DerivType, fEval sets DerivOrder to 0 before the evaluation is done, computes,
and delivers only the function value. If the first derivative also is desired, dfEval
sets DerivOrder to 1 before the evaluation is done. The procedure ddfEval uses the
default value of DerivOrder, computes, and returns the values of f(z), f'(z), and
7(2).

Module ddf.ari can easily be modified to get a real version of this second order
differentiation arithmetic by replacing data type interval by data type real every-
where it occurs.

{
{ Purpose: Definition of an interval differentiation arithmetic which allows
{ function evaluation with automatic differentiation up to second order.

{ Method: Overloading of operators and elementary functions for operations
{ of data type ’‘DerivType’.
{ Global types, operators, functions, and procedures:

}
}
}
}
}
}
{ type DerivType : data type for differentiation arithmetic }
{ operators +, —, *, / : operators of differentiation arithmetic }
{ functions DerivConst, 3
{ DerivVar . to define derivative constants/variables }
{ functions fValue, 2}
{ dfValue, 2
{ ddfValue : to get function and derivative values }
{ functions sqr, sqrt, power, 3
{ exp, sin, cos,... : elementary functions of diff. arithmetic }
{ procedure fEval(...) : to compute function value only }
{ procedure dfEval(...) : to compute function and first derivative }
{ value }
{ procedure ddfEval(...) : to compute function, first, and second 3
{ derivative value }
{ }
module ddf_ari;
use i_ari, i_util; { interval arithmetic, interval utility functions }
}
{ Global type definition and local variable i
{
global type
DerivType = record £, df, ddf : interval; end;
var { The local variable ’DerivOrder’ is used to select the }
DerivOrder : 0..2; { highest order of derivative which is computed. Its }
{ default value is 2, and normally the first and the }
{ second derivatives are computed. ;
{ -
{ Transfer functions for constants and variables ;
global function DerivConst (c: real) : DerivType; { Generate constant }
begin {-————mm e }
DerivConst.f := ¢; DerivConst.df := 0; DerivConst.ddf := 0;
end;
global functiom DerivConst (c: interval) : DerivType; { Generate constant }
begin {mmmm e }

DerivConst.f := ¢; DerivConst.df := 0; DerivConst.ddf := 0;
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end;
global function DerivVar (v: real) : DerivType; { Generate variable }
begin
DerivVar.f := v; DerivVar.df := 1; DerivVar.ddf := 0,
end;
global functiom DerivVar (v: interval) : DerivType; { Generate variable }
begin
perivVar.f := v; DerivVar.df := 1; DerivVar.ddf := 0;
end;
}
{ Access functions for function and derivative values 2}
}
global functiom fValue (u: DerivType) : interval; { Get function value }
begin
fValue:= u.f;
end;

global function dfValue (u: DerivType) : interval; { Get 1. derivative value 3}
begin

dfValue:= u.df;
end;

global function ddfValue (u: DerivType) : interval;{ Get 2. derivative value 3

begin { }
ddfValue:= u.ddf;
end;
{ }
{ Monadic operators + and - for DerivType operands 3}
}
global operator + (u: DerivType) res: DerivType;
begin
res:= u;
end;

global operator — (u: DerivType) res: DerivType;

begin
res.f := —u.f;
if (DerivOrder > 0) then
begin
res.df := -u.df;
if (DerivOrder > 1) then res.ddf:= -u.ddf;
end;
end;
{ }
{ Operators +, -, *, and / for two DerivType operands ¥
- }
global operator + (u,v: DerivType) res: DerivType;
begin
res.f := u.f + v.f;
it (DerivOrder > 0) then
begin

res.df := u.df + v.df;
if (DerivOrder > 1) them res.ddf:= u.ddf + v.ddf;
end;
end;

global operator - (u,v: DerivType) res: DerivType;
begin
res.f := u.f - v.f;
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if (DerivOrder > 0) then
begin
res.df := u.df - v.df;
if (DerivOrder > 1) them res.ddf:= u.ddf - v.ddf;
end;
end;

global operator * (u,v: DerivType) res: DerivType;

begin
res.f := u.fxv.f;
it (DerivOrder > 0) then
begin

res.df := u.df*v.f + u.f*xv.df;

it (DerivOrder > 1) thenm res.ddf:= u.ddf*v.f + 2ku.df*v.df + u.f*v.ddf;

end;
end;

global operator / (u,v: DerivType) res: DerivType;
var hi, h2: interval;
begin

hl := u.f/v.f; { Can propagate ’‘division by zero’ error }
res.f := hi;

if (DerivOrder > 0) then

begin

h2 := (u.df - hi*v.df)/v.f; res.df := h2;

it (DerivOrder > 1) them res.ddf:= (u.ddf - hil*v.ddf - 2¥h2»v.df)/v.f;

end;
end;

{

{ Operators +, -, *, and / for one interval and one Derivlype operand

et

global operator + (u: interval; v: DerivType) res: DerivType;
begin
res.f :=u + v.f;
if (DerivOrder > 0) themn
begin
res.df := v.df;
if (DerivOrder > 1) then res.ddf:= v.ddf;
end;
end;

global operator - (u: interval; v: DerivType) res: DerivType;

begin
res.f :=u - v.f;
it (DerivOrder > 0) then
begin
res.df := - v.df;
it (DerivOrder > 1) them res.ddf:= - v.ddf;
end;
end;

global operator * (u: interval; v: DerivType) res: DerivType;

begin
res.f := uxv.f;
if (DerivOrder > 0) then
begin
res.df := uxv.df;
it (DerivOrder > 1) them res.ddf:= u*v.ddf;
end;
end;

global operator / (u: interval; v: DerivType) res: DerivType;
var hl, h2: interval;
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begin
hi := u/v.f; { Can propagate ’'division by zero’ error }
res.f := hi;
it (DerivOrder > 0) then
begin
h2 := ~hi*v.df/v.f; res.df := h2;
;1 (DerivOrder > 1) thenm res.ddf:= (~hi¥v.ddf - 2%h2xv.df)/v.f:
end; '
end;

global operator + (u: DerivType; v: interval) res: DerivType;

begin
res.f := u.f + v;
if (DerivQrder > 0) then
begin

res.df := u.df;
if (DerivOrder > 1) then res.ddf:= u.ddf;
end;
end;

global operator - (u: Derivlype; v: interval) res: DerivType;

begin
res.f := u.f - v;
if (DerivOrder > 0) then
begin

res.df := u.df;
it (DerivOrder > 1) then res.ddf:= u.ddf:
end; )
end;

g::::l operator * (u: DerivType; v: interval) res: DerivType;
res.f := u.f * v;
if (DerivOrder > 0) then
begin
res.df := u.df * v;
it (DerivOrder > 1) them res.ddf:= u.ddf * v;
end;
end;

1 . 3 . . 3 1
gezgzl operator / (u: DerivType; v: interval) res: DerivType;

res.f := u.f / v; { Can propagate ’division b !
if (DerivOrder > 0) then i " by meror error J
begin

res.df := u.df / v;
;t (DerivOrder > 1) then res.ddf:= u.ddf / v;
end; '
end;

77
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1 . . . 3 i

geggil operator + (u: real; v: DerivType) res: DerivType;
res := intval(u) + v;

end;

1 - . . . 3 1
%02231 operator - (u: real; v: DerivType) res: DerivType;
Tes := intval(u) - v;
end ;

global operator * (u: real; v: DerivType) res: DerivType;



78 5. Automatic Differentiation

begin
res := intval(u) * v;
end;

global operator / (u: real; v: DerivType) res: DerivType;
begin

ves := intval(u) / v; { Can propagate 'division by zero’ error }
end;

global operator + (u: DerivType; v: real) res: DerivIype;
begin

res := u + intval(v);
end;

global operator - (u: DerivType; v: real) res: DerivType;
begin

res := u - intval(v);
end;

global operator * (u: DerivIype; Vv: real) res: DerivType;
begin

res := u * intval(v);
end;

global operator / (u: DerivType; V: real) res: DerivType;
begin
res := u / intval(v); { Can propagate 'division by zero’ error }

end;

{ Elementary functions for DerivType arguments

{
global function sqr (u: DerivType) : DerivType;
begin
sqr.f := sqr(u.f);
it (DerivOrder > 0) then
begin
sqr.df := 2xy . fxu.df;
if (DerivOrder > 1) them sqr.ddf:= 2 * (sqr(u.df) + u.f*u.ddf);
end;
end;
global function power (u: DerivType; k: integer) : DerivType;
var
h1l : interval;

begin
if (k = 0) then
power:= DerivConst(1)
else if (k = 1) then
power:= u
else if (k = 2) then
pover:= sqr(u)
else
begin
power.f:= power(u.f, X);
it (DerivOrder > 0) then
begin
hi := k * power(u.f, k-1); pover.df:=hl * u.df;
it (DerivOrder > 1) then
power.ddf:= hi * u.ddf + k*(k-1)*power(u.f, k-2)*sqr(u.df);
end;
end;
end;

(SN
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global function sqrt (u: DerivType) : i ;
var hl, h2: interval; ype) : Deriviype;
begin

hi := sqrt(u.f); { Can pro t i

R Ay propagate domain error }

if (DerivOrder > 0) then

begin

hil := 0.5/h1; h2 := u.df*hi: s _

. : ’ : . H qrt.df := h2;

it (DerivOrder > 1 s :

ond; ) them sqrt.ddf:= u.ddf*hl - 0.65%u.df/u.f*h2;
end;

global function exp (u: DerivType)
var hl: interval;
begin

h1 := exp(u.f); exp.f := hi;

if (DerivOrder > 0) then

begin

exp.df := hilxu.df;

it (DerivOrder > 1 =
o ) then exp.ddf:= (u.ddf + sqr(u.df))+hi;
end;

: DerivType;

global function 1n (u: DerivType)
var h: interval;
begin

In.f := 1Inu.f); { Can propagat i

if (DerivOrder > 0) thenp pagate domain error }

begin

h :? u.df/u.f; 1n.df := h;

if (DerivO : =
ot ivOrder > 1) them 1ln.ddf:= (u.ddf - h*u.df) / u.f;
end;

: DerivType;

global function sin (u: DerivType
var hO, hi: interval; yP ‘
begin
po := sin(u.f); sin.f := ho;
if (DerivOrder > 0) then
begin
hi := cos(u.f); sin.df := hi*u.df;

if (DerivO i =
ot ivOrder > 1) them sin.ddf:= hi¥u.ddf - hO*sqr(u.df);

. DerivType;

end;
global function cos (u: DerivT i
: e) : ;
var hO, hi: interval; yPe) ; Deriviype;
begin
@0 := cos(u.f); cos.f := ho;
if (DerivOrder > 0) then
begin
?; é; —;ig(u.f); cos.df := hixu.df;
erivOrder > ‘= h
ons, rder > 1) then cos.ddf:= hi*u.ddf - hO*sqr(u.df);
end;
global function tan (u: Deri i
: ivT : ;
var h0, hi, h2: interval; ype) periviype;
begin '
ho := ¢ H i
o ::nég;f), { Can propagate domain error }
:t (DerivOrder > 0) then
egin
o { The subdistri i i
hi := sqr(h0)+1; h2 := 2*h0%h1; { hO x (h;T;lfu;;vg=l:gT§m§l;zs

79
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tan.df := hixu.df; { So, we use the first form. > begin
it (DerivOrder > 1) them tan.ddf:= hixu.ddf + h2*sqr(u.df); hO := sinh(u.f); sinh.f := hO;
end; if (DerivOrder > 0) themn
end; begin
hil := cosh(u.f); sinh.df := hi*u.df;
global function cot (u: DerivType) : DerivType; if (DerivOrder > 1) then sinh.ddf:= hi*u.ddf + hO*sqr(u.df);
var h0, hi, h2: interval; end; e
begin . end;
RO := cot(u.f); { Can propagate domain error }
cot.f := hO; global functiom cosh (u: DerivType) : DerivType;
if (DerivOrder > 0) themn var hO, hi: interval,;
begin { The subdistributive law implies } begin
h1 := -(sqr(h0)+1); h2 := -2%h0*hi; { ho * (hOt2 + 1) <= ROT3 + h0 } h0 := cosh(u.f); cosh.f := h0;
cot.df := hi*u.df; { So, we use the first form. b if (DerivOrder > 0) then
if (DerivOrder > 1) them cot.ddf:= hl*u.ddf + h2¢sqr(u.df); begin
end; h1 := sinh(u.f); cosh.df := hi*u.df;
end; fif (DerivOrder > 1) then cosh.ddf:= hi*u.ddf + hO*sqr(u.df);
end; !
global function arcsin (u: DerivType) : DerivType; end;
var h, hl, h2: interval;
bogin global function tanh (u: DerivType) : DerivType;
arcsin.f := arcsin(u.f); { Can propagate domain error 7 var hO, hil, h2: interval; !
if (DerivOrder > 0) them begin
bogin hO := tanh(u.f); tanh.f := h0;
h:= 1 - sqr(u.f); hi:= 1/sqrt(h); arcsin.df:= hl*u.df; h2:= u.f*hi/h; it (DerivOrder > 0) then
it (DerivOrder > 1) them arcsin.ddf:= hilxu.ddf + h2*sqr(u.df); begin { The subdistributive law impli
end; hi := 1 - sqr(h0); h2 := -2%h0*h1; { hO * (h012 - 1) <= hOt3 [—, I:;gs
end; Fanh‘de := hi*u.df; { So, we use the first form
if (DerivOrder > 1) them tanh.ddf:= hi*u.ddf + h2xsqr(u.df); '
global function arccos (u: DerivType) : DerivType; end; . '
var h, hi, h2: interval; end;
begin
arccos.f := arccos(u.f); { Can propagate domain error } global function coth (u: DerivType) : DerivType;
if (DerivOrder > 0) then var hO, hl, h2: interval; !
begin begin
h:= 1 - sqr(u.f); hi:= -1/sqrt(h); arccos.df:= hi*u.df; h2:= u.f*h1/h; h0 := coth(u.f); { Can propagate domain error }
if (DerivOrder > 1) them arccos.ddf:= hisu.ddf + h2*sqr(u.df); coth.f := ho;
end; %1 (DerivOrder > 0) then
end; egin { The subdistributiv impli
A hi :=1 - sqr(h0); h2 := -2%h0O*h1; { hO * (hO?2 - 1) 5:1231?131;35
global function arctan (u: DerivType) : DerivIype; coth.df := hi¥u.df; { So, we use the first form
var hi1,h2: interval; if (DerivOrder > 1) then coth.ddf:= hiu.ddf + h2*sqr(u.df); o
begin end; B
arctan.f := arctan(u.f); { Can propagate domain error } end;
it (DerivOrder > 0) then
begin global functiom arsinh (u: DerivType) : DerivType;
hi := 1/ (1 + sqr(u.f)); arctan.df := hi*u.df; h2 := -2%u.f*sqr(hl); var h, hi, h2: interval; !
if (DerivOrder > 1) them arctan.ddf:= hi¥u.ddf + h2¥sqr(u.df); begin
end; arsinh.f := arsinh(u.f); < Can pro i
ong it (Dorivorder > 0) then propagate domain error }
begin
global function arccot (u: DerivType) : DerivType; h:= 1 + sqr(u.f); hi:= 1/sqrt(h); arsinh.df:= hix . .= .
var hl, h2: interval; if (DerivOrder > 1) then arginh.ddf:= hi*u.ddf +h1112:§:f-&u 2%) u.frbi/h;
begin end; . ;
arccot.f := arccot(u.f); { Can propagate domain error } end;
if (DerivOrder > 0) then
begin global function arcosh (u: DerivType) : DerivType;
hi := -1 / (1 + sqr(u.f)); arccot.df := hixu.df; h2 := 2#u.f*sqr(hl); var h, hi, h2: interval; !
it (DerivOrder > 1) them arccot.ddf:= hl*u.ddf + h2*sqr(u.df); begin
end; arcosh.f := arcosh(u.f); Can i
end; it (DerivOrder > 0) then { propagate domain error }
begin
global function sinh (u: DerivType) : DerivType; h:= sqr(u.f) - 1; hil:= 1/sqrt(h); arcosh.df:= hi%u.df; h2:= -u.f*hi/h;

var hO, hi: interval; if (DerivOrder > 1) then arcosh.ddf:= hi*u.ddf + h2+sqr(u.df);

(SN

[y



82 5. Automatic Differentiation 5.3 Implementation and Examples 83

el.ld; begin
end; DerivOrder:= 1; fxD:= f(DerivVar(x)); fx:= fxD.f; dfx:= fxD.df;
. ] ) DerivOrder:= 2; !
global function artanh (u: DerivType) : DerivType; end;
var hl,h2: interval;
begin {- 3
artanh.f := artanh(u.f); { Can propagate domain error } { Purpose: Evaluation of function ’'f’ for argument ’'x’ in differentiation }
if (DerivOrder > 0) then { arithmetic computing the function value, the value of the first, and }
begin { the value of the second derivative. ’ 3
h1 :=1 / (1 - sqr(u.f)); artanh.df := hisu.df; h2 := 2%u.f*sqr(hl); { Parameters:
if (DerivOrder > 1) then artanh.ddf:= hixu.ddf + h2*sqr(u.df); { In : If? : function of 'HessType’ i
ex.1d; { 'x’ : argument for evaluation of ‘f’. 2
end; f Out o fx’ : returns the function value 'f(x)’. 3
) ) ‘dfx’ . returns the value of the first derivative ’f’(x)’
global function arcoth (u: Derivlype) : Derivlype; { ‘ddfx’ : returns the value of the second derivative ’fs')(xj' i
;81‘.111. h2: interval; { Description: This procedure keeps ’‘DerivOrder’ = 2, evaluates 'f(x)’ in ’ 3}
egin { differentiation arithmetic, and returns the function val
arcoth.f := arcoth(u.f); { Can propagate domain error } { of the first, and the value of t : : alue, the value }
it (DerivOrder > 0) then 1 s e of the second derivative. i
begin lobal procedure ddfEval (fumction f(x:Deri : i ;
hi := 1/ (1 - sqr(u.f)); arcoth.df := hi*u.df; h2 := 2%u.fxsqr(hi); 8 G eanype; . E;ilv,ry}l)?'
it (DerivOrder > 1) them arcoth.ddf:= hi*u.ddf + h2*sqr(u.df); var fx, dfx, ddfx . intervaly:
ond: var s s : al);
end; fxD : DerivType;
3 begin
fxD:= f(DerivVar(x)); fx:= fxD.f; dfx:= . .= .
{ Predefined routines for evaluation of DerivType-functions } end; ' X:= £xD.df; ddfx:= fxD.ddf;
{ }
{ Purpose: Evaluation of function ’'f’ for argument ’x’ in differentiation } {
{ arithmetic computing only the function value. } { Module initialization part ]
{ Parameters: b 2
{ In S & : function of ’‘DerivType’. } begin 2
{ ’x! : argument for evaluation of ’‘f’. } DerivOrder := 2;
{ Out : fx? : returns the function value ‘f(x)’. F end.
{ Description: This procedure sets ’‘DerivOrder’ to 0, evaluates 'f(x)’ in 3}
{ differentiation arithmetic, and returns the function value only. }
{ }
global procedure fEval (function f(x:DerivType) : DerivType; 5.3.2 Examples
X : interval;
var fx : interval); : . . .
o We first illustrate how to write a program using our differentiation arithmetic in
£xD : DerivType; Example 5.1:
begin
geriVOrder = 0; fxD := f(DerivVar(x)); fx := fxD.f; DerivOrder := 2; Example 5.2 We must define a PASCAL-XSC function for the function f(z) =
end; -
z-(44+2)/(3—2):
{ Purpose: Evaluation of function ’‘f’ for argument ’x’ in differentiation } bes;-:_:lon f (x: Derivype) : Derivlype;
{ arithmetic computing the function value and the value of the first } fi=x*(a+x)/(3-x):
{ derivative. } end: X3
{ Parameters: § )
{ In Y : function of ’'HessType’. Wit .
{ 'x? : argument for evaluation of ’'f’. ; h the declarations
{ Out ;' fx? : returns the function value 'f(x)’. var x, fx . . .
{ rdfx’ : returns the first derivative value ’'f’(x)’. } y: fy, dfy, ddfy . ?:Z:;igg?’
{ Description: This procedure sets ’DerivOrder’ to 1, evaluates 'f(x)’ in ; ' ' : !
{ differentiation arithmetic, and returns the function value and the we are . . .
T e me e Gerivative 3 able to compute function and derivative values
{ - . : -} ¥y = 128;
global procedure dfEval (functiom f(x:DerivType) : DerivType; x := DerivVar(y);
X : interval; fx := £(x); !
var fx, dfx : interval); fy := fValue(fx); { Function value £(y) 3
var ) ) ) dfy := dfValue(fx); { First derivative f’(y) }
£xD : DerivType; ddfy := ddfValue(fx); { Second derivative £'’(y) }



84 5. Automatic Differentiation

Even easier is

y := 123;
ddfEval(f,y,fy,dfy,ddfy);

Example 5.3 Newton’s method for approximating a zero of a nonlinear function
f: R — R requires f'. Other methods use derivatives of second or higher order.
Halley’s method uses the first and the second derivatives of f. Starting from an
approximation 2© € IR, Halley’s method iterates according to

a(k) v— _M )
T fi=®)
o . f"(:v(k))
b() = a()-m L k=0,1,2,...
k
) = By "Egb_)('?
1+5 )

In our sample program ddf_ex for Halley’s method, all real operations are replaced
by interval operations, because we make use of the interval differentiation arithmetic.
The influence of rounding errors is demonstrated directly by the increasing interval
diameters. We terminate the iteration if an interval evaluation of f over the current
interval iterate [¢](¥) contains zero, or if the number of iterations is greater than or
equal to 100. This approximate method can not guarantee to find and enclose a zero
of the function f because we have enclosed only roundoff errors in Halley’s method,
not truncation errors. We present in Chapter 6 a more sophisticated interval method
for finding all zeros of a nonlinear function with guarantees and high accuracy.

This is an implementation of Halley'’s method for approximating a zero of
a twice continuously differentiable function.

given: the function f(x) and the starting value x[0]

Steration: x[k+1] := x[k] + alk]/(1+b[k]/2)

with: alk] - f(x[k])/t’ (x[k1) ) k=0,1,2,...
b[kJ alkJ*f’? (x[k1) /£ (x[k]) /

P T T e T

{ A1l real operations are replaced by interval operations. All function and
{ derivative evaluations are calculated by differentiation arithmetic.

{ This approximate method can NOT guarantee to find and enclose a zero of
{ the function 'f’ because we have enclosed only roundoff errors, not

{ truncation errors.

e o Y0 0 v e S S S S S e

{
program ddf_ex_halley_method;
use
i_ari, { Interval arithmetic 2}
ddf_ari; { Differentiation arithmetic }
const
MaxIter = 100;
var
x, a, b, fx, dfx, ddfx : interval;
n : integer;
start . real;

5.3 Implementation and Examples 85

function f (xD: DerivType) : DerivType;

begin
f = exp(xD) * sin(4*xD)

end;

begin
writeln(’Halley’’s method for the function f = i ’
T reln; (x) = exp(x) * sin(4*x)’);

write(’Starting value = ’); start:= 1.25; writel : ;
writeln; writeln(’Iteration:’); ' slalstare:10;
x:= start; ddfEval(f,x,fx,dfx,ddfx); n:= 0;

repeat
n:=n + 1;
writeln(’x DY, x);
writeln(’f(x) c 2, fx);
a:= -~ fx / dfx; b:= ddfx / dfx * a;

x:=x +a/ (1 + 0.5%b);
ddfEval(f,x,fx,dfx,ddfx);
until (0 in fx) or (n >= MaxIter);

writeln;

writeln(’Approximate zero : ’, x);

writeln(’Function value 0, fx);

writeln;

:rlteln(‘Expected zero 1 1.570796326794896619202...°);
end. '

If :ve :’un our sample program for Halley’s method, we get the following runtime
output.

Halley’s method for the function f(x) = exp(x) * sin(4#*x)

Starting value = 1.25E+000

Iteration:
X [ 1.250000000000000E+000, 1.250000000000000E+0
i(x) [ -3.346974588809691E+000, -3.3469745888096895+Ogg %
1060 [ 1.271022734475337E+000, 1.271022734475338E+000 ]
: [ -3.32107871440321E+000, -3.32107871440319E+000 ]
o : [ 1.33069880673815E+000, 1.33069880673817E+000 ]
: : f  -3.1004103481201E+000, -3.1004103481199E+000 ]
o i [ 1.4635835160601E+000, 1.4635835150603E+000 ]
: [ -1.796959342436E+000, -1.796959342435E+000 ]
100 L 1.565154617724E+000, 1.565154617725E+000 ]
. L -1.0793736948E-001, ~1.0793736947E~001 ]
100 E 1.570795749328E+000, 1.570795749329E+000 ]
~1.111186E~005, -1.111155E-005 ]
Approximate zero : [ 1.5707963 +
Fanction velas . | [ anoly, ToTesRe e
Expected zero 1 1.570796326794896619202. ..

Ilti?ﬂtlematif:ally, Halley’s method is converging to the correct root. The floating-
truz .algorlthm converges, but grows wider. This shows the importance of using
interval algorithms, as opposed to point algorithms in interval arithmetic. The

a‘lgorith]n i (&t \% q
. presented 1n Cha. ter 6 uses a i
p Contractl € ma.p tO genel’a.te a sequence Of

® is guaranteed to enclose the root, and

® can achieve one ulp accuracy.
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5.3.3 Restrictions and Hints

The implementation in module ddf_ari uses the standard error handling of PASCAL-
XSC if the interval argument of an elementary function does not lie in the domain
specified (see [65]). The same holds for an interval containing zero as second operand
of the division operator. These cases can also occur during a function evaluation us-
ing differentiation arithmetic because of the known overestimation effects of interval
arithmetic (see Section 3.1).

The rules for getting true enclosures in connection with conversion errors dis-
cussed in Section 3.7 also apply to interval differentiation arithmetic. If you want
to compute enclosures for the values of the derivatives of the function f in Example
5.2 at the point = = 0.1, you must insure that the machine interval argument [z
used as argument for the interval function evaluation satisfies z € [z].

5.4 Exercises

Exercise 5.1 Apply program ddf_ex_halley_method to find positive roots of the
function f(z) =z — tanz.

Exercise 5.2 Implement a real differentiation arithmetic by replacing in module
ddf_ari the data type interval by the data type real. Then use the new module for
Halley’s method.

5.5 References and Further Reading

The method used in the implementation above is called the forward method of au-
tomatic differentiation, because all differentiation arithmetic operations can be exe-
cuted in the same order as the corresponding floating-point operations. Automatic
differentiation for gradients and Hessian matrices (see Chapter 12) can optimize the
time complexity using the backward method, also called fast automatic differentia-
tion (see [16]).

Automatic differentiation methods can also be used to compute interval slopes
(see [64]).

Further applications and differentiation arithmetics such as Taylor arithmetics,
power series arithmetics, or parallel implementation of differentiation arithmetics
can be found in [20], [21), and [69]. A large bibliography on automatic differentiation
is given in [12].

Chapter 6

Nonlinear Equations in One Variable

One of the most important tasks in scientific computing is the problem of finding
zeros (or roots) of nonlinear functions. In classical numerical analysis, root-finding
methods for nonlinear functions begin with an approximation and a,p,ply an itera-
tive mefthod (such as Newton’s or Halley’s methods), which hopefully improves the
approximation. It is a myth that no numerical algorithm is able to compute all
zeros of a nonlinear equation with guaranteed error bounds, or even more, that no
method is able to give concrete information about the existence and uniql,leness of
solutions of such a problem.

In this chapter, we consider a method for finding all zeros of a nonlinear con-
tinuously differentiable function f : R — IR in a given interval and consider the
domain of applicability of that method. It computes tight bounds on the roots, and
it delivers information about existence and uniqueness of the computed solutic’ms.

The method we present is an extension of interval Newton’s method which makes
use of the extended interval operations defined in Section 3.3. Interval Newton’s
n.lethod was derived by Moore [61]. Modifications, extensions, and applications are
given by Alefeld [3], Hansen [28], and many others.

6.1 Theoretical Background

We address the problem of finding all solutions of the equation

flz)=0 (6.1)

for a continuous.ly differentiable function f : R — IR and z € [z]. Interval Newton’s
method for solving (6.1) can easily be derived from the mean value form

fm([=))) — f(z") = f'(€) - (m([=]) — =),
where z*, ¢ € [z]. If we assume z” to be a zero of f, we get
o fn(fe]) o fom()) _

gence, every zero of. f in [z] also lies in N([z]), and therefore in N([z]) N [z]. Using
afldaFd interval arithmetic, interval Newton’s method starts with an interval [2](©
satisfying 0 ¢ f'([2](©)) and iterates according to

[2]*+D) .= [2]® 0 N([z]®), k=0,1,2,... (6.3)
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f(=z)
f
A 207" () ) z

Figure 6.1: Interval Newton step with 0 ¢ f' ([=]*)

The method cannot diverge due to the intersection of N([z]®)) with [z]®). Like
classical Newton’s method, interval Newton's method can be geometrically inter-
preted as drawing two lines from the point (c®, (™)) with ¥ = m([z]*)), and
intersecting them with the z-axis. The lines have the slope g (the smallest slope of
f in [z]) and g (the largest slope of f in [z]), respectively, where g, gl = F'([z]®).
The points of intersection with the z-axis, let us call them X and p, form the new
interval N([z]®) = AU p. Figure 6.1 demonstrates a single interval Newton step

with resulting interval
2]+ = A, ] 0 [e]® = [z, p].

If the intersection is empty, we know that there is no root of f in [z]®).

Using extended interval arithmetic as defined in Section 3.3, we are able to treat
the case 0 € f([z]®) that occurs if there are several zeros in the starting interval
[z)©®. In this case, N([z]®) is given by one or two extended intervals resulting
from the interval division. Even though N([z]®)) is not finite, the intersection
[z]®+D) = N([z]®)) N [z]® is finite and may be a single interval, the union of two
intervals, or the empty set. Then, the next step of interval Newton’s iteration must
be applied to each of the resulting intervals. In this way it is possible to enclose all
zeros of f in the starting interval [z](®).

In Figure 6.2, we illustrate one extended interval Newton step geometrically.
Again we draw lines through the point (c®), f(c®))) with ¥ = m([z]®). The first
line with the smallest (negative) slope of f in [z]*¥) intersects the z-axis in point p.
The line with the largest slope intersects the z-axis in point A. Therefore, we get

N([2]®) = [~o00,p] U [}, 0]

Figure 6.2: Extended interval Newton step with 0 € f’ ([z]®))
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and
[x](k+1) = [Q(k)a plU [’\af(k)]‘

The following theorem summarizes the most important properties of interval
Newton’s method.

Theorem 6.1 Let f : D C IR — IR be a continuously diff i i
- ly differentiable fi
let [z] € IIR be an interval with [z] C D. Then 1ol fanction, and

N(e) = m(la]) - LoD

has the following properties:

1. Every zero z* € [z] of f satisfies z* € N([z]).
2. I N([z]) N [z] = 0, then there exists no zero of f in [z].

3. I N([z]) C [x], then there exists a unique zero of f in [z] and hence in N ([=]).
The proofs appear in [28], [61], or [64].

Remark:‘ The conditions of Theorem 6.1 can be checked on a computer. For
exarr}ple, if No([x]) denotes the evaluation of N([z]) in floating-interval arithmetic
and if condition 3 is satisfied for No, then we have

N([z]) € No([z]) & [2].

Thus, the condition is fulfilled for N([z]), too. On i
, c , . the other hand, if we t
fulfill conditions 2 and 3 of the Theorem, then [#] may contain one o,r more ::?:s(.)

6.2 Algorithmic Description

ﬁlgorlthr_n 6.3.A"Z.eros c.onsistf. of .two parts. The first part is the extended interval
Newton iteration itself, including intermediate checks for the uniqueness of a zero
;Irli ; ct(())rr‘l,pu'tfedtlelnclos-ure. The second part is an additional verification step which
endosmge:lu}; N lfelzr;?:leness for enclosures that have not already been marked as
Ne :;Lg;)rlth;z 6(.11 is a recursiw'e procedure f9r the execution of the extended interval
intores mTeh o for the function f. The input parameter [y] specifies the actual
tolera,n(; ; e linput pa:ra,m.eter € corresponds to the desired relative accuracy or
AIIZerose or the resulting 'mterval enclosures of the zeros. The calling procedure
p) Thgu.ara.ntees that € is not' chosen less than the relative machine accuracy (1
p). e 1nRut parameter yUnique signals whether we have already verified that

e Ilfncommg interval [y] contains a unique zero.
Singleoini f ([yl]%, the.n we know .that 1o zero can lie within the interval [y]. Hence, a
N erva, unct'lon evaluation of f can guarantee that a complete range of real
§ cannot contain a zero of f. If f([y]) contains zero, then the extended interval
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Newton step given by (6.3) is applied to [y] resulting in at most t\fvo intfervals {yoli
(Step 3 and 4). Interval arithmetic must be used to evaluate f(c) in an u¥1plemen-
tation in order to bound all rounding errors. Therefore, we use the notation fo(c)
in Step 3 of the algorithm. .

If io improvement for [y] is achieved, [y] gets bls.ected (Step 5). If ‘the N(.ewton
step results in only one single interval and if the uniqueness of a zero in [y] is not
already proven, then the algorithm checks the Condition 3 of Theorem 6.1 for the

ing i i Step 6).

lting interval [y,]1, and sets the flag yUnique ( ' ' .
resulnué%ep 7(b) tL:]a,,ctua.l interval [y,}; gets stored in the interval ve.ctor [Ze{o] if
the tolerance criterion is satisfied. Otherwise, the procedure XI_Newton is re<furs1vely
called (else-branch of Step 7(b)). The corresponding information on the uniqueness
of the zero is stored in the flag vector Info. N represents the number of enclosures

s stored in [Zero). .
o Z;rr(:)cedure XINLwton terminates when no more recursive calls are necessary, that
isif 0 ¢ f([y]) or if (dra([ypls) < €) for @ = 1,2. The bisection step (Step 5)
guarantees that this second condition is fulfilled at some stage of the recursion.

. . . -
Algorithm 6.2 describes an additional verification step Whl(.lh checks th<.3 un}xlquzﬂ;c)t
of the zero enclosed in the interval [y]. It can be 1.1se‘d for mterva,ls.whlch a‘éition
yet been guaranteed to enclose a unique zero. This is done according to con

|
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3 of Theorem 6.1 by applying interval Newton steps including an epsilon inflation
of the iterates [y], which can help to verify zeros lying on the edge of [y]. We use
kmax = 10 as the maximum number of iterations, € = 0.25 as the starting value for
the epsilon inflation, and a factor of 8 to increase € within the iterations. It turned

out that these are good values for minimizing the effort if no verification is possible
(see also [46]).

Algorithm 6.3 now combines Algorithm 6.1 and Algorithm 6.2 to compute enclo-
sures for all zeros of the function f within the input interval [z] and tries to prove
the local uniqueness of a zero in each enclosure computed. The desired accuracy
(relative diameter) of the interval enclosures is specified by the input parameter ¢.
1 ulp accuracy is chosen if the specified value of € is too small (for example 0).
The enclosures for the zeros of f are returned in the interval vector [Zero]. The
corresponding information on the local uniqueness of the zeros are returned in the
Boolean vector Info. The number of enclosures computed is returned in the integer
variable N.

We use a function called CheckParameters as an abbreviation for the error checks
for the parameters of AllZeros which are necessary in an implementation. If no error

occurs, AllZeros delivers the N enclosures [Zero;, i = 1,2,...,N, and for each
t=12,...,N,

if Info; = true, then [Zero; encloses a locally unique zero of f,
if Info; = false, then [Zero); may enclose a zero of f.

N =0, thenitis guaranteed that there is no zero of f in the starting interval [z].
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Applicability of the Algorithm

To keep our algorithm and implementation as easy to use as possible, Algorithm 6.1
uses only the very simple stopping criteria

da(lysli) <&

Hence, the method reduces to a bisection method if the interval Newton steps do
not improve the actual interval iterate. For more sophisticated stopping criteria, see
[28] for example. On the other hand, if the actual interval iterate [y] satisfies the
condition

0¢ (v,

then the asymptotic rate of convergence to a zero of f in [y] is quadratic.

The algorithm cannot verify the existence and the uniqueness of a multiple zero
z* of f in [y]. Nevertheless, the zero is bounded to the desired accuracy specified by
€. In this case, the corresponding component of the Info-vector is set to the value
false. When the zero lies exactly at a splitting point, that zero is enclosed in two
different intervals as a consequence of the bisection of the intervals.

The algorithm is well suited for parallel computers due to its natural parallelism
given by the splitting of the intervals by the extended interval Newton step or by
the bisection.

6.3 Implementation and Examples

6.3.1 PASCAL-XSC Program Code

First, we list our implementation of the operations of the extended interval arith-
metic needed in the extended interval Newton step (see Section 3.3). Newton’s
method is the only application we make of extended interval arithmetic. Therefore,
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we provide only those operations on extended intervals we require for our imple-
mentation of Newton’s method. An implementation of iteration (6.3) requires only
operators for

interval / interval —  extended interval,
real — extended interval —  extended interval, and
interval N extended interval — 0, 1, or 2 intervals.

Second, we list the implementation of Algorithm 6.3 and its subalgorithms. We use
module ddf_ari for differentiation arithmetic given in Chapter 5.

6.3.1.1 Module xi_ari

This module supplies the type xinterval representing a normal interval, a single
extended interval, or a pair of extended intervals. The record component kind
specifies these cases by

kind | interval form (a,b € R)
Finite {a,b], a<b,

Pluslnfty (@, o0],

Minusinfty | [—o0,aq],

Double [—o0,a]U [b,00], a<b.

The case [—o0, 00] is represented by [—c0, a] U [a, co] for simplicity.

The global function EmptyIntval delivers an irregular value of type interval (i.e.
an interval with infimum greater than supremum) representing the empty set and
serving as result of the intersection of two disjoint (extended) intervals.

Overloaded operators in PASCAL-XSC are distinguished by their operands.
Hence, the operator / could not be used for the extended interval division, and
we used the operator div.

The operator *x for the intersection of an interval with an extended interval pair
of type xinterval delivers a result of type ivector[l..2], where one or both of the
interval components may be equal to EmptyIntval.

{_

{ Purpose: Definition of an extended interval arithmetic which allows the

{ division by an interval containing zero. )

{ Method: Overloading of operators for arithmetic and lattice operations

of data type ‘xinterval’.

{ Global types, operators, and functions:

{ types KindType . component type of extended intervals
}' xinterval : data type for extended intervals
{

operat;ors div, -, ** . operators of extended interval arithmetic
function EmptyIntval : delivers empty set as irregular interval

S S e e e e e Yy

module xi_ari;

use i_ari; { Interval arithmetic }

{~~- }
:f Global type definitions +
- }

}

{ An extended interval 'x’, represented by the type ‘xinterval’, is defined
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{ according to the following rules (a <= b): 3
{ }
{x = [a, b] x.kind = Finite, x.inf = a, x.sup = b >
{ x = [a, +o00] x.kind = PlusInfty, x.inf = a, x.sup undefined }
{ x = [-00, a] : x.kind = MinusInfty, x.sup = a, x.inf undefined }
{ x = [-00, a] v [b, +00] : x.kind = Double, x.inf = b, x.sup = a 3}
{ x = [-00, +00] : x.kind = Double, x.inf = a, x.sup = a 3}
{ }
{ In this definition, 'v’ stands for the set union and ‘oo’ for infinity. 3
{ }
global type
KindType = (Finite, PlusInfty, MinusInfty, Double);
xinterval = global record { Extended intervals }
kind : KindType; { according to the }
inf, sup : real; { definition above }
end; 2}
{ }
{ Function 'EmptyIntval’ delivers an empty interval (empty set) 2
{ }
global function EmptyIntval : interval;
begin
EmptyIntval.inf := 999999999; { Definition of an irregular interval }
EmptyIntval.sup := —999999999; { EmptyIntval = [999999999,-999999999] }
end; { }
{ }
{ Operators -, ’div’, and ** for extended intervals >
}

{ Subtraction of an extended

interval ’B’ from a real value ’a’. }

global operator — (a : real; B : xinterval) difference : xinterval;
var
D : xinterval;
begin
case B.kind of
Finite : begin {D = [D.inf, D.sup] }
D.kind:= Finite; { ¥
D.inf := a -< B.sup;
D.sup := a —> B.inf;
end;
PlusInfty : begin { D = [inf, +oo] }
D.kind:= MinusInfty; (- }
D.sup := a -> B.inf;
end;
MinusInfty : begin { D = [-o0, sup]l }
D.kind:= PlusInfty; {mmmmem e
D.inf := a -< B.sup;
end;
Double : begin { D = [-00, D.sup] v [D.inf, +o0] }
D.kind:= Double; { }
D.inf := a -< B.sup;
D.sup := a ~> B.inf;
if (D.inf < D.sup) them
D.inf := D.sup;
end;
end;
difference := D;
end;

{

{ Extended interval division

}
A / B?, where 0 in ’'B’ is allowed. }
3

{
global operator div (A, B :

interval) quotient :

Xinterval;
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var
C : interval;
Q : xinterval,
begin
if (0 in B) then
begin
if ((inf(A) < 0) and (0 < sup(A))) or (A = 0) or (B = 0) then
begin 1 Q = [-o0, +00] = [-00, 0] v [0, +o0] }
Q.kind:= Double; { }
Q.sup := 0;
Q.inf := 0;
end
else it ((sup(A) <= 0) and (sup(B) = 0)) then
begin { Q = [Q.inf, +o0] }
Q.kind:= PlusInfty; { }
Q.inf := sup(A) /< inf(B);
end
else if ((sup(4) <= 0) and (inf(B) < 0) and (sup(B) > 0)) them
begin {Q = [-o0, Q.sup] v [Q.inf, +oo0] }
Q.kind:= Double; { 2
Q.sup := sup(4) /> sup(B);
Q.inf := sup(4) /< inf(B);
end
else if ((sup(A) <= 0) and (inf(B) = 0)) then
begin {Q = [-00, Q.sup] }
Q.kind:= MinusInfty; { }
Q.sup := sup(a) /> sup(b);
end
else it ((inf(A) >= 0) and (sup(B) = 0)) then
begin {Q = [-o0, Q.5up] }
Q.kind:= MinusInfty; { }
Q.sup := inf(4) /> inf(B);
end
else if ((inf(A) >= 0) and (inf(B) < 0) and (sup(B) > 0)) then
begin {Q = [-00, Q.sup] v [Q.inf, +o00] }
Q.kind:= Double; { 3}
Q.sup := inf(A) /> inf(B);
Q.inf := inf(A) /< sup(B);
end
else if ((inf(A) >= 0) and (inf(B) = 0)) then
begin { Q = [Q.inf, +o0] }
Q.kind:= PlusInfty; { }
Q.inf := inf(A) /< sup(B);
end
else ;
end { 0 in B }
else { not (0 in B) }
begin {Q = [C.inf, C.su
c = A/ B; { 2 ol fl
Q.kind:= Finite;
Q.inf := C.inf;
Q.sup := C.sup;
end;
quotient := Q;
end;
{--- 3
{ Intersection of an interval ‘X’ and an extended interval 'Y’. The result }
1s given as a pair (vector) of intervals, where one or both of them can 3}
5 be empty intervals (’EmptylIntval’). }
-—- }

global operator ** (X: interval; Y: xinterval) Intersect :

var
H : interval;

ivector[1..23;
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begin
Intersect[1]:= EmptylIntval;

Intersect[2] := EmptyIntval;

case Y.kind of
Finite : begin { [X.inf,X.sup]**[Y.inf,Y.sup] }
H := intval(Y.inf,Y.sup); { 3
if not (X >< H) then
Intersect[1]:= X #** H;
end;
PlusInfty : if (X.sup >= Y.inf) them
begin
it (X.inf > Y.inf) then
Intersect[1]:= X

{ [X.inf ,X.sup] ** [Y.inf,6+qo] }
{ 3

else
Intersect{1]:= intval(Y.inf, X.sup);
end;
MinusInfty: if (Y.sup >= X.inf) them { [X.inf ,X.sup] ** [-o00,Y.sup] }
begin { 3

it (X.sup < Y.sup) then
Intersect[1]:= X

else
Intersect[1]:= intval(X.inf, Y.sup)

end;
Double : if ((X.inf <= Y.sup) amd (Y.inf <= X.sup)) themn
begin
Intersect{1]:= intval(X.inf, Y.sup); { X#*[-o0,Y.sup] }
Intersect[2]:= intval(Y.inf, X.sup); { X**[Y.inf,+oo0] }
emda  A=mmmmmommmmom
else if (Y.inf <= X.sup) then
begin { [X.inf,X.sup]**[Y.inf, +o0] }
if (X.inf >= Y.inf) then { }

Intersect[i]:= X
else
Intersect[1]:= intval(Y.inf, X.sup);

end
else if (X.inf <= Y.sup) then
begin { [X.inf,X.sup]**[~o00,Y.sup] }
it (X.sup <= Y.sup) them { }

Intersect[1]:= X
else
Intersect[1]:= intval(X.inf, Y.sup);
end;
end; { CASE kind OF ... }
end; { OPERATOR ** ... }

{ Module initialization part
{
begin

{ Nothing to initialize }
end.

[P

6.3.1.2 Module nlfzero

The following module supplies the global routines AllZeros (the implementation
of Algorithm 6.3) and the function AllZerosErrMsg to get an error message for the
error code returned by AllZeros. The procedures XINewton and VerificationStep are
defined locally. All derivative evaluations are done with the help of the differentiation
arithmetic ddf-ari (see Chapter 5).
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The procedure AllZeros uses the DerivType function f and the starting interval
Start as input parameters and stores all computed enclosures in the interval vec-
tor ZeroVector which is also passed to and from the procedure XINewton. Before
storing a further result interval in ZeroVector, we check whether the vector has free
components. If this is not the case, the corresponding error code is returned together
with the complete ZeroVector containing all solutions already computed. The user
must then increase the upper index bound of ZeroVector to compute all zeros.

The same applies to the information about the uniqueness of the roots located,
stored in the Boolean vector InfoVector. Hence, the user must declare both vectors
with lower index bound equal to 1 and with upper index bounds which are equal.
These conditions, as well as the condition Epsilon > MinEpsilon are checked at
the beginning of procedure AllZeros. Epsilon in our program corresponds to the
parameter ¢ in the algorithms, and MinEpsilon corresponds to 1 ulp accuracy.

,(_
{ Purpose: Computing enclosures for all zeros of a continuously

{ differentiable one-dimensional, real-valued function.

{ Method: Extended interval Newton’s method.

{ Global procedures and functions:

{ procedure AllZeros(...) . computes enclosures for all zeros
{ function AllZerosErrMsg(..) : delivers an error message text

e e G b e

module nlfzero;

use
b_util, { Boolean utilities
i_ari, { Interval arithmetic
i_util, { Interval utilities
xi_ari, { Extended interval arithmetic }
ddf_ari; { Differentiation arithmetic }

[T

1

{ Error codes used in this module.

const
NoError
1bZeroVecNoti
lbInfoVecNot1
VecsDiffer
VecTooSmall

{ No error occurred.

{ Lower bound of variable ZeroVector is not equal to 1.
{ Lower bound of variable InfoVector is not equal to 1.
{ Bounds of ZeroVector and InfoVector do not match.

{ ZeroVector too small. Not all zeros can be stored.

oo
W N O

{-
1 Error messages depending on the error code.
global function AllZerosErrMsg ( Err :
var
Msg : string;
begin
case Err of
NoError : Msg
1bZeroVecNotl : Msg
lbInfoVecNotl : Msg

Wy Wbty ey

integer ) : string;

1.

’Lower bound of ZeroVector is not equal to 1’;
’Lover bound of InfoVector is not equal to 1’;

VecsDiffer . Msg 'Bounds of ZeroVector and InfoVector do not match’;
VecTooSmall : Msg ’Not all zeros found. ZeroVector is too small’;
else . Msg ’Code not defined’;
end;
it (Err <> NoError) them Msg := ’'Error: ’ + Msg + ’'!’;
AllZerosErrMsg := Msg;
end;
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{

{ Purpose: Recursive procedure for the execution of the extended interval

{

{ Parameters:

De.

e T T Lot T T T S

Newton’s method for the function ’f’.

In HRS & : must be declared for the ’'DerivType’ to enable
the internal use of the differentiation
arithmetic ’'ddf_ari’.

'y? : specifies the starting interval.

‘Epsilon’ : specifies the desired relative accuracy
(interval diameter) of the result intervals.
‘yUnique’ : signals whether it is already verified that the
actual interval 'y’ contains a unique zero.
Out ; 'ZeroVector’ : stores the enclosures for the zeros of 'f’.
'InfoVector’ : stores the corresponding information on the
uniqueness of the zero in each enclosure.
In/Out : 'ZeroNo’ : represents the number of the zero computed last
(in) and the total number of enclosures
computed at the end of the recursion (out).
scription:

The procedure ‘XINewton’ is recursively called whenever the extended
interval division results in a bisection of the actual interval 'y’ in
two intervals ’'yl’ and ’'y2’, and the tolerance condition is not ful-
filled yet. Otherwise the enclosures for the zeros of ’'f’ are stored in
the interval vector ’'ZeroVector’, the corresponding information on the
uniqueness of the zero in each enclosure is stored in the Boolean
vector ’‘InfoVector’.

B v N N N S e Y e W e e e e e e e S o S e o S S e S

procedure XINewton (function f (x: DerivType) :

DerivType;
y : interval;
Epsilon : real;

yUnique : boolean;
var ZeroVector : ivector;
var InfoVector : bvector;
var ZeroNo : integer);
var
z : Xxinterval;
fc, fy, dfy : interval;
yp : ivector[1..2];
c . real;
i : integer;
begin
dfEval(f, y, fy, dfy); { Compute f(y) and £'(y) }
it 0 in fy then { Start if 0 in f(y), else do nothing }
begin { }
c := mid(y);
fEval(f, intval(c), fc); { Compute f(c) and f’'(c). }
z := ¢ - fc div dfy; { Extended interval Newton step. }

{ Intersect interval y and extended interval z }
{ resulting in two intervals yp[1] and ypl2]. }
{ -

ypi= y ** z;

it yp[1] = y then { Stagnation, so 'y’ }

begin { must be bisected. }
yp{1l:= intval(y.inf,c); ypl[2]:= intval(c,y.sup);{ -~}
end;

it (yp[1] <> EmptyIntval) and (yp[2] = EmptyIntval) then
yUnique := yUnique or (yp[il im y) { Inner inclusion ===> uniqueness }
else { --}
yUnique := false;

for i:=1 to 2 do
it yplil <> EmptyIntval them
begin
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if (RelDiam(ypl[il) < Epsilon) then
begin { No more Newton steps }
fEval(f, yp[il, fy).
if (0 in fy) then
begin

{ Compute f(ypl[i])
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}

{ Store enclosure and info }

ZeroNo := ZeroNo + 1i;
it (ZeroNo <= ub(ZeroVector)) themn
begin
ZeroVector[ZeroNo] := ypl[il;
InfoVector[ZeroNol := yUnique;

{ Store uniqueness info
end;

{ Store enclosure of zero }

end;
end
else { Recursive call of 'XINewton’ for interval ‘yp[il’ }

XINewton(f,yp[il ,Epsilon,yUnique,ZeroVector,InfoVector,ZeroNo);
end;
end;
end;

}
}

{ Purpose: Execution of a verification step including the use of an epsilon

{ inflation.

{ Parameters:

In HRS 34 : function of ’DerivType’.
Out : ’yUnique’ : returns ’'true’ if the verification is successful.
In/Out : 'y’ : interval enclosure to be verified.

Description: This procedure checks the uniqueness of the zero enclosed in
the variable 'y’ by an additional verification step including the use
of an epsilon inflation of the iterates.

N L L

procedure VerificationStep (functiom f (x: DerivType) : DerivType;
var ¥y : interval;

var yUnique : boolean);
const

kmax = 10;
var
yIn, y0id, fc, fy, dfy : interval;
c, eps : real;
k : integer;
begin
k :=0;, yIn :=y; eps:=0.25;
yUnique := false;

{ Initializations

vwhile (not yUnique) and (k < kmax) do { Do kmax loops to achieve inclusion

begin {

y0ld := blow(y, eps); { Epsilon inflation of 'y’
dfEval(f, yOld, fy, dfy); {

if 0 in dfy then

N S e N e S e e e
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k := kmax { No verification possible }
else
begin { Perform interval Newton step }

k := k+1; c¢ := mid(y0ld);

fEval(f,intval(c),fc);
y := ¢ - fc / dfy;

if y >< yOld then

k := kmax
else
begin
yUnique := y in y0ld; { Inner inclusion ===> uniqueness
y =y %k yOld; { Intersection with old value
if y = y0ld then
4 eps := eps * 8 { Increase the value of ’eps’.
ena;

{ No verification possible }

}
}
}
}
}
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end;
end;
it not yUnique then y := yIn;

end;

{ - 3
{ Purpose: Computation of enclosures for all zeros of a continuously 3
{ differentiable one—-dimensional, real-valued function. >
{ Parameters: }
{ In R i : objective function, must be declared for the }
{ 'DerivType’ to enable the internal use of 3
{ the differentiation arithmetic ’ddf_ari’. 3
{ ‘Start’, : specifies the starting interval. 3}
{ 'Epsilon’. : specifies the desired relative accuracy 3
{ (interval diameter) of the result intervals. }
{ Out : ’ZeroVector’ . stores and returns the enclosures for the 2}
{ zeros of 'f’. 3
{ 'InfoVector’ . stores the corresponding information on the 3}
{ uniqueness of the zeros in these enclosures. }
{ 'NumberOfZeros’ : returns the number of enclosures computed. >
{ ‘Err’ : returns an error code. >
{ Description: }
{ The enclosures for the zeros of 'f’ are computed by calling procedure }
{ 1XINewton'. Then an additional verification step is applied to those 3
{ enclosures which have not been verified. }
{ If an error occurs the value of ‘Err’ is different from 0. }
{ 3

glopal procedure AllZeros (function f (x: DerivType) : DerivType;

Start : interval;
Epsilon : real;

var ZeroVector : ivector;
var InfoVector : bvector;
var NumberOfZeros : integer;
var Err : integer);
var
i . integer;

MinEpsilon : real;

begin

NumberOfZeros:= 0;
it (1b(ZeroVector) <> 1) then
Err := lbZeroVecNotl
else if (1b(InfoVector) <> 1) then
Err := lbInfoVecNotl
else if (ub(InfoVector) <> ub(ZeroVector)) them
Err := VecsDiffer
else
begin { Start extended interval Newton method }
Err .= NoError; -
MinEpsilon:= succ(1.0) - 1.0;

{ Check index bounds of result vectors b

{ Relative machine accuracy (1 ulp) }
{

it (Epsilon < MinEpsilon) then Epsilon := MinEpsilon; { Set ’‘Epsilon’ }
{ to 1 ulp acc. }

XINewton(f, Start, Epsilon, false,
ZeroVector, InfoVector, NumberOfZeros) ;

{ Check if there are more zeros }
it ub(ZeroVector) < NumberOfZeros them { than storage space }
begin -—==}

Err:= VecTooSmall; NumberOfZeros:= ub(ZeroVector);
end;

{ Verification step }
{ for the enclosures

for i:=1 to NumberOfZeros do
if InfoVector[i] <> true then
VerificationStep(f,ZeroVector[i},InfoVector{il);
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end;
end;
{ Module initialization part i
{ -
begin 4
{ Nothing to initialize }
end.

6.3.2 Example
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Figure 6.3: Function f(z) = ™3 —sin®z
Our sample program uses nlfzero to compute all zeros of the function

flz) = e 3% _gindz

In a specified starting interval (see Figure 6.3). The first positive root near z = %
e oo { approch he tipl oo o
Ry . ' or the type DerivType.
en we use a procedure compute with the function f and a string (a description
of the function) as parameters. This procedure prompts you to enter the necessar
data for the call of procedure AllZeros. If we add further function definitions in ou}r,
program, we can apply this procedure in the same way using another function as

Parameter.
£_—
This ’
7 program uses module ’‘nlfzero’ to compute the zeros of the function
g exp(-3*x) - power(sin(x), 3)

{4 starting interval and a tolerance must be entered.

Program nlfz_ex;
use

i_ari, { Interval arithmetic 3

S e e e Nt
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If

ddf_ari, { Differentiation arithmetic }
b_util, { Boolean utilities
nlfzero; { Nonlinear function zeros J}
const
n = 20; { Maximum number of zeros to be computed 7
function f (x: DerivType) : DerivType;
begin
f:= exp(-3*x) - power(sin(x),3);
end;
{

{ Procedure for prompting and reading information to call the procedure
{ ’AllZeros’. This procedure must be called with the function 'f’ and a
{ string ’Name’ containing a textual description of that function.

W e

procedure compute (function f(x:DerivType): DerivType; Name: string);
var

SearchInterval : interval;
Tolerance : real;
Zero : ivector[ti..n];
Unique : bvector(l..n];
NumberOfZeros, i, ErrCode : integer;

begin
writeln(’Computing all zeros of the function ', Name);
write(’Search interval : ?); read(SearchInterval);
write(’Tolerance (relative) : ’); read(Tolerance);
writeln;

AllZeros(f,SearchInterval,Tolerance,Zero,Unique,NumberOfZeros,ErrCode);

for i:=1 to NumberOfZeros do
begin
write(Zero[il);
if unique[i] them
writeln(’ encloses a locally unique zero!’)
else
begin
writeln(’ may contain a zero’);
write(® ’:52); writeln(’ (not verified unique)!’)
end;
end;
if ErrCode <> 0 then writeln(AllZerosErrMsg(ErrCode));
writeln;
end;

begin

compute(f, 'EXP(-3x)-POWER(SIN(x),3)’);
end.

we execute this program, we get the following runtime output:

Computing all zeros of the function EXP(-3x)-POWER(SIN(x),3)

Search interval [0,20]

Tolerance (relative) : 1e-10

[ 6.88532743979E-001, 5.88532743985E-001 ] encloses a unique
£ 3.0963639324106E+000, 3.0963639324107E+000 ] encloses a unique
[ 6.285049273382585E+000, 6.285049273382588E+000 ] encloses a unique
L 9.42469725468E+000, 9.42469725478E+000 ] encloses a unique
[ 1.256637410168E+001, 1.256637410170E+001 ] encloses a unique
[ 1.570796311724E+001, 1.570796311725E+001 ] encloses a unique
L 1.8849555927E+001, 1.8849555929E+001 ] encloses a unique

7 interval enclosure(s)

writeln(NumberOfZeros:1, ' interval enclosure(s)’); writeln;

zero!
zero!
zexo!
zero!
zero!
zero!
zero!
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The seven interval enclosures are disjoint, so we can conclude that there are seven
roots of our sample function within the specified starting interval.

6.3.3 Restrictions and Hints

The function f whose root we seek must be expressible as a finite sequence of
arithmetic operations and elementary functions supported by the differentiation
arithmetic module ddf_ari described in Chapter 5.

As already mentioned, the procedure AllZeros stores all enclosures in the interval
vector ZeroVector, which must be of sufficient length. If the first run of AllZeros is
not able to compute all zeros because there are not enough locations in ZeroVector,
then AllZeros must be called again. If you wish, you may then use a smaller starting
interval, namely the original starting interval without the area already fully treated
which is given by the interval hull of the computed solutions. This works, because
the recursive implementation of our method treats the starting interval from the left
to the right.

The method is not very fast if a very small value of ¢ (Epsilon) is used and the
interval Newton step does not improve the actual iterates because of rounding and
overestimation effects of the machine interval arithmetic. In this case the method
is equivalent with a bisection method.

In XINewton, the evaluation of the function with differentiation arithmetic can
cause a runtime error if the interval argument of an elementary function does not
lie in the domain specified for this interval function (see [65]) or if a division by an
interval containing zero occurs, even though the domain is mathematically valid. For
example, /1 + z -z for z € [-2,2] attempts to take the square root of a negative
number due to the overestimation effects of interval arithmetic (see Section 3.1).
To get rid of these errors, you may rewrite f in a different (but mathematically
equivalent) form (v/1 + 22 in this example), or you may try to split the starting
interval in several parts and call AllZeros for these parts.

The rules for getting true enclosures in connection with conversion errors (see
Secti(?n 3.7) also apply here. If you want to compute enclosures for the zeros of the
function f(z) = (¢ — §) - (z — 0.1), for example, be careful that the values L and
0.1 are enclosed in machine intervals when computing interval evaluations of f. A
corresponding implementation of f could be

function f (x: DerivType) : DerivType;
begin

f:= (x - intval(l) / 3) * (x - intval(1) / 10);
end;

6.4 Exercises

Exercise 6.1 Use the procedure AllZeros to compute the zero of the function
f(z) = (z — 1) with starting intervals [—3,4] and [—3,5], respectively, to demon-
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strate the behavior of our implementation when computing multiple zeros or zeros
lying on the splitting point of the bisection step.

Exercise 6.2 In (14, Section 2.1], Dennis and Schnabel write:

“It is unlikely, that there will ever be a wonderful general purpose com-
puter routine that would tell us for fi(z) = z* — 122° 4 47z% — 60z,
fa(z) = fi(z) + 24, and f3(z) = fi(z) + 24.1 the roots of f, are z = 0, 3,
4, and 5, the real roots of f, are zx =1 and z = 0.888305.. ., and f3 has
no real roots. In general, the question of existence and uniqueness are
beyond the capabilities one can expect of algorithms that solve nonlinear
problems.”

Use our AllZeros routine to compute the zeros of fi, f;, and f; in the starting
interval [—3, 8] and to demonstrate that the wonderful routine exists!

Exercise 6.3 Use the procedure AllZeros to verify an approximation of a zero of
the function f(z) = sin1. Compute the approximation using an arbitrary method
of your choice (e.g. Newton’s method). Then apply AllZeros to a neighborhood
interval of this approximation.

6.5 References and Further Reading

The method we discussed in this chapter is an a priori method because the iteration
starts with a (possibly large) interval enclosing all the solutions which have to be
found. Here, the iterates of the method are subintervals of the previous iterates.
There are also methods for finding (and bounding) one single solution of a nonlinear
equation called a posteriori methods. These methods start with an approximation of
a zero and apply a test procedure for a neighborhood interval of the approximation
to verify a zero within that interval. Our method presented in this chapter can also
be applied to verify such an approximation, if we start the process with a small
interval containing the approximation (Exercise 6.3).

Many authors have dealt with the problem of computing enclosures of zeros of
nonlinear functions. For further references in the field of a priori methods, see [3],
(8], 28], [62], [63], [64], [71], or [72], for example. For a posteriori methods, see [11],
(37], 138}, [50], [53], [55], [60], [64], [77], [78], or [79], for example.

Chapter 7
Global Optimization

We want to find the global minimum in an interval [z] of a function f that may
have many local minima. We want to compute the minimum value of f and the
point(s) at which the minimum value is attained. This is a very difficult problem for
classical methods because narrow, deep valleys may escape detection. In contrast,
the interval method presented here evaluates f on a continuum of points, including
those points that are not finitely representable, so valleys, no matter how narrow,
are recognized with certainty. Further, interval techniques often can reject large
regions in which the optimum can be guaranteed not to lie, so they can be faster
overall than classical methods for many problems.

In classical numerical analysis, global optimization methods proceed by iteration
starting from some approximate trial points. Classical optimization methods sample
the objective function at only a finite number of points and cannot guarantee that
the function does not have some unexpectedly small values in between these trial
points.

In this chapter, we consider an algorithm based on the method of Hansen [25]
for computing all solutions of the global unconstrained optimization problem. The
algorithm computes enclosures for all global minimizers in a given interval and for
the global minimum value of a twice continuously differentiable function.

7.1 Theoretical Background

We address the problem of finding all solutions z* of

min f(z) (7.1)
for a twice continuously differentiable function f : R — IR and [z] € IR. We wish
to find the set of all global minimizers z* and the global minimum value f* = f(z*).
The existence of a global minimizer is assured since f is a continuous function on a
compact set, but need not be unique. In fact, the minimizers may include continua
of points.

Our algorithm for problem (7.1) is based on the method of Hansen (see [25] or
[28]) and the modifications of Ratz (see [73]). Starting from the initial interval [z],
our algorithm subdivides [z] and stores the subintervals [y] C [z] in a list L. Subin-
tervals which are guaranteed not to contain a global minimizer of f are discarded
from that list, while the other subintervals get subdivided again until the desired
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accuracy (relative diameter) of the intervals in the list is achieved. The key to the
speed of this method is its use of several tests to discard subintervals in which no
minimizer may occur:

¢ midpoint test,
e monotonicity test,
e concavity test, and

e interval Newton step.

In the following sections, we consider each of these methods in detail. We use the
notation f, as abbreviation for the lower interval bound of the interval function

evaluation [f,] := f;([y]) for [y] € IR.

7.1.1 Midpoint Test

If we are able to determine an upper bound ffor the global minimum value f*, then
we can delete all subintervals [y] for which

L>F=r (7.2)

The midpoint test first determines or improves such an upper bound for f*. Initially,
let f = +o00. We choose an interval [y] out of the list L which satisfies f, < f, for
all intervals [2] in the list L. That is, [y] has the smallest lower bound for the range
of f. Hence, it is a likely candidate to contain a minimizer. Let ¢ = m([y]) (or any
other point in [y]), and compute f = min{f(c), f}. Such an upper bound can also
be computed on a computer when rounding errors occur: we compute fo(c) and use
the upper bound of the resulting interval as the possibly new value f

Now, with a possibly improved (decreased) value of f, we can discard all intervals
[2] from the list L for which f < f.. The midpoint test is relatively inexpensive,
and it often allows us to discard from consideration large portions of the original
interval [z]. Figure 7.1 illustrates this procedure, which deletes the intervals [y]s,

f(=)

Wh Bl Bk Bl Bl B Bl B Wb o °

Figure 7.1: Midpoint test
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[y]s, [v]s, and [y]o in this special case. The test remains valid if an arbitrary d € ly]
is used instead of ¢ = m([y]). Our algorithm could be extended by using a local
approximate search to find a ¢’ € [y] that is likely to give a smaller upper bound
for f than c gives. In Figure 7.1, we evaluate f at ¢ = m([y}1) to get f. A value
of ¢ near the left end of [y]; would have yielded a more effective f. We pursue this
modification in the Exercises.

The value f is also used when entering newly subdivided intervals {w] in our list
L. If we know that [w] satisfies f,, > f, then [w] cannot contain a global minimizer.

Thus, we must only enter intervals [w] that satisfy f, < fin the list L.

7.1.2 Monotonicity Test

The monotonicity test determines whether the function f is strictly monotone in an
entire subinterval [y] C [z]. If f is strictly monotone in [y], then [y] cannot contain
a global minimizer in its interior. Further, a global minimizer can only lie on a
boundary point of [y] if this point is also a boundary point of [z]. Therefore, if f

satisfies

0¢ f(lyD), (7.3)
then the subinterval [y] can be deleted (with the exception of boundary points of
).

Figure 7.2 demonstrates the monotonicity test for four subintervals of [z]. In this
special case, [y]; can be reduced to the boundary point £, [y]; remains unchanged,
and [y]s can be deleted. Since f is monotonically increasing in [y]s, this entire
interval can also be deleted because we are looking for a minimum. In this example,
the monotonicity test has reduced the list L from four elements [y]1, []2, [v]3, and
[y]4 to two elements [z] and [y].. It appears that applying the midpoint test with
(z] might also discard [y],, leaving the unique solution £* = g at a cost of only four
interval evaluations of f’ and two interval evaluations of f.

The monotonicity test costs only one interval evaluation of f'([y]). As illustrated
in Figure 7.2, it often allows us to discard large portions of the original interval [z]
from further consideration.

(=)

= T

B Wk W Wl 3

Figure 7.2: Monotonicity test
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7.1.3 Concavity Test

The concavity test (non-convexity test) examines the concavity of f. If f is not
convez in a subinterval [y] C [z], then [y] cannot contain a global minimizer in its
interior. Further, a global minimizer can only lie on a boundary point if this point
is also a boundary point of {z].

A function f is convex in [y] if the second derivative is positive or zero. Therefore,
if f satisfies
f(h) <o, (7.4)
then f is concave over [y], and the subinterval [y] can be deleted (with the exception
of boundary points of [z]). One of the reasons to include second-order derivatives in
our automatic differentiation module in Chapter 5 was to provide the computational
tool to apply the concavity test to non-trivial functions f.

Figure 7.3 demonstrates the concavity test for four subintervals of [z]. In this
special case, [y]; can be reduced to the boundary point z, [y], remains unchanged,
[y]3 can be deleted, and [y}, can be reduced to the boundary point Z. In this example,
the concavity test has reduced the list L from four elements [y]1, {y]2, [y]s, and [y]4 to
a much smaller subset of [z] ([z], [y]2, [Z]) at a cost of only four interval evaluations

of f".
f(=)

8l fo--
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Figure 7.3: Concavity test

7.1.4 Interval Newton Step

In our global optimization method, we apply one step of the extended interval
Newton’s method (see Chapter 6) to the problem

f¥)=0, yely. (7.5)
Let
o oty — L) |

and compute
’ [yn] = [yl 0 N'([y]), (7.7)
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where [yn] is a single interval, the union of two intervals, or the empty set. Thus, the
interval Newton step may eliminate parts of [y] which cannot contain a stationary
point of f. We do not apply several iterations of interval Newton because it would
be inefficient to compute all stationary points which not necessarily are minimizers.

An interval Newton step is computationally more expensive than the midpoint,
monotonicity, or concavity tests. However, it is often very effective in reducing the
widths of subintervals to the point where overestimation by interval arithmetic is
small enough that one of the less expensive tests can succeed.

7.1.5 Verification

We have to check two conditions to verify the existence and uniqueness of a lo-
cal minimizer within an interval of the final list our method produces. The first
condition is

N'([y]) € [3], (7.8)

which guarantees the existence and uniqueness of a stationary point of f, i.e. a zero
of f"in [y] (cf. Theorem 6.1). The second condition is

(y)) >0, (7.9)

which guarantees that f is convex over [y] (recall that we are assuming in this
chapter that f is twice continuously differentiable). We know of no way to verify the
uniqueness of a global minimizer in general. The global minimizer can even be one
or more continua of points. Hence, we settle for attempting to verify that intervals
we compute as candidates for containing a global minimizer contain unique local
minimizers. Failure to verify the uniqueness of a local minimizer in a subinterval is
not grounds for discarding that subinterval from the list of candidates.

In fact, our method produces a final list containing enclosures for locally unique
candidates for global minimizers. If we have in the final list exactly one subinterval
[¥] in which we can validate a local minimizer, then we have validated a unique
global minimizer in the starting interval [z]. If we have two or more subintervals
validated to contain unique local minimizers, then the best we can say is that each
contains a candidate for a global minimizer, which need not be unique. In this case,
the global minimizer could not be a continuum of points.

7.2 Algorithmic Description

The algorithm AllGOp1 (Algorithm 7.4) for determining all global optimizers of a
l-dimensjonal twice continuously differentiable function f in an interval [z] consists
of two parts. The first part is the subdivision method including the tests and the
extended interval Newton steps described in Section 7.1. The second part is a
verification step, which tries to verify the uniqueness of a local minimizer within the
Temaining intervals of the work list.
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The algorithm for the execution of the extended interval Newton step (Algorithm
7.1), yields a pair of intervals [v] and the number p, specifying the number of non-
empty interval components of [v].

Algorithm 7.2 manages the list L of pending subintervals that may contain global
minimizers z*. Subintervals are removed from the list and placed in an accepted
list when they satisfy relative or absolute error acceptance criteria. Subintervals
are also removed from the list by the midpoint, monotonicity, concavity tests, or
by the interval Newton step. Subintervals are added to the pending list when an
element from the list is bisected or when the extended interval Newton step yields

two candidate intervals.
Our algorithm stores the subdivided intervals [y] and the lower bound of the

interval function evaluations [f,] := fy([y]) as pairs ([y], ;). Pairs are stored in the
list sorted in increasing order of lower bounds f,. Therefore, a newly computed pair

is stored in the list L according to the ordering rule (cf. [73]):

o cither f, < fy < f holds,

® or fu < Eholds, and ([y], f,) is the first element of the list,
® or }_; < f, holds, and ([y], f,) is the last element of the list,
e or ([9], fl—)_ is the only element of the list,

(7.10)

where ([w], f,,) is the predecessor and ([2], f;) is the successor of (ly], fy) in L.
That is,a—le second components of the list elements may not decrease, and a new
pair is entered behind all other pairs with the same second component. Thus, the
first element of the list has the smallest second component, and we can directly use
the corresponding interval to compute f(c) for the improvement of f in performing
the midpoint test. Because of the ordering of the list, we can also save some work
when deleting elements in the midpoint test. When we have found the first element
to be deleted, we can delete the rest of the list. At each step of our algorithm, f is the
best known upper bound for the global minimum f*, and £, from the first element of
the list is the best known lower bound for f*. Hence in some applications, we might
halt the algorithm when f— f, < ¢ (absolute tolerance) or when f— Jy < | fu(lyDles

(relative tolerance).
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Given the list L and a list element E, we use the following notations in our
algorithms:

Notation Meaning
L:={} Initialization by an empty list
L:=F Initialization by a single element
L=L+F Enter element F in L in sorted order accordin
to (7.10
L=L-F Discard element F from L 8t )

E := Head (L) Set E to the first element of L

MultiDelete (L, f) | Discard all elements from L satisfying condition (7.2)
Length (L) Delivers the number of elements in L

In GlobalOptimize, we first compute an upper bound for the global minimum value
and we do some initializations. Then in Step 3, we separately treat the two boundary
points of the starting interval [z]. We enter them into the work list if they are
candidates for minimizers. Step 4 is the main iteration. Here, we first do a bisection
of the actual interval [y]. Then in Step 4(b), we apply the monotonicity test, a
function value check using the centered form, the concavity test, and the exten(ied
interval Newton step to the bisected intervals [u]; and [u],. T};e interval Newton
step may result in at most two intervals. We have to handle them both in step
4(b)vii, where we again apply a monotonicity test and a function value check with
centered forms. If the actual interval [v]; is still a candidate for a minimizer, we
store it in L. ,

In Step 4(d), we remove the first element from the list L, i.e. the element of L
wi.th tl.1e smallest lower bound of the interval function evaluation, and we perform the
midpoint test. Then, we check the tolerance criterion for the new actual interval
If the desired accuracy is achieved, we store this interval in the result list L )
Otherwise, we go to the bisection step. -

When the iteration stops because the list L is empty, we compute a final enclosure
[f*] for the global minimum value in Step 5, and we return L, and [f*]. Procedure
GlobalOptimize terminates because the elements of L move to Lye, if (dra([y]) < €) or

if (drei([f*]) < €). The bisection ste iti
I (are p (Step 4(a)) guarantees that the first
is fulfilled at some stage of the iteration. ® frst condition
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Algorithm 7.3 describes a verification step that checks the uniqueness of a local
minimizer enclosed in the interval [{y]. The procedure tries to do a “zero check”
for the derivative f’ according to condition 3 of Theorem 6.1 by applying interval
Newton steps including an epsilon inflation of the iterates [y]. We also check the
condition f"(y) > 0 for all y € [y] to verify that f is convex in [y]. We use kmax = 10
as the maximum number of iterations, € = 0.25 as the starting value for the epsilon
inflation, and a factor of 8 to increase ¢ within the iterations. It turned out that
these are good values for minimizing the effort if no verification is possible (see also

[46)).
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Algorithm 7.4 now combines these procedures to compute enclosures for all global
minimizers z* of the function f and for the global minimum value f* within the
input interval [z]| and tries to prove the uniqueness of the local minimizers within
the computed enclosures. The desired accuracy (relative diameter) of the interval
enclosures is specified by the input parameter €. 1 ulp accuracy is chosen if the
specified value of ¢ is too small (for example 0). The enclosures for the global mini-
mizers of f are returned in the interval vector [Opt], the corresponding information
on the local uniqueness of the optimizers is returned in the Boolean vector Info. The
number of enclosures computed is returned in the integer variable N.

We use a function called CheckParameters as an abbreviation for the error checks
for the parameters of AllGOpl which are necessary in an implementation. If no
error occurs, AllGOp1 delivers the N enclosures [Opt];, i = 1,2,..., N, and for each
1=1,2...,N,

if Info; = true, then [Opt]; encloses unique local minimizer of f,
if Info; = false, then [Opt]; may enclose a local or global minimizer of f.
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Applicability of the Algorithm

We have assumed that f is twice continuously differentiable. However, we can
apply our algorithm to functions that are only once continuously differentiable or
to functions that are not differentiable if we leave out some parts of the algorithm.
If we do not use the interval Newton step (Step 4(b)vi in our algorithm), i.e. if we
leave out Steps 4(b)iv, 4(b)v, and 4(b)vi, and replace them by the sequence

Whi=[ul; p:=1

then our method works for functions that are only once differentiable. Algorithm
7.3 cannot be applied in this case. We can even do problems in nonsmooth global
optimization. If we replace Step 4(b) by the sequence

fori:=1to2do
[fu] := f([uls);
if /> f, then L:= L+ ([u]:, fu);

then we can apply our method, consisting of subdividing and the midpoint test, to
functions that are not differentiable.

The closer the upper bound f is to the global minimum value f*, the more
intervals we can delete in the midpoint test (Step 4(d)ii of Algorithm 7.2). Thus, the
method can be improved by incorporating a floating-point approximate local search
procedure in an attempt to decrease the value f. See [28] or [72] for the description
of such local search procedures. We explore this extension in the Exercises.

For a multiple zero z* of f’, the algorithm cannot verify the existence and the
uniqueness of z* in the enclosing result interval. Nevertheless, the zero of f’, which
is possibly a global minimizer, is bounded to the desired accuracy specified by €. In
this case, the corresponding component of the Info-vector has the value false.

As a consequence of the splitting (bisecting) of the intervals, it may happen that
a minimizer lying exactly at the splitting point is enclosed in two different intervals.
A sophisticated supplement to our method avoiding this can be found in [73].

The algorithm is well suited for parallel computers due to its natural parallelism
given by the splitting of the intervals by the extended interval Newton step or by
the bisection.
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7.3 Implementation and Examples

7.3.1 PASCAL-XSC Program Code

We begin by describing our implementation of the operations needed for handling
lists and list elements. Then, we describe the implementation of Algorithm 7.4 and
its subalgorithms.

7.3.1.1 Module Istl_ari

This module supplies the type Pair representing a pair of an interval and a real value
and the type PairPtr representing a list of such pairs. The local variable FreeList and
the procedures NewPP, Free, and FreeAll generate and free list elements (pairs) and
prevent creation of garbage in memory. MakePair, GetInt, and GetFyi are transfer
and access functions for pairs.

The global function EmptyList represents an empty list. The operator + enters
a new list element P in the list List according to condition (7.10). The procedure
MultiDelete deletes all elements P in List for which P.fyi > fmax. This procedure
assumes that the list elements are ordered according to condition (7.10). Function
Next sets the list pointer List to the next list element. Head delivers the first pair
of List, whereas DelHead deletes the first pair of List. Function Length delivers the
number of elements in List.

{ }
{ Purpose: Definition of a list arithmetic used in connection with an 3
{ interval bisection method in global optimization for storing pairs of }
{ an interval and a real value. 3
{ Method: Overloading of functions and operators of data types ’Pair’ (list }
{ element) and ‘PairPtr’ (list). }
{ Global types, operators, functions, and procedures: 3
{ types Pair : list elements (pair of interval and real) }
{ PairPtr, PairElmt: list of pairs }
{ operators + : adding a new element to a list }
{ functions MakePair . transfer function for pairs 7}
{ GetInt, GetFyi  : access functions for pairs }
{ Next, Head : access functions for lists }
{ Length : access function to length of list }
{ EmptyList : delivers an empty list 3}
{ procedures FreeAll : free complete list 3
{ MultiDelete : deletes several elements in a list }
f DelHead : deletes the first element of a list }
module lstl_ari; d
use
i_ari; { Interval arithmetic }
{- }
f Global type definitions 3
global type d
Pair = recoxrd
int : interval; { Pair of an interval 'y’ and }
fyi : real; { the real value ‘inf(f(y))’. }
end; { }
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PairPtr = tPairElmt;
PairElmt = record { List of pairs }
P : Pair; {-———omm - 3
N : PairPtr;
end;
{ : :
{ Local variable storing list of free elements (automatic garbage recycling) }
{
var
FreeList : PairPtr;
{ }
{ Procedures for generating and freeing of list elements (pairs) i
procedure NewPP (var pp: PairPtr); { ’NewPP’ generates a new'list element }
begin { or gets one from 'FreeList’. }
if FreeList = nil then 3
begin
new(pp); ppT.N:= nil;
end
else
begin .
pp:= FreeList; FreeList:= FreeList?.N; ppt.N:= nil;
end;
end;

procedure Free (var pp: PairPtr); { 'Free’ enters one element of a }

begin { list in the ’Freelist’.

if pp <> nil themn { }

begin )

ppt.N:= FreeList; FreeList := pp; Pp:= nil;

end;
end;
global procedure FreeAll (var List: PairPtr);{ 'FreeAll’ enters all elements }
var H : PairPtr; { of ’List’ in the ’FreeList’. }
begin { }

it List <> nil then

begin

H:= List;

while Ht.N <> mnil do H:= HT

N;
HT.N:= FreeList; FreeList:= List; List:= mil;

end;
end;
}
{ Transfer and access functions for pairs _;

global function MakePair (int: interval; fyi: real) : Pair; { Generate pair ;

begin ) ) ' e
MakePair.int:= int; MakePair.fyi:= fyi;

end;

global function GetInt (P: Pair) : interval;
begin

GetInt:= P.int;
end;

global functiom GetFyi (P: Pair) : real; T

begin B
GetFyi:= P.fyi;

end;
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{-- 3
{ Operators, functions, and procedures for lists of pairs 3
- 3
{ Global function 'EmptyList’ representing an empty list of pairs. 3}
— 3
global function Emptylist : PairPtr;
begin
EmptyList := mnil;
end;
{ . }
{ Operator + enters the pair 'P’ the list ’‘List’ in such a way that after }
{ entering, one of the four following condition holds: 3}
{ 1) 0.fyi <= P.fyi < Q.fyi, 3
{ 2) P.fyi < Q.fyi and 'P’ is the first element of ’List’, 3}
{ 3) 0.fyi <= P.fyi and ‘P’ is the last element of ’'List’, }
{ 4) ’P’ is the only element of ‘List’, ¥
{ where ’0’ 1is the preceding and ’Q’ is the succeeding element of ‘P’ in }
{ the resulting list. }
{ }
global operator + (List: PairPtr; P: Pair) Enter: PairPir;
var
H, HN : PairPtr;
ready, alreadyln : boolean;
begin
if (List = nil) then { List is empty, so new }
begin { list contains only P. }
NewPP(H); HT.P:=P; HT.N:= nil; Enter:= H; 3
end
else if (ListT.P.fyi > P.fyi) themn { P becomes new first }
begin { element of the list. }
NewPP(H); HT.P:= P; Ht.N:= List; Enter:= H; { }
end
else
begin
H:= List; HN:= HT.N; ready:= false; alreadyIn:= Ht.P.int = P.int;
vhile not (ready or alreadyIn) do { Search for the right }
begin { position to enter P. }
it (HN = nil) then >
ready:= true
else it (HNt.P.fyi > P.fyi) then
ready:= true
else
begin
H:= HN; HN:= HTt.N; alreadyIn:= Ht.P.int = P.int;
end;
end;
if not alreadyln then
begin
NewPP(Ht.N); H:= HT.N; { Enter P between H and }
HTt.P:= P; HT.N:= HN; { HN. Return List. 3}
end; { 3
Enter:= List;
end;
end;

{
{ ’'MultiDelete’ deletes all elements ’P’ in ‘List’ for which the condition

{ 'P.fyi > fmax’ holds. This procedure assumes that the 'fyi’ components of
{ the list elements are sorted in increasing order (see operator +).

{--

SN rT
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global procedure MultiDelete (var List: PairPtr; fmax: real);

var
DelPrev, Del : PairPtr;
ready : boolean;
begin
it (List <> nil) then
begin
if (Listt.P.fyi > fmax) then
begin
Del:= List; List:= nil;
end
else
begin

{ All list elements satisfy }

}

{ 'P.fyi > fmax’.
{

DelPrev:= List; Del:= DelPrevt.N; ready:= (Del=nil);

while not ready do
begin
if (Del = nil) then
ready := true
else if (Delt.P.fyi > fmax) then
begin
ready:= true; DelPrevf.N:= mil;
end
else
begin
DelPrev:= Del; Del:= Delt.N;
end;
end;
end;
FreeAll(Del);
end;
end;

global function Next (List: PairPtr) : PairPtr;

>

{ Sets list pointer to the }

begin { next list element }

Next:= Listt.N; 3}
end;
global fumction Head (List: PairPtr) : Pair; { Delivers first pair of the }
begin { list, i.e. the pair P with }

Head:= ListT.P; { the smallest value P.fyi. }
end; { 3}
global procedure DelHead (var List: PairPtr); { Deletes the first pair of }
var { the List. }

Del : PairPtr; { 3}
begin

Del := List; List:= Listt.N; Free(Del);
end;
global function Length (List: PairPtr) : integer; { ‘Length’ delivers the }
var i : integer; { number of elements in }
begin { list ’List’. }

i:= 0; { 3

while List <> nil do

begin

i:= succ(i); List:= Listt.N;

end;

Length := i;
end;

: -}

{ Module initialization ;
{ PR
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begin
FreeList := mil; { List of freed elements which can be used again }
end.

7.3.1.2 Module gopl

The module gopl supplies the global routines AIIGOp1 (the implementation of Al-
gorithm 7.4) and the corresponding function AlIGOplErrMsg which can be used to
get an error message for the error code returned by AlIGOpl1. The procedures New-
tonStep, GlobalOptimize, and VerificationStep are defined locally. All derivative
evaluations are done with the help of the differentiation arithmetic ddf_ari described
in Chapter 5.

The procedure AlIGOpl uses the DerivType function f and the starting interval
Start as input parameters and stores all computed enclosures in the interval vector
OptiVector. If this vector is not long enough to store all the result intervals, the
corresponding error code is returned together with the OptiVector containing all
solutions it is able to store. If this error occurs, the user must increase the upper
index bound of OptiVector to compute all optimizers.

The same applies to the information about the uniqueness, stored in the Boolean
vector InfoVector. The user must declare both vectors OptiVector and InfoVector
with lower index bound equal to 1 and with upper index bounds which are equal.
These conditions, as well as the condition Epsilon > MinEpsilon are checked at
the beginning of procedure AlIGOpl. Epsilon in our program corresponds to the
parameter € in the algorithms, and MinEpsilon corresponds to 1 ulp accuracy.

{ }
{ Purpose: Computing enclosures for all global minimizers and for the global }
{ minimum value of a twice continuously differentiable one-dimensional, }
{ scalar valued function. 3
{ Method: Bisection method combined with midpoint, monotonicity, concavity }
{ test and extended interval Newton step. }
{ Global procedures and functions: }
{ procedure A11GOpi(...) : computes enclosures for all zeros }
£ function AllGOpiErrMsg(...) : delivers an error message text }
}

module gopi;
use

i_ari, { Interval arithmetic 3}

xi_ari, { Extended interval arithmetic }

1sti_ari, o List arithmetic }

ddf _ari, { Differentiation arithmetic }

i_util, { Interval utilities }

b_util; { Boolean utilities >
{- }
{ Error codes used in this module. }

- }
const

NoError = 0; { No error occurred. 3}

1lbOptiVecNotl = 1; { Lower bound of variable OptiVector is not equal to 1.}

lbInfoVecNott = 2; { Lower bound of variable InfoVector is not equal to 1.}

VecsDiffer = 3; { Bounds of OptiVector and InfoVector do not match. >

VecTooSmall = 4; { OptiVector too small. Not all zeros can be stored. 3}
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{

{ Error messages depending on the error code.

global function A11GOpi
var

Msg : string;
begin

case Err of

NoError : Msg := '’
1bOptiVecNotl: Msg := ’'Lower bound of OptiVector is not equal to 1’;
lbInfoVecNotl: Msg := ’Lower bound of InfoVector is not equal to 1’;
VecsDiffer : Msg := ’Bounds of OptiVector and InfoVector do not match’;
VecTooSmall : Msg := ’Not all optimizers found. OptiVector is too small’;
else : Msg := ’Code not defined’;

end;

it (Err <> NoError) them Msg := ’Error: ' + Msg + '!’;

Al1GOpiErrMsg := Msg;
end;

{

ErrMsg ( Err : integer ) : string;

AP

»

{ Purpose: Execution of one extended interval Newton step for the derivative

{ of function ’‘f’.
{ Parameters:

: must be declared for the ’'DerivType’ to enable the

internal use of the differentiation arithmetic
‘ddf_ari’.

: specifies the starting interval.

f’’(Y), already computed outside of ’NewtonStep’.

: Pair of intervals V[1] and V[2].
: Number of valid intervals in V (0, 1, or 2).

One extended interval Newton step for 'Y’ is executed resulting in ’p’

’ and ’V[2]’ which can be empty.

{ In S 4

{

{

{ IY’

{ ‘ddfy’ :
{ Out A

{ Ipl

{ Description:

{

{ interval(s) 'V[1]
{

procedure NewtonStep (f

var

c . real;

fC, dfC : interval;
begin

= mid(Y); dfEval(f

c:=

Vi= Y ** (¢ - dfC div ddfY);

if V[1] <> EmptyIntval them p:=

if V[2] <> EmptyIntval them p:= p+i; { intervals
{

end;

unction £ (x: DerivType) : DerivType;
Y, ddfY : interval;

var V . ivector;

var p : integer);

, intval(c), fC, dfC); { Midpoint evaluation of 'f’
{ Execution of Newton step
1 else p:= 0; { Fix number of non-empty

e 5 S e 5 B s S s e S S S G

{

{ Purpose: Execution of the global optimization method including a bisection

{ Description:

{ method, midpoint test, monotonicity test, concavity test, and extended
{ interval Newton steps.

{ Parameters:

{ In I & : must be declared for the ’'DerivType’ to enable
{ the internal use of the differentiation

{ arithmetic ’'ddf_ari’.

{ 'Start: : specifies the starting interval.

{ ‘Epsilon’ : specifies the desired relative accuracy

{ Out : ’Resultlist’ : stores the candidates for enclosure of a global
{ minimizer.

{ ‘Minimum’ : stores the enclosure of the global minimum

{ value.

{ The procedure manages the list 'L’ of pending subintervals that may

S M N S W N S e e e e e St Y
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{ contain global minimizers. Subintervals are removed from the list and 3}
{ placed in the accepted list ’'Resultlist’ when they satisfy relative }
{ error acceptance criteria. Subintervals are also removed from the list }
{ by the midpoint, monotonicity, concavity tests, or by the interval 3}
{ Newton steps. Subintervals are added to the pending list when an element }
{ from the list is bisected or when the extended interval Newton step }
{ yields two candidate intervals. 3
{ ’ResultList’ returns the list of enclosures of the global minimizers, 3}
{ ‘Minimum’ returns the enclosure of the global minimum value. }
- 3
procedure GlobalOptimize (fumction f (x: DerivType) : DerivType;
Start : interval;
Epsilon : real;
var ResultList : PairPtr;
var Minimum : interval);
var
PairY : Pair; { Pair ( Y, inf(£(Y) ) }
Yy, fY, dfY, ddfY, BdP : interval; { Initial box, £(Y), £’(Y), £''(Y) }
u, Vv : ivector[1..2}; { Subboxes of Y and U }
fU, £V, fC, fCV, fBdP : interval; { Function evaluations of f >
dfu, dfv, ddfu : interval; { Derivative evaluations of f 2
fmax : real; { Upper bound for minimum value }
c, cV . real; { Midpoints of intervals Y and V }
WorkList . PairPtr; { List of pairs }
i, j, p : integer; { Control variables y
Bisect : boolean; { Flag for iteration and algorithm }
begin
c:= mid(Start); fEval(f, intval(c), fC);{ Compute upper bound for minimum }
fmax:= sup(£C); 1{ }
if not UlpAcc(Start,1) them { Start method }
begin {mmmemrommeeee }

Y:= Start; WorkList:= EmptyList;

BdP:= inf(Y);
for i:=1 to 2 do
begin

fEval(f, B4P, fBdP);

Resultlist:=

EmptyList;

{ Treat boundary points separately }
{ }

it sup(fBdP) < fmax them fmax:= sup(fBdP);

if fmax >= inf(fBdP) then

WorkList:= WorkList + MakePair(BdP,inf(fBdP));

BdP:= sup(Y);
end;
repeat { Start iteration }
Ul1]:= intval(inf(Y),c¢); U[2]):= intval(c,sup(Y)); { Bisect 'Y’ >
for i:=1to 2@ e ¥
begin
dfEval(f, U[il, fu, dfU);{ Compute dfu = £’(U) }
{ }
it (0 in dfU) then { Monotonicity test: if not 0 in dfU stop }
begin { }
fU:= (£C + dfU * (U[i] - c)) ** fU; { Centered form 'f(U)’ }
{ }
it (fmax >= inf(fU)) then
begin
ddfEval(f, U[il, fU, dfU, ddfU); { Compute ddfU = £’’(U). }
{ }
if (sup(ddfu) >= 0) then { Concavity test: if 0 > ddfU stop }
begin 4 }
NewtonStep(f,U[il,ddfU,V,p); { Extended interval Newton step }
{ }
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for j:=1 to p do var
begin yIn, yOld, fm, dfm, fy, dfy, ddfy : interval;
dfEval(f, V[jl, fv, dfv); { Compute first derivative } m, eps : real;
{ 3 k : integer;
if (0 in dfV) then { Monotonic. test: if not 0 in dfV stop } begin
begin { 3 yUnique := (y.inf = y.sup); { y is a point interval }
cV:i= mid(V{j1); { Try centered form } if not yUnique themn +
fEval(f, intval(cV), fCV); { to get better en- } begin
fV:= (£CV + dfV*(V[j] - cV)) ** £V; { closure of 'f(U)’ 3} yIn :=y; k :=0; eps:=0.25; { Initializations }
{ §) end; { ¥
if (fmax >= inf(fV)) then { Store V }
WorkList:= WorkList + MakePair(V[jl,inf(fV));{-———-——— 3 vhile (not yUnique) amd (k < kmax) do fDo kmax loops to achieve inclusion }
end; begin }
end; { for j ... } y0ld:= blow(y, eps); { Epsilon inflation of ’y’ 3}
end; { if sup(ddfU) >= 0 } ddfEval(f, y0ld, fy, dfy, ddfy); { 3}
end; { if fmax >= ... }
end; { if 0 in dfU ... } if 0 >= inf(ddfy) then { No verification of a minimum possible }
end; { fori ... } k := kmax { 3
else
Bisect:= false; { Get next ’Y’ of } begin { Perform interval Newton step }
while (WorkList <> EmptyList) and (mot Bisect) do { the work list } k:= k+1; m:= mid(y0ld); { }
begin R 3 dfEval(f, intval(m), fm, dfm);
PairY:= Head(WorkList); DelHead(WorkList); y = (m - dfm / ddfy);
Y:= GetInt(PairY); c¢:= mid(Y); fEval(f, intval(c), fC); if y >< y0ld then { No verification possible }
if sup(fC) < fmax then fmax:= sup(fC); k:= kmax { 3
MultiDelete(WorkList,fmax); else
begin
Minimum:= intval(GetFyi(PairY),fmax); yUnique:= y in y0ld; { Inner inclusion ===> unique zero of f’ }
it (RelDiam(Minimum) < Epsilon) or (RelDiam(Y) < Epsilon) then y 1=y ** yOld; { Intersection with old value }
ResultList:= ResultList + PairY { Checking termination } it y = yOld then { >
else { criterion > eps := eps * 8 { Increase the value of ‘eps’ b
Bisect:= true; { 2} ; end; 3
end; { while } end;
end;
until (not Bisect); if mot yUnique then y := yIn;
end;

’

end { if not UlpAcc(Start,1) }

else { }
begin { Store starting interval } { Purpose: Computation of enclosures for all global minimizers and for the }
fEval(f, Start, fY); { 3 { global minimum value of a twice continuously differentiable one-dimen- }
ResultList:= EmptyList + MakePair(Start,inf(fY)); { sional, scalar-valued function. }

end; { Parameters: }

{ Compute good enclosure } { In HR ; objective function, must be declared for the }

Minimum:= intval(GetFyi(Head(ResultList)),fmax); { of the global minimum } { ‘DerivIlype’ to enable the internal use of }
end; { { the differentiation arithmetic ‘ddf_ari’. }
{ ‘Start’, : specifies the starting interval. 3}

{ 3 { ’Epsilon’. . specifies the desired relative accuracy >
{ Purpose: Execution of a verification step including the use of an epsilon 1} 1 (interval diameter) of the result intervals. }
{ inflation. > { Out : ’'OptiVector’ : stores and returns the enclosures for the >
{ Parameters: } { global optimizers of ‘f’. 2
{ In RS : function of ’‘DerivType’. } { ’InfoVector’ . stores the corresponding information on the }
{ Out : 'yUnique’ : returns ’true’ if the verification is successful. J} { uniqueness of the local optimizers in these }
{ In/Out : 'y’ : interval enclosure to be verified. } { enclosures. 3
{ Description: This procedure checks the uniqueness of the local minimizer } { ‘NumberOfOptis’ : returns the number of enclosures computed. }
{  enclosed in the interval variable 'y’ by a verification step including 1} { ‘Minimum’ ’ : returns the enclosure for the minimum value. }
{ the use of an epsilon inflation of the iterates. } 1 'Err’ : returns an error code. }
: -} { Description: :
procedure VerificationStep (fumction f (x: DerivType) : DerivType; { The enclosures for the global minimizers of ’'f’ are computed by calling }
var y : interval; { procedure ’GlobalOptimize’. Then a verification step is applied. }

var yUnique : boolean); { The enclosures for the global minimizers of ’f’ are stored in the 3

const { interval vector ’OptiVector’, the corresponding information on the }
kmax = 10; { Maximum number of iterations } { uniqueness of the local minimizers in these enclosures is stored in the }
{ Boolean vector ’‘InfoVector’. The number of enclosures computed is ¥
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returned in the integer variable ’NumberOfOptis’. The enclosure for the }

global minimum value is returned in the variable ’Minimum’.
If an error occurs, the value of ’'Err’ is different from O.

e

global procedure A11GOpi (functiom f (x: DerivType)
Start :
Epsilon :
OptiVector :

InfoVector
NumberOfOptis :
Minimum :
Err :

var
i : integer;
MinEpsilon : real;
ResultList, L : PairPtr;
begin

NumberOfOptis:= 0;

var
var
var
var
var

if (1b(QptiVector) <> 1) then

Err:= 1bOptiVecNot1l

else if (lb(InfoVector) <> 1) then

Err:= lbInfoVecNotl

DerivType;

interval;
real;
ivector;
bvector;
integer;
interval;
integer);

(PN

{ Check index bounds of result vectors }

{

else if (ub(InfoVector) <> ub(OptiVector)) then

Err:= VecsDiffer
else
begin
Err:= NoError;

MinEpsilon:= succ(1.0) - 1.0;

{
it (Epsilon < MinEpsilon) then Epsilon := MinEpsilon;
GlobalOptimize(f,Start,Epsilon,ResultList,Minimum); {~m=me-

]

{ Start global optimization method }

{

}

{ Relative machine accuracy (1 ulp) }

NumberOfOptis:= Length(ResultList);

}

{ Set ’Epsilon’ }

{ to 1 ulp acc. }

{ Check if there are more opti- }

if ub(OptiVector) < NumberOfOptis then { mizers than storage space >
begin { }
Err:= VecTooSmall; NumberQfOptis:= ub(OptiVector);
end;
= Resultlist;

{ Verification step for the }
for i:=1 to NumberOfOptis do { enclosure intervals }
begin { -}

OptiVector[i]:= GetInt(Head(L)); L:= Next(L);
VerificationStep(f, OptiVector[i], InfoVector[il);
end;
FreeAll(ResultList);
end;
end;
{ -}
{ Module initialization part }
{ -}
begin
{ Nothing to initialize }
end.
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Figure 7.4: Function f (test function f; in [85])

7.3.2 Examples

As a sample program, we wish to use AIGOpI to compute all global minimizers
and the global minimum of the function

f(z) = (z +sinz) - e,
which is the test function f, in {85], and of the function of Shubert
5
g9(z) == ksin((k + 1)z + k),
k=1

which is the test function f3 in [85]. Figures 7.4 and 7.5 show the plots of these two
functions. Within the interval [—10, 10}, f has the global minimizer —6.7957..., and
the global minimizers of g occur at —6.7745..., —0.49139..., and 5.7917.... According

15 T T

10 | 4

0/\/\ Aaad it haanfthnnal
VV VY VV VY \/\/\/\_,

I
—

-10 -5 0 5 10

Figure 7.5: Shubert’s function g (test function f3 in [85])
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to [85], both functions are difficult to minimize and represent practical problems.
The large number of local optimizers of g make it very difficult for an approximation
method to find the global optimizers.

We first have to define the functions f and ¢ for the type DerivType. Then
we use a procedure compute with the function f and a string (a description of the
function) as parameters. This procedure prompts you to enter the necessary data
for the call of procedure AIIGOpl. If we add further function definitions in our
program, we can apply this procedure in the same way using another function as
parameter.

{ }
{ This program uses module ’‘gopl’ to compute the global optimizers of the 2}
{ functions 3}
1 >
{ f(x) = (x + sin(x)) * exp(-sqr(x)). }
{ }
{ and }
{ 5 3
{ g(x) =~ sum ( k * sin((k+1)*x + k) ) ’
{ k=1 >
{ }
{ A starting interval and a tolerance must be entered. 3
3

program gopl_ex;
use

i_ari, { Interval arithmetic 2}

ddf_ari, <{ Differentiation arithmetic 2}

i_util, { Interval utilities }

b_util, { Boolean utilities }

gopt; { Global optimization one-dimensional }
const

n = 20; { Maximum number of optimizers to be computed }

function f (x : DerivType) : DerivType;
begin

f := (x + sin(x)) * exp(-sqr(x));
end;

function g (x : DerivType) : DerivType;
var

s : DerivType;

k : integer;

begin

s := DerivConst(0);

for k:=1 %o 5 do

s :=s + k*sin ( (k+1) * x + k );

g = - s;
end;
{ -}
{ Procedure for printing and reading information to call the procedure }
{ ’Al11GOp1’. This procedure must be called with the function ’f’ and a }
{ string ’'Name’ containing a textual description of that function. ;

procedure compute (function f(x:DerivType): DerivType; Name: string);

var
SearchInterval, Minimum . interval;
Tolerance . real;
Opti . ivector[i..n];

Unique : bvector{1..n];
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Number0fOptis, i, ErrCode : integer;

begin
writeln(’Computing all global minimizers of the function °*, Name);
write(’Search interval 1 '); read(Searchinterval);
write(’Tolerance (relative) : ’); read(Tolerance);
writeln;

AllGOpl(f, Searchlnterval, Tolerance,
Opti, Unique, NumberOfOptis, Minimum, ErrCode);
for i:=1 to NumberOfOptis do
begin
writeln(Optilil);
if unique[i] then
writeln(’encloses a locally unique candidate for a global minimizer!’)

else
writeln(’may contain a local or global minimizer!’)

end;
writeln;
if (NumberOfOptis <> 0) them
begin

writeln(Minimum); writeln(’encloses the global minimum value!’);
end;
if ErrCode <> 0 them writeln(AllGOpiErrMsg(ErrCode));
writeln; vwriteln(NumberOfOptis:1, ’ interval enclosure(s)’); writeln;

if (NumberOfOptis = 1) and (unique[1]) then
writeln(’We have validated that there is a unique global optimizer!’);
end;

begin { Main program }
compute(f, ’(x + SIN(x))*EXP(-x12)’); writeln; writeln;
compute(g, ’-SUM(k*SIN((k+1)*x+k),k,1,5)');

end.

If we execute this program, we get the following runtime output:

Computing all global minimizers of the function (x + SIN(x))*EXP(-x"2)
Search interval : [-10,10]
Tolerance (relative) : le-12

[ -6.795786600198818E-001, -6.795786600198812E-001 ]
encloses a locally unique candidate for a global minimizer!

[ -8.242393984760771E-001, -8.242393984760764E-001 ]
encloses the global minimum value!

1 interval enclosure(s)

We have validated that there is a unique global optimizer!

Computing all global minimizers of the function -SUM(Kk*SIN((k+1)*x+k),k,1,5)
Search interval : [-10,10]
Tolerance (relative) : le-12

[ 5.791794470920271E+000, 5.791794470920272E+000 ]
encloses a locally unique candidate for a global minimizer!
[ -6.774576143438902E+000, ~6.774576143438900E+000 ]
encloses a locally unique candidate for a global minimizer!
[ -4.913908362593147E-001, -4.913908362593144E-001 ]
encloses a locally unique candidate for a global minimizer!

[ -1.20312494421672E+001, —1.20312494421671E+001 ]
éncloses the global minimum value!

3 interval enclosure(s)
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Thus, we know that there is only one global minimizer of f and three locally unique
minimizers which are good candidates for global minimizers of ¢ within the specified
starting interval [—10, 10].

7.3.3 Restrictions and Hints

The objective function f must be expressible in PASCAL-XSC code as a finite
sequence of arithmetic operations and elementary functions supported by the differ-
entiation arithmetic module ddf_ari.

As already mentioned, the procedure AIIGOpl stores all enclosures in the interval
vector OptiVector which must be of sufficient length. If the first run of AllGOp1
is not able to compute all minimizers because OptiVector is not long enough, then
the routine must be called again with an increased index range for OptiVector.

The method is not very fast if a very small value of ¢ (Epsilon) is used, if
the interval Newton step does not improve the actual iterates, and if the different
tests do not discard intervals any more because of rounding and the overestimation
effects of the machine interval arithmetic. Under these circumstances, the method
is equivalent with a bisection method.

In GlobalOptimize, the evaluation of the function in differentiation arithmetic
can cause a runtime error if the interval argument of an elementary function does not
lie in the domain specified for this interval function (see [65]) or if a division by an
interval containing zero occurs. This also may be due to the known overestimation
effects of interval arithmetic (see Section 3.1). To get rid of these errors, the user
may try to split the starting interval in several parts and call AIIGOpl for these
parts.

Note that the rules for getting true enclosures in connection with conversion
errors (see Section 3.7) also apply here. For example, the user who wishes to compute

1

enclosures for the minimizers of the function f(z) = (z — 1)?- (¢ — 0.1)%, must be

careful that the values  and 0.1 are enclosed in machine intervals when computing

interval evaluations of f. An appropriate coding of f is

function f (x: DerivType) : DerivType;
begin

f:= sqrix - intval(1) / 3) * sqr(x - intval(l) / 10);
end;

7.4 Exercises

Exercise 7.1 Use our procedure AIIGOpl to compute the global minimizer and
the global minimum value of the function
. . 10z 84z
h(z) =sinz +sin —— +lnz - 100"
This function is the test function f; from [85] shown in Figure 7.6 with starting
interval [2.7,7.5]. It is a rather simple problem with several local minima.

7.4 Exercises 129

Figure 7.6: Function h (test function f; in [85]) with several local minima

Find an interval {a, b] such that you can prove that the unique global (on [a, b))
minimizer located by ALIGOpI is also the global minimizer in IR.

Exercise 7.2 Use our procedure AIIGOpl to compute the global minimizer and
the global minimum value of the function

) 3e(els=d)

r(z) =2z
¢
with starting interval [—10,10]. The global minimum of r is at a sharp valley for
a = 200, b = 0.0675, and ¢ = 100 as shown in Figure 7.7. Find a set of values a,
b, and ¢ for which an approximate optimization routine available to you fails. Hint:
Make the valley very sharp, rather far from the local minimizer near z = 0, and
deep enough to cut below the z-axis. Can you trick AIGOpI similarly?

0.1 T T T

0.08 |-
0.06 -

0.04 .

0.02 |
0 —

-0.02 4

T

-0.04 L1 ' ' :
-0.05 0 0.05 0.1 0.15 0.2

Figure 7.7: Test function r with a sharp valley
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Exercise 7.3 Modify module gol to use a local approximate search strategy to
locate a point ¢ that may be more effective than the midpoint in eliminating subin-
tervals from the list L (cf. Section 7.1.1). Be careful that your strategy does not
leave the subinterval [y]. Is the resulting algorithm faster or slower than the one
presented here?

7.5 References and Further Reading

The method we discussed in this chapter is an a priori method because the iteration
starts with a (possibly large) interval enclosing all the solutions which have to be
found. Here, the iterates of the method are subintervals of the previous iterates.
There are also methods for finding (and bounding) one single local optimizer called
a posteriori methods. These methods start with an approximation of a minimizer
of f and apply a test procedure for a neighborhood interval of the approximation
to verify that a zero of f’ lies within that interval.

Our global optimization method can benefit from an approximation of a global
minimizer in the way that we use that approximation to compute the value f in-
corporated in the midpoint test. But we have to to do the same work for validating
that the global minimizer has been found as for computing its value by our method.
That is, a global optimization method with automatic result verification cannot be
an a posteriori method.

For the approximation of a minimizer, there are also a huge number of classical
optimization methods for local and global optimization available without any veri-
fication of the result. For an overview on such approximation methods see [85] or
[88], for example.

The method presented in this chapter can easily be extended to become more
efficient and faster. For more sophisticated extensions, see [25], [26], [27], [28], [35],
[72], [73], and [74].

Chapter 8

Evaluation of Arithmetic Expressions

The evaluation of arithmetic expressions using floating-point arithmetic may lead
to unpredictable results due to an accumulation of roundoff errors. As an example,
the evaluation of z + 1 — z for £ > 10%° using the standard floating-point format
on almost every digital computer yields the wrong result 0. Since the evaluation
of arithmetic expressions is a basic task in digital computing, we should have a
method to evaluate a given expression to an arbitrary accuracy. We will develop
such a method for real expressions composed of the operations +, —~, -, /, and T,
where T denotes exponentiation by an integer. The method is based on the principle
of iterative refinement as discussed in Section 3.8.

8.1 Theoretical Background

There is a very simple method for evaluating a real arithmetic expression to a de-
sired accuracy. Supposed we have a multiple-precision interval arithmetic. We could
start evaluating the expression with single precision and check the relative diameter
of the resulting interval. If the width is greater than the desired accuracy, we would
repeat the evaluation with doubled precision, then in a triple-precision format, and
so on. When we finally succeed, we would return the enclosing interval rounded to
the target format specified by the user. Here, we suppose that the target format
is the standard floating-point format. The method holds two principal disadvan-
tages. First, we would have to implement a multiple-precision interval arithmetic.
Secondly, an already computed approximation would be discarded instead of being
used for the next step when restarting the evaluation with an increased precision. In
the sequel, we will discuss a more sophisticated approach avoiding these disadvan-
tages. See Fischer, Haggenmiiller, and Schumacher [17] for a detailed description of
the method.

8.1.1 A Nonlinear Approach

Let f(z) = f(xy,... ,&n) be an arithmetic expression composed of n operands
T1,...,2, and m operations. We define the set of legal operations by {+,—,-,/,1},
Where 1 denotes exponentiation by an integer. We show how the evaluation of f(x)
is equivalent to finding the solution of a special nonlinear system of equations, which
is similar to the code lists used in automatic differentiation techniques (cf. Rall [66]).
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The procedure of transforming f(z) into such a system is straight forward. Every
operation of f defines a separate equation. The order of these equations is defined
by the conventional rules of algebra for left-to-right evaluation.

Example 8.1 Let f(z) = &tz Eos)™  Thyg we have n = 5 and m = 7. If we

5!
denote the intermediate results of the left-to-right evaluation by .41 t0 Znim, then

we get the following system of nonlinear equations

Te = IT1+ 23 Tg — (.’L‘l + Ita) =0
7 = z} T7 — T} =0
Tg = T2 — T4 Irg — (1}2 - .'t4) = 0
Ty = z5° = z9z3 — 1 = 0
Tio = &r- Ty Ty —Ty T = 0
Ti1 = T5°Ts T11 — T5° Ts =0
T2 = 1‘10/-7311 Ty T1z2— T = 0

with 712 = Zpym = f(z). Note that z,41,...,Zn4m are the unknowns of the system.

Once an approximate solution (Zp41, ..., Znem)’ of the nonlinear system is com-
puted, the absolute error of any intermediate result is given by Az, = 2, — T,
v=mn+1,...,n+ m. Central to our approach is the computation of enclosures of
all Az,. Thus, we get

z,— %, €[Az],, v=n+l,...,n+m.
In particular, this yields f(z) = Zp4m € Tnim + [AZ]nim-

To find enclosures of the absolute error of the intermediate results, we use the
special form of the nonlinear equations. Each of the equations has the form

g(mi,l'j,xk) =0, 1< .7 < k7 (81)

where zj is the new intermediate result. In fact, g has five special forms that will
be individually considered shortly. If ¢ has continuous partial derivatives {ours do),
then expanding g about 7 yields

~ 0]
9(zi, x5, zk) = g(xi, 75, Tx) + 8—i($e, zj, &) Ay,
with £ lying in the hull of z; and Z;. Similarly, we expand g¢(z;, z;,%x) about Z;
- - o~ g N
9(zi, 25, Tk) = g, T;, T) + %(-’Ei,fh‘?k)A%‘v
I
and then g(z;,7;,T;) about Z; to get

SO Jdg 0 - a o~ o~
0= g(a:,', xj,xk) + -éx—k(:l:.‘,zj,fk)Amk + a—jj(z;,fj,wk)Azj + a—i(fg,:tj,zk)Ax,'.
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Here, we have §, € ¢, U T, for v = ¢, §, k. Hence, we obtain the following represen-
tation of the absolute error of the k-th intermediate result:

—9(Z:, T, Tk) — 58;';7;(1:,', &, Tr)Az; — gaf-‘(f,', Z;, Tp)Az;

3_85;(37:'7 zjafk)

A:tk = (8.2)

We will now use (8.2) to derive explicit rules for computing enclosures of Az;. We
will see that each of the partial derivatives in Equation (8.2) is easily computable
for each of the five special forms of ¢ we consider below. For this, we assume
that enclosures [Az); and [Az]; of Az; and Az; are already known. Actually, this
is no restriction, since [Az], = 0 for the exactly known input parameters i.e. for
vy =1,...,n. See Exercise 8.6 for the treatment of interval input parameters.

Addition and Subtraction: Here, we have g(z;, z;, %) = zx—(z;+z;). Applying
Equation (8.2), we get the following enclosure of Az

Az = (E,' + 5]' - 5};) + Az; + Az; € 9(5, +I;,—3) £ [A:L‘]] + [A:B]3 (83)
[A.’L‘]k

Multiplication: For g(z;,z;,zx) = zx — z;z;, Equation (8.2) gives an expression
where the unknown z; is replaced by its enclosure Z; + [Az];. Thus, we get
Az = (5,'%]‘ - 51;) + .’I),’ij + EjA.'E,'
[A.’E]k

Division: Here, we have g(z;,z;,2x) = z;z¢ — z;. Applying Equation (8.2) and
replacing z; by Z; + [Az]; yields
(5,' - Ejgk) - Ekij + Az; c 0(5. — 53'51:) — ’ka.'I:j + Az;
5 . 5]’ + [Am]J
[A.T]k

A.’I)k =

(8.5)

Exponentiation: We consider exponentiation by an integer in three cases. For a

zero exponent, we have zx = 1. Hence, we get [Az]x = 0. For positive exponents

n > 0, we have g(z;,zx) = zx — z7. Applying Equation (8.2) and enclosing ¢; by

Zj UZ; € (7; + [Az];) UT; = T; + (0 U [Az];), we get the following enclosure of
Tk

AID}; = (5:7 — ’ik) + nﬁ;‘_lA:tj € 9(57— Ek) + n(':;fj + (0 9] [Am],))"'l[Aa:]i (86)
[Aalk
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For negative exponents n < 0, we use g(z;,zx) = zxz;" — 1. In a similar way as for
positive exponents, we get

O(1 — &d;") + ndint; (Al

(@ +[Az];)™
Q1 = ZZ;™) + ndi(Z; + (00U [Az];))~D[Az);
\ &, + el 5

[Acls

Al’k =

8.7

Elementary functions: We give the enclosure (8.8) for an elementary function
s(t) : R — R for completeness, but our implementation does not support the
accurate evaluation of expressions involving elementary functions. For this special
case, we have g(z;, zx) = zx — s(z;). Thus, we get

Aay = o(8;) ~ F+ #(65)[Ae); € O(a(35) - ) + (3 + (VU [Ac])[Ad];. (85)
[A:E]k

We point out that it is essential for the convergence of the algorithms described
below to enclose the terms for —g(Z;,%;, %) in intervals as tight as possible. We
have indicated this by the {(...) notation. That is, these terms should be evaluated
with only one final interval rounding.

8.2 Algorithmic Description

The explanations of the previous section motivate the following simple iterative re-
finement scheme. Let f be an arithmetic expression depending on n real-valued
parameters i,...,%,. Initially, set T, = z, for v = 1,...,n, and compute an
approximation of f(z) saving the m intermediate results T,41,...,Zn4m. The or-
der of the intermediate results is given by the conventional rules for left-to-right
evaluation. Set {Az], = 0 for the exactly known parameters z,...,z,. Start the
iteration by computing enclosures of the absolute error of each intermediate result
using Equations (8.3)-(8.8). The procedure is finished if the relative diameter of
[¥] = ZTn4m + [AZ]nim is less than the desired accuracy € > 0. Otherwise, improve
the approximation of each intermediate result by adding the midpoint of the corre-
sponding error interval. Repeat the procedure to get a, hopefully, better [y]. The
iteration fails if the desired accuracy & can not be satisfied after kpm,x steps, where
kmayx is only restricted by the memory available on an actual machine.
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In general, Algorithm 8.1 may not yield an enclosure that is sufficiently tight if
a finite precision arithmetic is used. To satisfy a desired accuracy for the result,
it is often necessary to compute some or all intermediate results with an increased
precision. For this reason, we will introduce a special kind of multi-precision arith-
metic. Instead of adding the correction term m([Az],) to get a new approximation
of an intermediate result (Step 3), we will store its value separately. An interme-
diate result is stored in the staggered correction form %, = EZ=0 T ), where p is
the actual degree of precision. See Stetter [82] for more details on the staggered
correction representation. For our purposes, every component of this representa-
tion is assumed to be an element of a number screen R(b, !, emin, €max) as introduced
in Section 3.5. Some of these components may have overlapping mantissae, so a
staggered representation is not unique as Example 8.2 demonstrates.

Example 8.2 Let ¢t = 0.123456 and R = R(10,3,—5,+5) be a decimal screen
with three significant digits. There are different staggered representations of ¢ using
components of R. For instance, we have

t = 0.103-10° +0.203 - 107! + 0.156 - 1073
= 0.133-10° — 0.961 - 1072 4 0.660 - 10~

We will now modify Algorithm 8.1 to employ a staggered representation of the
Intermediate results. For reasons of simplicity, we also use a staggered representation

for the input parameters. Since these values are exactly known, we set 2z, = z,
and 7 = 0 for u>0and v =1,...,n. We could extend this algorithm to support
user entry of the parameters zy,...,, in a staggered correction format, but we do

ot do so here (see Exercise 8.5). In Algorithm 8.2, the actual degree of precision is
denoted by p. We use the same p for each intermediate result. When the algorithm
has finished, then p is a kind of condition number for the problem. Large values of



136 8. Evaluation of Arithmetic Expressions 8.3 Implementation and Examples 137

p signal that the evaluation problem was poorly conditioned. The representation of
the intermediate results in the staggered format has its effects on the computation
of the enclosures for the absolute error. Thus, we will refer to Algorithms 8.3-8.6
for a detailed description of how to compute these intervals.

As mentioned earlier, we do not support elementary functions. This is because
would need elementary functions that accept arguments in a staggered correction
format. An implementation of such functions is beyond the scope of this book (see
Kramer {47]). This is also the reason for we do not give an algorithmic description
of the exponentiation by an integer for arguments in a staggered correction format.
To implement Equations (8.6) and (8.7) accurately, we would have to implement
powers of operands in a staggered correction format. To avoid this, we will consider

an integer exponentiation as a sequence of multiplications or divisions until the end 8.3 Implementat ion and Examples
of this chapter (see Algorithm A.l in the appendix for details). Hence, the number ‘
of intermediate results increases by formally substituting these operations. 8.3.1 PASCAL-XSC Program Code
Let us now describe the algorithms for computing [Az], for the basic operations
+, —, -, and /. In order to simplify the notation slightly, we identify the parameters In this section, we give the implementation of the module expreval for the accurate

z;, ¢;, and z as z, y, and z, respectively. evaluation of real arithmetic expressions. The module is based on a data type
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Staggered that holds components for both the approximation and the error interval.
We give the definition of a special arithmetic including the operators +, —, -, /, and
1. A little programming trick implicitly transforms an expression into a system of
nonlinear equations so that evaluating the expression using this special arithmetic
automatically yields a user-specified accuracy for the result. We stress that those
parts of the algorithms of the previous section marked by (.. .) are implemented
using the accurate expressions of PASCAL-XSC.

8.3.1.1 Module expreval

The module provides the operators +, —, -, and / for both operands of type Stag-
gered and for mixed operands of type Staggered and real. The function Power is
an implementation of the operator T using the binary shift method as described in
Algorithm A.1 of the appendix. The module also includes an overloaded assignment
operator for converting real data to data of type Staggered. The main procedure
Eval is an implementation of Algorithm 8.2. The function EvalErrMsg may be used
to get an explicit error message text.

As mentioned above, we use a programming trick to transform an arithmetic
expression implicitly into an equivalent system of nonlinear equations. We first
convert all parameters in an expression f to operands of type Staggered. When f
is evaluated for the first time using the special staggered arithmetic, every operator
appends its result into a linear linked list. We may access these values if we restart
the evaluation of f a second time, this time for computing enclosures of the error
intervals according to the Algorithms 8.3-8.6. This list now may be used to update
the staggered components of the intermediate results as described in Algorithm 8.2.
This trick works because the code list for f is always evaluated in exactly the same
order each time f is evaluated. All procedures needed for allocation and management
of the internal list are declared locally, so they are hidden for programs which use
the module.

Another simple trick is used to avoid an abnormal program termination caused by
a division by zero. If a zero denominator occurs while executing the operator /, the
flag DivByZero is set. Since all operators check this flag before starting execution,
this terminates the evaluation without forcing a runtime exception. An update of
those intermediate results computed before terminating the evaluation will result in
an improved approximation for the denominator. Thus, it is our hope to overcome
this critical point of evaluation with the next iteration step. Any other exceptions
are handled by the standard exception handler of PASCAL-XSC.

{ —=-}
{ Purpose: Computation of an enclosure of the value of a real arithmetic }
{ expression composed of the operations +, -, *, /, and t, where T }
{ denotes exponentiation by an integer. }
{ Method: Iterative refinement using a defect correction mechanism. The }
{ successively computed corrections for the result are stored in a }
{ staggered correction format. }
{ Global types, operators, functions, and procedures: }
{ type Staggered : Data type for staggered data representation }
{ type StaggArray : Array of type 'Staggered’ ;

{ operators := : Assignment of 'Staggered’ := ’'real’

{  operators +, -, *, / :

{ function Power(...) :

{

{ procedure Eval(...)

8.3 Implementation and Examples

type ’‘Staggered’ and one of type ’‘real’

‘integer’ (Exponentiation by an integer)

Both operands of type ’Staggered’ or one of
Argument of type ’Staggered’, exponent of type

Main procedure for evaluation of an expression
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{___
module expreval; { Expression evaluation }
- —--- }
use
x_real, { Needed if a signaling NaN is to be returned 3
i_util, { Utilities of type interval
i_ari; { Interval arithmetic }
const

MaxStaggPrec = 10;

{ Maximum number of staggered corrections which can }

{ be stored in a variable of type ‘Staggered’. by
{ Recompile this module if its value is changed. }
global type
Staggered = record
Val : array[0..MaxStaggPrec] of real; { Stagg. corrections }
Err : interval; { Error enclosure 3
end;
StaggArray = global dymamic array [*] of Staggered;
type
IntResPtr = TIntRes; { Pointer to an intermediate result }
IntRes = record
Entry : Staggered; { Staggered entry }
Next : IntResPtr; { Next entry }
end;
{---- }
{ Private variables which are globally used within other functions and 3}
{ procedures of this module. 3}
}
var
DinyZero : boolean; { Error flag
InitFlag : poolean; { Signals the initialization process
ActStaggPrec : integer; { Actual length of the staggered format
HeadPtr . IntResPtr; { Head of the list of intermediate results }
ActPtr . IntResPtr; { Pointer to the actual intermediate result }
FreePtr : IntResPtr; { Pointer to freed intermediate results
{ }
{ Error codes used in this module. 3
const . ’
NoErrer = 0; { No error occurred. ¥
ItFailed = 1; { Maximum number of staggered corrections exceeded. }
ZeroDiv = 2; { Division by zero that could not be
{ removed by iterative refinement. }
{ }
f Error messages depending on the error code. }
- }
global functiom EvalErrMsg ( ErrNo : integer ) : string;
var
Msg : string;
begin
case ErrNo of
NoError : Msg A

ItFailed : Msg

ZeroDiv : Msg

] .I.l

]

’Maximum number of staggered corrections (=’ +
image(MaxStaggPrec) + ') exceeded’;
'Division by zero occurred’;
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else : Msg := ’'Code not defined’;
end;
if (ErrNo <> NoError) them Msg := ’Error: ’ + Msg + '!’;
EvalErrMsg := Msg;
end;
{

{ Since the intermediate results of operations for staggered data must be

{ iteratively updated, it is necessary to store these data. For this

{ purpose, a linear linked list is used. Its head is accessed via ’'HeadPtr’,
{ whereas its actual entry is accessed via ’'ActPtr’. ’'FreePtr’ is a pointer ¥
{ to a list of already allocated but actually unused entries. To prevent 3

S

{ creation of garbage in memory, the entries of this list are used first >
{ when allocating a new intermediate result. All procedures for the handling }
{ of the list of intermediate results are locally defined. 3}
{ }
procedure InitList; { Initialize list of intermediate results }
begin
DivByZero := false;
i? (HeadPtr <> mnil) then { Use list of freed entries }
FreePtr := HeadPtr
else { A list was not yet allocated }
FreePtr := nil;
HeadPtr := mnil;
ActPtr := mil;
end;

procedure ResetList; { Reset error flag and set the actual }

begin { pointer to the head of the list. }
DivByZero := false; { - 3
ActPtr := HeadPtr;
end;
procedure AllocEntry ( var p : IntResPtr ); { Allocate memory for a new }
begin { entry. Use a previously }
it (FreePtr <> mil) then ‘ { created entry from the list }
begin { of freed entries if any. }
p := FreePtr; { 3
FreePtr := FreePtrt.next;
end
else
new(p);
end;
procedure InitEntry ( Approx : real ); { Get a new list entry and initial- }
var { ize its first staggered component }
p : IntResPtr; { with the value ’'Approx’. ¥
begin { }
AllocEntry(p);

pT.Entry.Val[0] := Approx;
pt.Next := mnil;
it (HeadPtr = mnil) then
begin HeadPtr := p; ActPtr := p; end

else
begin ActPtrt.Next := p; ActPtr := p; end;
end;
procedure UpdateError ( Error : interval ); { Update the error component }
begin { of the actual entry. }
ActPtrt.Entry.Err := Error; { --}
ActPtr := ActPtrt.Next;
end;

procedure UpdateStaggComp ( i : integer ); { Update the i-th staggered 1}
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begin { component of all list }
ActPtr := HeadPtr; { entries by the midpoint of }
while (ActPtr <> nil) do { the error interval.
begin { }
with ActPtrt.Entry do
begin
Vallil := mid(Err); Err := 0;
end;
ActPtr := ActPtrt.Next;
end;
end;
{--—-- }
{ Assignment operator used to convert a real input parameter ’'r’ to the }
{ staggered type. A real operand is assumed to be exact! It must not have F
{ been rounded. In particular, ’r’ cannot be }
{ - a real value such as 0.1 which is not exactly representable in the }
{ internal binary format, >
E - ;ounded by conversion to the internal binary data format during 3}
input,
f - any arithmetic expression which cannot be evaluated exactly. i
global operator := ( var x : Staggered; r : real ); d
var
i : integer;
begin
Xx.Val[0] := r;
for i := 1 to MaxStaggPrec do x.Vallil := 0;
x.Err := 0;
end;
{ }
{ Arithmetic operators +, -, *, and / for operands of type ’‘Staggered’. A }
{ division by an interval containing zero will be avoided and is marked by }

{ sgtting the ’DivByZero’ flag. If ’DivByZero’ is set, all succeeding opera- }
{ tions are not executed. The evaluation is stopped at this point but may be }
{ restarted after updating a new staggered component by the midpoints of the }
{ error enclosures computed so far.

}
global operator + ( x, y : Staggered ) AddStaggStagg : Staggered;
var
i, p : integer;
z . Staggered;
begin
if (not DivByZero) then
begin
it (InitFlag) them { Initialize first staggered component }
begin
z.Vallo]l := x.vall[0l + y.vallo0];
InitEntry(z.vVall0]);
end
else
begin
z := ActPtrt.Entry; p := ActStaggPrec; <{ Get actual values of z }

{ Error: dz :=##(x +y -z +dx +dy ) }
z.Err := ##( for 1:=0 to p sum( x.Valli] + y.valli] - z.val[i] ) +
x.Err + y.Err );
UpdateError(z.Err);
end;
AddStaggStagg := z;
end;
end; {operator +}
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global operator - ( x, y : Staggered ) SubStaggStagg : Staggered;
var
i, p : integer;
z : Staggered;
begin
if (not DivByZero) then
begin
if (InitFlag) them <{ Initialize first staggered component }
begin
z.val{ol := x.Vall[0] - y.Vall0];
InitEntry(z.Vall0l);
end
else
begin
z := ActPtrt.Entry; p := ActStaggPrec; { Get actual values of z }

{ Error: dz :=##(x -y ~z+dx -dy ) }
z.Err := ##( for i:=0 to p sum( x.Val[i] - y.val{il - z.vallil ) +
x.Err - y.Err );
UpdateError(z .Err);
end;
SubStaggStagg := z;
end;
end; {operator -}

global operator * ( x, y : Staggered ) MulStaggStagg :@ Staggered;
var
i, j, p : integer;
z . Staggered;
begin
if (mot DivByZero) them
begin
if (InitFlag) then { Initialize first staggered component }
begin
z.Valf0] := x.vall0] * y.val(o0]l;
InitEntry(z.vVallol);
end
else
begin
z := ActPtrt.Entry; p := ActStaggPrec; { Get actual values of z }

{ Error: dz := ##( x*y - z + y*dx + x*dy + dx*dy ) }
z . Err := ##( for i:=0 to p sum( for j:=0 to p sum(
x.Vallil*y.valljl ) - z.vallil ) +
for i:=0 to p sum(
y.Vallil*x.Err + x.Val[il*y.Err ) +
x.Err*y.Err );
UpdateError(z.Err);
end;
MulStaggStagg := z;
end;
end; {operator *}

global operator / ( x, y : Staggered ) DivStaggStagg : Staggered;
var

i, j, p : integer;

z . Staggered;

num, denom : interval;
begin

if (not DivByZero) then

begin

if (InitFlag) then { Initialize first staggered component }
it (y.val{o] <> 0) then
begin
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z.Vall0] := x.val[0] / y.vallo0l;
InitEntry(z.vall0]);
end
else
begin
DivByZero := true;
InitEntry(0);
end
else
begin
z := ActPtrt.Entry; p := ActStaggPrec; { Get actual values of z }

{ Error: dz :=##(x —z¢y +dx -z+dy ) / ##(y +dy ) }
nunm := ##( for i:=0 to p sum( x.Val[il - for j:=0 to p sum(
y.Valljl*z.Val[i] ) ) +
X.Err - for i:=0 to p sum( z.Val[il*y.Err ) );
denom := ##( for i:=0 to p sum( y.Val[i] ) + y.Err );

if (0 in denom) then

begin z.Err := 0; DivByZero:= true; end
else

z.Err := num / denom;

UpdateError(z.Err);
end;
DivStaggStagg := z;
end;
end; {operator /}

{
{ Arithmetic operators for different operands the one of type ’‘real’ and the
{ other one of type ‘Staggered’. All these operators are implemented by

{ first coercing both operands to ’'Staggered’ type and then calling the

f corresponding operators for the type ’Staggered’.

[P NN

global operator + ( x : real; y : Staggered ) AddRealStagg : Staggered;
var
z : Staggered;
begin
z = X; AddRealStagg := z + y;
end;

global operator + ( x : Staggered; y : real ) AddStaggReal : Staggered;
var

z @ Staggered;
begin

z =y, AddStaggReal := x + z;
end;

global operator - ( x : real; y : Staggered ) SubRealStagg : Staggered;
var
Zz @ Staggered;
begin
Z := x; SubRealStagg := z - y;
end;

global operator - ( x : Staggered; y : real ) SubStaggReal : Staggered;
var
Z : Staggered;
begin
Z :=y,; SubStaggReal := x - z;
end;

global operator * ( x : real; y : Staggered ) MulRealStagg : Staggered;
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var { In : 'f’ : a function of type ’Staggered’ whose arguments are J}
z : Staggered; { passed in an array of type ’‘Staggered’. 2}
begin { ‘Arg’ : the real-valued arguments of 'f’ stored as >
z := X; MulRealStagg := z * y; { components of a real vector. >
end; { 'Eps’ : desired accuracy. >
{ Out : ’Approx’ : result computed with standard floating-point }
global operator * ( x : Staggered; y : real ) MulStaggReal : Staggered; { arithmetic. }
var { ‘Encl’ . verified enclosure of the result. 3}
z : Staggered; { 'StaggPrec’ : number of corrections needed. 3
begin { ’Err’ : error code. >
z := y; MulStaggReal := x * 2z; { Description: }
end; { The expression 'f’ is evaluated for the real arguments which are stored J}
{ sequentially in the vector ’'Arg’. Initially, the real arguments are 3}
global operator / ( x : real; y : Staggered ) DivRealStagg : Staggered; { converted to arguments of type ’'Staggered’. When ’f’ is evaluated for 7}
var { the first time using the special staggered arithmetic, the list of }
z : Staggered; { intermediate results is initialized. Each time ’f’ is evaluated again, }
begin { the error of every intermediate result is enclosed. The midpoints of }
z := x; DivRealStagg := z / y; { these enclosures are used to update the intermediate results. The 3}
end; { iteration is finished if the error of the last intermediate result }
{ (= value of 'f’) is less than the desired accuracy. Otherwise, the 3
global operator / ( x : Staggered; y : real ) DivStaggReal : Staggered; g iteration is halted after ’'MaxStaggPrec’ steps. F}
var - 3
z : Staggered; global procedure Eval ( function f ( v : StaggArray ) : Staggered;
begin Arg . rvector;
z := y; DivStaggReal := x / z; Eps : real;
end; var Approx : real,;
var Encl : interval;
{ 3 var StaggPrec : integer;
{ Power function for integer exponents using the binary shift method. Thus, } var Err : integer);
{ the number of successive multiplications is reduced from n to log(2,n). } var
{ Since xtn is considered to be a monomial, we define x10 := 1. 2 i . integer;
{ 3 x : StaggArray[1..ub(Arg)-1b(Arg)+1];
global functiom Power ( x : Staggered; n : integer ) : Staggered; StaggRes : Staggered;
var Success : boolean;
m : integer; begin
p. z : Staggered; for i := 1 to ub(Arg)-1lb(Arg)+1 do { Initialize arguments }
begin x[i] := Arg[1v(Arg)+i-1];
if (mot DivByZero) then
begin InitList; { Initialize list for intermediate results. }
if (n = 0) then InitFlag := true; { So far, no staggered corrections computed. }
Power := 1 StaggRes := f(x); { Compute first staggered component. }
else
begin { In general, the first component of ’‘StaggRes’ will now hold the usual }
if (n > 0) thenm :=n else m := -n; { floating-point approximation, except when a division by zero occurred. }
{ In the latter case, a signaling NaN (= Not a Number, for more details }
p:=1; z:=x; { Binary shift method } { see the PASCAL-XSC user’s guide) is returned. >
vhile (m > 0) do { - { }
begin it (DivByZero) then
if (m mod 2 = 1) then p := p * z; Approx := x_value(x_sNaN)
m :=mr div 2; else
it (m > 0) then z := z * Z; Approx := StaggRes.Vall[0];
end; { Initial approximations are }
InitFlag := false; ActStaggPrec := 0; { already computed.
if (n > 0) then Power := p else Power := 1/p; repeat
ond; ResetList; { Compute new enclosures of the absolute error }
end; StaggRes := f(x); { of any intermediate result.
end; {function Power}
N Encl := ##(for i:=0 to ActStaggPrec sum(StaggRes.Val[il) + StaggRes.Err);
{ —
{ Purpose: The procedure ’Eval’ may be used for the computation of an } Success := (mot DivByZero amd (RelDiam(Encl) <= Eps) );
{ enclosure of the value of a real arithmetic expression composed of the }
{ operations +, -, *, /, and 1, where T denotes exponentiation by an } { Increment actual staggered precision and store the next component of }
{ integer. } { the intermediate results by updating the list of intermediate results. }
{ Parameters: }
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if ( (mot Success) and (ActStaggPrec < MaxStaggPrec) ) them
begin
ActStaggPrec := ActStaggPrec + 1;
UpdateStaggComp(ActStaggPrec);
end;
until ( Success or (ActStaggPrec = MaxStaggPrec) );
StaggPrec := ActStaggPrec;

it (Success) then { Set error code }

Err := NoError

else if (DivByZero) them
Err := ZeroDiv

else

Err := ItFailed;
end; {procedure Eval}

}
{ Module initialization part }
}
begin
{ Nothing to initialize }
end.

8.3.2 Examples

The examples of this section demonstrate how to use the procedure Eval for an
accurate black box evaluation of arithmetic expressions. The only thing we have to
do is to define a function of type Staggered including the expression to be evaluated.
By passing the parameters of the expression in a dynamic array of type StaggArray,
we are able to define functions with a variable number of arguments. Note that the
arguments are accessed starting with index 1.

Example 8.3 In our first example, we want to evaluate the real rational function

1
y8 — 3zy® + 523y — 35y — 2’

flz,y) =
Let a; and a;4; be two successive Fibonacci numbers defined by
ap=0, a1=1, a; =ai1+a,, 1=2,3,...

Then we always get f(a;,ai41) = (—1)'. In the program listed below, f is defined
as a function of type Staggered. To shorten the definition of its body, we first
copy its parameters to auxiliary variables x and y. The main program accepts the
parameters and the desired accuracy, evaluates f, and reports the results. If Eval
succeeds, an enclosure of the function value and, for reasons of comparison, the value
of a naive floating-point evaluation are listed.

{ -}
{ Example for the evaluation of an arithmetic expression using procedure }
{ ’Eval()’. Evaluate the following expression: }

}
{ £f(x,y) := 1/ ( y16 - 3*xxyt5 + 5+x13*y13 - 3*xt5xy - x16 ). }
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{ }
{ With x and y being successive Fibonacci numbers defined by }
{ }
{ a_0:=0, a.l:=1, a.i :=a.i-1 + a_ i-2, i >= 2, }
{ }
{ we always get f(a_i,a_i+1) = (~1)1i. For instance a_66 = 27777890035288 }
{ and a_67 := 44945570212853 are such two successive Fibonacci numbers. }
{- }
program ExprEval Example_Fibonacci ( input, output );
use

i_ari, { Interval arithmetic }

expreval,; { Expression evaluation }

function f ( v : StaggArray ) : Staggered;

var
X, y : Staggered;
begin
x := v{1];
y = v2];
f := 1/ ( Power(y,6) - 3*x»Power(y,5) + 5+Power(x,3)*Power(y,3)
- 3*Power(x,5)*y ~ Power(x,6) );
end;
var
Eps, Approx : real;
StaggPrec, ErrCode : integer;
Arg . rvector[l..2];
Encl : interval;
begin
writeln(’Evaluation of 1 / ( yT6 - 3*x*yt5 + SxxT3*yt3 — 3*xth*y — x16 )’);
writeln;

writeln(’Enter the arguments:’);

write (* x = ’); read(Arg[1]);
write (* y = ’); read(Argl2]);
writeln;

writeln(’Desired accuracy:’);
write (’ Eps = *); read(Eps);
writeln;

Eval(f,Arg,Eps,Approx,Encl,StaggPrec,ErrCode);
if (ErrCode = 0) then

begin
writeln(’Floating-point evaluation: ', Approx);
writeln(’Interval enclosure: ', Encl);
writeln(’Corrections needed: ! ,StaggPrec);

end

else
writeln(EvalErrMsg(ErrCode));
end.

A sample output is given below. The floating-point format used for computation
has a precision of about 16 decimals. Thus, it does not make sense to demand
a value less than 107! for the relative accuracy €. We also point out that the
result computed by the naive floating-point evaluation has neither the same order
of magnitude nor any correct digits in the mantissa!

Evaluation of 1 / ( y~™6 — 3*x*y~5 + 5*x"3%y~3 - 3*x"5*y - x"6 )
Enter the arguments:

X = 27777890035288
Yy = 44945570212853
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Desired accuracy:

Eps = 1e-20
Floating-point evaluation: 3.165189248586599E-066
Interval enclosure: [ 1.000000000000000E+000, 1.000000000000000E+000 ]
Corrections needed: 5

Example 8.4 Qur second example deals with the evaluation of a second order
difference quotient. Let f(x) be a real function, twice differentiable at z. Then its

second order difference quotient, defined by

Dyfeypy = HEZNH@ SR

(8.9)

is a good approximation of f"(z) for small values of k. It is well known that the
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var
Eps, Approx : real;
StaggPrec, ErrCode : integer;
Arg : rvector[1..2];
Encl : interval;
begin

writeln(’Evaluation of the second order difference quotient ’);
writeln(’ Df(x,h) = (f(x-h) - 2f(x) + £(x+h)) / h12’);
writeln(’for the function’);

write (° £(x) = 640(xT4 - 23x13 + 159x12 - 2x + 45) / *);
writeln(?(x13 + 18x12 + 501x + 20)’);

writeln(*Note: £’'’’(1) = 36.’);

writeln;

writeln(’Enter the arguments:’);

evaluation of Dy using floating-point arithmeticis unstable. The instability is caused
by cancellation while evaluating the numerator of Dy. Therefore, the evaluation of
Dy for small values of h is a good example for demonstrating the benefits of our
algorithm. The sample program listed below may be used to evaluate Dy for a

vrite (’ x = ’); read(Arg[1l);
write (’ h = ’); read(Arg[2]);
writeln;

wvriteln(’Desired accuracy:’);
write (' Eps = '); read(Eps);
writeln;

function f defined by

4 _ 2323 4+ 15922 — 22 4+ 45
23 4+ 1822 4+ 501z + 20

Flz) = 540

The exact value at £ = 1 is f”(1) = 36. The coding of the sample program is similar
to Example 8.3, except that the definition of Dy is realized by nested function calls.

{

{ Example for the evaluation of an arithmetic expression using procedure
{ ’Eval()’. The second order difference quotient for a real function f(x) is
{ defined by Df(x,h) := (f(x-h) - 2f(x) + f(x+h)) / h12. This quotient is

{ used to approximate the second derivative of

{ f(x) := 540 (x14 - 23x13 + 159x12 - 2x + 45) / (x13 + 18x12 + 501x + 20)
{

{ at x = 1. Since f is twice differentiable, Df(1,h) should tend to
{ £’’(1) = 36 if h tends to zero.
{
program ExprEval_Example_DiffQuot ( input, output );
use
i_ari, { Interval arithmetic }
expreval; { Expression evaluation }

function f ( x : Staggered ) : Staggered;
begin

f := 540 * (Power(x,4) - 23*Power(x,3) + 159%Power(x,2) — 2%x + 45) /

(Power(x,3) + 18*Power(x,2) + 501%x + 20);
end;

function Df ( v : StaggArray ) : Sﬁaggered;

var

X, h : Staggered;
begin

x := v[1];

h = v[2];

Df := (f(x-h) - 2*f(x) + f(x+h)) / (h*h);
end;

o e S S S S b o

Eval(Df,Arg,Eps,Approx,Encl,StaggPrec,ErrCode);
if (ErrCode = 0) then

begin
vriteln(’Floating-point evaluation: ’, Approx);
writeln(’Interval enclosure: ',  Encl);
writeln(’Corrections needed: ! ,StaggPrec);
end
else

vriteln(EvalErrMsg(ErrCode));
end.

An output of the sample program is given below. Again, the result computed
by naive floating-point evaluation has neither the same order of magnitude nor any
correct digits in the mantissa. We stress that the result interval is verified to be an
enclosure of the value of the second order difference quotient, but it is not proved
to be an enclosure of the value of the second derivative at £ = 1. To compute
a verified enclosure of f”, we should add an enclosure for the truncation error in
Equation (8.9).

Evaluation of the second order difference quotient

Df(x,h) = (f(x-h) - 2f(x) + f(x+h)) / h"2
for the function

f(x) = 540(x"4 - 23x"3 + 159x"2 - 2x + 45) / (x"3 + 18x~2 + 501x + 20)
Note: £°’(1) = 36.

Enter the arguments:

X 1

h = 1e-8

Desired accuracy:
Eps = le-15

Floating-point evaluation:  2.842170943040400E+002
Interval enclosure: [ 3.600000000000000E+001, 3.600000000000002E+001 ]
Corrections needed: 1
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8.3.3 Restrictions, Hints, and Improvements

Since our method is a method for evaluating real expressions, we must be careful
that the parameters used for evaluation are exactly representable on the computer’s
number screen. Actually, this is no restriction if the method is used to evaluate an
expression whose input parameters come from previous computations. If an exact
representation of real constants such as 0.1 is desired, one might use an appropriate
representation as a fraction of integers. For more details about conversion of input
data, see the remarks in Section 3.7.

There is another problem we should be wary of when defining an expression of
type Staggered. Remember that the type of an operator is defined by the types of
its operands. As an example, consider the expression (r1+r3)-z, where ry and r; are
operands of type real and z is an operand of type Staggered. Since both operands
r, and r; are of type real, the sum is computed using the standard operator for a
real addition instead of using the operator for addition of type Staggered. To be
sure that for any operation the corresponding operator of type Staggered is used, we
recommend converting each real operand of an expression by introducing auxiliary
variables of type Staggered. In the examples of the previous section, any operators
within the definition part of the functions are operators of type Staggered.

For the implementation of Algorithm 8.2, we made extensive use of the accurate
expressions of PASCAL-XSC. The algorithm can also be applied if a multi-precision
interval arithmetic is available and is used instead.

8.4 Exercises

Exercise 8.1 Check by paper and pencil how Algorithm 8.2 works for z +y — =
with z = 10 and y == 1. How many corrections p are needed?

Exercise 8.2 Let f(z,y) = (2?)?~(2y*)’—(2y) and g(z,y) = (=?)*— (29)*(y*+1).
Both expressions are equivalent. Use the module expreval to get enclosures of f and
g at ¢ = 665857 and y = 470832. Compare the results with the values computed
by ordinary floating-point arithmetic. For these special arguments, the exact result
is 1.

Exercise 8.3 Evaluate the expression

1
= ———(1682zy* 3 +29zy? — 22° + 832
flz,y) 107751( 682zy* + 3z° + 29zy z° + 832)
at x = 192119201 and y = 35675640. Use the module expreval to get an enclosure
of f(z,y). Compare the result with the value computed by ordinary floating-point
arithmetic. For these special arguments the exact result is 1783.

Exercise 8.4 Use the module expreval to evaluate the sample polynomials of Chap-
ter 4 on page 64.
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Exercise 8.5 Extend procedure Eval to accept arguments to f in a staggered cor-
rection form and to return the value of f as a Staggered type.

Exercise 8.6 Extend the module expreval to support interval-valued expressions.
For an interval parameter [z],, » € {1,...,n}, use T, := m([z],) and [Az], :=
[z], — %, for initialization. The method is effective for small intervals, but does not
necessarily yield the desired accuracy. See Fischer, Haggenmiiller, and Schumacher
[17] for more details.

8.5 References and Further Reading

A first algorithm for the verified evaluation of arithmetic expressions was given by
Bohm [10]. Compared to the method described above, this algorithm is based on
a transformation to an equivalent system of linear equations, so it could not han-
dle elementary functions. A summary of the nonlinear approach is found in the
papers of Fischer, Haggenmiiller, and Schumacher [17], [18]. A more sophisticated
approach which works by computing an upper bound for the condition of the prob-
lem, and then delivers the precision necessary to achieve the desired accuracy was
given by Hammer [23]. It includes an implementation in PASCAL-XSC including
standard functions and a method for avoiding the problem of data conversion. A
different approach which is based on the principles of reverse methods was given by
Fischer [16]. In contrast to our algorithm, this approach yields different degrees of
precision for computing different intermediate results. Finally, we remark that there
are commercial implementations of the nonlinear approach discussed above which
come with the subroutine libraries ACRITH of IBM and ARITHMOS of SIEMENS
(see [32], [80]).



Chapter 9

Zeros of Complex Polynomials

We consider the complex polynomial p : € — € defined by

n
p(z)=Zp.-z‘, p€C, i=0,...,n, p,#0. (9.1

=0

The Fundamental Theorem of algebra asserts that this polynomial has n zeros
counted by multiplicity. Finding these roots is a non trivial problem in numeri-
cal mathematics. Most algorithms deliver only approximations of the exact zeros
without any or with only weak statements concerning the accuracy.

In this section, we describe an algorithm that computes verified enclosures of
the roots of a complex polynomial by enclosing the zeros in narrow bounds. The
coeflicients of the deflated polynomial also are enclosed.

9.1 Theoretical Background

9.1.1 Description of the Problem

The algorithm described in Section 9.2 is based on the fact that the roots of the
complex polynomial (9.1) of degree n match the eigenvalues of the companion matrix

0 ... 0 —po/pn
1 - n
A= . pl/_p (= Cnxn (9.2)
1 —pn1/pn

since (—1)" - p,, - det(A — zI) = p(z), where I is the identity matrix of dimension n.
Hence, the problem of finding a zero of the complex polynomial p is equivalent to
finding an eigenvalue z* of the matrix A € €™*". We solve the eigenvalue problem

Ag*=2"¢" ot (A-2'I)¢*=0, feC, ¢ €€ 9.3)

where ¢* is an eigenvector corresponding to the eigenvalue 2* consisting of the coef-
ficients g3, 45, ..., q;_, of the deflated polynomial ¢*(z) = Y17 ¢f2' = 2.
We get a verified enclosure of an eigenvalue of the companion matrix and there-

fore of a zero of the complex polynomial by using Schauder’s fixed-point theorem
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(see [30]), which is a generalization of Brouwer’s fixed-point theorem described in
Section ‘3.8. Additionally, the coefficients of the deflated polynomial are enclosed.

The coefficients of the deflated polynomial may be determined recursively by
Horner’s evaluation of the polynomial p at the point z*:

Gn-1 = Pn
g = g2 +p, i=n-—1,...,L

From the definition of ¢*, we can scale the vector ¢* = (g3, qf,...,q:_,)7 by fixing
g:_, := Pn, thus avoiding the division by p, in the matrix A.

We have a system of nonlinear equations in the n unknowns ¢g,qf,...,q%_,,
and z*. Let the vector ¢ be the first n — 1 components of the desired eigenvector
q:= (45,41, 4-2)T The eigenvalue z* often is stored as the n** component of a
vector (g,2)7.

9.1.2 Iterative Approach

We introduce the following a posteriori method to determine the zeros of a complex
polynomial. Let f : €™ — €" be a nonlinear, differentiable function. A well known
strategy to solve a nonlinear system f(z) =0 is the simplified Newton iteration
using the fixed-point form of the problem. Let a starting approximation z(® be
given, let B = f/(z(®)~1, and iterate according to

g®+) = 0 _ R f(z®)) = g(z®), k=0,1,2,... (9-4)

If (9 is close to the fixed-point z*, the sequence of z(*¥) for k — oo approaches the
fixed-point z* = g(z*) with f(z*) = 0.

To apply the simplified Newton iteration to the eigenvalue problem (9.3), we
let z = (¢,2)T = (g0, 15+ -++9n2,2)7, gn-1 := pn = const, and define the function

f: € —C" as
f($)=f(<g))=(A—-zI)(:ﬂ).

Then matrix R~ J i ! is an approximation to the inverse of the Jacobian matrix

1/
5= re=lu-an( L)
1 00 0 --- 0 g
= (a-en| O |-pE (9.5)
1 : P gu2
0 0 0 --- 0 p,
—, g
— 1 :
—2Z —(Qn-2
1 —Pn
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Because of the special shape of Jy, its inverse R can be determined directly by
eliminating the diagonal elements according to Gauss:

1 z ]. 0 —Wy
1 ., J 1 —un
L = (9.6)
1 1 1 —w,
with wpo1 = py

gGi+z w4, t=n—-2,...,0.

w;

With the known inverse of the right-hand side, we immediately get

—wyfwe 1 1 2 1
R=J'= ! (9.7
IRC A —w,,_l/wo 1 1 ' ) )
—1/1.00 0 1 1

For numerical stability reasons, it is better to perform a residual correction in-
stead of iterative improvement of the complete complex vector (g, z)T. We use the
following notation for the residual correction:

-~ : g\ _ [ d+4,
z=z+ A, thatis (z>_(5+A,)

with 7 (resp. ¢ and ?) being approximations of the exact values z (resp. q and z).
Then the Newton iteration has the form

g*+) —F = 2B _F_R. f(®), or
AFY = AP _R. fG+AW).

For our special eigenvalue problem, we get

A(k+1) A(”) + A(k) A(k)
( A(m) Azk) —r-s(( ¢ it A("’ ) =:4( A(/c) ) = g(A®)

with g : €* — €", ¢,A, € €', and 2,A, € €. All further calculations depend
only on the residual values (A,, A,)T denoted as A,.
Some transformations of the right-hand side (omitting the iteration index k)

yield
AR (A-G+A 1)(9“rA )

s fuan (1) s (7)
sam(3)-a (%)

9(Az)

9.1 Theoretical Background 155

= s () ena(3)

1 00 0 -0
_R-|(a=31) EERR S P A, .
1 : P Q-2
0 0 0 --- 0 p,
We do some additional substitutions for a more algorithmic representatikon:
9(A)) = —R-d+R-A, ( o ) +(I~R-J)A,, 9.8)
with 7
d:=(A-7Z21 9.9
- 7). ©9)
In summary, we have a formulation of the Newton iteration with
) Al AW
AF = g(A®)Y  denoting ( Aikﬂ) = g¢( Aik) ) (9.10)

to solve the eigenvalue problem (9.3).

The Approximate Iteration

We must determine good approximations of the exact eigenvector ¢* and eigenvalue
z* to avoid inflation effects using the interval version of the Newton iteration (9.10).
For this purpose, we first use a non-interval residual iteration algorithm starting with
an arbitrary starting approximation Z for a root of p(z). The initial eigenvector §
corresponding to that eigenvalue 7 is computed recursively by Horner’s evaluation of
the polynomial p at the point Z. We use the iteration function g of (9.8) (in floating-
point arithmetic) to improve the corresponding residual vector A, = (A4, A,)7 until
sufficient accuracy is achieved.

The Verification Step

We define the interval function g; : IC" — IC™ as an interval extension of (9.8) for
the interval version of Newton’s iteration algorithm to get

1 (*)
8uf0 = (2 9) denoting Ity ) =2 ) 00
with [A,] € I€™', and [A,] € €. Omitting the iteration index ,
aiad) = -r-d+ B () + - R 1piad

with the fixed values d from (9.9), J; from (9.5) and R from (9.7).
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Schauder’s fixed-point theorem says: If we have the enclosure

[A.]%D = gy([A.]®) C [A,]®, (9.12)

then there exists a (not necessarily unique) fixed-point of g;, and with this a solution
z* € T + [A;]*+) of the eigenvalue problem (9.4).

If we choose R as an exact inverse of Jy, i.e. R= J;', we get I — R-J; = 0, and
a simplified iteration function

a([Az)) :=~R-d+ R-[A,] ( [Aoq] ) .

This simplification is also valid if we replace R by an interval matrix [R] that is
a verified enclosure of the exact inverse J; ! (see [10]). Using complex interval
arithmetic, we get

_1 — ." . 1 e .
el 1 17|
—1/[wo 0 1 1

which allows us to simplify the interval function even on a computer to

(i) = —18) -1+ (A ] (157, (9.13)

Subsequently, we start a new iteration step by evaluating the function g for a
complex interval vector argument until we achieve enclosure (9.12). For computa-
tional reasons {cf. Section 3.6), we start with a slightly inflated approximation. The
Schauder fixed-point theorem guarantees that there exists a solution of the fixed-
point problem (9.12) in ([A]**+V,[A,]-+D)T, If O ¢ [wy), it also follows that [R] is
non-singular. This yields

(A— F+ [A,])I) ( ‘7+p£Aq] ) > (A—2) ( ¢ ) =0.

n

That is, (Z + [A,]) is a verified enclosure of an eigenvalue 2*, which is a root of the
complex polynomial p, and (§+[A,]) is a verified enclosure of a corresponding eigen-
vector ¢*, the components of which are the coefficients of the deflated polynomial.

9.2 Algorithmic Description

First, we present the algorithm Approximation to improve an initial approximation
Z of a root of a complex polynomial p(z) = } %, piz’. Approximation works by
transforming problem (9.1) to the equivalent problem of finding an eigenvalue and
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its corresponding eigenvector for the companion matrix (9.2). It improves the ap-
proximations of a root and the coefficients of the corresponding deflated polynomial
to avoid overestimations during the floating-interval calculations. A residual it-
eration method is used to improve the starting approximation until the accuracy
necessary to start the interval algorithm is achieved. No guarantee is claimed for
the correctness of the approximation computed by Approximation.

In the following algorithm, the vector A € €™ denotes the combined vector
A, = (A, A,)T mentioned in the preceding section. The matrix R is not com-
puted explicitly since the components w; represent the entire matrix. With this the
complexity of the inversion is reduced to O(n). The iteration A+)) := g(A®)) is
done directly using some loops that are equivalent to the mathematical formulation
in (9.8). We use kmax = 50 as the maximum number of iterations, and ¢ = 10~1°
as the value for the relative error. If the condition number of the inverse R is ex-
tremely large, then the convergence of the residual iteration is slow. To avoid the
possibility of an unbounded number of iterations at Step 3, we halt after k. iter-
ations. It turned out that kmax and € are good values for minimizing the effort to
get sufficiently accurate approximations 7 and g.
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The algorithm Intervallteration computes a verified enclosure of a root of a com-
plex polynomial using an interval iteration. Starting with good approximations z
for a root of the complex polynomial p(z) and ¢ for the coeflicients of the deflated
polynomial ¢(z) = ’zi(_%, a verification strategy based on Schauder’s fixed-point the-
orem is used to determine (if possible) a guaranteed enclosure of a polynomial root
z*. In addition, guaranteed enclosures of the coefficients of the deflated polynomial
q*(z) = zﬂ_fz); are returned as a by-product. We use kmax = 10 as the maximum
number of iterations, and € = 0.1 as the value for the epsilon inflation. It turned
out that these are good values for minimizing the effort if no verification is possible
(see also [10]).
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The algorithm CPolyZero uses the algorithms Approximation and Intervallteration
presented above. Complex polynomials p(z) = 3 & piz* of degree one can be solved
directly using interval operations. To solve complex polynomials of degree n > 1
Algorithms 9.1 and 9.2 are used to determine guaranteed enclosures for a polynomial
zero 2* and for the coefficients of the deflated polynomial ¢(2) = 2z

z—2*"
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Applicability of the Algorithm

Simple Zeros

This algorithm can only be used to enclose simple zeros of the given polynomial p. If
we try to enclose a multiple zero by starting the routine Intervallteration with a good
approximation of a multiple zero, we will get an error message because computing
a verified enclosure of the inverse R of the matrix J; fails. From (9.6), we get

|det(Jy)| = huol = | 3" ai#'] = P(2)], (9.14)

=0

where z is an eigenvalue, and ¢ is an eigenvector of the eigenproblem (9.3). If we
have a multiple zero z of the polynomial, (9.14) yields

| det(Jy)| = |p'(2)| = 0.

Thus, the matrix J; is singular. The inverse R cannot be enclosed because it does
not exist.

Improvements

If two or more zeros lie very close together, it may happen that the enclosure of
the inverse of J; fails, because J; is in some numerical sense too close to a singular
matrix, i.e. it is too ill conditioned. To overcome this problem in many cases, the
enclosure of the inverse has to be computed with double mantissa length using #-
expressions (cf. Chapter 10).

As a further refinement, we can compute the approximate solutions Z and ¢ in
the routine Approximation with double length and make use of the double length in
the routine Intervallteration. Both improvements require the use of #-expressions.

With these improvements, we can separate and verify two zeros differing only in
the last digit of a mantissa of single length (cf. {10], [19]).

Real polynomials

If we have a real polynomial p(z) = I, piz* (»;: € RR) (imaginary part of each
coefficient is zero), and we have a real starting approximation 7 € IR, we will never
get enclosures of a pair of conjugate complex zeros of (2), because all complex
arithmetic operations deliver a real result, as the imaginary parts of all operands will
stay zero. At any rate, the algorithm described here also works on real polynomials.
If we want to find a complex conjugate zero of a real polynomial, we must choose &
non-real starting approximation Z.
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9.3 Implementation and Examples

9.3.1 PASCAL-XSC Program Code

We list the program code for enclosing a root of a complex polynomial. In the listing,
interval data are named with double characters, e.g. dd[i] denotes the interval [d];.

The algorithm described above has been implemented in separate modules. First,
the arithmetic modules for complex polynomials cpoly and complex interval poly-
nomials cipoly are listed. The module cpzero containing all the routines necessary
to compute the enclosures of a zero of the complex polynomial p(z) = Y""_; p;z* and
of the coefficients of the deflated polynomial follows.

9.3.1.1 Module cpoly

This module supplies a global type definition named CPolynomial representing a
complex polynomial p(z) = Y"_ piz' (pi, 2 € €).The routines read and write for
the input and output of complex polynomials are defined and exported. Since no
operations on polynomials are requested by Algorithm 9.3, no operators have been
implemented in this module.

{
{ Purpose: Declaration of data type for representation of a complex poly-

{ nomial by its coefficients, and of I/0 procedures for this data type.

{ Global types, operators and procedures:

{ type CPolynomial ! representation of complex polynomials

{ operator := : assignment of complex polynomials by a real value
{ procedure read(...) : input of data type CPolynomial

i procedure write(...) : output of data type CPolynomial
{
{

Remark: Variables of type ’‘CPolynomial’ should be declared with lower
bound 0 (zero).

o 8 s e e o S S G o

module cpoly;

use
iostd, { Needed for abnormal termination with ’exit’ }
c_ari; 1 Complex arithmetic }

global type
CPolynomial = global dynamic array[*] of complex;

global operator := ( var p : CPolynomial; r : real );

var

i : integer;
begin

for i := 0 to ub(p) do plil := r;
end;

global procedure read ( var t : text; var p : CPolynomial );
var
i : integer;
begin
it (1b(p) <> 0) then
begin
write(’Error: Variable of type CPolynomial was declared with ’);
writeln(’lower bound <> 0!’);
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exit(-1); { Abnormal program termination }
end;
write(’ x10 * ’); read(t,p[0]);
for i := 1 to ub(p) do
begin write(’+ xt’,i:0,’ * ’); read(t,pli]l) end;
end;

global procedure write ( var t : text; p : CPolynomial );

var

i . integer;

PolyIsZero : boolean; { Signals ’p’ is a zero polynomial }
begin

PolyIsZero := true;
for i := 0 to ub(p) do
if (p[i] <> 0) them
begin
if PolyIsZero them write(t,’ ’) else write(t,’+ ’');
writeln(t,p[il,’ * x1’,i:1);
PolyIsZero := false;

end;
if PolyIsZero them writeln(t,’ 0 (= zero polynomial)’);
end;
}
{ Module initialization part >
}
begin
{ Nothing to initialize }
end.

9.3.1.2 Module cipoly

This module supplies the global type definition for variables representing a complex
interval polynomial. We define the I/O-routines read and write, an operator in to
decide whether all coefficients of one polynomial are inside the coeflicients of another
polynomial, and the function blow described in Section 3.6.

{ }
{ Purpose: Declaration of data type for representation of a complex interval }
{ polynomial by its coefficients, and of I/0 procedures for this data }
{ type. Boolean operator in and function for epsilon inflation are }
{ supplied }
{ Global types, operators and procedures: }
{ type CIPolynomial : representation of complex interval polynomials }
{ operator := : assignment of complex interval polynomials by a }
{ real value }
{ procedure read(...) : input of data type CIPolynomial >
{ procedure write(...) : output of data type CIPolynomial }
{ operator in : boolean-valued operator determining whether a }
{ complex interval polynomial lies (componentwise) }
{ in another complex interval polynomial }
{ function blow : componentwise epsilon inflation of a complex }
{ interval polynomial J
{ Remark: Variables of type ’'CIPolynomial’ should be declared with lower }
{ bound 0 (zero). }
{ -}
module cipoly;

use

iostd, { Needed for abnormal termination with ’‘exit’ }

i_ari, { Interval arithmetic
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ci_ari; o{ Complex interval arithmetic }

global type
CIPolynomial = global dynamic array[*] of cinterval;

global operator := ( var p : CIPolynomial; r : real );

var

i : integer;
begin

for i := 1b(p) to ub(p) do pli] := r;
end;

global procedure read ( var t : text; var p : CIPolynomial );
var
i : integer;

begin
if (1b(p) <> 0) themn
begin
write(’Error: Variable of type CIPolynomial was declared with ’);
writeln(’lower bound <> 0!’);
exit(-1); { Abnormal program termination }
end;
write(’ xT0 * ’); read(t,pl0]);
for i := 1 to ub(p) do
begin write(’+ x1’,1:0,’ * ’); read(t,p{i]l) end;
end;

global procedure write ( var t : text; p : CIPolynomial );
var

i . integer;

PolyIsZero : boolean; { Signals ’p’ is a zero polynomial }
begin

PolyIsZero := true;

for i := 0 to ub(p) do

if (pli] <> 0) then

begin
if PolyIsZero them write(t,’ °’) else write(t,’+ ’);
writeln(t,’(’, re(plil),’,”)
writeln(t,’ ’,im(plil),” ) * xt’,i:1);
PolyIsZero := false;

end;

if PolyIsZero then writeln(t,’ 0 (= zero polynomial)’);
end;

global operator in ( p, q : CIPolynomial ) res : boolean;
var

i . integer;
incl : boolean;
begin
inecl := true; 1 := 0;

while (incl = true) amd (i <= ub(p)) do
begin incl := plil im qi]; i := i+1 end;

res := 1incl;
end;
global function blow ( p : CIPolynomial;

eps : real ) : CIPolynomiall0..ub(p)];

var

1 : integer;
begin

ior i := 0 to ub(p) do blow[i] := blow(plil,eps);
end;

163
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{ Module initialization part

(LT

begin
{ Nothing to initialize }
end.

9.3.1.3 Module cpzero

The module cpzero supplies the global routine CPolyZero that computes the enclo-
sure of a root of the complex polynomial p(z) = >_»_, piz* according to Algorithm
9.3. The function CPolyZeroErrMsg returns an error message for the error code
returned by CPolyZero.

If no error occurs during the calculation, CPolyZero returns true enclosures of a
root [2] of p(z) and of the coefficients of the deflated polynomial [¢g] computed by
the routines Approximation and Intervallteration .

{ . }
{ Purpose: Determination and enclosure of a root of a complex polynomial, 3
{ and of the coefficients of the deflated polynomial. }
{ Method: The root of a complex polynomial matches with the eigenvalue of }
{ its companion matrix and the coefficients of the deflated polynomial }
{ match to the components of the corresponding eigenvector. The eigen- }
{ vector and eigenvalue are determined using the simplified Newton }
{ iteration with iterative refinement. }
{ Global procedures and functions: b
{ procedure CPolyZero(...) : computes an enclosure for a root and for }
{ the deflated complex polynomial }
{ function CPolyZeroErrMsg(...) : delivers an error message text ;
{
module cpzero; { Complex polynomial zero }
{ - - —_—

use

r_util, { Utilities of type real }

c_ari, { Complex arithmetic }

ci_ari, { Complex interval arithmetic 3}

cpoly, { Complex polynomials

cipoly; { Complex interval polynomials }
{ }

{ Error codes used in this module. In the comments below p[0],..., p[n] are }
{ the coefficients of a polynomial p.
{

-}
const

NoError =0; { No error occurred. >
ZeroPoly = 1; { Zero polynomial, i.e. n = 0 and p[0] = 0: }
ConstPoly = 2; { Constant polynomial, i.e. n = 0 and p[0] <> 0. }
InvFailed = 3; { Inversion of the Jacobian failed. }
VerFailed = 4; { Verified inversion of the Jacobian failed. 3
IncFailed = 5; { Inclusion failed. b
I11Prob = 6; { Illegal Problem, i.e. polynomials with lower }
{ bound <> 0 passed to the main procedurs. }

{ -}

{ Error messages depending on the error code. -;

global function CPolyZeroErrMsg(Err : integer) : string;
var

Msg : string;
begin
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case Err of
NoError : Msg
ZeroPoly : Msg
ConstPoly: Msg
InvFailed: Msg
VerFailed: Msg
IncFailed: Msg
I11Prob : Msg

1.

'Zero polynomial occurred’;

’Constant polynomial <> 0 occurred’;

’Inversion of the Jacobian failed’;

'Verified inversion of the Jacobian failed’;
’Inclusion failed’;

'Illegal polynomial with least index <> 0 occurred’;
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else : Msg 'Code not defined’;
end;
if (Err <> NoError) them Msg := ’Error: ' + Msg + ’'!’;
CPolyZeroErrMsg := Msg;
end;
function MaxNorm(p : CPolynomial) : real; { Function used to get the maximum }
var ] { norm of ’p’, where ’p’ is }
i . integer; { interpreted as a complex vector J}
max, tmp : real; ¥
begin
max := abs(pl[0]);
for i := 1 to ub(p) do
begin
tmp := abs(pl[il);
if (tmp > max) them max := tmp;
end;
MaxNorm := max;
end;
{ }
{ Purpose: Determination of a floating-point approximation for a root of }
{ polynomial p and for the deflated polynomial. }
{ Parameters: 3
{ In : ’'p’ ! represents a complex polynomial by its coefficients }
{ In/Qut: 'z’ : starting approximation (in) for a root and is returned J}
{ as an improved floating-point approximation }
{ Out : 'q’ : returns an approximation (for the coefficients of) the }
{ deflated polynomial }
{ 'Err’: error flag }
{ Description: For a given starting approximation ’z’, a floating-point }
{ Newton iteration is performed to get improved approximations for a root }
{ ‘'z’ of polynomial ’p’, as well as for the coefficients ’q’ of the }
£ deflated polynomial. }
procedure Approximation( p : CPolynomial; var z : complex; !
var q : CPolynomial; var Err : integer );
const
kmax = 50; { Maximum number of iteration steps }
v eps = 10E-10; { Relative error of approximation }
ar
k, i, n . integer;
t . complex;
delta, d, w : CPolynomiall0..ub(p)-1];
qHlp : CPolynomiall0..ub(p)-2];
begin
Err := NoError; n := ub(p); { Initialization }
qn-1] := plnl; { Determination of an approximate }
for i := n-2 downto 0 do { eigenvector q
qli] := q[i+1]l*z + p[i+1]; }
k :=0; { Floating-point iteration }
repeat {of z and g
{ }
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d[0] := #x( -z¥q[0] - pl0l ); { Computation of the defect } tt : cinterval;
for i := 1 to n-1 do {d=(A-zxI)*q 3 dd, vv, wv¥ : CIPolynomiall0..ub(p)-1];
dfi] := #x( qli-1] - zxq[il - plil ); { 3 ddelta, ddelta_0,
ddelta_old : CIPolynomiall0. .ub(p)-1];
wln-1] := qn-1]; { Computation of R, the inverse } begin
for i := n-2 downto 0 do { of the Jacobian J 3 Err := NoError; n := ub(p); { Initialization }
wlil := #x( q[i] + z+xwl[i+1] ); { 5 U Sttty
dd[o] := ##( -p[0] - zxq[0] ); { Compute an inclusion of the }
if (w[0] = 0) themn for i := 1 to n-1 do { defect [d] = (A - z*I)*q 3}
Err := InvFailed ddl[i] := ##( q[i-1] - z*q[i]l - p[i]); { 3
else
begin wwin-1] := qln-1]; { Compute an inclusi
gelta[n—l] := d[n-1]; { Computation of deltaT(k+1) = } for i := n-2 downto 0 do { inv}e)rse of the gziggi:ﬁ .L]-RJ‘ the J
for i := n-2 downto 0 do { g(deltat(k)) 3 wwlil := ##( q[i] + zxwwli+1] ); { 3
deltalil := d[i] + z*deltali+1]; { 33 if (0 in ww[0]) then
t := deltal[0]/wl0]; Err := VerFailed
for i := 0 to n-2 do else
deltalil := -deltali+1] + t¥w[i+i]; begin
delta[n-1] := t; ddelta_0[n-1] := dd[n-1]; { Compute a starting }
| ' ‘ for i := n-2 downto 0 do { inclusion [y]t(0) }
for i := 0 to n-2 do { Determine the new iterates of q and z } ddelta_0[il := ##( dd[i] + z*ddelta_0[i+1] ); { 3}
begin { and store the first n-1 components of } tt := ddelta_0[0)/ww[0];
qlil := q[i] + delita[il; { q in gHlp } for i := 0 to n-2 do
qH1plil := q[il; { } ddelta_0[i] := ##( -ddelta_O[i+1] + ttxwwl[i+1] );

end; ddelta_0[n-1]
z := z + deltaln-1];

tt;

{ Interval iteration }
k = k+1; k := 0; ddelta := ddelta_0;
end; repeat
ddelta_old := ddelta;

{ Interval iteration }

{ Stop iteration if the relative round-off error of the coefficients and }

{ of the zero is approximately <= a given epsilon. Stop also if the } case k of { Slightly enlarge the }
{ maximum number of iteration steps is exceeded, or if an error occurred.} 0..3: eps := 0.125; { inclusion interval }
until ( Err <> NoError) 4..6: eps := 0.5;
or ( k = kmax ) else: eps := 5;
or ( (MaxNorm(delta) / max(MaxNorm(qHlp),abs(z))) <= eps); end;
ddelta_old := blow(ddelta,eps);
end; { procedure Approximation }
vvin-1] := 0; { Determine a new inclusion interval }
c 3 for i := n-2 downto 0 do { }
{ Purpose: Determination of enclosures for a root of polynomial p and for } vv[i] := ##( ddelta_old[n-1]}*ddelta_old[i] + z*vv[i+1] );
{ the deflated polynomial. } vv[0] := vv[0]/ww[0]; ’
{ Parameters: } for i := 0 to n-2 do
{ In : 'p’ : represents a complex polynomial by its coefficients } ddeltali] := ##( ddelta_0[i] + vv[i+1] - vv[0I*ww[i+1] );
{ 'q’ : approximation (of the coefficients of) the deflated } ddelta[n-1] := ddelta_0[n-1] - vv[0]; !
{ polynomial }
{ 'z’ : floating-point approximation of a root } k := k+1;
{ Out : ’qq’ : returns an enclosure (for the coefficients of) the } until (ddelta in ddelta_old) or (k = kmax);
{ deflated polynomial }
{ 'zz’ : returns an enclosure of the root } if (ddelta in ddelta_old) them { Verification of the result }
{ 'Err’: error flag } begin { 3}
{ Description: For starting floating-point approximations 'z’ of a root } for i := 0 to n-2 do qqli] := ##( qli] + ddeltali] );
{ and ’'q’ of the deflated polynomial an interval residual iteration is } qq[n-1] := pn];
{ performed to get enclosures 'zz’ for the root of polynomial ’'p’, as } zz = ##( z + ddelta[n-1] );
{ well as for the coefficients of the deflated polynomial. } end
{ -} else
procedure Intervallteration( p, q : CPolynomial; z . complex; Err := IncFailed;
var qq : CIPolynomial; var zz : cinterval; end;
var Err : integer );
const { procedure Intervallteration }
kmax = 10; { Maximum number of iteration steps >
var

i, k, n : integer;
eps . real;

{ Purpose: Determination of enclosures for a root of polynomial p and for

(TN

the deflated polynomial
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{ Parameters: 3
{ In : ’'p’ : represents a complex polynomial by its coefficients b
{ 'z’ : floating-point approximation of a root }
{ Out : ’qq’ : returns an enclosure (for the coefficients of) the 3
{ deflated polynomial 2}
{ ‘zz’ : returns an enclosure of the root }
{ 'Err’: error flag }
{ Description: For starting approximations 'z’ of a root, enclosures ’'zz’ }
{ for a root of polynomial ’‘p’, as well as ’'qq’ for the coefficients of }
{ the deflated polynomial are computed. Since the root of a complex }
{ polynomial matches with an eigenvalue of its companion matrix and the }
{ coefficients of the deflated polynomial match to the components of the }
{ corresponding eigenvector, the eigenvector and eigenvalue are determined}
{ by iterative refinement. First, good floating-point approximations are }
{ computed, and then verified enclosures for a root and for a deflated }
{ polynomial are returned. ¥
14 }
global procedure CPolyZero( P : CPolynomial;
z : complex;

var qq : CIPolynomial;

var zz : cinterval;

var Err : integer );
var

i, n : integer;
q : CPolynomiall0..ub(p)-1];

begin

it (1b(p) <> 0) or (Ib(qq) <> 0) them { Illegal polynomial declaration }
Err := IllProb
else
begin
Err := NoError; n := ub(p); { Initialization }

if (n = 0) or (n = 1) then

it (n = 0) then { Polynomial of degree n = 0 }
if (p[0] = 0) them Err := ZeroPoly { Zero polynomial }
else Err := ConstPoly <{ Constant polynomial }
else { Polynomial of degreen = 1 }
it (p[1] = 0) then
it (p[0] = 0) then Err := ZeroPoly { Zero polynomial }
else Err := ConstPoly { Constant polynomial }
else
begin
zz := —-intval(p[0]) / p[1l;
qqlo] := p[1];
end
else { Polynomial of degree n > 1 }
begin { (Common case) }
Approximation(p,z,q,Err);
if (Err = NoError) them Intervallteration(p,q,z,qq,zz,Err);
end;
end;
end; { procedure CPolyZero }
{ -}
{ Module initialization part i
{ —
begin

{ Nothing to initialize }
end.
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9.3.2 Example

We consider the following complex polynomial of 4** degree. We want to find and
enclose a root for the arbitrary starting approximation z = (1 + i) using Algorithm
9.3.

p(2) = z* — (5 + 3i)2° + (6 + 72)2 — (54 — 22i)z + (120 + 90:)
exact zeros : ++/2(1+2i), 5, and 3.

V2 ~ 1.41421356237309 . ..

starting approximation : (1 +1)

The following main program calls CPolyZero to calculate an enclosure [2] of an

exact root 2*. That is, it is guaranteed that 2* € [z]. Guaranteed enclosures [g] of
the coefficients of the deflated polynomial ¢(z) = A% are determined, too.

program cpzero_example(input, output);

use
c_ari, { Complex arithmetic 3}
ci_ari, { Complex interval arithmetic >
cpoly, { Complex polynomials }
cipoly, { Complex interval polynomials }
cpzero; { Complex polynomial zero finder }

procedure main(n : integer);

var
ErrCode : integer;
z : complex;
zz . cinterval;
P : CPolynomial[0..n];
qq : CIPolynomial{0..n-1];
begin
writeln(’Enter the coefficients in increasing order: ’'); read(p);
writeln;
write(’Enter the starting approximation: ’); read(z);
writeln;

CPolyZero(p, z, qq, zz, ErrCode);

if (ErrCode = 0) then
begin
writeln(’Polynomial:’); writeln(p);
writeln(’Zero found in:’); writeln(zz); writeln;
writeln(’The coefficients of the reduced polynomial are:’); writeln(qq);
end
else
writeln(CPolyZeroErrMsg(ErrCode));
end; { procedure main }

var
n : integer;

begin
n:= -1;
while (n < 0) do
begin
;rite('Enter the degree of the polynomial (>=0): ’); read(n); writeln;
end;
main(n);
end.
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Our implementation of Algorithm 9.3 produces the following output:
Enter the degree of the polynomial (>=0): 4

Enter the coefficients in increasing order:
x"0 * (120,90)

+ x°1 * (-54,22)
+ x°2 * (6,7)

+ x°3 * (-5,-3)
+ x4 * (1,0)

Enter the starting approximation: (1,1)

Polynomial:

( 1.200000000000000E+002,

( -5.400000000000000E+001,

( 6.000000000000000E+000,

( -5.000000000000000E+000, -
( 1.000000000000000E+000,

.000000000000000E+001 )
.200000000000000E+001 )
.000000000000000E+000 )
.000000000000000E+000 )
.000000000000000E+000 )

+ + 4+
S W NN
* K K X X
><><><)><><
B WN - O

Zero found in:
( [ 1.414213562373094E+000, .414213562373096E+000 ],
[ 2.828427124746189E+000, 2.828427124746191E+000 ] )

ey

The coefficients of the reduced polynomial are:
([ -4.242640687119286E+001, -4.242640687119284E+001 ],
{ 2.121320343559642E+001, 2.121320343559643E+001 ] ) * x"0
+ ([ 1.414213562373094E+000, 1.414213562373096E+000 ],
[ -3.384776310850236E+000, ~3.384776310850235E+000 ] ) * x~1
+ ([ -3.585786437626906E+000, -3.585786437626904E+000 ],
[ -1.715728752538100E-001, —1.715728752538098E-001 ] ) * x~2
+ ([ 1.000000000000000E+000, 1.000000000000000E+000 ],
[ 0.000000000000000E+000, 0.000000000000000E+000 ] ) * x°3

The complex rectangular intervals are presented in the form (re,im), where re
and im are real intervals represented by their lower and upper bounds, respectively.

9.3.3 Restrictions and Hints

Close Zeros

If two zeros of the polynomial are so close together that they are identical in their
number representation up to the mantissa length and differ only in digits beyond
the mantissa, they are called “a numerical multiple zero”. Such zeros cannot be
verified with our program described above because they cannot be separated by the
given number representation. The program handles them just like a true multiple
zero (see Section 9.2) and terminates. However, we could implement the algorithm
CPolyZero of Section 9.2 using a multi-precision floating-point and floating-interval
arithmetic (see [10], [55]).

Clusters of Zeros

If two or more zeros are extremely close together, i.e. they form a cluster, it is not
possible to verify a zero of this cluster with the implementation given in Section
9.3.1 because we may enclose a zero of the derivative p’ of the polynomial p. Hence,
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an enclosure of the determinant of the Jacobian matrix (see 9.2) contains zero, and
the verified inversion of the Jacobian matrix fails. We may overcome this limit of
the implementation by computing the inverse of the Jacobian matrix with higher
accuracy, e.g. with double mantissa length, using the exact scalar product (see [54}).

9.4 Exercises

Exercise 9.1 Use program cpzero_example to enclose the other three roots of the
polynomial given in Section 9.3.2.

By repeating the deflation of a verified zero from the reduced polynomial
pdeflated € [g], the approximation of a new zero in the reduced polynomial, and the
verification of the new zero in the original polynomial, we get all simple zeros of the
polynomial. The deflated polynomial we can get from the parameter [q] of the rou-
tine CPolyZero . For approximating a new zero, the deflated polynomial pdeflated is
used. The verification of the new zero is done in the original polynomial p because
the zeros of the approximate deflated polynomial are smeared out because [g] has
interval-valued coeflicients, while p has point-valued coefficients.

Exercise 9.2 Build a module containing the routines and definitions of the program
of Section 9.3.1. Implement the above Algorithm 9.4 in PASCAL-XSC, using the
routines and definitions of the program of Section 9.3.1 and test the implementation
with the example of Section 9.3.2. Note, that Algorithm AlICPolyZeros might fail
to determine all zeros of a polynomial if there exist e.g. multiple zeros.

Exercise 9.3 Determine enclosures for all zeros of the Wilkinson polynomial p(z) =

[T5,(z — i) with n = 5 using Algorithm 9.4. Start computation with complex and
real starting approximations.

9.5 References and Further Reading

Algorithm 9.3 is an extension of one first proposed by Béhm [10] for polynomials
with real coefficients. A commercial implementation was released by IBM with the
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Fortran subroutine library ACRITH [32]. The algorithm was generalized for poly-
nomials with complex coefficients by Gedrg [19] and Griner [22]. This modification
may be used to enclose simple real and complex zeros of complex polynomials, as
well as simple real and complex zeros of real polynomials. Additional comments are
given by Kramer in [48].

Part II1

Multi-Dimensional Problems



Chapter 10

Linear Systems of Equations

Finding the solution of a linear system of equations is one of the basic problems in
numerical algebra. We will develop a verification algorithm for square systems with
full matrix based on a Newton-like method for an equivalent fixed-point problem.

10.1 Theoretical Background

10.1.1 A Newton-like Method

Let Az = b be a real system of equations with A € R™™ and b,z € R". Finding
a solution of the system Az = b is equivalent to finding a zero of f(z) = Az — b.
Hence, Newton’s method gives the following fixed-point iteration scheme

gD = 20 _ A4z b)), k=0,1,... . (10.1)

Here, (9 is some arbitrary starting value. In general, the inverse of A is not exactly
known. Thus instead of (10.1), we use the Newton-like iteration

$(k+1) = .'E(k) - R(A.T(k) - b)a k= 0, ]-’ ey (10.2)

where R = A~! is an approximate inverse of A.

Let us now replace the real iterates ) by interval vectors [z]®) € I R". If
there exists an index & with [z](**)) C [£]*), then, by Brouwer’s fixed-point theorem
(see page 51), Equation 10.2 has at least one fixed-point z € [z]®). Supposed R is
regular. Then this fixed-point is also a solution of Az = b. However, if we consider
the diameter of [z]**1), we get d([z]**+1) = d([z]®) + d(R(A[z]® — b)) > d([z]™).
Thus in general, the subset relation will not be satisfied. For this reason, we modify
the right-hand side of (10.2) to

2®) = Rb4(I—RA)R®, k=0,1,..., (10.3)

where I denotes the n x n identity matrix. Rump [76] proved for Equation (10.3)

that if there exists an index k with [z]+1) C [z]®)] then the matrices R and A are
regular, and there is a unique solution z of the system Az = b with z € [z](F+D),

Moreover this result is valid for any matrix R. Note that the c operator denotes
the inclusion in the interior as defined in Section 3.1.
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10.1.2 The Residual Iteration Scheme

It is a well-know numerical principle that an approximate solution ¥ of Az = b may
be improved by solving the system Ay = d, where d = b — AT is the residual of A%.
Since y = A™'(b— A%) = z — T, the exact solution of Ar =bis given by z =T +y.
Applying Equation (10.3) to the residual system leads to

y*+) = R(b— AZ)+(I — RA)yW, k=0,1,.... (10.4)
=: 2z — C

According to Rump’s results mentioned above, the residual equation Ay = d has a
unique solution y € [y]**1) if we succeed in finding an index k satisfying [y](*+Y) c
[y]® for the corresponding interval iteration scheme. Moreover, since y = z — 7 €
[y]:+1), we then have a verified enclosure of the unique solution of Az = b given by
F + [y]k+D.

These results remain valid if we replace the exact expressions for z and C in
(10.4) by interval extensions. However, to avoid overestimation effects, it is highly
recommended to evaluate b — AZ and I — RA without any intermediate rounding.

10.1.3 How to Compute the Approximate Inverse

We recall that the results surnmarized above are valid even for an arbitrary matrix
R. However, it is a non-surprising empirical fact that the better R approximates
the inverse of A, the faster the contained-in-the-interior relation for two successive
iterates will be satisfied. We favor Crout’s algorithm (cf. [83]) with partial pivoting
for matrix inversion.

Let A’ = PA be the matrix which comes from A by row interchanges so that
a factorization A’ = LU with a lower-triangular matrix L and an upper-triangular
matrix U exists. If we normalize the diagonal entries of L to unity, and if we save
the indices for the pivotal rows in a vector p, initialized by p = (1,2,... ,n)T, the
decomposition procedure is as follows:

-1 W
vk=ak,~—E lkjaj.-, k=z,...,n
i=1
v;| = max |v
| J| iSkSﬂl k‘
ifj#i pep,vievaeagleohueu yi=1..n  (10.5)
U =
11 t '._1
Uik = Gk — E lijusk i
= k=i+1,...,n
Vk J=1
i = —
Vi J

Here, the double arrow («) indicates that the values of the specified elements or
rows are swapped. )
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Once the LU-decomposition is available, the approximate inverse R is computed

column by column using simple forward/backward substitution. Let e(* denote the
k-th unit vector. We successively solve the systems Ly = Pe(¥) and Uz = y by

-1
Yi = el(,'f) - Z l,'jyj, = 1, ceey Ny and (106)
7=1

z; L(y,-—- Z u;jzj), t=n,n—-1,...,1. (10.7)

"
b =i+l

The vector z is an approximation for the k-th column of R.
We define the condition number of a regular square matrix A by

cond(A) := || Al - |4 lleo-

For solving a linear system of equations with conventional floating-point arithmetic,
it is a rule of thumb that log(cond(A)) is a rough indicator for the number of decimals
of lost accuracy in the solution. For instance, a condition number of 10° signals a loss
of about five decimals of accuracy in the solution. Some of the algorithms described
below return the quantity ||A||e - || R||c as an estimate for the condition number of
the matrix A.

10.2 Algorithmic Description

First, we give the algorithm for computing an approximate inverse. Except for the
special case of 2 x 2 matrices, which is handled by applying well-known explicit
rules, Crout’s method is used as described in Section 10.1.3. To save memory, the
matrices L and U are not explicitly allocated. Actually, their elements are stored
by overwriting the input matrix A. Thus, any appearance of components of L and
.U in Equations (10.5)-(10.7) is replaced by the corresponding elements of A. The
Inversion procedure is stopped if a pivotal element is less than Tiny. Otherwise,
we would risk an overflow exception at runtime when executing the division by the
pivotal element. The value of Tiny depends on the exponent range of the floating-
point format being used. For the floating-point system used by PASCAL-XSC with
a minimum positive element of about 107324 (see Section 3.7), a value of 10~2% s
a good choice. The forward substitution stage of the algorithm takes advantage of
the leading zero elements in the unit vector (¥,
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The procedure for solving the linear system of equations Az = b has two principal
steps: We compute an approximate solution 7, and then we try to find an e?nclosure
for the error of this approximation. That is, the method is an a posterior: method
as described in Section 3.8. To get a good approximation, we use (10.2) for a sirnp'le
real residual iteration (see Step 2 of Algorithm 10.5). Since this pre-iteration will
be followed by a verification step, we may apply some heuristic considerations to
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improve the value it computes. We try to predict whether some of the components
of the exact solution might vanish. Let z and y be two successive iterates. Our
heuristic is that any component of y which has diminished in more than n orders of
magnitude is a good candidate for a zero entry in the exact solution. In Algorithm
10.2, those components of the new iterate y are changed to zero. It turned out that
n = 5 is a good value for practical use.

In general, the real iteration will be stopped if the relative error of any component
of two successive iterates is less than é§. Otherwise, we halt the iteration after kmax
steps. Here, we use § = 107'? because the floating-point format of PASCAL-XSC
has about 15 significant decimal digits. That is, we try to compute about 12 correct
digits of the mantissa of the approximate solution. Algorithm 10.3 describes the
stopping criterion for the iteration. Here, we make use of another heuristic. If the
components of two successive iterates differ in sign, or if one of them vanishes, we
take this as an indicator for a zero entry in the exact solution. Thus, we implicitly
set its relative error to zero.

For the verification step, we refer to Section 10.1.2. To accelerate the procedure,
the iterates are inflated at the beginning of each iteration loop. For a general remark
about the e-inflation, we refer to Section 3.8. As recommended in [46], we use a
constant value of ¢ = 1000 for the e-inflation. We refer to Falcé Korn [15] for a
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more sophisticated inflation strategy. It is an empirical fact that the inner inclusion
is satisfied nearly always after a few steps or never. Thus in Algorithm 10.4, the
iteration is stopped after pmax steps.

We now give the complete algorithm based on the Algorithms 10.2-10.4 for
computing a verified enclosure of the solution of a linear system of equations. The
procedure fails if the computation of an approximate inverse R fails or if the inclusion
in the interior can not be established. A condition number estimate is returned by
the variable Cond. We need a narrow enclosure [z] of z = R(b — AZ) to start the
verification step. Thus in Step 3, we first compute the residual d = O(b — AZ).
If the computation was afflicted with a roundoff error, an enclosure of this error is
given by [d] = O(b— AT — d). So, we have b — AT € d + [d] and z € O(Rd + R[d]).
In Step 4, we remark that Z is an exact, but not necessarily unique, solution of the
system if [2] = 0.
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10.3 Implementation and Examples

10.3.1 PASCAL-XSC Program Code

We give the listings of the modules matinv for matrix inversion and linsys for solving
a linear systems of equations. We emphasize that those parts of the algorithms of
the previous section which are marked by [J(...) and <(...) are implemented using
accurate expressions. Error codes are passed by parameters of type integer. The
error code 0 means that no error occurred.

10.3.1.1 Module matinv

The procedure MatInv is an implementation of Algorithm 10.1. It takes into account
that the index range of the matrix parameters may start with lower indices different
from one. The procedure checks whether the system is square and whether the input
and the output matrices have the same shape. The function MatInvErrMsg may be
used to get an explicit error message.

{
{ Purpose: Computation of an approximate inverse of a real square matrix.
{ Method: LU decomposition applying Crout’s algorithm.

{ Global functions and procedures:

{ procedure MatInv(...) : Matrix inversion

{ function MatInvErrMsg(...) : To get an error message text

NN e
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module matinv; { Matrix inversion routines } Max, Temp . real; { Help variables }
{ -——- —— 3 AA ¢ rmatrixf1..ub(A)-1b(A)+1,1..ub(A)-1b(A)+1]1; { A copy of ‘A’}
use P : dynamic array[i..ub(A)-1b(A)+1] of integer;
mv_ari; { Real matrix/vector arithmetic } v, X : rvector[l..ub(A)-1b(A)+1];
begin
{ 3 { Get lower and upper bounds of the rows and columns of ’'A’ and 'R’ }
{ Error codes used in this module. 3 nl := 1b(A,1); nn := ub(A,1); n := nn-ni+1;
3 ml := 1b(A4,2); mm := ub(A,2); m := mm-ml+i;
const pl := 1b(R,1); pn := ub(R,1);
NoError = 0; { No error occurred. 3 ql := 1b(R,2); gqm := ub(R,2);
NotSquare =1, { Matrix to be inverted is not square. 3
DimensionErr = 2; { Input and output matrices differ in shape. } { Check for correct dimensions of ‘A’ and 'R’ }
Singular =3, { Matrix to be inverted is probably singular. ¥ Err := NoError;
{ } it (n <> m) then { Error: ’A’ is not square b3
{ Error messages depending on the error code. 2 Err := NotSquare
3 else if ( (n <> pn-pi+l) or
global function MatInvErrMsg ( Err : integer ) : string; (m <> qm-q1+1) ) then { Error: Dimensions not compatible }
var Err := DimensionErr
Msg : string; else if (n = 2) then { Special case: (2,2)-matrix }
begin begin
case Err of AA := A; { Copy 'A’ to avoid computation of index offsets }
NoError : Msg := 7, Temp := #*( AA[1,1]%AA[2,2]) - AA[2,11%8A[1,2] ); { = Det(AA) }
NotSquare : Msg := ’Matrix to be inverted is not square’; it (abs(Temp) < Tiny) themn
DimensionErr: Msg := ’Input and output matrices differ in shape’; Err := Singular
Singular : Msg := ’Inversion failed, matrix is probably singular’; else
else : Msg := ’Code not defined’; begin
end; R(pi,q1] := AA[2,2] / Temp; RIpt,qm] := -AA[1,2] / Temp;
if (Err <> NoError) them Msg := ’Error: ' + Msg + '!’; Rlpn,q1] := -AA[2,1] / Temp; R[pn,qm] := AA[1,1] / Temp;
MatInvErrMsg := Msg; end;
end; end
else { Usual case: Dimension of A’ > 2 }
{ } begin
{ Purpose: The procedure ’MatInv’ may be used for the computation of an } AA := 4 { Copy 'A’ to avoid computation of index offsets }
{ approximate inverse of a real square matrix. 3} for i := 1 o n do pli] := i; { Initializing permutation vector }
{ Parameters: }
{ In : A’ : matrix to be inverted, passed as reference parameter to 3} { Start LU factorization }
{ save computation time for copying ’A’. } i:=1;
{ Out : ‘R’ : approximate inverse. } while ((Err = NoError) amd (i <= n)) do
{ ’Err’ : error code. } begin
{ Description: > { Compute the numerators of those elements of the i-th column }
{ Inversion of a regular matrix A stored in ‘A’ using LU decomposition. } { of L which are not updated so far and store them in ’v’. 3
{ For LU decomposition, formally a permutation matrix P is determined so } for k := i to n do
{ that the product P*A may be decomposed into a lower-triangular matrix L } vik] := #x(AA[k,i] - for j:=1 to i-1 sum(AA[k,j] * AA[j,il));
{ and an upper-triangular matrix U with P*A = LxU. The diagonal elements } ’ '
{ of L are set to 1. Using Crout’s algorithm, the elements of both matri- } { Look for the column pivot }
{ ces L and U are stored by temporary overwriting a copy of the input } j :=1i; Max := abs(v[il);
{  matrix ‘A’. The permutation matrix P is not explicitly generated. The } for k := i+l to n do
{ indices of row interchanges are stored in the index vector ’p’ instead. } begin
{ The i-th element of P*b may be accessed indirectly using the p[il-th } Temp := abs(v[k]);
{ entry of ’'b’. Accurate expressions are used to avoid cancellation errors.} it (Temp > Max) then
{ The k-th column of the inverse R of P*A is computed by forward/backward } begin j := k; Max := Temp; end;
{ substitution with the k-th unit vector e_k as the right-hand side of the } end;
{ system: Uky = Pxe_k ==> y, L*x = y ==> x. For error codes, see above. }
{ -} { Swap rows of ’AA’ and ’v’, store the permutation in ’p’ }
global procedure MatInv ( var A : rmatrix; it (j <> i) them
var R : rmatrix; begin
var Err : integer ); x := AAli]; AA[L) := AAT3I; AALj] := x;
const ) k := plil; plil := p{jl; plil := k;
Tiny = 1E-200; { A divisor less than ’Tiny’ is handled as zero } Temp := v[i]; v[i] := v[j]; v[j] := Temp;
var end;
nl, nn, m1, mm : integer; { For lower and upper bounds of ‘A’ }
pl, pn, qi, gm . integer; { For lower and upper bounds of 'R’ } if (Max < Tiny) then { Pivot element < ’Tiny’, inversion failed }

i, j, k, 1, n, m : integer; { For loops 2} Err := Singular { matrix ’A’ assumed to be singular
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else
begin
Temp := v[il;
AA[i,i] := Temp; { Update the diagonal element of U }
end;

it (Err = NoError) then

begin
{ Update U’s row and L’s column elements }
for k := i+i to n do
begin
AA[i,k] := #>x(AA(i,k] - for j:=1 to i-1 sum(AA[i,jl*AA[j,k1));
AATKk,i] := v[X] / Temp;
end;
1= i+1;
end;

end; {while}

it (Err = NoError) then

{ Now ‘AA’ is overwritten with the subdiagonal elements of L in its }
{ lower left triangle and with the elements of U in its diagonal and }
{ its upper right triangle. The elements of the inverse matrix are }

{ computed column by column using forward/backward substitution. }
{ }
for k := 1 ton do

begin

{ Forward substitution: L*x = P*e_k, where e_k is the k-th unit }
{ vector. Note: If P*e_k has m leading zeros, this results in }
{x_i=0fori,..,1-1 and x_1 = 1. Thus, forward substitution }

{ starts at index 1+1. 2
{ }
1 :=1;

while (p[1] <> k) do
begin x[1] := 0; 1 := 1+1; end;

x[1] := 1;
for i := 1+1 to n do
x[i] := -#*(for j:=1 to i-1 sum(AA[i,jl*x[j]1));

{ Backward substitution: U * x = x, vhere the right-hand side is }
{ the result of the forward substitution. It will be overwritten }
{ by the solution of the system, the k~th column of the inverse }
{ matrix.
{ }
for i := n downto 1 do

x[i] := #*(x[i] - for j:=i+! to n sum(AA[i,jl1*x[j1)) / AAli,i];

R[*,q1+k-1] := x; { Remember index offset! }
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10.3.1.2 Module linsys

The local procedure LinSolveMain is an implementation of Algorithm 10.5. It takes
into account that the index range of its parameters may start with a lower bound
different from one. The procedure checks if the system is square and if the dimensions
of the parameters are compatible. The local procedures CheckForZeros, Accurate,
and VerificationStep are implementations of the Algorithms 10.2~10.4. The module
provides two global procedures LinSolve one with and the other without computing a
condition number estimate for the input matrix. Both procedures call LinSolveMain
with an appropriate list of parameters. The global function LinSolveErrMsg gives
an explicit error message.

end; {if (Err = NoError) ...}

end; {Usual case}
end;
{ -}
{ Module initialization part }
{ -}
begin

{ Nothing to initialize }
end.

{ }
{ Purpose: Computation of a verified solution of a square linear system of }
{ equations A*x = b with full real matrix A and real right-hand side b. }
{ Method: Transformation of A*x = b to fixed-point form and applying an }
{ interval residual iteration. >
{ Global functions and procedures: }
{ procedure LinSolve(...) : To get a verified enclosure of the }
solution, two versions >
{ function LinSolveErrMsg(...) : To get an error message text }
{ }
module linsys; { Linear system solving }
{-— - 3
use
mv_ari, { Matrix/vector arithmetic }
mvi_ari, { Matrix/vector interval arithmetic }
matinv; { Matrix inversion
{ }
{ Error codes used in this module. 3}
}
const
NoError =0, { No error occurred. 3
NotSquare =1; { System to be solved is not square. }
DimensionErr = 2; { Dimensions of A*x = b are not compatible. }
InvFailed = 3; { System is probably singular. 3
VerifFailed = 4; { Verification failed, system is probably }
{ ill-conditioned. 3}
{ }
£ Error messages depending on the error code. >
- }
global function LinSolveErrMsg ( Err : integer ) : string;
var
Msg : string;
begin
case Err of
NoError : Msg =7,
NotSquare : Msg := ’'System to be solved is not square’;
DimensionErr: Msg := ’'Dimensions of A*x = b are not compatible’;
InvFailed . Msg := ’'System is probably singular’;

VerifFailed : Msg ‘Verification failed, system is probably ' +

’ill-conditioned’;

else : Msg := ’Code not defined’;
end;
if (Err <> NoError) them Msg := 'Error: ’ + Msg + '!’;
LinSolveErrMsg := Msg;
end;
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{

{ Computes the absolute value of a real vector component by component.

{
function abs( v :
var
i : integer;
begin
for i
end;

rvector ) : rvector[lb(v)..ub(v)];

:= 1b(v) to ub(v) do abs[i] := abs(v[il);

{

AP

{ Computes an upper bound for the maximum norm of a real matrix ’M’.

function MaxNorm( var M : rmatrix ) : real;
var
i, ] : integer;
Max, Tmp : real;
AbsMi : rvector[1b(M,2)..ub(M,2)];
begin
Max := 0;
for i :=
begin
AbsMi := abs(M[i]);
Tmp := #>( for j:=1b(M,2) to ub(M,2) sum( AbsMil[j] ) );
if (Tmp > Max) then Max := Tmp;
end;
MaxNorm
end;

{

1b(M) to ub(M) do

:= Max;

ey

{ The vectors x and y are successive approximations for the solution of a

{ linear system of equations computed by iterative refinement. If a compo-
{ nent of y is diminished by more than ’‘Factor’, it is a good candidate for
{ a zero entry. Thus, it is set to zero.

{

e S N

procedure CheckForZeros ( var x, y : rvector );
const
Factor = 1E+5;
var
i : integer;
begin
for i := 1b(y) to ub(y) do
it ( abs(y[i]l)#Factor < abs(x[il) ) them y[i] := 0;
end;

{

{ The vectors x and y are successive iterates. The function returns TRUE if
{ the relative error of all components x_i and y_i is <= 101(-12), i.e. y.i
{ has about 12 correct decimals. If x_i or y_i vanishes, the relative error
{ is implicitly set to zero.

St e e e

i

function Accurate ( var x, y : rvector ) : boolean;
const

Delta = 1E-12; { Relative error bound }
var

ok . boolean;

i, n : integer;

abs_yi : real;
begin

i := 1o(y); n := ub(y);

repeat

it (sign(x[i))*sign(y{il) <= 0) then { Relative error set to 0 }

ok := true
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else
‘begin
abs_yi := abs(y[il); { Relative error > Delta? }
ok := (abs(y[i] - x[i]) <= Delta * abs_yi );

end;
i o= i+l

antil (mot ok) or (i > n);

Accurate := ok;
end;
{- ¥
{ This procedure ’VerificationStep()’ performs the iteration ¥
{ [yl = blow([x],Eps), [x] = [z] + [CI*[y] for k = 1,2,... until the new 3
{ iterate [x] lies in the interior of [y] or until the maximum number of 7
{ iterations is exceeded. The flag ’'IsVerified’ is set if an inclusion in }
{ the interior could be established. }
{ +
procedure VerificationStep ( var xx, zz . ivector;

var C : imatrix;
var IsVerified : boolean );

const

MaxIter = 3; { Maximum number of iteration steps }

Epsilon = 1000; { Factor for the epsilon inflation }
var

p : integer;

yy @ ivector[lb(xx)..ub(xx)1;
begin

Xx = 2z; p := 0; { Initialize: [x] := [z] }

repeat

yy := blow(xx,Epsilon);
XX 1= zz + C*yy;
IsVerified := xx imn yy;
p := pti;
until ( IsVerified or (p >= MaxIter) );

{ Epsilon inflation 3}
{ New iterate: [x] := [zJ+[CI*[y] }
{ Inclusion in the interior? 2}

end;

{ }
{ Purpose: The procedure ’‘LinSolveMain()’ computes a verified solution of a J}
{ square linear system of equations A*x=b. 3
{ Parameters: F
{ In : ‘A’ : matrix of the system, passed as reference }
{ parameter to save time for copying it. }
{ ‘b’ : right-hand side of the system, passed as 3
{ reference parameter to save time for copying it. }
{ ‘ComputeCond’ : flag signalling whether a condition number }
{ estimate is to be computed. >
{ Out : ‘xx’ . enclosure of the unique solution. }
{ ‘Cond’ : condition number estimate. >
{ 'Err’ : error code. 3
{ Description: An approximate inverse ‘R’ of 'A’ is computed by calling >
{ procedure ‘MatInv()’. Then an approximate solution ’'x’' is computed 3
{ applying a conventional real residual iteration. For the final verifica- }
{ tion, an interval residual iteration is performed. An enclosure of the }
{ unique solution is returned in the interval vector ’xx’. The procedure }
{ also returns a condition number estimate ’Cond’ if the flag ’ComputeCond’}
{ is set. ’Cond’ is initialized by -1. A negative value for ’‘Cond’ signals }
E that an estimate could not be computed. 7
procedure LinSolveMain ( var A . rmatrix; var b . rvector;

var xx : ivector; var Cond : real;
ComputeCond : boolean; var Err : integer );

const

MaxResCorr = 10; { Maximum number of real residual corrections }
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var
IsVerified : boolean;
k, n, m : integer;
X, y,4d : rvector [1b(xx)..ub(xx)];
zz : ivector[1b(xx) . .ub(xx)];
R : rmatrix[1b(A,1)..ub(4,1),1b(A,2). .ub(A,2)];
C : imatrix[1b(A,1)..ub(4,1),1b(A,2). . ub(Aa,2)];
begi
{ Get length of the rows and columns of ’A’, initialize condition number >
n := ub(A,1) - 1b(A,1); m := ub(A,2) - 1b(A,2); Cond := -1:
if (n <> m) then { Error: ’A’ is not square 2}
Err := NotSquare
elgse if ( (n <> ub(b)-1b(b)) or { Error: Dimensions of A*x = b }
(m <> ub(xx)-1b(xx)) ) them { are not compatible 3}
Err := DimensionErr
else
Err := NoError;

it (Err = NoError) then
begin
MatInv(A,R,Err);
if (Err <> NoError) then
Err := InvFailed
else
begin {Algorithm}
if ComputeCond then { Compute condition number}
Cond := MaxNorm(A) *> MaxNorm(R); { 3

x := R¥b; k := 0; { Real residual iteration }
repeat
y :
d :

X,
#x(b - A*y);
x := #*(y + Rxd);
CheckForZeros(y,x);
k := k+1;
until Accurate(y,x) or (k >= MaxResCorr);

{ Prepare verification step, i.e. compute enclosures [C] }
{ and [z] of C = (I - R*A) and z = R*(b - A*x).

{ 3}

C := ##(id(A) - R*A);

d = #x(b - A*x);

zz := ##(b - A¥x - d); { Now b-A*x lies in d+[z]. }

zz ;= ##(R*d + R¥zz); { Thus, R*(b-A*x) lies in ##(R*d+R*[z]) }

{ If R+(b-A*x) = 0, then x is an exact solution. Otherwise try to }
{ find a verified enclosure [x] for the absolute error of x.
¥

if (zz = null(zz)) then
XX := X
else
begin
VerificationStep(xx,zz,C,IsVerified); { Attempt to compute [x] }
if not IsVerified them
Err := VerifFailed

else
XX := X + XX; { The exact solution lies in x+[x] }
end;
end; {Algorithm}
end; { if (Err = NoError) ... }

end; {procedure LinSolve}
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{- }
{ Purpcse: The procedure ’LinSolve()’ computes a verified solution of a }
{ square linear system of equations A#x=b without returning a condition }
{ number estimate. }
{ Parameters: }
{ In : ’A’ : matrix of the system, passed as reference 2}
{ parameter to save time for copying it. }
{ ‘b’ : right-hand side of the system, passed as }
{ reference parameter to save time for copying it. J}
{ Out : ’xx’ ! enclosure of the unique solution. 3}
{ 'Err’ : error code. }
{ Description: Calls ’'LinSolveMain()’' for solving the linear system with the }
{ flag ’‘ComputeCond’ not set. 7
{ }
global procedure LinSolve ( var A : rmatrix; var b : rvector;
var xx : ivector; var Err : integer );
var
DummyCond : real; { Dummy parameter for call of ’‘LinSolveMain()’' }
begin
LinSolveMain(A,b,xx,DummyCond,false,Err);
end;
{- }
{ Purpose: The procedure 'LinSolve()’ computes a verified solution of a }
{ square linear system of equations A*x=b and returns a condition 3
{ number estimate. 2
{ Parameters: }
{ In : A’ : matrix of the system, passed as reference }
{ parameter to save time for copying it. }
{ 'b’ : right-hand side of the system, passed as }
{ reference parameter to save time for copying it. }
{ Out : ’‘xx’ : enclosure of the unique solution. }
{ ’Cond’ : condition number estimate. }
{ ’Err’ : error code. 3
{ Description: Calls ’LinSolveMain()’ for solving the linear system with the }
{ flag ’‘ComputeCond’ set. 3}
{ }
global procedure LinSolve ( var A : rmatrix; var b : rvector;
var xx : ivector; var Cond : real;
var Err : integer ),
begin
LinSolveMain(A,b,xx,Cond,true,Err);
end;
{ }
{ Module initialization part }
}
begin
{ Nothing to initialize }
end.

10.3.2 Example

In our sample program, we demonstrate how to use the modules defined in the
Previous section. As in Section 2.5, we give the definition of a control procedure
Mmain with a single parameter n of type integer. The dynamic arrays needed to store
the matrix of the system, its right-hand side, and the enclosure of the solution, are
allocated dynamically depending on n. After entering the system, the program tries
to enclose a solution. If the algorithm succeeds, an enclosure of the solution and



190 10. Linear Systems of Equations 10.3 Implementation and Examples 191
With the right-hand side b = (1,2,...,n), the exact solution of the system is given

i ing-point imation are printed. Otherwise, an error message i
a naive floating-point approximation p ) ge is by z =(0,1,...,n —1). For n = 10, our sample program leads to the following

displayed. Finally, a condition number estimate for the input matrix is printed.

output:
program linsys_example ( imput, output ); Enter the dimension of the system: 10
use
mv_ari, { Matn:x/vector a.rithmetic . . } Enter matrix A:
mvi_ari, { Matr:fx/x'/ector.mterval arithmetic } 10 45 120 210 2592 210 120 45 10 1
matinv, { Matrix inversion } 58 330 990 1848 2310 1980 1165 440 99 10
linsys; { Linear system solver } 220 1485 4752 9240 11880 10395 6160 2376 540 55
} 718 5148 17160 34320 45045 40040 24024 9360 2145 220
procedure main ( n : integer ); 2002 15015 51480 105105 140140 126126 76440 30030 6930 715
var 5005 38610 135135 280280 378378 343980 210210 83160 19305 2002
ErrCode : integer; 11440 90090 320320 672672 917280 840840 517440 205920 48048 5005
Cond . real; 24310 194480 700128 1485120 2042040 1884960 1166880 466752 109395 11440
A, R : rmatrix[1..n,1..n]; 48620 393822 1432080 3063060 4241160 3938220 2450448 984555 231660 24310
b . rvector[i..nl: 92378 755820 2771340 5969040 8314020 7759752 4849845 1956240 461890 48620
x : ivector[1i..n];
begin Enter vector b:
writeln(’Enter matrix A:’); read(A); writeln; 12345678910

writeln(’Enter vector b:’); read(b); writeln; ) ) . ) )
Naive floating-point approximation:

3.769740075654227E-010
9.999999949022040E-001
-1.998999975192608E+000

LinSolve(A,b,x,Cond,ErrCode);

ﬂb:EECOde = 0) then 2.999999904595484E+000
4 ) . o -3.999999691503490E+000

}'E S;mp?ZeRtg:rézzg‘f to a naive floating-point approximation } 4.999999132005541E+000
atInv(4,R, P o -5.999997815384631E+000
write(’Naive floating-point approximation:’); 6.999994975405671E+000
writeln(R*b); ~7.999989266972989E+000

. . 8.999978443156579E+000
write(’Verified solution found in:’);

writeln(x); Verified solution found in:
end [ 0.000000000000000E+000, 0.000000000000000E+000 ]
else L 1.000000000000000E+000, 1.000000000000000E+000 ]
writeln(LinSolveErrMsg(ErrCode)); [ -2.000000000000000E+000, —-2.000000000000000E+000 ]

[ 3.000000000000000E+000, 3.000000000000000E+000 ]

it (ErrCode in [0,4]) them [ ~4.000000000000000E+000, -4 .000000000000000E+000 ]
begin [ 5.000000000000000E+000, 5.000000000000000E+000 ]
writeln(’Condition estimate:’); [ -6.000000000000000E+000, —6.000000000000000E+000 ]
writeln(Cond:9); [ 7.000000000000000E+000, 7.000000000000000E+000 ]
end; [ ~8.000000000000000E+000, ~8.000000000000000E+000 ]
[ 9.000000000000000E+000, 9.000000000000000E+000 ]
end; L .
I > Condition estimate:
var 1.1E+016
n : integer; . . . .
begin Note that the resulting enclosure of the solution is a thin interval vector. This
n :=0; 18 a consequence of our strategy for updating zero-suspicious entries in Algorithm
while (n <= 0) do 10.2. After th al residual i . . . .
begin write(’Enter the dimension of the system: ’); read(n); end; 10.2. er the real residual iteration of Algorithm 10.5, the approximate solution
writeln: 18 already exact! The verification step is used only to get a mathematical proof of
:am m; this fact. In general, the enclosure of the solution is not a thin interval vector.
ena.

As sample input data, we use a Boothroyd/Dekker system (see [89]) whose ele-

: 10.3.3 Restrictions and Improvements
ments are integers defined by

nti—1 S n The method described in this chapter demands exactly representable input data.
w=("1)-G5)
—J

o T hi=1,...,n. Neither the matrix A nor the right-hand side b of the system may be disturbed
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by conversion errors during input. Actually, this is no restriction if A and b result
from previous computations. To see why this is important, let us consider the 2 x 2

system with
11 1
ae(13) 0= (1), s

The exact solution of the system is z = (1/¢,1 — 1/£)T. If we solve the system for
€ = 10~%° using the above program, we get the following result

Verified solution found in:
[ 1.000000000000000E+020, 1.000000000000001E+020 ]
[ -1.000000000000001E+020, —-1.000000000000000E+020 ]

which does not contain the exact solution (10?°,1 — 10%°)T. The reason for this
incorrect result is that ¢ = 1072 is not exactly representable on a binary number
screen (see Section 3.7). Thus after data conversion, we solved a perturbed system
with a O(¢) entry for the lower left element of A.

To get rid of the problem of input conversion, we might enclose all input data
in small intervals. We would have to modify our algorithm so that it works with
interval data. The modifications of Algorithm 10.5 to accept interval input as well
as complex and complex interval data are subject to a subsequent volume of this
book. This future volume is also planned to deal about the treatment of rectangular
linear systems of equations.

10.4 Exercises

Exercise 10.1 How large a Hilbert matrix can the procedure LinSolve handle?
Hilbert matrices are very ill-conditioned for large dimensions. The elements of a
Hilbert matrix H are defined by

1

hij:m i,j:l,...,n.

Multiply H by the common denominator of all its elements to get an exactly repre-
sentable input matrix. Use an arbitrary vector as right-hand side of the system.

Exercise 10.2 Algorithm 10.5 fails for very ill-conditioned systems. For instance,
we are not able to solve a Boothroyd/Dekker system of dimension 15 using procedure
LinSolve. As mentioned earlier, the better R approximates the inverse of A, the
better the algorithm works. Therefore, it is a good idea to improve the behavior of
our algorithm by refining the approximate inverse.

If R is an already computed approximation of A1, we can use a little trick to
improve its value. By computing

R = (RA)™R,
R, = O((RBA)'R-R)
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we get A~' = Ry + R;. R, is a new approximation to A~!, and R, is its refinement.
This fact can be used to modify Algorithm 10.5. If the verification step has failed, it
has to be restarted after computing an improved double-length approximate inverse.
To accomplish this goal, we do not want Step 4 to return with an error message.
An improved version of Algorithm 10.5 has the following form:

Supplement the module linsys by a procedure NewLinSolve according to the modifi-
cations described in Algorithm 10.6. Test the new procedure for a Boothroyd/Dekker
system of dimension 15. The improved version should succeed in enclosing the so-
lution.

Exercise 10.3 Another possible extension of Algorithm 10.5 is to use the staggered
type arithmetic from Chapter 8 to store and to compute T and R. Make these
modifications and compare the accuracy, set of problems for which it works, and
speed with those of the procedure LinSolve.

10.5 References and Further Reading

The basic principles of a self-verifying algorithm for linear systems of equations
are due to Rump [76]. A straight-forward extension of the algorithms to interval
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systems and complex systems is given in Rump [78]. A compact summary of the
mathematical theory is found in Rump [79]. Comprehensive discussions on interval
linear systems of equations including preconditioning strategies are given in the
books of Hansen [28] and Neumaier {64]. There are also commercial implementations
for the verified computation of linear systems of equations which come with the

subroutine libraries ACRITH of IBM and ARITHMOS of SIEMENS (see [32], [80}).

Chapter 11

Linear Optimization

A linear programming problem consists of a linear function to be maximized (or
minimized) subject to linear equality and inequality constraints. Any linear program
(LP) can be put by well-known transformations into standard form

T

z = c¢'r = max!
(LP) Az = b (11.1)
z > 0
-~

max{c'z [z € X}, X:={z € R"| Az =b, z >0},

where A is a real m X n matrix, b € R™, ¢ € IR", and m < n. The input data of
(11.1) are given by the triple P = (4, b,¢c) € R™"tmtn,

Linear programming problems occur frequently in many economic, engineering,
and scientific applications, so many software libraries include routines to estimate
optimal solutions. Of course, such routines for computing approximate solutions
are subject to rounding and cancellation errors that may result in “answers” which
are not truly optimal or are not even feasible. We describe an algorithm for the
self-validated solution to linear programming problems. The algorithm we present
computes an enclosure of the true optimal solution set. The self-validated nature
of our algorithm is especially important as the applications of linear programming
become larger, more complex, and deeply embedded as sub-problems in even more
complex models.

11.1 Theoretical Background

11.1.1 Description of the Problem

The function ¢Tz is called the objective function, and X is called the set of feasible
solutions of (11.1). X is a convex polyhedron which is the intersection of the affine
variety {z € IR™ | Az = b} with the positive orthant in IR".

A point z € IR" is called feasible if € X. Tt is called optimal if, in addition,
Tz > T2’ for all 2’ € X. Ifsuch a point exists, the value zop 1= max{cTz | z € X}
is called the optimal value. We seek an enclosure of the set of all optimal points.

A main theorem in linear programming asserts that if there exists an optimal
solution, it has at most m components different from zero. Furthermore, there is
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only a finite number of such solutions. The simplez method invented by Dantzig [13]
is an algorithm to compute an approximation of such an optimal solution efficiently
(see [84)).

Solutions of Az = b where n — m components of z are zero can be described by
partitioning the rectangular matrix A consisting of the columns (a.1,...,a.) into
two submatrices Ag and Ay, where Ag = (dug,,.-.,0g,) 15 a nonsingular m x m
submatrix with the column vectors a. g of A, and Ax = (dupy,-- ., Gupn ) is the
m X (n — m) submatrix with the remaining column vectors of A. The set of indices
B={B,...,Bm} €{1,...,n} which determines the nonsingular quadratic matrix
Ap is called a basic indez set of (11.1), and N := {v1,...,vp_m} = {1,...,n}\B
is the set of nonbasic indices.

For a given partitioning B and N, the linear equation Az = b can be expressed
in the form

Ap-zp+An-zn =0 (11.2)

where z = (zp,zn)T is partitioned analogously. Multiplying equation (11.2) by the
inverse Ag' yields

zB=ABI-b—H'.’l:N with H:=ABI-AN.

Partitioning ¢ = (cp,cn)T similarly, the objective function can be expressed in the
form

r=ch-zptcy oy = cy-(Ag'-b—H -zn)+ch-zn
= cg-Agl-b—(c'g-H—c’{,)-xN.
Therefore,
Fz=ch Ag'b—d¥ - zy with d:=HT-cg—cn. (11.3)

Thus, both the m variables zp and the value of the objective function are determlned
by the n — m components of zxn.

A basic solution (corresponding to the basic index set B) is a solution for which
the n — m components of = are zero.

z:=(zp,zn)T with zp:= Ag'-b and zy:=0.

In addition, if > 0 (this is the case if zp := Ag'd > 0), then z E X is called a
basic feasible solution. The value of the objective function is z = Tz = c5 A5

Geometrically, the basic feasible solutions correspond to the vertices of the convex
polyhedron X. The vector d in (11.3) is called the vector of reduced costs, since it
indicates how the objective function depends on zn.

11.1.2 Verification

The “results” of interest for the linear programming problem (11.1) are:

1. The optimal value zpe,
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2. the optimal basic index set B, and
3. the optimal basic feasible solution x.

The simplex method efficiently determines an optimal value z,5; and one optimal
basic index set B with the corresponding optimal feasible solution z. Implementa-
tions of the simplex algorithm in software libraries are usually quite reliable, but
the accumulation of rounding and cancellation errors may cause them to return a
non-optimal or infeasible solution, or to fail to find all optimal solutions in case
the algorithm is unable to recognize that more than one vertex of X is optimal.
Therefore, we compute enclosures for the optimal value z,p, the set of optimal ba-
sic index sets Vopi, and the set of optimal basic feasible solutions X,p, for a linear

programming problem P. Algorithm 11.7 calculates an interval [z], a set of index

sets S = {BW,..., B}, and interval vectors [z](,...,[z]® € IR such that the
following three condxtlons are satisfied:
L. zopt € [2]

2.BeVoypy=>BeES
3. 2 € Xop = there exists a B®) € S with z € [z]®)

The following a posteriori method either computes such enclosures [z}, S, and
(2], ..., [z]) satisfying conditions 1, 2, and 3 and guarantees that the real problem
p adrmts optimal solutions, or else the method gives a warning that no enclosures
could be calculated. The latter is the case if the set of feasible solutions X is empty
or if the objective function is unbounded on X. ~

Let B € S be an index set {f1,...,8m} C {1,...,n}. Let [zg], [y], [A)., with

vEN = {v,...,0n-m} = {1,...,n}\ B be vectors of inclusion for the solutions
of the systems of linear equations
AB Ip = b
ALy = cp (11.4)
AB ' h*,u = Q-

These vector enclosures are calculated by the self-validating Algorithm 10.5 for solv-
ing square linear systems. If the algorithm succeeds, it is verified that the real matrix
Ap is nonsingular.

We define

(] AITV [yl —en
[2] ([z8] [en))T, [on] =0
(H] = ([Alaprs---» [Rloim-n)
(2] cp - [z8] 007 - [y).
The interval tableau [T7] corresponding to the basic index set B € S has the form

[ | [d -+ [dhom

- [Z] [d]T _ [x]ﬂl [h]ﬁlvl [h]ﬁlvn—m
1= ( [es] | [H] ) o | )

[@]6m | [Rlgmor =+ [Plomimem
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The self-validating algorithm for solving linear programming problems with input
data P = (A,b,c) is based on the following two theorems whose proofs appear in
Krawzcyk [51] and Jansson [34].

Theorem 11.1 Let B € S be a basic index set of P and let [T] be the corresponding
interval tableau.

1. If the conditions
zg >0 and d>0 (11.6)

are satisfied, then the linear programming problem P has a unique optimal
solution contained in [z]. Moreover Vope = B, and zop € [2].

2. IfB € Vopg, then
Zp>0 and d>0. (11.7)

If the condition (11.6) is satisfied, then P is called basis stable, i.e. the linear pro-
gramming problem P has a unique optimal solution. Inequalities (11.7) give a
necessary condition that B is an optimal basic index set for the problem P. Such
basic index sets are only of interest if P is not basis stable.

The second theorem shows how to compute an enclosure for a set of neighboring
basic index sets L of B, where B € V,p,, and all B’ € £ differ in exactly one index
from B. Each neighboring basic index set denotes a different neighboring vertex of
the set of feasible solutions X. With Theorem 11.2 we have a sufficient criterion to
determine a list of candidates that is a true superset of all neighboring basic index
sets that may represent an optimal solution.

Theorem 11.2 Let B be a basic index set of P with Tg > 0 and d > 0. Let
[T] be the corresponding interval tableau. Let £ be defined as the set of all index
sets B' = (B\{8}) U {v} with B € B and v € N that satisfy one of the following

conditions:

0€ld],, ks, >0 and Eﬁﬁ Smin{’fﬁ | kg, >0, ﬂEB} (11.8)
By v
d, d, -
0 € [z]g, by, <O and > max{ =% | kg <0, veN .  (11.9)
v hﬁu hﬁy

If B € Vopt, then £ D L.

11.2 Algorithmic Description

With Algorithm 11.1 we compute the interval tableau [T} of (11.5) using the algo-
rithm LinSolve from Chapter 10 for solving the square linear systems of equations.
If LinSolve fails to solve one of the linear systems, an error code is returned.
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Algorithm 11.2 determines whether the interval tableau [T] corresponding to the
actual basic index set B represents a basis stable solution. According to condition
(11.6) the existence of a basis stable solution indicates a unique optimal solution for
the linear programming problem P, i.e. B = 8§ 2 Vopi, [2] 2 Xope and [2] 2 zope.
Thus, no further calculations are necessary.

We use Algorithm 11.3 to decide whether the interval tableau [T'] correspond-
ing to the actual basic index set B represents a possibly optimal solution for
the linear programming problem P, ie. B € {BW,...,B®} = 8§ D V., [z] €
{lz]®,.. ., [2]®)} D Xops, and [2] D zope. If (11.7) is satisfied, then B, [z], and [2]
are stored to the list of optimal solutions.
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Algorithms 11.4 and 11.5 check whether the set of feasible solutions X is empty
or if the objective function ¢’z is unbounded on X. This is done by an examination
of the interval tableau [T']. X is probably (i.e. numerically) empty if there does not
exist a v € N with [h]g, < 0 for all B € B with 0 € [z]s. The objective function is
probably (i.e. numerically) unbounded if there does not exist a 8§ € B with [h]g, > 0

for all ¥ € N with 0 € [d],.

For the actual basic index set B, Algorithm 11.6 determines a set of neighboring
basic index sets £ that are candidates for being optimal basic index sets. A true
superset of all relevant candidates is determined according to Theorem 11.2.
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We now present the algorithm LinOpt to determine enclosures for the optimal
value zop¢, the complete set of optimal basic index sets V,p, and the set of optimal
basic feasible solutions X/, for a linear programming problem P. The problem is
given by the triple P = (A, b,c). As stated in the previous section, we also need an
initial optimal basic index set Byiar to start the algorithm.

During the iteration in Step 2a of Algorithm 11.7, we select a basic index set B
out of the list of candidates for optimal basic index sets C and update the list of
examined basic index sets £. In Step 2b we compute the interval tableau (11.5) using
Algorithm 11.1. Next, we check whether the actual basic index set B represents a
basis stable solution using Algorithm 11.2. If not, we use in Step 2d Algorithms 11.4
and 11.5 to decide if the linear programming problem is irregular, i.e. X is empty
or ¢z is unbounded on X. In Step 2e, we validate the optimality of the actual
solution using Algorithm 11.3. If this is the case, we store it to the list of optimal
solutions and then determine new candidates for optimal basic index sets, the list
of neighboring basic index sets £, using Algorithm 11.6.
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Applicability of the Algorithm

Initial Index Set

A basic index set Bsar: € Vopt can be determined by computing an approximation
of the optimal solution and the corresponding basic index set B for the linear pro-
gramming problem P = (A, b,c) using the standard simplex algorithm. Calculate
vectors of inclusion [zg] and [y] for the systems of linear equations

Ap-zp=1b, AE-y:cB.

If g > 0 and d > 0 with [d] := A} - [y] — e, then it is proved by Theorem 11.1
that B is a possibly optimal basic index set of the linear programming problem
P = (A,b,c). Therefore, Byyars := B € Vop.

Stopping Criteria

Algorithm 11.7 stops in Step 2b or 2d and returns an error if either [T] is not
computable or one of the conditions in Step 2d is fulfilled.

H [T] is not computable, Algorithm 11.1 has failed to solve the systems of linear
equations (11.4). This failure indicates that the actual submatrix Ap is singular or
nearly singular.

If in Step 2d the first or second condition is satisfied, this indicates that the set
of feasible solutions X is probably empty or the objective function is unbounded on
X. In this case, it is not possible to compute enclosures for zypt, Vopt, and Kopt-

Improvements

The main work of the Algorithm 11.7 is to compute the interval tableau [T, i.e.
to solve the systems of linear equations (11.4). The only purpose of the interval
tableaus is to compute an enclosure of the set of basic index sets £ by Theorem
11.2. For the computation of £, it is enough to get enclosures [z5] and [d] and
enclosures for the columns of H with 0 € [d], and the rows of [H] with 0 € [z]g (cf.
(11.8) and (11.9)). In practical applications, [d], > 0 and [z]s > 0 holds for most

indices v € M and B € B. Therefore, it is much less effort to compute only the
necessary columns and rows of [H].

The accuracy of Algorithm 11.7 is reflected in the sharpness of the computed
bounds for the solution of the linear programming problem P. The tightness of
these bounds only depends on the algorithm LinSolve in Step 2 of Algorithm 11.1
for calculating the bounds of the linear systems (11.4).
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11.3 Implementation and Examples

11.3.1 PASCAL-XSC Program Code

Here we list the program code to solve a linear programming problem determined
by the triple P = (A, b, c). These procedures return enclosures for the optimal value
Zopt, the set of optimal basic index sets V,pi, and the set of optimal basic feasible
solutions X, satisfying conditions 1, 2, and 3 in Section 11.1.2.

The algorithm described above is implemented in separate modules for clarity.
The module lop_ari supplies a linearly linked list to keep the list of basic index sets
that are candidates for being optimal basic index sets. Module rev.simp supplies an
implementation of the revised simplex algorithm and is used to compute an initial
optimal basic index set for the given linear programming problem. Module lop uses
the abstract data type of module lop_ari and uses Algorithms 11.1 through 11.7 to
compute the enclosures mentioned above.

11.3.1.1 Module lop_ari

Module lop_ari handles the index sets and lists of index sets. This module offers a
linearly linked list as a very simple data structure to handle the dynamically growing
number of index sets and solution vectors of intervals.

{

{ Purpose: Definition of a linearly linked list as an abstract data type for

{ the representation of a list of integer sets.
{ Global constants, types,

constant

operator

function
function
function
function
function
function
function

Aoy e e i oy e e o m e e e e e e e

operator :

maxDim

type IndexSet
type BaseList

in

NextIndex
GetIndex
size
length
empty
select
extract

procedure insert
procedure delete
procedure append
procedure remove
procedure FreeAll
procedure write

operators, functions, and procedures:

: maximum number of indices in a set (restricted

by the PASCAL-XSC compiler)

: representation of a set of indices
: representation of a linearly linked list of

index sets

: returns TRUE, if index set is in list

: assigns index set to a vector

; returns value of next index in an index set

: returns value of i-th index in an index set

: returns number of indices in an index set

: returns number of elements in a list

: returns TRUE if list is empty

: selects first element of a list

: extracts submatrix/subvector depending on the

actual index set

: inserts index set at the head of a list

: deletes index set from list

: appends 2nd list to end of 1st list

: removes elements of 2nd list from 1st list
: frees complete list

: prints data types IndexSet and Baselist

B e e e M M S e e M D N e e W S e S e S S e o e

module lop_ari;

global const

maxDim = 2565; { Maximum number of indices }

{
{ Global type
{

definitions

}
-
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global type IndexSet = set of 1. .maxDim;
BaseList = tBaseListElement;
BaseListElement =
record
Member : IndexSet;
next . tBaseListElement;
end;
}

{ Local variable storing list of free elements (automatic garbage recycling) }

var
FreeList : Baselist;

{ Procedures for generating and freeing of list elements ;
procedure NewPP (var P: BaseList); { 'NewPP’ generates a new list element ;
begin { or gets one from ’FreeList’. }
if Freelist = nil them 3
begin
new(P); PtT.next:= nil;
end
else
begin
P:= FreeList; FreeList:= FreeListt.next; Pt.next:= nil;
end;
end;
procedure Free (var P: Baselist); { ’'Free’ enters one element of a }
begin { list in the ‘FreeList’. }
if P <> nil then { }
begin
Pt.next:= FreeList; FreelList := P; P:= nil;
end;
end;

global procedure FreeAll (var List: BaseList);{ ’FreeAll’ enters all elements}
var H : Baselist; { of ’List’ in the ’FreeList’. }
begin
if List <> mil then
begin
H:= List;
while Ht.next <> mil do H:= HT.next;
Ht.next:= FreeList; FreeList:= List; List:= nil;

end;
end;
{- }
{ Global functions and procedures for index sets 3}
- 3}
global tunction NextIndex(Index : integer; { Determine next index }
B : IndexSet) : integer;{ in B following Index }
begin {
Index := Index + 1;
vhile not (Index in B) amd (Index < maxDim) do Index := Index + 1;
NextIndex := Index;
end;
global function GetIndex(i : integer; { Determine i-th index in B }

B : IndexSet) : integer;{
var Index, Counter : integer;



206 11. Linear Optimization

begin
Index := 0; Counter := 0;
repeat
Index := NextIndex(Index, B);
Counter := Counter+i;
until (Counter=i);
GetIndex := Index;
end;

global functiom size(B : IndexSet) : integer; { Determine number of indices
var Index, k : integer; {in B

}
}

begin {
k := 0;
for Index:=1 to maxDim do
if (Index in B) then
k := k+1;
size := k;
end;

global functiom extract(A : rmatrix; B : IndexSet) : { Extract submatrix of
rmatrix[1..ub(A,1),1..size(B)]; { columns A[*,Ind] with

}

var Index, k : integer; { (Index in B)
begin {
k :=0;
for Index:=1 to ub(A,2) do
if (Index in B) then
begin
k := k+1;
extract[*,k] := A[*,Index];
end;
end;

global function extract(x : rvector; B : IndexSet) : { Extract subvector
rvector{1l..size(B)]; { x[Index] with (Index
var Index, k : integer; { in B)

[SPNTE

N Y N

begin {
k := 0;
for Index:=1 to ub(x) do
if (Index in B) them
begin
k := k+1;
extract[k] := x[Index];
end;
end;

{

{ Global functions and procedures for lists of index sets

global function empty(L : BaseList) : boolean;

{ Check if L is empty
begin {
empty := (L = mil);
end;

global functiom length(L : BaseList) : integer; { Return length of L

var counter : integer; {
begin
counter := 0;
while (L <> nil) do
begin
counter := counter + 1;
L := LT.next;
end;
length := counter;
end;

[NTNPIUA NI

N
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global operator in (B : IndexSet; L : BaseList)
inlist : boolean;

{ Check if B in L }

begin
inlist := false;
while (L <> mil) and (mot inlist) do
if (LT.Member = B) them inlist := true
else L := LT.next;

end;

global fumction select(L : Baselist) : IndexSet; { Select first index set }

begin { from L 3
select := Lt.Member; { 33

end;

global procedure insert (var L : BaseList; { Insert index set B to the head }
B : IndexSet); { of the list of index sets L >
var P : Baselist; { - >
begin
if not (B imn L) then
begin
P :=1L;
NewPP(L);
Lt.Member := B;
LtT.next := P;
end;
end;

global procedure delete (var L : Baselist; { Delete index set B from list J}
B : IndexSet); { of index sets L
var P, Del : Baselist; { 3
begin
if not empty(L) themn
if (LtT.Member = B) then { B is 1st element }

begin
Del := L; L := Lt.next; Free(Del);
end
else { B is not 1st element }
begin
P :=L

while (PT.next <> nil) de
if (PT.next?.Member = B) then

begin
Del := Pt.next; Pt.next := Pt.nextt.next; Free(Del);
end
else P := Pt.next;

end;
end;

global procedure append (var Res : BaseList; { Append list of index sets Add}

var Add : BaseList); { to list Res 3}
var P : Baselist; { >
begin

if empty(Res) them
Res := Add
else
begin
P := Res;

while (Pt.next <> mnil) do P := Pf.next;
Pt.next := Add;
end;
Add := mnil;
end;
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global procedure remove (var Res : BaseList; <{ Remove list of index sets Sub}

Sub : Baselist); { from Res }
var B : IndexSet; { >
begin

while (Sub <> nil) do
begin

B := Subtf.Member;
delete(Res,B);
Sub := SubftT.next;
end;
end;

global procedure write(var out : text; B : IndexSet);
var Index : integer;
begin
for Index:=1 to maxDim do
if (Index in B) them write(out,Index,’ ’);
end;

global procedure write(var out : text;

{ Write index set }

{ Write list of index sets }

BaseSet : BaseList); { 33
begin
while (BaseSet <> nil) do
begin .
writeln(out,BaseSet®.Member);
BaseSet := BaseSetT.next;
end;
end;
global operator := (var x : rvector; B : IndexSet); { Assign index set to }
var i, Index : integer; { real vector }
begin { }
Index := 0;
for i:=1 to ub(x) do
begin
Index := NextIndex(Index,B);
x[i] := Index;
end;
end;
{ }
{ Module initialization }
{ }
begin
FreeList := mil; { List of freed elements which can be used again }
end. {

11.3.1.2 Module rev_simp

We provide in module rev_simp a procedure RevSimplex based on the revised simpler
method. It solves a linear programming problem in standard form (11.1). The
implementation closely follows the one published in Syslo, Deo, and Kowalic [84,
p. 14 ff]l. Beside the correction of an index calculation error (marked with (1)),
the source code has just slightly been changed for our special needs. This variant
returns an optimal value zop¢, an optimal basic feasible solution z.y¢, and an optimal

basic index set vopy = Bstart as required to start Algorithm 11.7.
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- 3
{ Purpose: Determine an optimal value ’z’, an optimal basic index set ’'v’, }
{ and an optimal solution vector ’x’ for a linear programming problem }
{ P = (A,b,c) given in the standard form: }
{ (z=ctt * x = max! ) >
{ (LP) ( A*xx=b ) }
{ ( x>=0 ). }
{ Method: An initial basic index set is determined using the 2-phases method.}
{ Then the revised simplex method described by Syslo, Deo, and Kowalic in }
{ 'Discrete Optimization Algorithms with Pascal’ [p.14], Prentice Hall, }
{ New Jersey (1983) is used. 3>
{ Global procedure: 3
{ procedure RevSimplex(...) : determines the values z, v, x for the 3}
{ linear programming problem P=(A,b,c) }
{ }
module rev_simp;

use mv_ari; { Matrix/vector arithmetic }

{ }
{ Purpose: Determination of the solutions of a linear optimization problem. }
{ Parameters: }
{ In: ‘A’ : matrix of constraints 3}
{ b’ : right-hand side of constraints }
{ ‘¢! : objective function by its coefficients }
{ Out: ’x’ : optimal solution vector >
{ 'y? : optimal basic index set }
{ 'z’ : optimal value }
{ 'Err’ : error flag 3}
{ Description: For a detailed description of the revised simplex method see }
{ Syslo, Deo, and Kowalic. 3
{ }

global procedure RevSimplex(A : rmatrix; b, ¢ : rvector;
var x, v : rvector; var z :@ real;
var Err : integer );

const eps = 1E-30; { if (lal < eps), it is handled as (a = 0) }

NoError =0;
WrongDimension =1;
NoOptimalSolution = 8;
NoInitialVertex =9;
var
min, s : real;
T : rmatrix[1..ub(b)+2,1. .ub(c)+2];
U : rmatrix[1..ub(b)+2,1. .ub(b)+2];
Vv, y . rvector(1l..ub(c)+2];

ex, SolutionFound : boolean;

i, 3, k, 1, p, Q.
m, n, phase . integer;

begin

m := ub(b); n := ublc);

if (n <=m) or (m < 1) or (n < 1) then { Check dimensions }

Err := WrongDimension
else { Err <> WrongDimension }
begin {
Err := NoError; phase := 1; { Initialization }
p = m+2; q = mt2; k 1= mHl; {-——mm———————— 3}

SolutionFound := false;
c = —-¢c;

for i:=1 to m do
for j:=1 to n do T[i,jl := A[i,j]; {-mm ¥
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for j:=1 to n do

begin
Tk,j] := c[jl;
s = 0;
for i:= 1 tomdo s :=s - T[i,j];
Tlp.jl1 := s;
end;
U := id(U);
s :=0; w :=0; { Determine initial basic index set v, }
for i:=1 to m do { initial optimal value s, and initial }
begin { optimal solution x }
vli] :=n -m+ i; {1} { 3
wlil := blil;
s ;= s - b[i];
end;

wikl := 0; wlpl :=s;

repeat
if (wlp] >= -eps*10) and (phase = 1) then { Only phase 1 }
begin { Solution for phase 1 found }
phase := 2; q := mti; { ’
end;
min := 0; { phase 1 and phase 2 }
for j:= 1 to n do { Determine index k that minimizes }
begin {ULg,*] * T[*,j] (j =1,..,n)
s := Ulq,*] * T[*,jl; { }
if (s < min) then
begin
min := s; k := j;
end;
end;

if (min > -eps) then { vector of reduced costs vanishes }

if (phase = 1) then { 3
Err := NoInitialVertex
else { phase = 2 }
begin { Optimal solution found }
Solutionfound := true; }
z = wlql;
end
else
begin { Determine candidate 1 for }
for i:=1 to q do { exchange of indices
y[il := Uli,»] * T[*,k]; { }
ex := true;
for i:= 1 to m do
it (y[i] >= eps) themn
begin
s := wlil/ylil;
if ex or (s < min) then
begin
min := s; 1 := 1i;
end;
ex := false;
end;
if ex then { No candidate found }
Err := NoOptimalSolution { -}
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else
begin { Determine new basic index set }
v[1] := k; { and compute new tableau 3
s := 1/ y01l; { ¥
for j:= 1 to m do U[1, J] := U[1,j] * s;
it (1 = ) then i :=
else i := 1;
repeat
s := y[il;
wlil := wli] - min * s;

for j:=1 tom do U[1 J] := Uli,j1 - Ul1,3] * s;
it (i = 1-1) then i : + 2

else i i+ 1;
until (i > q);
w[l] := min;
end; { Determine new basic index set ... }
end; { Determine candidate 1 ... }

until SolutionFound or (Err <> NoError);

if SolutionFound then { Return optimal value z, optimal }

begin { basic index set v, and optimal }
x = 0; { solution vector x
for i:= 1 to m do o{ 3
x[trunc(v[i])] := wlil;
end;
end; { Err <> WrongDimension ... }
end; { procedure RevSimplex }
{ 3}
{ Module initialization part 3
F
begin
{ Nothing to initialize }
end.

11.3.1.3 Module lop

The module Iop contains routines for each of the Algorithms 11.1 trough 11.7 that
are necessary to compute the enclosures mentioned above. It makes use of the
arithmetic modules for intervals and interval vectors and matrices as well as of the
abstract data type for lists of index sets. The interface to a calling main program
consists of the two routines LinOpt and LinOptErrMsg. The procedure LinOpt
needs as input data the linear optimization problem P = (A,b,¢) and an initial
optimal basic index set Bsgare. It returns the enclosures of [2], Vope, Xopt, the number
of optimal solutions, and an error code. The function LinOptErrMsg returns a string
containing an error message.

{- }
{ Purpose: Determine enclosures for the optimal value ’‘z_opt’, for the set 3
{ of optimal basic index sets ’'V_opt’, and for the set of solution }
{ vectors 'X_opt’ for a linear programming problem P = (A,b,c) given in }
{ the standard form: }
{ (z=ctt * x = max! ) }
{ ap) ( A*xx=b ) }
{ ( x >= 0 ) }
{ with an initial optimal basic index set. }
{ Method: Starting from an initial basic index set, all neighboring index 3}
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{ sets are examined to determine all optimal solutions. To validate the >
{ optimality of a solution, all linear systems of equations are solved 3
{ using a verifying linear system solver. }
{ Global procedures and functions: 3
{ procedure LinOpt(...) : determines the enclosures of z_opt, V_opt, }
{ and X_opt for LP P = (4,b,c) 3
{ function LinOptErrMsg(...) : delivers an error message text 3
{ 3
module lop; { Linear optimization module }
{ - -~
use i_ari, { Interval arithmetic 3}
mv_ari, { Matrix/vector arithmetic }
mvi_ari, { Matrix/vector interval arithmetic }
linsys, { Verifying linear system solver }
x_real, { Extended real arithmetic }
lop_ari; { Linear linked list for index sets }
const kmax = 100; { Maximum number of iterations 3
var Rplus : interval;
}
{ Error codes used in this module. }
}
const
NoError = 0; { No error occurred >
WrongDimension =1; { Wrong dimension of problem >
SolutionSetIsEmpty = 2; { Set of feasible solutions is empty }
FunctionUnbounded = 3; { Objective function is unbounded 2}
SubmatrixSingular = 4; { Submatrix A_B is singular }
StartIndexSetNotOptimal = 5; { Initial basic index set not optimal }
IterationError = 6; { Maximum number of iteration exceeded }
SolutionMatrixTooSmall = 7; { Matrices for storage of solutions too small}
NoOptimalSolution = 8; { No initial optimal solution found }
NoInitialVertex =9; { No initial vertex found }
{ }
{ Error messages depending on the error code. }
}
global function LinOptErrMsg(Err : integer) : string;
var
Msg : string;
begin
case Err of
NoError : Msg = 7,
WrongDimension : Msg := ’Wrong dimension of problem (e.g. m >= n)’;
SolutionSetIsEmpty: Msg := ’Set of feasible solutions is probably empty’;
FunctionUnbounded : Msg := ’'Objective function is probably unbounded’;
SubmatrixSingular : Msg := ’Submatrix A_B in [A_B] is probably singular’;
StartIndexSetNotOptimal
: Msg := 'Initial basic index set not optimal '’
+ *(i.e. B_start not in V_opt)’;
IterationError : Msg := ’Maximum number of iteratiomns (=’
+ image(kmax,0) + ’) exceeded’;
SolutionMatrixTooSmall
: Msg := 'Matrices for storage of solutions is’
+ ’ too small. Increase index ranges of V_opt’
+ ’ and X_opt’;
NoOptimalSolution : Msg := ’No initial optimal solution found’;
NoInitialVertex : Msg := 'No initial vertex found’;
else : Msg := ’Code not defined’;
end;

if (Err <> NoError) then Msg
LinOptErrMsg := Msg;
end;

:= ’Exror: ' + Msg + ’!’;
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{ Determine solution vector }

function Solution(TT : imatrix; { corresponding to Base >
Base, NonBase : IndexSet) { 3
: ivector[l..size(Base)+size(NonBase)];
var Index, i : integer;
begin
Index := 0;
Solution := O;
for i:=1 to size(Base) do
begin
Index := NextIndex(Index,Base);
Solution{Index] := TT[i+1,1] ** Rplus;
end;
end;
{ }
{ Compute the interval tableau 3}
{ ([z] | [dltt ) }
{ [r] := (=---—- G ) }
{ ([x]_B | [H] ). }
1 }
procedure ComputeTableau( A . rmatrix;
b, ¢ . rvector;
Base, NonBase : IndexSet;
var TT : imatrix;
var Err : integer);
var )
A_B : rmatrix[1..ub(A,1), i..size(Base)];
A_N . rmatrix[1..ub(A,1), 1..size(NonBase)];
c_B . rvector[l..size(Base)];
c_N . rvector[1..size(NonBase)];
xx_B, yy : ivector[1..size(Base)];
dd ¢ ivector[1..size(NonBase)];
HH : imatrix[1..size(Base), 1..size(NonBase)];
zZ : interval;
Index, local_Error : integer;
i, j,m, n . integer;
begin { procedure ComputeTableau }
m := ub(A,1);
n := ub(a,2);
{ Determine submatrices and subvectors according to index sets Base and }
{ NonBase 3}
A_B := extract(A, Base); A_N := extract(A, NonBase);{ Determine submatrices}
¢_B := extract(c, Base); ¢_N := extract(c, NonBase);{ and subvectors accor-}
{ ding to B and N ¥
{ Solve linear systems of equations } { }
linsolve(A_B, b, xx_B, local_Error);

it

In
it

(local_Error = NoError) them
linsolve(transp(A_B), ¢_B, yy, local Error);

dex := 0;
(local_Error = NoError) them
for i:=1 to (n-m) do
begin
Index := NextIndex(Index,NonBase);
it (local_Error=NoError) them
linsolve(A_B, A[*,Index], HH[*,i], local_Error);
end;
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if (local_Error = NoError) them {- 3
begin { Check whether the set of feasible solutions is empty, i.e. not for all(beta}
dd := transp(A_N) * yy - c_N; { Compute components of interval } { in B) with (0 in [x]_beta) there exists a (nu in N) with ([H]_beta,nu < 0) }
zz := (c_B * xx_B) *x (b * yy); { tableau 3 {-
TT(1,1] := zz; { 3 function EmptySolutionSet(TT : imatrix) : boolean;
for j:=2 to (n-m+l) do var IsEmpty : boolean;
TTI1,j] := ad[j-1]; i,j : integer;
for i:=2 to (m+1) do begin
TT[i,1} := xx Bfi-1]; IsEmpty := false; i := 1;
for i:=2 to (m+1) do vhile (not IsEmpty) and (i < ub(TT,1)) do
for j:=2 to (n-mt+1) do begin
TT[i,j] := HH[i-1,j-1]; 1= i+l
end if (0 im TT[i,1]) then
else Err := SubmatrixSingular; begin
IsEmpty := true;
end; { procedure ComputeTableau } j =1
while IsEmpty amnd (j < ub(TT,2)) do
{ 3 begin
{ Determine whether the interval tableau [T] represents a basis stable 3 J o= g
fsolution, i.e. ([x]_B.inf > 0) and ([d].inf > 0). ; it (TT[i,jl.sup < 0) then IsEmpty := false;
end;
function BasisStable(TT : imatrix) : boolean; end;
var IsStable : boolean; end;
i,j : integer; EmptySolutionSet := IsEmpty;
begin end;
IsStable := true; i :=1; j :=1;
while ( (i < ub(TT,1)) and IsStable ) do { 3
begin { Check whether the objective function is unbounded, i.e. not for all (nu 3
i:=i+1; { [xJ_B= [T i,1] (i =2 .. m+t1) } { in N) with (0 in [d]_nu) there exists a (beta in B) with ([H]_beta,nu > 0) }
it (TT[i,1].inf <= 0) then IsStable := false; { 3
end; function Unbounded(TT : imatrix) : boolean;
while ( (j < ub(TT,2)) and IsStable ) do var IsUnbounded : boolean;
begin i,j : integer;
j = g+1; € [d] = [T_1,j] (j =2 .. n-m+1) } begin
if (TT[1,j].inf <= 0) then IsStable := false; IsUnbounded := false; j := 1;
end; while (not IsUnbounded) and (j < ub(TT,2)) do
BasisStable := IsStable; beg:m
end; j o
if (O in TT[l j1) then
{ } begin
{ Determine whether the interval tableau [T] represents a possibly optimal } IsUnbounded := true;
{ solution, i.e ([xJ_B.sup >= 0) and ([d].sup >= 0) } i =1,
{ } while IsUnbounded and (i < ub(TT,1)) do
function PossiblyOptimalSolution(TT : imatrix) : boolean; begin
var IsOptimal : boolean; i = i+1;
i,j : integer; it (TT[i,j].inf > 0) them IsUnbounded := false;
begin end;
IsOptimal := true; i :=1; j := 1; end;
vhile ( (i < ub(TT,1)) and Isttlmal ) do end;
begin Unbounded := IsUnbounded;
i=i+1; { [xJ_B=[T_i,1] (i =2 .. m+1) } end;
it mot( TT[i,1].sup >= 0 ) then IsOptimal := false;
end; { 3
vhile ( (j < ub(TT,2)) and IsOptimal ) do { Determine list of neighboring basic index sets L for index set Base that }
begin { are good candidates for being optimal basic index sets. 2}
i= j+1; £ [d] = [T_1,j] (j =2 .. n-m+1) } 3
if mot( TT[{,j]l.sup >= 0 ) them IsOptimal := false; function NeighboringList(TT : imatrix; Base, NonBase : IndexSet) : BaseList;
end; var
PossiblyOptimalSolution := IsOptimal; L : BaseList;
end; NewBase : IndexSet;
i, j, m, n . integer;
beta, nu, Counter : integer;
colmin, rowmax : real;

xx, dd, HH : interval;
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begin o )
m := size(Base); n := m + size(NonBase); { Initialization }
L:=mniy; e 3
colmin := maxReal; { Search for candidates (nu }
for j := 1 to (n-m) do { for all (nu in N) } { in N) and (beta in B) by ¥
begin { determining of the minimum }
dd := TT[1,3+1]; { of the quotients 3
if (0 in dd) then { [x]_beta / [H]_beta,nu 3}
begin { : ——= 3
for i:=1 to m do { for all (beta in B) } { Determine minimum of 3
begin . { [x]_beta / [H]_beta,nu }
xx := TT[i+1,1]; { for column nu of [T] 3}
HE := TT(i+1,j+1]; { }

it ((HH.Inf > 0) and (xx.Sup/<HH.Inf < colmin)) them
colmin := xx.Sup/<HH.Inf;
end; { (beta in B) } )
for i:=1 to m do { for all (beta in B) }{ Determine candidate (beta}

begin { in B) for exchange of 3
xx := TTLi+1,1]; { indices 3}
HH := TT[i+1,j+1]; { - ¥
if (HH.Sup > 0) and (xx.Inf/<HH.Sup <= colmin) themn

begin { Determine new index set and }
beta := GetIndex(i,Base); { add it to L
nu  := GetIndex(j,NonBase); { F}
NewBase := Base — [beta] + [nul;
insert(L, NewBase);

end;

end; { (beta in B) }
end;
end; { (nu in N) }

rowmax := -maxReal; { Search for candidates (beta }

for i := 1 to m do { for all (beta in B) } { in B) and (nu in N) by }
begin { determining of the maximum }
xx := TT[i+1,1]; { of the quotients }

it (0 in xx) themn { [d].nu / [H]_beta,nu }
begin { : : }

for j:=1 to (n-m) do { for all (nu in N) } { Determine maximum of }

begin { [d]_nu / [H]_beta,nu }

dd := TT[1,j+1]; { for row beta of [T] }

BH := TT[i+1,j+1]; { ¥

if ((HH.Sup < 0) and (dd.Inf/>HH.Sup > rowmax)) then
rowmax := dd.Sup/>HH.Sup;
end; { (nu in N) } ' .
for j:=1 to (n-m) do { for all (nu in N) } { Determine candidate }

begin { (nu in N) for exchange}

dd := TT{1,j+1]; { of indices }

HH := TT[i+1,j+1]; { -}
if (HH.Inf < 0) and (dd.Inf/>HH.Inf >= rowmax) themn

begin { Determine new index set and }

beta := GetIndex(i,Base); { add it to L ;

nu := GetIndex(j,NonBase); { -

NewBase := Base - [beta] + [nul;
insert(L, NewBase);
end;
end; { (nu in N) }
end;
end; { (beta in B) }

NeighboringList := L;

end; { function Neighboringlist }
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Purpose: Determination of enclosures for the solutions of a linear opti-

mization problem: (z=ctt * x = max! )
) ( A*x=b )
( x>= 0 )
with an initial optimal basic index set.
Parameters:
In: ’A° : matrix of constraints
‘b’ : right-hand side of constraints
‘¢’ : represents the objective function by its coefficients

‘B.st.’: initial basic index set
Out:’z_opt’: enclosure of the optimal value

'V_opt’: superset of all optimal basic index sets

‘X_opt’: superset of all optimal solution vectors

Description: Starting from an initial basic index set ’B_start’, a true

superset of all neighboring index sets 'L’ that are candidates for being.
optimal index sets are determined and stored in a list of candidates
'CList’. As long as there are candidates left, they are examined using
a verifying linear system solver. The linear system solver returns
enclosures for the solutions of the square linear systems A_B [x] = b,
where A_B denotes a submatrix of the constraint matrix A according to a
basic index set B.

BT A e T e e T S gV AP VI R g
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global procedure LinOpt ( A ! rmatrix;
b, ¢, B_start_Vector . rvector;
var z_opt : interval;
var V_opt : rmatrix;
var X_opt : imatrix;
var No, Err : integer )i
var
B_start : IndexSet;
Base, NonBase : IndexSet;
L, CList, E : BaseList;
TT : imatrix[1..1+Cub(b)), 1..1+(ub(c)-ub(b))];

k, m, n, i, maxNo : integer;
begin { global procedure LinOpt }
Err := NoError;

m := ub(A,1); n := ub(a,2); { Determine dimension of problem }

if (n <= m) or (m < 1) or (n < 1) or (n > maxDim) { Check dimensions }
or (ub(V_.opt,1) <> ub(X_opt,1)) then
Err := WrongDimension
else { Err <> WrongDimension }
begin
B_start := [J; { Initialization }

for i:=1 to m do B_start := B_start + [trunc(B_start_Vector[i])];
k 0; V_opt := 0; X_opt := 0; No := 0; maxNo := ub(V_opt,1);
E nil; CList := mil; insert(CList, B_start);

repeat { until empty(CList) }

Base := select(CList); NonBase := [{..n] - Base; { Select Base out of}
delete(CList, Base); insert(E, Base); { CList and update }

{ examined list E }
ComputeTableau(4, b, ¢, Base, NonBase, TT, Err); { 3}

it (Err = NoError) then
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if BasisStable(TT) them

begin
No := No + 1; { Store unique }
z_opt := TT{1,1]; { optimal solution }
X_opt[No,*] := Solution(TT, Base, NonBase); {-——--———-——cocoe_ 3
V_opt[No,*] := Base;

end

else { not basis stable }
begin
if EmptySolutionSet(TT) then Err := SolutionSetIsEmpty
else if Unbounded(TT) then Err := FunctionUnbounded

else if PossiblyOptimalSolution(TT) amd (Err = NoError) themn

begin
No := No + 1; { Store optimal }
if (No = 1) then z_opt:= TT[1,1] { solution 3

else z_opt:= TT[1,1] +* z_opt; {-------——vonr 3}
X_opt[No,*] := Solution(TT, Base, NonBase);
V_opt[No,x*] Base;

([}

L := NeighboringList(TT,Base,NonBase); { Determine list of }
remove(L, E); remove(L, CList); { neighboring basic }
{ index sets 3}

}
append(CList, L); { Compute new list of candidates }
end; { }
end;
k := k+1;

until empty(CList) or (Err <> NoError) or (k = kmax) or (No = maxNo);

if (Err = NoError) themn { Determine error code }

if (mot empty(CList)) amd (k = kmax) then {
Err := IterationError
else it (No = 0) then Err := StartIndexSetNotOptimal

else if (No = maxNo) and (mot empty(CList)) them

Err := SolutionMatrixTooSmall;
FreeAll(CList); FreeAll(E);
end; { Err <> WrongDimension }

end; { global procedure LinOpt }

{ ¥
{ Module initialization part }
{ }
begin

Rplus := intval(0,maxReal);
end.

11.3.2 Examples

Example 11.1 We consider the following linear programming problem:

maximize 50z, + 9z, subject to the linear constraints
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I S 50
100 z, + 18 = < 5000 (11.10)
T1,T2 2 0.

This two-dimensional optimization problem is illustrated by Figure 11.1, where
X (shaded area) denotes the set of feasible solutions.

\( 100z, + 18z, = 5000 z9 = 200

140 } ’ z; = 50

[

180 +

100 +

5 15 25 35 45 1
Figure 11.1: Two-dimensional optimization problem

We introduce the slack variables z3, 4, and 5 and transform LP (11.10) into
standard form (11.1).

T

maximize ¢’ - z subject to the linear constraints

Az = b
z 2> 0,
where

50
1 0100 50 9
A= 0 1010}, b= 200 }, ¢c=| O
100 18 0 0 1 5000 0
0

The following sample main program determines enclosures for the optimal value
(2], the set of optimal basic index sets V,p, and the set of optimal basic feasible
solutions X, for Example 11.1. The necessary work arrays are allocated depend-
ing on the dimension n X m of the optimization problem. Procedure RevSimplex
computes an approximate solution and returns an initial basic index set. Procedure
LinOpt determines the enclosures mentioned above and the results are returned by
the main program.
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program lop_example(input, output);

use i_ari, { Interval Arithmetic 3
mv_ari, { Matrix/Vector Arithmetic 3}
mvi_ari, { Matrix/Vector Interval Arithmetic }
lop, { Linear Optimization Module }
rev_simp; { Revised Simplex Algorithm Module }

const maxSolNo = 60;
var m,n : integer;

procedure main(m,n : integer);

var
A : rmatrix[1..m,1..n];
¢, x_start . rvector[i..n];
b, B_start : rvectorfl..m];
V_opt : rmatrix[1..maxSolNo,1..m];
X_opt : imatrix[1..maxSolNo,1..n];
z_start : real;
z : interval;

Error, i, NoOfSolutions : integer;
begin {main}
Error := 0;

writeln; { Read optimization }
writeln(’Enter objective function (c[1]..c[n)): *); { problem P = (A,b,c) }
read(c); writeln; 3
writeln(’Enter matrix of constraints (A[1,1]..Alm,nl1): *);

read(A); writeln;

writeln(’Enter right-hand side (b[1]..b[ml): ’);

read(b); writeln;

{ Call revised }
RevSimplex(A, b, ¢, x_start, B_start, z_start, Error); { simplex procedure }

it (Error <> 0) then writeln(’Error occurred during approximation’)

else
begin { Display results of }
writeln(’Results of approximation:’); { calculation }
writeln(’Optimal value : °’,z_start); writeln; { F
write(’Initial basic index set : ’');
writeln(B_start);
write(’Initial optimal solution : ');
writeln(x_start);
end;
it (Error = 0) then { Call verifying linear }
begin { optimization solver }

LinOpt(A, b, ¢, B_start, z, V_opt, X_opt, NoOfSolutions, Error);

writeln(’Results of verification:’);
it (Error = 0) or (Error = 6) or (Error = 7) then

begin ) { Display results }

writeln(’Optimal value interval : ’,z); writeln;{ of calculation }
writeln(’List of optimal basic index sets : ’); {-——---—-=---—==—- }
for i:=1 to NoOfSolutions do

begin

write('B’,i:1,’ ='); write(V_opt[il);

end;
writeln;
writeln(’List of optimal basic feasible solutions : ’);

for i:=1 to NoOfSolutions do
begin
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write(’x of B’,i:1,’ =’); write(X_opt[il);
end;
writeln;
end;
end;
it (Error <> 0) themn
writeln(LinOptErrMsg(Error));
end; { procedure main }
begin
writeln('Enter dimensions of linear ', { Read dimension of ¥
‘optimization problem (m and n): ’); { optimization problem }
read(m); read(n);
main(m,n);
end.

The procedure LinOpt calculates three optimal basic index sets and the corre-
sponding three optimal solution vectors as listed below.

Enter dimensions of linear optimization problem (m and n):
35

Enter objective function (c[1]..c[n]):
509000

Enter matrix of constraints (A[1,1]..A(m,n]):
1 0100
0 1010
100 18 00 1
Enter right-hand side (b[1]..b[ml):
50 200 5000

Results of approximation:
Optimal value :  2.500000000000000E+003

Initial basic index set :
1.000000000000000E+000
3.000000000000000E+000
2.000000000000000E+000

Initial optimal solution :
1.400000000000000E+001
2.000000000000000E+002
3.600000000000000E+001
0.000000000000000E+000
0.000000000000000E+000

Results of verification:
Optimal value interval : [ 2.500000000000000E+003, 2.500000000000000E+003 ]

List of optimal basic index sets :
Bl =

1.000000000000000E+000
2.000000000000000E+000
3.000000000000000E+000
B -

1.000000000000000E+000
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2.000000000000000E+000
4.000000000000000E+000
B3 =
1.000000000000000E+000
3.000000000000000E+000
4.000000000000000E+000

List of optimal basic feasible solutions :

x of Bt =

[ 1.400000000000000E+001, 1.400000000000000E+001 ]
[ 2.000000000000000E+002, 2.000000000000000E+002 ]
[ 3.600000000000000E+001, 3.600000000000000E+001 ]
[ ©0.000000000000000E+000, ©.000000000000000E+000 ]
[ 0.000000000000000E+000, 0.000000000000000E+000 1]
x of B2 =

[ 5.000000000000000E+001, 5.000000000000000E+001 ]
[ 0.000000000000000E+000, ©.000000000000000E+000 ]
[ 0.000000000000000E+000, 0.000000000000000E+000 ]
[ 2.000000000000000E+002, 2.000000000000000E+002 ]
[ 0.000000000000000E+000, 0.000000000000000E+000 ]
x of B3 =

[ 5.000000000000000E+001, 5.000000000000000E+001 ]
[ 0.000000000000000E+000, 0.000000000000000E+000 ]
[ 0.000000000000000E+000, 0.000000000000000E+000 ]
[ 2.000000000000000E+002, 2.000000000000000E+002 ]
[ 0.000000000000000E+000, 0.000000000000000E+000 ]

The standard simplex algorithm is neither able to recognize whether there exist
more than one optimal solution nor if the computed basic index set and the corre-
sponding solution are truly optimal. Example 11.1 has three optimal basic index
sets representing two different vertices of the set of feasible solutions X.

Example 11.2 If we modify the objective function of Example 11.1 to
maximize 50z, + 9z + 10~%Pz,

subject to the linear constraints (11.10), the standard algorithm still returns an
optimal solution even though the objective function is unbounded on the set of
feasible solutions:

Enter dimensions of linear optimization problem (m and n):
36

Enter objective function (c[1]..c[n]):
60 9 10E-40 0 0 0

Enter matrix of constraints (A[1,1]..A[m,n]):
i 00100
0 10010
100 18 0 0 0 1
Enter right-hand side (b[1]..b[m]):
50 200 5000

Results of approximation:
Optimal value : 2.500000000000000E+003

Initial basic index set :
1.000000000000000E+000
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4.000000000000000E+000
2.000000000000000E+000

Initial optimal solution :
1.400000000000000E+001
2.000000000000000E+002
0.000000000000000E+000
3.600000000000000E+001
0.000000000000000E+000
0.000000000000000E+000

11.3.3 Restrictions and Hints

Problem Size

This implementation does not take advantage of any special characteristic of the
constraint matrix A in (11.1). It is always assumed to be dense so we can use module
linsys from Chapter 10. If the problem turns out to be basis stable (cf. Theorem
11.1) (the most common case), or if it has only a few optimal basic index sets, the
size of the problem is bounded by the memory of the host computer necessary to
allocate the constraint matrix A and not by the calculation time.

Starting Problem

The.: determination of the initial basic index set Bgap using the implementation of the
revised simplex algorithm published by Syslo, Deo, and Kowalic [84] may be replaced
by any other implementation. We require only that the approximate algorithm

returns a set of basic indices of an optimal solution of the linear programming
problem P.

Input Data

The procedure LinOpt assumes that all input data P = (A, b, c) are exact, i.e. they
are not afflicted with tolerances, and they are representable on the machine without
conversion errors (see Section 3.7). Only in this case is a verification of the calculated
results possible. Exercise 11.2 suggests a way around these difficulties.

11.4 Exercises

Exercise. 11.1 Determine the optimal value, the set of optimal solutions, and the
set of optimal basic index sets for the linear programming problem

zy + 2 z;, < 80
Tz < 30

2 7 + z2 < 100
T,z 2 0,

using the sample program lop_ex.
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In practice the input data of a linear programming problem often are afflicted
with tolerances (e.g. measurement errors) and even more often the coefficients of the
problem are not exactly representable on the machine. We can perform sensitivity
and error analysis as well as achieve correct results if we specify the input data by

a triple
[P] = ({4}, 8], ()
where [A] € IR™*", [b] € IIR™, and [¢] € IIR*. The exact values for all input data

are not necessarily known, but their lower and upper bounds are given.

The triple [P] defines a whole set of linear programming problems P € [P] with
real input data. This can be viewed as a linear parametric optimization problem,
where each coefficient varies independently between the given lower and upper inter-
val bounds. This approach overcomes the problem of conversion errors when reading
decimal input data using a binary machine arithmetic (see 3.7).

Exercise 11.2 Write a full interval version of Algorithm 11.7 by changing the type
definitions of the input data A, b, and c as well as of the submatrices and subvectors
Ag, AN, cg, and cy from rmatrix (resp. rvector) to imatrix (resp. ivector) (for
details see Section 3.6). Also replace the module linsys for solving linear systems
of equations (cf. Chapter 10) by the module ilss for solving interval systems of
equations. The module ilss supplies a procedure Iss to determine the solution of a
whole set of linear systems of equations (e.g. [A][x] = [b]). Since all the theory of this
chapter holds for the interval case (cf. [34]), the full interval algorithm determines
all optimal solutions for the entire set of linear programming problems P € [P].

11.5 References and Further Reading

The standard simplex algorithm was first introduced by Dantzig [13]. A first ver-
ifying algorithm for linear programming problems was published by Jansson [34].
There are recent developments inspired by the work of Karmarkar [36] in the field
of nonlinear methods for solving linear programming problems. Polynomial-time
algorithms have been implemented and tested, but self-validating algorithms based
on the projective and ellipsoid approaches of Karmarkar [36] and Khachiyan [42]
have not yet appeared.

Chapter 12

Automatic Differentiation for Gradients,
Jacobians, and Hessians

In Chapter 5, we considered antomatic differentiation in one variable, but there are
also many applications of numerical and scientific computing where it is necessary
to compute derivatives of multi-dimensional functions. In this chapter, we extend
the concept of automatic differentiation to the multi-dimensional case as given by
Rall [66] and many others. We apply well-known differentiation rules for gradients,
Jacobians, or Hessians with the computation of numerical values, combining the
advantages of symbolic and numerical differentiation. Only the algorithm or formula
for the function is required. No explicit formulas for the gradient, Jacobian, or
Hessian have to be derived and coded.

In this chapter, we deal with automatic differentiation based on interval oper-
ations to get guaranteed enclosures for the function value and the values of the
gradients, Jacobians, or Hessians. We will use gradients, Jacobians and Hessians
generated by automatic differentiation in our algorithms for solving nonlinear sys-
tems (Chapter 13) and for global multi-dimensional optimization (Chapter 14). The
techniques of automatic differentiation are also frequently applied in solving ordi-
nary differential equations, sensitivity analysis, bifurcation studies, and continuation
methods. Rall [66] and Griewank and Corliss [21] contain many applications of au-
tomatic differentiation.

12.1 Theoretical Background

Let f : R® — IR be a scalar-valued and twice continuously differentiable function.
We are interested in computing the gradient

aL(2)
2
e

s (2)

Ozp
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or the Hesslan matrix

2 2{
gdzlé(x) 8::?18:52 ("L’) st 33:182,.( )
%f 82
sz(x) — 8z20x) ($) Zé(w) et 32281‘"( )
25 2[ 2
33:8,,311 (z) 81‘87.3372( ) - %é(w)

In the case of functions of a single variable described in Chapter 5, we parsed the
function to be differentiated into a code list (see [66]) consisting of a finite sequence
of arithmetic operations +, —, -, and / and elementary functions sqrt, exp, sin, etc.
Then the code list is interpreted in a differentiation arithmetic. We do exactly the
same for multivariable functions in this chapter. We consider only first- and second-
order derivative objects, although the same techniques have been used to generate
much higher order partial derivatives [9].

Gradient and Hessian arithmetic is an arithmetic for ordered triples of the form

U = (us,ug,up), with uy € R, u, € R, u;, € R™",

where the scalar u; denotes the function value u(z) of a twice differentiable function
u:IR* — IR. The vector uy and the matrix u, denote the value of the gradient
Vu(z) and the value of the Hessian matrix V2u(z), respectively, each at a fixed
point z € IR*. Our treatment is very similar to that of Rall (see [67]).

For the constant function u(z) = ¢, we set U = (uy,ug,un) = (¢,0,0). For the
function u(z) = zx with k¥ € {1,2,...,n}, we define U = (uy, uy, uz) = (zx, e®,0),
where e*) € IR" denotes the k-th unit vector, and 0 denotes the zero vector or zero
matrix, respectively. The rules for the arithmetic are

wy = us + vy,
W =U 4+ V = { wy = y,+u, (12.1)
Wh = Up + Vp,
Wy = Uy — vy,
W =U - V = { w = u,—v, (12.2)
Wh = Up — Up,
Wy = uf - vy,
W =U - V= < w, =us vy+vs-ug, (12.3)
{wh=vf-uh+ug-v;r+vy~u’§+uf-vh,
{wfzuf/”h
W =U [ V= w = (uy—wys-v,)/vy, (12.4)
wp = (up —wy - 0] — 05w —wy - vy) /vy,

where the familiar rules of calculus have to be used in the second and third com-
ponents, and vy # 0 is assumed in the case of division. The operations for w;, wy,
and wj, in these definitions are operations on real numbers, vectors, and matrices. If
the independent variables z; of a formula for a function f : R* — IR and = — f(z)
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are replaced by X; = (z;,e®),0), and if all constants c are replaced by their (c, 0, 0)
representation, then evaluation of f using the rules of differentiation arithmetic gives

X1 (.’51,621;,0)
XZ m?aez’

i =1(| 5 [)=r(| ") = v@.vr@, v
X, (ns e, 0)

Example 12.1 We want to compute the function, gradient, and Hessian values of
the function f(z) = z1- (4 + z2) at the point z = (1,2)T. Differentiation arithmetic
gives

130 = gt = @ (g)(§ 0 ) @00+ ().(5 0
- 0(s)- (0 o p-@oore ()3 o)
- (o) o) (D) (2 o)
-6 (2)(7a)

Vf(x):((li),and v2f(x)=((1’ é)fotm=(;).

For an elementary function s : IR — IR and U = (uy, uy, us), we define

The result is f(z) =

, wy = s(uy),
W = s(U) = wy = s'(uyf) - uy, (12.5)
wp, = s"(ug) -y, - u;r + 8'(uy) - up,

Here s’ : R — IR and s" : IR — IR are the first and second derivatives of s, assuming
they exist.

Rules (12.1)-(12.5) have assumed exact arithmetic. To get enclosures for the
true values of the function, its gradient, and its Hessian, we use a differentiation
arithmetic based on interval arithmetic. That is, the components uy, u,, and u
are replaced by the corresponding interval values, and all arithmetic operations and
function evaluations are executed in an interval arithmetic. The evaluation of a
function f : R — IR for an argument [z] € [ IR" using interval differentiation
arithmetic delivers

F(X) = ([f5): [fe], 1)
satisfying

flz) S lfsly V() Slfel, and V2f(la]) € [fi].
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Alternately, let f : IR* — IR™ be a vector-valued and differentiable function, and
let us compute the Jacobian matrix

g&(:c) gﬁ:(m) %(x)

gﬁ(x) gﬁ(x) gﬁ-(a:)
Ii(@)=| S

thz) @) ... (=)

We can do this using our gradient arithmetic by computing the gradient for each
component f; with ¢ = 1,2,...,n. In this case, we need not compute the Hessian
components in our Rules (12.1)—(12.5).

12.2 Algorithmic Description

We now describe the algorithms for the elementary operators +, —, -, and /, and
for an elementary function s € {sqr, sqrt, power, exp, In, sin, cos, tan, cot, arcsin,
arccos, arctan, arccot, sinh, cosh, tanh, coth, arsinh, arcosh, artanh, arcoth} of
a gradient and Hessian arithmetic for a twice continuously differentiable function
f:R"— R.

In order to keep the notation of our implementation close to the discussion in this
section, we use a special matrix representation for operands, arguments, or results
U = ([ug], [ug], [un]) with [uy] € IR, [u,] € IIR", and [up] € IIR™*". We first define
the set of (n + 1)-dimensional interval matrices with index ranges 0,1,...,n by

TR = {[A] € IR0 (4] = ((a)) g} (126)

Then following our algorithmic description, we fix the following identities for I/ and

[U] € IR**:

[us] = [u]oo, (12.7)

lug) = ([ulor, [u)oz, - -, [ulon)T, (12.8)
[u]u [u]12 cee [u]m

[us] = Mn M” o Mz" (12.9)
[u]ﬂl [U]ng o [u]nn

That is, [U] € IIR*** is partitioned into

[U]=

According to the symmetry of the Hessian matrix we really have to compute only
the components [u);; with¢=0,...,nand j =1,...,4.
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In Algorithm 12.4, we do not take care of the case 0 € [v]go, because it does not make
sense to go any further in computations when this case occurs. In an implementation,
the standard error handling (runtime error) should be invoked if a division by zero
occurs while computing the function value. We chose a special form of the rule for
the differentiation of a quotient to be close to our implementation, where this form
can save some computation time.
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In Algorithm 12.5, the rules from calculus for derivatives of the elementary functions
are applied to compute the temporary values. These functions are listed in Table
5.1 in Chapter 5. As in the case of division by zero, we do not have to treat specially
the case when the interval argument [u]go does not lie in the domain specified for
the interval functions s (or s’ for sqrt). In an implementation of Algorithm 12.5,
the standard error handling of interval arithmetic should be invoked for domain
violations in steps 1 and 2. See also the discussion of Table 5.1 in Chapter 5.

12.3 Implementation and Examples

12.3.1 PASCAL-XSC Program Code

In the following sections, we present two modules for multi-dimensional automatic
differentiation. We give a module supplying differentiation arithmetic for gradients
and Hessians for scalar-valued functions in Section 12.3.1.1. The module can also
be used to compute Jacobians of vector-valued functions. We give a special gradient
arithmetic grad_ari for computing only gradients for scalar-valued functions and
Jacobians for vector-valued functions without the storage overhead for the Hessian
components in Section 12.3.1.2.

12.3.1.1 Module hess_ari

Module hess_ari supplies the type definition, operators, and elementary functions for
an interval differentiation arithmetic for gradients and Hessians. The local variable
HessOrder is used to select the highest order of derivative desired. This enables the
user to save computation time in computing only the function value or the gradient
and no Hessian, although storage for Hessian elements is still allocated. The default
value of HessOrder is 2, so normally the gradient and the Hessian are computed.
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The procedures fEvalH, fgEvalH, fghEvalH, fEvall, and fJEvalJ simplify the
mechanism of function evaluating and automate the setting and resetting of the
HessOrder variable. The *EvalH procedures can be applied to scalar-valued func-
tions (result type HessType), whereas the xEvalJ procedures can be applied to
vector-valued functions (result type HTvector).

For a scalar-valued function of type HessType, fEvalH computes and returns
only the function value by setting HessOrder to 0 before the evaluation is done. If
the gradient also is desired, fgEvalH can be used to set HessOrder to 1 before the
evaluation is done. The procedure fghEvalH uses the default value of HessOrder,
computes, and returns the values of f(z), V f(z), and V*f(z). For a vector-valued
function of type HTvector, fEvalJ computes and returns only the function value by
setting HessOrder to 0 before the evaluation is done. If the Jacobian matrix also is
desired, fJEvalJ can be used to set HessOrder to 1 before the evaluation is done.

All operators and functions in module hess_ari are implemented using the “mod-
ified call by reference” of PASCAL-XSC (see [45, Section 2.7.9] for details) to avoid
the very inefficient allocation of local memory for the copies of the actual parameters.

Purpose: Definition of a multi-dimensional interval differentiation
arithmetic which allows function evaluation with automatic differen-
tiation up to second order (i.e. Hessian matrix).

Method: Overloading of operators and elementary functions for operations
of data types 'HessType’ and 'HTvector’. Note that all operators and
functions are implemented using the "modified call by reference' of
PASCAL-XSC (see Language Reference for details) to avoid the very
inefficient allocation of local memory for the copies of the actual

parameters.
Global types, operators, functions, and procedures:
type HessType, HTvector: data types of differentiation arithmetic
: operators of differentiation arithmetic
operator = . to define 'HessType’ constants

function HessVar . to define ’'HessType’ variables
functions fValue, gradValue,
JacValue,
hessValue : to get function and derivative values
functions sqr, sqrt, power,
exp, sin, cos,... : elementary functions of diff. arithmetic
procedures fEvalH, fEvalJ ! to compute function value only
procedures fgEvalH, fJEvalJ : to compute function and first derivative
value (gradient or Jacobian)
: to compute function value, gradient, and
Hessian matrix value

{

{

{

{

{

{

{

{

{

{

{

{

{ operators +, =, *, /
{

{

{

{

{

{

{

{

{

{

f procedure fghEvalH
{

B e e e e e o e e W I o e b e S o S o W o e S by

module hess_ari;

use i_ari, i_util; { interval arithmetic, interval utility functions }

{ }

{ Global type definition and local variable i

1

global type

HessType = dynamic array [*,*] of interval,

{ The index range must be 0..n,0..n. The component [o,0] 2
{ contains the function value. The components of the row }
{0, i.e. [0,1],...,[0,n], contain the value of the 3
{ gradient. The components [1,1],..., [n,n] contain the 3
{ value of the Hessian matrix. In fact, only the lower }
{ triangle is used (and computed). }
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HTvector = global dynamic array [*] of HessType; for i:=1 to ub(f) do gradvalueli]l:= £[0,il;
{ The index range must be 1..n (i.e.: 1..n,0..n,0..n). 3 end;
var { The local variable ’HessOrder’ is used to select the } global function hessValue (var f: HessType) : imatrix[i..ub(f),1..ub(£)];
HessOrder : 0..2; <{ highest order of derivative which is computed. Its } var i,j: integer; { Get Hessian value }
{ default value is 2, and normally the gradient and the } begin
{ Hessian matrix are computed. 3 for i:=1 to ub(f) do
{ 3 begin
{ Transfer operators and functions for constants and variables 3} hessValueli,i]:= £[i,i];
3 for j:=1 to i-1 do
global operator := (var u: HessType; x: interval); { Generate constant } begin
var i, j: integer; { > hessValue[i,jl:= f£[i,j]; hessValuelj,il:= £[i,j];
begin end;
uf0,0]:= x; end;
for j:=1 to ub(u) do end;
begin
ul0,3]:= 0; {
for i:=1 to ub(u) do uli,jl:= 0; { Access functions for vector-valued functions (function value or Jacobian) 1}
end;
end; global functiom fValue (var f: HTvector) : ivector[1..ub(f,1)];
begin { Get function value of }
global operator := (var u: HessType; r: real); { Generate constant } fValue:= £[*,0,0]; { n-dimensional vector- }
begin { } end; { valued function }
u := intval(r); { 3}
end;
global function JacValue (var f: HTvector) : imatrix[1..ub(f,1),1..ub(f,2)];
global function HessVar (x: ivector) var i, j: integer; { Get Jacobian value of }
. HTvector[i..ub(x)-1b(x)+1, 0..ub{(x)-1b(x)+1, 0..ub(x)-1b(x)+1]; begin { n-dimensional scalar- }
var { Generate variable } for i:=1 to ub(f,1) do { valued function }
i, j, k, ubd, d : integer; { } for j:=1 to ub(f,2) do { 3
begin JacValue([i,jl:= £[1,0,j];
ubd := ub(x)-1b{(x)+1; 4 := 1-1b(x); end;
for i:=1 to ubd do
begin { }
HessVar[i,0,0] := x[i-d]; { HessVar([*,*,0]:=x, } { Monadic operators + and - for HessType operands 3
for k:=1 to ubd do >
begin global operator + (var u : HessType ) uplus : HessType[0..ub(u),0..ub(u)];
it izk them HessVar[i,0,k]:= 1 else HessVar[i,0,kl:= 0; begin
for j:=1 to ubd do HessVar[i,j,kl:= 0; uplus:= u;
end; end;
end;
end; global operator — (var u : HessType ) umin : HessTypel[0..ub(u),0..ub(u)];
var
global function HessVar (v: rvector) i, j: integer;
. HIvector[1..ub(v)-1b(v)+1, 0..ub(v)=-1b(v)+1, 0..ub(v)-1b(v)+1]; begin
var { Generate variable } umin[0,0] := -ul0,0];
u : ivector[1b(v)..ub(v)1; { } it (HessOrder > 0) then
i : integer; for i:=1 to ub(u) do
begin begin
for i:=1b(v) to ub(v) do ulil:= v[i]; umin[0,i):= —u[0,i];
HessVar:= HessVar (u); it (HessOrder > 1) them
end; for j:=1 to i do uminfi,jl:= -uli,jl;
end;
{ -} end;
{ Access functions for the function value, the gradient, or the Hessian i ¢
- 3}
global function fValue (var f: HessType) : interval; { Get function value ; f Operators +, -, *, and / for two HessType operands }
begin L e
fValue:= £[0,0]; global operator + (var u,v: HessType ) add : HessType[0..ub(u),0..ub(u)l; }
end; var
i, j: integer;
global function gradValue (var f: HessType) : ivector[1..ub(f)]; begin

var i: integer; { Get gradient value J addf0,0]:= ul0,0]+v[0,0];
begin R ¥ it (HessOrder > 0) then
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for i:=1 to ub(u) do
begin

add[0,il:= ul0,il+v[0,1];

if (HessOrder > 1) then
for j:=1 to i do add[i,jl:= uli,jl+v[i,jl;
end;
end;

global operator - (var u,v: HessType ) sub :
var
i, j: integer;
begin
sub[0,0]:= uf0,0]-v[0,0];
if (HessOrder > 0) then
for i:=1 to ub(u) do
begin
sub[0,i]:= ul0,i]-v[0,1i];
if (HessOrder > 1) themn
for j:=1 to i do subli,jl:= uli,jl-v{i,jl;
end;
end;

HessType[0..ub(u),0..ub(u)l;

global operator * (var u,v: HessType ) mul : HessType[0..ub(u),0..ub(w];
var
i, j: integer;
begin
mul[0,0]:= ul0,0]*v[0,0];
if (HessOrder > 0) then
for i:=1 to ub(u) do
begin
mull0,i]:= v[0,0]*ul0,il+ul0,0]*v[0,i];
if (HessOrder > 1) then
for j:=1 to i do
mulli,jl:= v[0,0]*uli,jl+ul0,i)*v{0,jl+v0,il*ul0,jl+ul0,01*v[i,j];
end;
end;

global operator / (var u,v: HessType ) divis: HessType[0..ub(u),0..ub(u)];
var

h  : HessType[0..ub(u),0..ub(u)l;
i, j: integer;
begin

h{0,0]:= ul0,01/v{0,0]; <{ Can propagate ’division by zero’ error }
if (HessOrder > 0) then
for i:=1 to ub(u) do
begin
h{0,i]:= (ul0,i]J~h[0,0]*v{0,i])/v[0,0];
it (HessOrder > 1) then
for j:=1 to i do
h[i,jl:= C(uli,jl-hl0,il*v[0,j1-v[0,i]1*h[0,j]1-h(0,0]*v[i,j1)/v[0,0];

end;
divis:=h;
end;
{ -}
{ Operators +, -, *, and / for one interval and one HessType operand i
{ —

global operator + (var u: HessType;
b: interval) add : HessType[0..ub(u),0..ub(u)]l;
begin
add := u; add[0,0]:= ul[0,0]+b;
end;

global operator — (var u: HessType;
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b: interval) sub : HessType[0..ub(u),0..ub(u)];
begin
sub := u; sub[0,0]:= ul0,0]-b;

end;

global operator * (var u: HessType;
b: interval) mul : HessType[0..ub(u),0..ub(u)];
var
i, j: integer;
begin
mul[0,0]:= ul0,0]%b;
it (HessOrder > 0) then
for i:=1 to ub(u) do
begin
mul[0,i]:= b*ul0,i];
if (HessOrder > 1) then
for j:=1 to i do mulli,jl:= b*uli,jl;
end;
end;

global operator / (var u: HessType;
b: interval) divis : HessType[0..ub(u),0..ub(u)];
var
i, j: integer;
begin
divis[0,0]:= ul0,0]/b;
if (HessOrder > 0) themn
for i:=1 to ub(u) do
begin
divis[0,i]:= ul[0,i]/b;
it (HessOrder > 1) then
for j:=1 to i do divis[i,jl:= uli,jl/b;

{ Can propagate ’division by zero’ error }

end;
end;
global operator + ( a: interval;
var v: HessType) add : HessType[0..ub(v),0..ub(v)];
begin
add := v; add[0,0]:= a+v[0,0];
end;
global operator - ( a: interval;
var v: HessType) sub : HessType[0..ub(v),0..ub(v)];
var
i, j: integer;
begin

sub[0,0]:= a-v[0,0];
if (HessOrder > 0) then
for i:=1 to ub(v) do
begin
sub[0,i]:= -v[0,i];
if (HessOrder > 1) themn
for j:=1 to i do subli,jl:= -v[i,j];

end;
end;
global operator * ( a: interval;
var v: HessType) mul : HessType[0..ub(v),0..ub(v)];
var
i, j: integer;
begin

mul[0,0] := a*v[0,0];
if (HessOrder > 0) then
for i:=1 to ub(v) do
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begin

mul[0,1i]:= axv[0,i];

if (HessOrder > 1) them
for j:=1 to i do mulli,jl:= axv[i,j];
end;
end;

global operator / ( a: interval;
var v: HessType) divis : HessTypel[0..ub(v),0..ub(v)];
var
h : HessTypel[0..ub(v),0..ub(v)];
i, j: integer;
P, q: interval;
begin
h{0,0]:= a/v[0,0];
if (HessOrder > 0) then
begin
p:= -h[0,01/v[0,0]; q:= -2%p/v[0,0];
for i:=1 to ub(v) do
begin
h{0,i]:= pxv[0,i];
it (HessOrder > 1) them
tor j:=1 to i do h[i,j]:= pxv[i,jl+q*vi0,il*v[0,]];
end;
end;
divis:=h;
end;

{ Can propagate ’division by zero’ error }

{

{ Operators +, -, *, and / for one real and one HessType operand

UL

global operator + (var u : HessType;
b : real ) add : HessType[0..ub(u),0..ub(u)];
begin
add:= u + intval(b);
end;

global operator - (var u: HessType;
b: real ) sub : HessType[0..ub(u),0..ub(w)];
begin
sub:= u - intval(b);
end;

global operator * (var u: HessType;
b: real ) mul : HessType[0..ub(u),0..ub(u)l;
begin
mul:= u * intval(b);
end;

global operator / (var u: HessType;
b: real ) divs : HessType[0..ub(u),0..ub(uw)];
begin
divs:= u / intval(b); { Can propagate ’division by zero’ error }
end;

global operator + ( a: real;
var v: HessType) add : HessTypel0..ub(v),0..ub(v)];
begin
add:= intval(a) + v;
end;

global operator - ( a: real;
var v: HessType) sub : HessTypel[0..ub(v),0..ub(v)];
begin
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sub:= intval(a) - v;
end;

global operator * ( a: real;
var v: HessType) mul : HessType[0..ub(v),0..ub(v)];
begin
mul:= intval(a) * v;
end;

global operator / ( a: real;
var v: HessType) divs: HessType[0..ub(v),0..ub(v)];
begin
divs:= intval(a) / v; { Can propagate ’division by zero’ error }
end;
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{ Elementary functions for HessType arguments

global function sqr (var u: HessType) : HessType[0..ub(u),0..ub(u)];
var
i, j: integer;
hl : interval;
begin
sqr[0,0] := sqr(u{o,01);
if (HessOrder > 0) themn
begin
hi:= 2*u[0,0];
for i:=1 to ub(u) do
begin
sqr[0,i]:= hi*u[0,i];
if (HessOrder > 1) them
for j:=1 to i do sqrli,j]:= hi*uli,jl+2+ul0,il*ul0,j];
end;
end;
end;

global function power (var u: HessType;
k: integer) : HessTypel[0..ub(u),0..ub(u)];
var
hi : interval;
i, J : integer;
begin
if (k = 0) then
power:= 1
else if (k = 1) then
power:= u
else if (k = 2) then
power:= sqr{u)
else
begin
power[0,0] := power(u[0,0], k);
it (HessOrder > 0) them
begin
hi:= k * power(u[0,0], k-1);
for i:=1 to ub(u) do
begin
power[0,i}:= h1 * u[0,i];
if (HessOrder > 1) then
for j:=1 to i do

(NPT

power[i,jl:= hixuli,jl + kx(k-1)*power(ul0,0],k-2)*ul0,il*ul0,]]

end;
end;
end;
end;
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global function sqrt (var u: HessType) : HessType[0. .ub(u),0..ub(u)];
var
i, j : integer;
hO, hi, h2 : interval;
begin ]
ho:= sqrt(uf0,0]); { Can propagate domain error }
sqrt[0,0]:= ho;
if (HessOrder > 0) then
begin
hi:= 0.5/h0; h2:= -0.5+h1/ul0,0];
for i:=1 to ub(u) do
begin
sqrtf0,i]:= hixufo0,il;
if (HessOrder > 1) them ' '
for j:=1 to i do sqrtii,jl:= hi*uli,ji+h2*ul0,1]*ul0,]];
end;
end;
end;

global function exp (var u: HessType) : HessType[0..ub(u),0..ub(ul;

var
hO : interval;
i, j: integer;
begin

ho:= exp(uf0,0]); expf0,0]:= ho;
if (HessOrder > 0) then
for i:=1 to ub(u) do
begin
expl0,1]:= ho*uf0,i];
if (HessOrder > i) then ' _
for j:=1 to i do expli,jl:= hox(uli,jl+ulo,il*ul0,31);
end;
end;

global function 1n (var u: HessType) : HessType[0..ub(u),0. . .ub(w];

var
i, j : integer;
hi, h2 : interval;
begin

1n[0,0]:= 1n(ul0,0]1); { Can propagate domain error }
if (HessOrder > 0) then
begin
hi:= 1/ul0,0]; h2:= -sqr(hi);
for i:=1 to ub(u) do
begin
1n[0,i]:= h1*ul0,i];
it (HessOrder > 1) then '
for j:=1 to i do 1Inli,j]:= hi*uli,jl+h2*ul0,i]*ul0,]];
end;
end;
end;

global function sin (var u: HessType) : HessType[0..ub(u),0..ub(w];

var
i, j . integer;
ho, hil, h2 : interval;
begin

ho:= sin(ul0,0]); sinf0,0]:= ho;
it (HessOrder > 0) then
begin
hi:= cos(u[0,0]); h2:= -hO;
for i:=1 to ub(u) do
begin
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sin[0,i]:= hi*u(0,i];
if (HessOrder > 1) then
for j:=1 to i do sin[i,j]l:= hixuli,jl+h2+ul0,il*ulo0,j];
end;
end;
end;

global function cos (var u: HessType) : HessType[0..ub(u),0..ub(u)];
var
i, j . integer;
hO, hi1, h2 : interval;
begin
h0:= cos(ul0,01); cos[0,0]:= ho;
if (HessOrder > 0) then
begin
hi:= -sin(ufl0,0]); h2:= -ho;
for i:=1 to ub(u) do
begin
cos[0,i]:= hi*uf0,i];
if (HessOrder > 1) then
for j:=1 to i do cosli,jl:= hisuli,jl+n2*ul0,il*ul0,j];
end;
end;
end;

global function tan (var u: HessType) : HessTypel[0..ub(u),0..ub(u)];
var

i, j . integer;
h0, hi, h2 : interval;
begin

h0:= tan(ul0,01); { Can propagate domain error }
tan[0,0]:= ho;
if (HessOrder > 0) then

begin { The subdistributive law implies
hi:= sqr(h0)+1; h2:= 2%h0#*hi; { hO * (hOt2 + 1) <= hO13 + hO

for i:=1 to ub(u) do

begin
tanf0,1] := hi*ul0,i];
if (HessOrder > 1) then

for j:=1 to i do tan[i,jl:= hi*uli,jl+h2*ul0,i]*ul0,;];
end;
end;
end;

{ So, we use the first form.

global function cot (var u: HessType) : HessTypel[0..ub(u),0..ub(u)];
var

i, ] : integer;
hO, hi, h2 : interval;
begin

h0:= cot(uf0,0]); { Can propagate domain error }
cot[0,0]:= ho;
if (HessOrder > 0) then

begin { The subdistributive law implies
hi:= -(sqr(h0)+1); h2:= ~2%h0*hil; { hO % (hO12 + 1) <= hOt3 + h0

for i:=1 to ub(u) do

begin
cot[0,i] := h1*ul0,i];
if (HessOrder > 1) them

for j:=1 to i do cot[i,jl:= hixuli,jl+h2*ul0,i]*ul0,j];
end;
end;
end;

{ So, we use the first fornm.

global function arcsin (var u: HessType) : HessType[0..ub(u),0..ubCu)];
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var
i, J . integer;
h, hi, h2 : interval;
begin

arcsin[0,0]:= arcsin(ul0,0]); { Can propagate domain error }
if (HessOrder > 0) then
begin
h := 1-sqr(ul0,0]); hi:= 1/sqrt(h); h2:= u[0,0]*hi/h;
for i:=1 to ub(u) do
begin
arcsin[0,i]:= hi*u[0,1i];
it (HessOrder > 1) then
for j:=1 to i do arcsin[i,j]:= hi*uli,jl+h2*uf0,i]*ul0,j];
end;
end;
end;

global function arccos (var u: HessType) : HessType[0..ub(u),0..ub(u)];

var
i, ] : integer;
h, hi1, h2 : interval;
begin

arccos[0,01:= arccos(uf0,0]); { Can propagate domain error }
if (HessOrder > 0) then
begin
h := 1-sqr(ul0,0]); hi:= -1/sqrt(h); h2:= u0,0]*h1/h;
for i:=1 to ub(u) do
begin
arccos[0,1):= hi*u[0,i];
if (HessOrder > 1) then
for j:=1 to i do arccoes[i,jl:= hixuli,jl+h2*+ul0,il*ul0,j];
end;
end;
end;

global function arctan (var u: HessType) : HessType[0..ub(u),0..ub(u)l;

var
i, ] . integer;
hi, h2 : interval;
begin

grctan[0,0]:= arctan(uf0,0]); { Can propagate domain error }
if (HessOrder > 0) themn
begin

hi:= 1/(1+sqr(ul0,01)); h2:= -2+ul0,0]1*sqr(h1);

for i:=1 to ub(u) deo

begin

arctan{0,i]:= hi*ul0,i];

if (HessOrder > 1) then

for j:=1 to i do arctan[i,jl:= hi*uli,jl+h2*ul0,il*ul0,jl;

end;
end;
end;

global functiom arccot (var u: HessType) : HessType[0..ub(u),0. .ub(w)];

var
i, j . integer;
hi, h2 : interval;
begin

arccot[0,0]:= arccot(ul0,01); { Can propagate domain error }
it (HessOrder > 0) then
begin

hi:= -1/(1+sqr(ul0,01)); h2:= 2%ul0,0]*sqr(h1);

for i:=1 to ub(u) do

begin
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arccot[0,i]:= hi*u[0,i];
it (HessOrder > 1) then
for j:=1 to i do arccotli,jl:= hi*uli,jJ+h2+ul0,il*ul0,j];
end;
end;
end;

global function sinh (var u: HessType) : HessType[0..ub(u),0..ub(u)];
var
i, j : integer;
h0, h1l, h2 : interval;
begin
ho:= sinh(uf0,0]); sinh[0,0]:= ho;
if (HessOrder > 0) then
begin
hi:= cosh(ul[0,0]); h2:= ho;
for i:=1 to ub(u) do
begin
sinh{0,i]:= hi*u(0,1];
if (HessOrder > 1) them
for j:=1 to i do sinh([i,j]:= hisuli,jl+h2*ul0,il*ul0,j];
end;
end;
end;

global function cosh (var u: HessType) : HessType[0..ub(u),0..ub(u)l;
var

i, ] : integer;
hOo, hil, h2 : interval;
begin

ho:= cosh(ul0,0]1); cosh[0,0]:= ho;
it (HessOrder > 0) then
begin
hi:= £inh(u(0,0]); h2:= ho;
for i:=1 to ub(u) do
begin
cosh[0,i] := hi1*uf0,i];
it (HessOrder > 1) then
. for j:=1 %o i do cosh{i,jl:= hi*uli,jl+h2*ul0,il*ul0,j];
end;
end;
end;

global function tanh (var u: HessType) : HessType[0..ub(u),0..ub(u)l;
var
i, j : integer;
hO, hi, h2 : interval;
begin
ho:= tanh(u[0,0]); tanh[0,0]:= ho;
if (HessOrder > 0) then

begin
hi:= 1-sqr(h0); h2:= -2*h0#hi; { The subdistributive law implies }
for i:=1 to ub(u) do { ho * (hOt2 -~ 1) <= h0t3 - h0 }
begin { So, we use the first form. 3

tanh[0,i] := hi*u[0,i];
it (HessOrder > 1) then
for j:=1 to i do tanh[i,jl}:= hi*uli,jl+h2*ul0,iI*ul0,]];
end;
end;
end;

global function coth (var u: HessType) : HessType[0..ub(u),0..ub(u)l;
var
i, j : integer;



242 12. Automatic Differentiation for Gradients, Jacobians, and Hessians

h0, hi, h2 : interval;
begin
h0:= coth(uf[0,0]); { Can propagate domain error }
coth[0,0]:= ho;
if (HessOrder > 0) then

begin { The subdistributive law implies }

hi:= 1-sqr(h0); h2:= -2*¥h0*hi; { b0 * (hOT2 - 1) <= h013 - hO

for i:=1 to ub(u) do { So, we use the first form.
begin
coth[0,i] := hixul[0,i];
if (HessOrder > 1) then
for j:=1 to i do cothli,jl:= hi*uli,jl+h2*ul0,il*ul0,j];
end;
end;
end;

global function arsinh (var u: HessType) : HessType[0..ub(u),0..ub(uw)];
var
i, j : integer;
h, hil, h2 : interval;
begin
arsinh{0,0] := arsinh(u[0,0]); { Can propagate domain error }
if (HessOrder > 0) then
begin
h:= 1+sqr(ul0,0]); hi:= 1/sqrt(h); h2:= -ul0,0]*hi/h;
for i:=1 to ub(u) do

egin
arsinh{0,i]:= hi*u[0,1];
if (HessOrder > 1) then
for j:=1 to i do arsinh[i,jl:= hi*uli,jl+h2*ul0,il*ulo0,j];
end;
end;
end;

global function arcosh (var u: HessType) : HessType[0..ub(u),0..ub(u)];
var
i, j . integer;
h, hi, h2 : interval;
begin
arcosh[0,0]:= arcosh(u[0,0]1); { Can propagate domain error }
if (HessOrder > 0) then
begin
h:= sqr(uf0,0])-1; hi:= 1/sqrt(h); h2:= -ul0,03*hi/h;
for i:=1 to ub(u) do
begin
arcosh[0,i]:= h1*u[0,1i];
if (HessOrder > 1) then
for j:=1 to i do arcosh{i,jl:= hi*uli,jl+h2*ul0,i}*uf0,j];
end;
end;
end;

global function artanh (var u: HessType) : HessType[0..ub(u),0..ub(uw];
var

i, j : integer;
hi, h2 : interval;
begin

artanh[0,0] := artanh(ul0,0]); { Can propagate domain error }
if (HessOrder > 0) then
begin
hi:= 1/(1-sqr(uf0,0])); h2:= 2*u[0,0]1*sqr(hl);
for i:=1 to ub(u) do
begin
artanh{0,i]:= h1*ul0,i];

}
}
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if (HessOrder > 1) then
for j:=1 to i do artanhl[i,jl:= hixuli,jl+h2*ul0,il*ul0,j];
end;
end;
end;

global functiom arcoth (var u: HessType) : HessType[0..ub(u),0..ub(u)];
var
i, j : integer;
hi, h2 : interval;
begin
arcoth[0,0]:= arcoth(ul0,0]); { Can propagate domain error }
it (HessOrder > 0) themn
begin
hi:= 1/(1-sqr(ul0,0])); h2:= 2+ul0,0]*sqr(ht);
for i:=1 to ub(u) do
begin
arcoth[0,i]:= hi*uf0,1];
if (HessOrder > 1) them
for j:=1 to i @o arcoth[i,jl:= hixuli,jl+h2+uf0,il*ul0,j];
end;
end;
end;
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{

{ Predefined routines for evaluation of HessType-functions

{ Purpose: Evaluation of function ’f’ for argument ’x’ in differentiation

{ arithmetic computing only the function value.
{ Parameters:
In RS 3¢ : function of ’'HessType’.
'x’ : argument for evaluation of ’‘f’.
Out : fx! : returns the function value ’f(x)’.
{ Description: This procedure sets ’HessOrder’ to 0, evaluates 'f(x)’ in
{ differentiation arithmetic, and returns the function value only.

ENTS
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global procedure fEvalHl (function f(y:HTvector) : HessTypel[lb(y,2)..ub(y,2),
1b(y,3)..ub(y,3)];

X : ivector;
var fx . interval);
begin
HessOrder:= 0; fx:= fValue(f(HessVar(x))); HessOrder:= 2;
end;

{

{ Purpose: Evaluation of function ’'f’ for argument 'x’ in differentiation
{ arithmetic computing the function value and the gradient value.

{ Parameters:

{ In IS 34 : function of ’HessType’.

{ 'x’ : argument for evaluation of ’'f’.

{ Out ;o 'fx? : returns the function value ’'f(x)’.

{ gx’ : returns the gradient value ’grad f(x)’.

{ Description: This procedure sets ’HessOrder’ to 1, evaluates ’f(x)’ in
{ differentiation arithmetic, and returns the function value and the
{ value of the gradient.

{

W S S e S ety

global procedure fgEvall (function f(y:HTvector) : HessType[lb(y,2)..ub(y,2),
1b(y,3)..ub(y,3)];

X : ivector;
var fx : interval;
var gx @ ivector);

var
fxH : HessTypel[0..ub(x),0..ub(x)];
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begin
HessOrder:= 1;
fxH:= f(HessVar(x)); fx:= fValue(fxH); gx:= gradValue(fxH);
HessOrder := 2;

end;
{ }
{ Purpose: Evaluation of function ’'f’ for argument ’x’ in differentiation 2
{ arithmetic computing the function value, the gradient value, and the 3}
g Hessian matrix value. 3
Parameters: 3
{ In IS 44 : function of ’HessType’. 3
{ 'x’ . argument for evaluation of ‘f’. b
{ Out ;' fx? : returns the function value ‘f(x)’. 3
{ ‘gx’ : returns the gradient value ’grad f(x)’. >
{ ‘hx’ : returns the Hessian matrix value ’hess f(x)’. 3
{ Description: This procedure keeps ’HessOrder’ = 2, evaluates ’f(x)’ in 3
{ differentiation arithmetic, and returns the function value, the value }
{ of the gradient, and the value of the Hessian matrix. >
{ }
global procedure fghEvalH (function f(y:HTvector): HessType[lb(y,2)..ub(y,2),
1b(y,3)..ub(y,3)];
X : ivector;
var fx : interval,;
var gx : ivector;
var hx : imatrix);
var
fxH : HessType[0..ub(x),0..ub(x)];
begin
fxH:= £(HessVar(x));
fx:= fValue(fxH); gx:= gradValue(fxH); hx:= hessValue(fxH);
i g g
end;
- }
{ Predefined routines for evaluation of HTvector-functions (with Jacobians) }
}
{ Purpose: Evaluation of function ’f’ for argument ’x’ in differentiation }
{ arithmetic computing only the function value. i
{ Parameters:
{ In ;f : function of type ‘HTvector’. }
{ ‘x’ : argument for evaluation of ’'f’. }
{ Out ;o 'fx? : returns the vector function value 'f(x)’. }
{ Description: This procedure sets ’HessOrder’ to 0, evaluates ’'f(x)’ in }
{ differentiation arithmetic, and returns the function value only. -J}'
global procedure fEvall (functiom f(y:HTvector) : HTvector[lb(y,1)..ub(y,1),
1b(y,2)..ub(y,2),
1b(y,3)..ub(y,3)];
x : ivector;
var fx . ivector);
begin
HessOrder:= 0; fx:= fValue(f(HessVar(x))); HessOrder:= 2;
end;
{ e
{ Purpose: Evaluation of function ’f’ for argument ’‘x’ in differentiation }
{ arithmetic computing the function value and the Jacobian matrix value. ;
{ Parameters:
{ In RS &4 : function of type ’‘HTvector’. }
{ ‘x’ : argument for evaluation of 'f’. }
{ Out S $ & : returns the function value ’'f(x)’. ¥
{ rJx’ : returns the Jacobian value ’Jf(x)’. Y,
{ Description: This procedure sets ‘HessOrder’ to 1, evaluates ‘f(x)’ in }
{ differentiation arithmetic, and returns the function value and the }
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{ value of the Jacobian matrix. 3}
{- }

global procedure fJEval) (functiom f(y:HTvector) : HTvector[lb(y,1). sub(y, 1),
16(y,2). .ub(y,2),

1b(y,3). .ub(y,3)];
X : ivector;

var fx : ivector;
var Jx : imatrix);
var
£xGTv : HTvector[i..ub(x),0..ub(x),0..ub(x)];
begin

HessOrder:= 1;
£xGTv:= f(HessVar(x)); fx:= fValue(fxGTv); Jx:= JacValue(fxGTv);
HessOrder:= 2;

end;

{
{ Module initialization part
{
begin

HessOrder := 2;
end.

N N

12.3.1.2 Module grad_ari

If we only want to compute gradients or Jacobians, the module presented in Section
12.3.1.1 has the disadvantage of alllocating storage that is not used for the Hessian
matrix. We now present a module for gradients, which supplies type definition,
operators, and elementary functions for an interval differentiation arithmetic for
gradients. The module can also be used to compute Jacobians of vector-valued
functions.

The local variable GradOrder is used to select the highest order of derivative
desired. This enables the user to save computation time in computing only the
function value and no gradient. The default value of GradOrder is 1, so normally
the gradient is computed.

The procedures fEvalG, fgEvalG, fEvalJ, and fJEval] simplify the mechanism
of function evaluating and automate the setting and resetting of the GradOrder
variable. The *EvalG procedures can be applied to scalar-valued functions (result
type GradType), whereas the xEvalJ procedures can be applied to vector-valued
functions (result type GTvector).

For a scalar-valued function of type GradType, fEvalG computes and returns
only the function value by setting GradOrder to 0 before the evaluation is done.
The procedure fgEvalG uses the default value of GradOrder, computes, and returns
the values of f(x) and V f (z). For a vector-valued function of type GTvector, fEvalJ
computes and returns only the function value by setting GradOrder to 0 before the
evaluation is done. If the Jacobian matrix also is desired, fJEvalJ can be used.

As in module hess_ari, all operators and functions of module grad.ari are im-
Plemented using the “modified call by reference” of PASCAL-XSC (see [45, Section
2.7.9] for details) to avoid the very inefficient allocation of local memory for the
copies of the actual parameters.
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{

{ Purpose: Definition of a multi-dimensional interval differentiation
arithmetic which allows function evaluation with automatic differen-
tiation up to first order (i.e. gradient or Jacobian).

Method: Overloading of operators and elementary functions for operations
of data type 'GradType’ and ’‘GTvector’. Note that all operators and
functions are implemented using the 'modified call by reference' of
PASCAL-XSC (see Language Reference for details) to avoid the very
inefficient allocation of local memory for the copies of the actual

parameters.

Global types, operators, functions, and procedures:
type GradType, GTvector: data types of differentiation arithmetic
operators +, -, ¥, / : operators of differentiation arithmetic
operator = : to define ’‘GradType’ constants

function GradVar
functions fValue, gradValue,

: to define ’GradType’ variables

JacValue : to get function and derivative values
functions sqr, sqrt, power,

exp, sin, cos,... : elementary functions of diff. arithmetic
procedures fEvalG, fEvalJ : to compute function value only

procedures fgEvalG, fJEval]J : to compute function and first derivative
value (gradient or Jacobian)

B T e T e e T T NP
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module grad_ari;

use i_ari, i_util; { interval arithmetic, interval utility functions }

{ }
{ Global type definitions and variable ;
{
global type
GradType = dynamic array [*] of interval;
{ The index range must be 0..n. The component [0] }
{ contains the function value, the components [1],...,[n] }
{ contain the gradient. }
GTvector = global dynamic array [*] of GradType;
{ The index range must be 1..n (i.e.: 1..n,0..n). }
var { The local variable ’GradOrder’ is used to select the }
GradOrder : 0..1; { highest order of derivative which is computed. Its }
{ default value is 1, and normally the gradient or the }
{ Jacobian matrix are computed. ;
{
{ Transfer operators and functions for constants and variables ;
global operator := (var f: GradType; u: interval); { Generate constant }
var i : integer; ¥
begin
£{0]:= u;
for i:=1 to ub(f) do f[i]:=
end;

global operator := (var f: GradType; r: real); { Generate constant }

begin N 3}
f:= intval(r);

end;

global function GradVar (x : ivector)
: GTvector[1..ub(x)-1b(x)+1, 0..ub(x)-1b(x)+1];

var { Generate variable
i, k, ubd, 4 : integer; el
begin

ubd:= ub(x)-1b(x)+1; d:= 1-1b(x);
for i:=1 to ubd do
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begin
Gradvar[i,0]:= x[i-d]; { GradVar(*,0]:=x; }
for k:=1 to ubd do
iz i=k then GradVar[i,k]:= i else GradVar{i,kl:= 0;
end;
end;

global function GradVar (v : rvector)
: GTvector[1..ub(v)-1b(v)+1, 0..ub(v)-1b(v)+1];
var { Generate variable }
u : ivector[1b(v)..ub(v)];
i : integer;
begin
for i:=1b(v) to ub(v) do uli]:= v[i];
GradVar:= GradVar(u);

end;
{ 3
{ Access functions for the function value, the gradient, or the Jacobian }
}
global function fValue (var f: GradType) : interval; { Get function value of }
begin { n-dimensional scalar- }
fValue:= f[0]; { valued function
end; { }
global function gradValue (var f: GradType) : ivector[l..ub(f)];
var i: integer; { Get gradient value of }
begin { n-dimensional scalar- }
for i:=1 to ub(f) do gradValuelil:= f[i]; { valued function
end; { }
global function fValue (var f: GTvector) : ivector[i..ub(f,1)];
begin { Get function value of }
fValue:= f[*,0]; { n-dimensional vector- }
end; { valued function
}
global function JacValue (var f: GTvector) : imatrix[1..ub(f,1),1..ub(f,2)];
var i, j: integer; { Get Jacobian value of }
begin { n-dimensional scalar- }
for i:=1 to ub(f,1) do { valued function
for j:=1 to ub(f,2) do { }
JacValuel[i,j]:= £[i,jl;
end;
{ }
{ Monadic operators + and - for GradType operands 3}
3
global operator + (var u : GradType ) uplus : GradType[0..ub(u)];
begin
uplus:= u;
end;
global operator - (var u : GradType ) umin : GradType[0..ub(w]l;
var
i : integer;
begin
uminf0]:= -uf0];
if (GradOrder > 0) then
for i:=1 to ub(u) do
umin[il := -ulil;
end;
{ }
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{ Operators +, -, *, and / for two GradType operands
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global operator + (var u,v : GradType ) add : GradTypel[0..ub(u)l;

var
i: integer;
begin
add[0]:= ul0]+v[0];
if (GradOrder > 0) them
for i:=1 to ub(u) do addlil:= ulil+v[il;
end;

global operator - (var u,v : GradType ) sub : GradType[0..ub(u)];

var
i: integer;
begin
sub[0] := u[0]-v[0];
if (GradOrder > 0) then
for i:=1 to ub(u) do subl[il:= ulil-v[i];
end;

global operator * (var u,v : GradType ) mul : GradTypel0..ub(uw)];

var
i: integer;
begin
mul{0] := ul0]*v[0];
if (GradOrder > 0) them

end;

for i:=1 to ub(u) do mul[il:= v[0J*ulil+uf0l*v[i];

global operator / (var u,v: GradType ) divis : GradType[0..ub(w];

var
h: GradType[0..ub(uw)];
i: integer;

begin

h[0]:= ul0l/v[0]; <{ Can propagate ’division by zero’ error }

it (GradOrder > 0) then

for i:=1 to ub(u) do h{i):= (ufil-h[0]*v{i])/v[0];

divis:=h;
end;

{

{ Operators +, —, *, and / for one interval and one GradType operand

et

global operator + (var u: GradType; b: interval) add
begin

add:= u; add[0]}:= ul0]l+b;
end;

global operator — (var u: GradType; b: interval) sub :

begin
sub:= u; sub[0]:= ul0l-b;
end;

global operator * (var u: GradType; b: interval) mul :

var
i: integer;
begin
mul[0] := ul0]*b;
if (GradOrder > 0) then
for i:=1 to ub(u) do mulli]:= b*ulil;
end;

global operator / (var u: GradType; b: interval) divis

var

: GradTypel[0..ub(u)];

GradType[0..ub(w)l;

GradType[0..ub(u)l;

: GradType[0..ub(uw)l;
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i: integer;
begin
divis[0]:= u[0]l/b; { Can propagate ’division by zero’' error }
it (GradOrder > 0) then
for i:=1 to ub(u) do divis[il:= ul[il/b;
end;

global operator + (a: interval; var v: GradType) add : GradType[0. .ub(v)];
begin

add:= v; addf0]:= a+v[0];
end;

global operator - (a: interval; var v: GradType) sub : GradType[0..ub(v)];
var

i:.integer;
begin

sub[0]:= a-v[0];

if (GradOrder > 0) then

for i:=1 to ub(v) do sub[il:= -v[i];

end;

global operator * (a: interval; var v: GradType) mul : GradTypel[0..ub(v)];
var

i: integer;
begin

mul[0]:= a*v[0];

if (GradOrder > 0) then

for i:=1 to ub(v) do mull[il:= a*v[i];

end;

global operator / (a: interval; var v: GradType) divis : GradTypel[0..ub(v)];
var
h: GradTypel[0..ub(v)];
i: integer;
p: interval;
begin
hi0]:= a/v[0]; <{ Can propagate ’‘division by zero’ error }
it (GradOrder > 0) then
begin
p:= -h[0l/v[0];
for i:=1 to ub(v) do h[il:= pxv[il;

end;

divis:=h;
end;
{ }
{ Operators +, -, *, and / for one real and one GradType operand 3

}

global operator + (var u: GradType; b: real) add : GradType[0..ub(u)];
begin

add:= u + intval(b);
end;

global operator - (var u: GradType; b: real) sub : GradTypel[0..ub(u)l;
begin

sub:= u ~ intval(b);
end;

global operator * (var u: GradType; b: real) mul : GradTypel[0..ub(u)];
begin

mul:= u * intval(b);
end;

global operator / (var u: GradType; b: real) divs : GradTypel[0..ub(u)];
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begin
divs:= u / intval(b); { Can propagate ’division by zero’ error }
end;

global operator + (a: real; var v: GradType) add : GradType[0..ub(v)];
begin

add:= intval(a) + v;
end;

global operator - (a: real; var v: GradType) sub : GradType[0..ub(v)];
begin

sub:= intval(a) - v;
end;

global operator * (a: real; var v: GradType) mul : GradType[0..ub(v)];
begin

mul:= intval(a) * v;
end;

global operator / (a: real; var v: GradType) divs: GradType(0..ub(v)];
begin

divs:= intval(a) / v; { Can propagate ‘division by zero’ error }
end;

{

{ Elementary functions for GradType arguments

global function sqr (var u: GradType) : GradType[0..ub(u)];
var

i: integer;

h: interval;
begin

sqr[0]:= sqr(ufol);

it (GradOrder > 0) then

begin
h:= 2*%xul0];
for i:=1 to ub(u) do sqrlil:= h»ulil;
end;
end;

global function power (var u: GradType; k: integer) : GradType[0..ub(uw)];

var
h : interval;
i : integer;

begin
it (k = 0) then
power:= 1
else if (k = 1) then
power:= u

else if (k = 2) them
power:= sqr(u)
else
begin
power [0] := power(ul0], k);
it (GradOrder > 0) then
begin
h:= k * power(uf0l, k-1);
for i:=1 to ub(u) do power[il:= h * uli];
end;
end;
end;

global function sqrt (var u: GradType) : GradType[0..ub(w)];
var

(SN
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i: integer;
h: interval;

begin
h:= sqrt(ulol); { Can propagate domain error }
sqrt[0]:= h;
if (GradOrder > 0) then
begin
h:= 0.5/h;
for i:=1 to ub(u) do sqrtlil:= h*uli];
end;
end;

global function exp (var u: GradType) : GradType[0..ub(u)];
var

h: interval;

i: integer;
begin

h:= exp(ul0l); expl0]:= h;

if (GradOrder > 0) then

for i:=1 to ub(u) do explil:= h*ulil;

end;

global function 1n (var u: GradType) : GradType[0..ub(u)];
var

i: integer;

h: interval;
begin

In[0]:= 1n(ul0]); { Can propagate domain error }

if (GradOrder > 0) then

begin
h:= 1/ul0];
for i:=1 to ub(u) do 1n[i]:= h*ulil;
end;
end;

global function sin (var u: GradType) : GradType[0..ub(u)];
var
i: integer;
h: interval;
begin
sinf0]:= sin(ul0]1);
if (GradOrder > 0) then
begin
h:= cos(ul0]);
for i:=1 to ub(u) do sin[i]:= hxul[il;
end;
end;

global function cos (var u: GradType) : GradType([0..ub(u)];
var
i: integer;
h: interval;
begin
cos[0]:= cos(ul0l);
if (GradOrder > 0) then
begin
h:= -sin(ul01);
for i:=1 to ub(u) do cosfi]:= h*ulil;
end;
end;

global function tan (var u: GradType) : GradTypel[0..ub(u)]l;
var
1: integer;

251
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h: interval;

begin
h:= tan(ul0]); { Can propagate domain error }
tan[0]:= h;
if (GradOrder > 0) then
begin { The subdistributive law implies
h:= sqr(h)+1; { ho * (K012 + 1) <= hO13 + h0
for i:=1 to ub(u) do tan[il:= h*ulil; { So, we use the first form.
end;
end;

global function cot (var u: GradType) : GradType[0..ub(w)];
var

i: integer;

h: interval;

begin
h:= cot(ul0]); { Can propagate domain error }
cot[0]:= h;
it (GradOrder > 0) then
begin { The subdistributive law implies
h:= —(sqr(h)+1); { h0 * (h012 + 1) <= hO13 + hO
for i:=1 to ub(u) do cotl[il:= h*ulil; { So, we use the first form.
end;
end;

global function arcsin (var u: GradType) : GradType[0..ub(w)];

var
i: integer;
h: interval;
begin
arcsin[0]:= arcsin(ul0]); { Can propagate domain error }
if (GradOrder > 0) then
begin
h:= 1/sqrt(i-sqr(ul0l));
for i:=1 to ub(u) do arcsin[i]:= h*uli];
end;
end;

global function arccos (var u: GradType) : GradTypel0..ub(w)];

var
i: integer;
h: interval;
begin
arccos[0]:= arccos(uf0]); <{ Can propagate domain error }
it (GradOrder > 0) then
begin
h:= -1/sqrt(i-sqr(ul0]));
for i:=1 to ub(u) do arccos{il:= h*uli]l;
end;
end;

global function arctan (var u: GradType) : GradType[0..ub(w)];

var
i: integer;
h: interval;
begin
arctan[0]:= arctan(ul0]); <{ Can propagate domain error }
if (GradOrder > 0) then
begin
h:= 1/(1+sqr(ul0l));
for i:=1 to ub(u) do arctan[i]:= h*uli];
end;
end;

[T
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global function arccot (var u: GradType) : GradType[0..ub(u)];
var
i: integer;
h: interval;
begin
arccot[0]:= arccot(ul0l); { Can propagate domain error }
it (GradOrder > 0) then
begin
h:= -1/(1+sqr{ul01));
for i:=1 to ub(u) do arccotlil:= h*ul[il;
end;
end;
global function sinh (var u: GradType) : GradType[0..ub(w)l;
var
i: integer;
h: interval;
begin
sinh[0] := sinh(u[0]);
it (GradOrder > 0) then
begin
h:= cosh(ul[0]);
for i:=1 to ub(u) do sinh[il:= h*u[i);
end;
end;
global functiom cosh (var u: GradType) : GradType[0..ub(u)];
var
i: integer;
h: interval;
begin
coshf0]:= cosh(ul0l);
if (GradOrder > 0) then
begin
h:= sinh(ul0]);
for i:=1 to ub(u) do cosh[i]:= h*u[i];
end;
end;
global function tanh (var u: GradType) : GradTypel[0..ub(u)];
var
i: integer;
h: interval;
begin
h:= tanh(u[0]); tanh[0]:= h;
it (GradOrder > 0) then
begin { The subdistributive law implies }
h:= 1-sqr(h); { ho* (hOT2 - 1) <= h0T3 - h0 }
:?r i:=1 to ub(u) do tanh{i]:= h*uli];{ So, we use the first form. }
end;
end;
global functiom coth (var u: GradType) : GradType[0..ub(u)];
var
i: integer;
h: interval;
begin
h:= coth(uf0l); { Can propagate domain error }
coth{0]:= h;
it (GradOrder > 0) then
begin { The subdistributive law implies }
h:= 1-sqr(h); { ho * (hOt2 - 1) <= hOT3 - hO }
for i:=1 to ub(u) do coth[i]:= h*uli];{ So, we use the first form. }

end;
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end: { differentiation arithmetic, and returns the function value only. >
global function arsinh (var u: GradType) : GradType [0..ub(w]; global procedure fEvalG (functiom f(y:GTvector) : GradType[lb(y,2)..ub(y,2)];
x : ivector;
v? integer; var fx : interval);
g ) begin
bl;éixllnterval, GradOrder:= 0; fx:= fValue(f(GradVar(x))); GradOrder:= 1;
arsinh[0]:= arsinh(u{0l); { Can propagate domain error } end;
it (GradOrder > 0) then )} )
b‘ﬁ?_l 1/sqrt(1+sqr(u[0]))' { Purpose: Evaluation of function ’'f’ for argument ’x’ in differentiation }
i o i1:= hxulil; { arithmetic computing the function value and the gradient value. 3}
:;t.)r i:=1 to ub(u) do arsinh([i] Y Parametors. 3
:l} ' { In S ¢ : function of ’GradType’. 2}
end; { 'x! . argument for evaluation of 'f’. }
. . GradType) : GradType[0..ub(u)l; { Out : fx? . returns the function value 'f(x)’. }
global function arcosh (var u: Gradlyp P { ‘gx’ ! returns the gradient value ’‘grad f(x)’. }
va:'r. integer: { Description: This procedure keeps ’GradOrder’ = 1, evaluates ’'f(x)’ in }
;: }ntegvai‘ { differentiation arithmetic, and returns the function value and the }
beg:i.nln ! { value of the gradient. 7
.= ; Can propagate domain error } }
;‘;cgzﬁgggéd;rgog?(:&gl)’ 1 propag global procedure fgEvalG (function f(y:GTvector) : GradTypel[lb(y,2)..ub(y,2)1;
: X : ivector;
begin L3 1.
h:= 1/sqrt(sqr(ulol)-1); ] zi fx : }nteiva%:
for i:=1 to ub(u) do arcosh[il]:= hxulil; var gx : ivector);
;1.1(1; £xG : GradType[0..ub(x)];
end; begin
global function artanh (var u: GradType) : GradType [6..ub(w]; ;"G:: f(GradVar(x)); fx:= fValue(fxG); gx:= gradValue(fxG);
end;
var
i: integer; { 3
h: interval; { Predefined routines for evaluation of GTvector-functions (with Jacobians) }
begin R acobians ?
= ; agate domain error
a.ui:t?gh[g%.de;rzagl)l(:&:i). T Can propag { Purpose: Evaluation of function ’f’ for argument ’‘x’ in differentiation 2}
llmginra T { arithmetic computing only the function value. }
h:= 1/(1-5‘11’(\1[0]))} [] h*uli] }-Par;:leters{ £ : function of type 'GTvector’ ;
j:= := h*xulil; : : ’ :
fl?r i:=1 to ub(u) do artanhli { 'x! : argument for evaluation of ’‘f’. }
;’,1 ! { Out s fx? : returns the vector function value ‘f(x)’. 3}
end; { Description: This procedure sets ’GradOrder’ to 0, evaluates 'f(x)’ in 3}
global function arcoth (var u: GradType) : GradType[0..ub(w)]; { differentiation arithmetic, and returns the function value only. 3}
) ' { }
var integer: global procedure fEvalJ (function f(y:GTvector) : GTvector([ib(y,1)..ub(y,1),
tlx: inte%vai' 1b(y,2)..ub(y,2)];
beéin ! x @ ivector;
arcoth[0]:= arcoth(ul0l); { Can propagate domain error } begin var fx @ ivector);
:zzﬁiradorder > 0) then GradOrder:= 0; fx:= fValue(f(GradVar(x))); GradOrder:= 1;
h:= 1/(1-sqr(ul0l)); A end;
for i:=1 to ub(u)-do arcothli]:= h*ulil; P ,
".'d; { Purpose: Evaluation of function ’f’ for argument ’x’ in differentiation }
end; { arithmetic computing the function value and the Jacobian matrix value. }
-} { Parameters: 3
. . ; £ GradType-functions } { In I & : function of type ’GTvector’. }
{ Predefined routines for evaluation o yp -3 { g : argument for evaluation of 'f’. j
{ Purpose: Evaluation of function ’f’ for argument ’'x’ in differentiation ; g Out : :ix: : reiurns Ege ?uncz;on vaiue :gi(’);))" ;
ot y . : Iue. X : returns e Jacobian value x)’.
{ arlthmet.lc computing only the function va } { Description: This procedure keeps ’'GradOrder’ = 1, evaluates 'f(x)’ in }
iPar;meters.. 1g . function of ’'GradType’. 3} { differentiation arithmetic, and returns the function value and the 3}
{ " Ty : argument for evaluation of 'f’. ; {  value of the Jacobian matrix. ;
S $.44 : returns the function value 'f(x)’. -
f’Desgﬁption' i‘iis procedure sets ‘GradOrder’ to 0, evaluates 'f(x)’ in > global procedure fJEvall (function f(y:GTvector) : GTvector[lb(y,1)..ub(y,1),
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1b(y,2). .ub(y,2)1;
X : ivector;
var fx : ivector;
var Jx : imatrix);
var
£xGTv
begin
£xGTv:= f(GradVar(x));
end;

GTvector[1..ub(x),0..ub(x)];

fx:= fValue(fxGTv); Jx:= JacValue(£fxGTv);

{ Module initialization part

R 2

begin
GradOrder:= 1;
end.

12.3.2 Examples

In this section, we illustrate applications of automatic differentiation. The well-
known approximate Newton’s method applied to optimization and root-finding prob-
lems makes effective use of automatic differentiation, but we do not treat sophisti-
cated methods in that area in this section. A detailed discussion of methods with
automatic result verification using Newton’s method is given in Chapters 13 and 14.

We first illustrate the use of our differentiation arithmetic in a program to solve
Example 12.1 on page 227.

Example 12.2 We must define a PASCAL-XSC function for the function f(z) =
% T (4 + $2):

function f (x: HTvector) :
begin

f = x[1] * (4 + x[2]);
end;

HessType[0..2,0..2];

With the declarations

var x : HTvector(1..2,0..2,0..2];
fx : HessType{0..2,0..2];

y, grady : ivector[1..2];
fy : interval;
hessy : imatrix({1..2,1..2];

we can compute function values and derivative values directly by the sequence

y[1] := 123; yl[2] := 456;

x := HessVar(y);

fx := f(x);

fy := fValue(fx); { Function value £(y) }
grady := gradValue(fx); { Gradient g(y)
hessy := hessValue(fx); { Hessian H(y) }

Alternatively, we can use the evaluating procedures:

y[1] := 123; y[2] := 456;
fghEvalH(f,y,fy,grady,hessy);
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Example 12.3 The well known method of Newton for computing an approximation
of a zero of a system of nonlinear equations (see [83] for example) can also be
used for computing a stationary point of a twice continuously differentiable multi-
dimensional function. Newton’s method is applied to the gradient of the function,
i.e. to the equation V f(z) = 0, starting from an approximation z(® € JR*. The
method can be stated as

by
8
=
|

= (V2 f(e®))™
L) .= m(k)_R(k).Vf(x(k)) k=0,1,2,...

In our sample program hess_ex for this method, all real operations are replaced by
interval operations, because we make use of the interval differentiation arithmetic.
That is, we iterate

R®
](k+1)

(m(Vf([z]®))) k=012

g (2] R¥ . () § B OB
The influence of rounding errors is directly demonstrated by the increasing interval
diameters. The approximate inverse R(®) is computed by applying the procedure
MatInv from Chapter 10 to the midpoint matrix of the interval Hessian evaluation.

We terminate the iteration if an interval evaluation of Vf over the current
interval iterate [z]*) contains zero, or if the number of iterations is greater than or
equal to 100 to prevent endless iterations. Although interval operations are applied,
the result is an enclosure of the sequence of values z(**1) that would be computed
in exact real arithmetic. The result is not a validated enclosure of the zero of the
gradient because this approach does not enclose the truncation errors in the Newton
iteration. For a more sophisticated interval method for finding all global minimizers
of a nonlinear function with guarantee and high accuracy, we refer to Chapter 14.

We apply our iteration to the problem of finding a stationary point of Rosen-
brock’s function [75] f(z) = 100 (z; — 2?)? + (z1 — 1)?, which has become accepted
as a difficult test problem for optimization methods.

{
{ This is an implementation of Newton’s Method for computing a stationary
{ point of a twice continuously differentiable multi-dimensional function.

the function f(x) and the starting value x0

given:
x[n+1] := x[n] - InvHf(x[n])*Gf(x[n]) , n = 0,1,...

iteration:

e e

{ where InvHf(x) denotes the inverse of the Hessian matrix of f(x).
{ A1l real operations are replaced by interval operations, all function and
{ derivative evaluations are calculated by differentiation arithmetic.

N N S W N e e e s G

program hess_ex;

use
i_ari, { Interval arithmetic }
mv_ari, { Real matrix/vector arithmetic }
mvi_ari, { Interval matrix/vector arithmetic }
matinv, { Matrix inversion }
hess_ari; { Hessian differentiation arithmetic }
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const
fDim = 2;
nmax = 100;
var
fx . interval;
x, Gfx : ivector[1..fDim];
Hfx : imatrix([1..fDim,1..fDim];

InvHfx : rmatrix{1..fDim,1..fDim];
n, Err : integer;

function f (x: HTvector) : HessType[0..fDim,0..fDim];
begin

f:= 100*sqr(x[2] - sqr(x[1])) + sqr(z[1] - 1);
end;

begin
griteln(’Newton”s method for finding a stationary point of Rosenbrock’’s’);
writeln(’function: f(x) = 100*sqr(x[2] - sqr(x[1])) + sqr(x[1] - 1)*);
writeln;
write(’Starting vector x = ’); read(x);
writeln;
writeln(’Iteration:’);
fghEvalH(f, x, fx, Gfx, Hfx);
n :=0;
repeat
n:=n+1;
writeln(’x: ’, x, 'Gf(x): ’, Gfx);
MatInv(mid(Hfx), InvHfx, Err);
if Err = 0 then
begin
x:= x - InvHfx * Gfx;
fghEvalH(f, x, fx, Gfx, Hfx);
end;
until ((0 in Gfx[1]) and (0 in Gfx[2])) or (n >= nmax) or (Err <> 0);
if Err = 0 then
begin
writeln;
writeln(’Stationary point: ’, x, ’Gradient value: ’, Gfx);
vwriteln(’Expected solution: ’);
writeln(’ 1.0 ’); writeln(’ 1.0 ’);
end
else
writeln(MatInvErrMsg(Err));
end.

If we run our sample program for Newton’s method we get the following runtime
output.

Newton’s method for finding a stationary point of Rosenbrock’s
function: f£(x) = 100*sqr(x[2] - sqr(x[11)) + sqr(x[1] - 1)

Starting vector x = 3

3.

Iteration:

X:

[ 3.000000000000000E+000, 3.000000000000000E+000 ]
[ 3.000000000000000E+000, 3.000000000000000E+000 ]
Gf(x):

[ 7.204000000000000E+003, 7.204000000000000E+003 ]
[ -1.200000000000000E+003, ~1.200000000000000E+003 ]
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X:
[ 2.998334721065778E+000, 2.998334721065779E+000 ]
[ 8.990008326394672E+000, 8.990008326394675E+000 ]

Gf(x):
[ 3.99999537960E+000, 3.99999537962E+000 ]
[ -5.54630786E-004, -5.54630784E-004 ]
X:
[ 1.00110772357E+000, 1.00110772359E+000 ]
L -2.9866990054E+000, -2.9866990052E+000 ]
Gf(x):
L 1.5973359336E+003, 1.6973359337E+003 ]
[ -7.9778313591E+002, -7.9778313689E+002 ]
x:
L 1.0011063367E+000, 1.0011063369E+000 ]
[ 1.002213897E+000, 1.002213898E+000 ]
Gf(x):
[ 2.2126E-003, 2.2128E-003 ]
[ -3.2E-008, 3.1E-008 ]
X:
[ 9.999999E-001, 1.000001E+000 ]
[ 9.999986E-001, 9.999989E~001 ]
Gf(x):
[ 3.9E-004, 5.9E-004 ]
L ~3.0E-004, -1.9E-004 ]
Stationary point:
{ 9.999E-001, 1.001E+000 ]
L 9.998E-001, 1.001E+000 ]
Gradient value:

-1.6E-001, 1.6E-001 ]
L -8.0E-002, 8.0E-002 ]
Expected solution:
1.0
1.0

This approximate method using interval operations converges, but the intervals grow
wider. This shows the importance of using true interval algorithms, as opposed to
point algorithms in interval arithmetic. The algorithm presented in Chapter 14 uses
a method to generate a sequence of intervals that is guaranteed to enclose the global
minimizer, and can achieve high accuracy.

Example 12.4 In this example, we demonstrate the use of grad_ari to compute
Jacobians. We again use the method of Newton, now applied to the vector-valued
function itself, i.e. to the problem f(z) = 0, starting from an approximation z(©® €
IR*. Newton’s method is

X
=
I

= (Jy(z®) _
c®+) = L) _ plky Fa®) k=0,1,2,...

In our sample program jac-ex for this method, all real operations are replaced by
interval operations, because we make use of the interval differentiation arithmetic.
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That is, we start with [z]o and iterate

R®
) = fa]

(m(J4(12]™)))

R®) . f([x](k))} =0,1,2,...

The influence of rounding errors is directly demonstrated by the increasing interval
diameters. The approximate inverse R(*) is computed by applying the procedure
MatInv from Chapter 10 to the midpoint matrix of the interval Jacobian evaluation.

We terminate the iteration if an interval evaluation of f over the current interval
iterate [z]*) contains zero, or if the number of iterations is greater than or equal to
100. Although, this approximate method can not guarantee to find and enclose a
zero of f in the last iterate. For a more sophisticated interval method for finding all
zeros of a nonlinear system of equations with guarantee and high accuracy, we refer
to Chapter 13.

We apply our iteration to the problem of finding a zero of Hansen’s function {29]

628 — 25.223 + 24z, — 6

fla) = 12z, — 62

B N )

{ where InvJf(x) denotes the inverse of the Jacobian matrix of f(x).
{ All real operations are replaced by interval operations, all funcylon and
{ derivative evaluations are calculated by differentiation arithmetic.

given:
iteration:

This is an implementation of Newton’s Method for computing a zero of
a continuously differentiable multi-dimensional function.

the function f(x) and the starting value x[0]
x[n+1] := x[n] - InvJf(x[n])*f(x[n]) ,

n=20,1,...

S S L e e S e e e b

program jac_ex;

use
i_ari,
mv_ari,

mvi_ari,

grad_ari,

matinv;

const
fDim =
nmax =

var
fx, x
Jfx

function f (x: GTvector) :

var
xlsqr :
begin

Xlsqr:=

f£[1]:=
£[2]:=
end;

2.
1

{ Interval arithmetic }
{ Real matrix/vector arithmetic 2
{ Interval matrix/vector arithmetic }
{ Gradient differentiation arithmetic }
{ Matrix inversion

00;

: ivector[1..fDim];

: imatrix[1..fDim,1..fDim];
InvJfx :
n, Err :

(
1

rmatrix[1..fDim,1..fDim];
integer;

GTvector[1..fDim,0..£fDim];
GradType[0..fDim];
sqr(x[11);

(6+x1sqr - intval(252)/10)*xisqr + 24)*x[1] - 6xx[2];

2#x[2] - 6*x[1];

12.3 Implementation and Examples

begin

writeln(’'Newton’’ s method for finding a zero of Hansen’’s function:’);

x1T5 - 26.2 x113 + 24 x1 - 6 x2’);

vriteln(’f1(x) =
=12 x2 - 6 x1’);

writeln(’f2(x)
writeln;
write(’Starting vector x: ’); read (x);
writeln(’Iteration’);

fJEvall(f, x, fx, Jfx);

n = 0;

repeat
n:=n+1;
writeln(’x: ’, x, *f(x): ’, fx);
MatInv(mid(Jfx), InvJfx, Err);
if Err = 0 then
begin

x:= x -~ InvJfx * fx;
fJEvall(f, x, fx, Jfx);

end;
until ((0 in fx[1]) amd (0 in £x[2])) or (n >= nmax) or (Err <> 0);
writeln;
it Err = 0 then
begin
writeln(’Zero: ’, x, ’Function value: ', £x);

writeln(’Expected zeros:’);

writeln(’~1.7475... or -1.0705... or 0.0 or 1.0705...
writeln(’-0.8737... -0.5352. .. 0.0 0.5352...
end

else

writeln(MatInvErrMsg(Err));

end.

or 1.7475...°
or 0.8737...°

f we run our sample program for Newton’s method, we get the report

Newton’ s method for finding a zero of Hansen’s function:
£1(x)

6 x1°5 - 25,2 x1°3 + 24 x1 -~ 6 x2

£2(x) = 12 x2 - 6 x1

Starting vector x: 0.5

0.25
Iteration
X:
[ 5.000000000000000E-001, 5.000000000000000E-001 ]

[ 2.500000000000000E-001, 2.500000000000000E-001 ]
£(x):

[ 7.537499999999999E+000, 7.537500000000002E+000 ]
[ 0.000000000000000E+000, 0.000000000000000E+000 ]
X:

[ -1.396226415094340E+000, —1.396226415094339E+000 ]
[ -6.981132075471700E-001, -6.981132075471696E-001 ]
£(x):

L 7.4335163272550E+000, 7.4335163272552E+000 ]
[ -6.4E-015, 5.4E-015 ]
X:

[ -7.9519024745212E-001, -7.9519024745211E-001 ]
[ -38.9759512372607E-001, -3.9759512372605E-001 ]
£(x):

[ -5.9355981090667E+000, ~5.9355981090662E+000 ]
L -6.0E-014, 6.0E-014 ]

i
);

261
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X:
L -1.1960053610903E+000, -1.1960053610901E+000 ]
L -5.9800268054511E-001, ~-5.9800268054507E-001 ]
£(x):
L 3.312990631505E+000, 3.312990631509E+000 ]
L -3.0E-013, 3.0E-013 ]
X:
[ -1.067378601460E+000, -1.067378601459E+000 ]
[ -5.336893007299E-001, -5.336893007296E-001 ]
£(x):
[ -8.293597506E~002, -8.293597504E-002 ]
[ -1.4E-012, 1.4E-012 ]
x:
L -1.070545193620E+000, -1.070545193618E+000 ]
[ —-5.352725968098E-001, -5.352726968092E-001 ]
£(x):
L 7.613883E-005, 7.613895E-005 ]
L -5.5E-012, 5.5E-012 ]
Zero:
£ -1.07054229183E+000, -1.07054229182E+000 ]
L -5.35271145915E-001, -5.35271145911E-001 ]
Function value:

-2.5E-011, 1.5E-010 ]
L -2.2E-011, 2.2E-011 ]

Expected zeros:
~1.7475... or -1.0705... or 0.0 or 1.0705... or 1.7475...
-0.8737... -0.5352... 0.0 0.5352... or 0.8737...

This runtime output shows a very important fact in connection with the local con-
vergence property of the classical Newton’s method. Using the starting point z© =
(0.5,0.25)T, we might expect the method to converge to the zero (0,0)T or to the
zero (1.0705...,0.5352...)T. However, the iteration stops at (—1.0705..., —0.5352...)T.
An approximation method cannot guarantee that we reach the “nearest” zero of (@,
We again refer to Chapter 13, where we introduce a method for finding all zeros,
which generates a sequence of intervals that is guaranteed to enclose the roots, and
can achieve high accuracy.

12.3.3 Restrictions and Hints

The implementations in modules hess_ari and grad_ari use the standard error han-
dling of PASCAL-XSC if the interval argument of an elementary function does not
lie in the domain specified for this interval function (see [65]). The same holds for an
interval containing zero as the second operand of the division operator. These cases
can also occur during a function evaluation using differentiation arithmetic because
of the known overestimation effects of interval arithmetic (see Section 3.1).

Note that the rules for getting true enclosures in connection with conversion
errors (see Section 3.7) also apply to interval differentiation arithmetic. To compute
enclosures for the values of the gradients or Hessians of function f in Example
12.2 at point z with z; = 0.1, for example, you must assure that the machine
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interval argument [z]; used as argument for the interval function evaluation satisfies
z; € [z}. The same rule applies to real coefficients in the definition of f. That is
why we expressed 25.2 as intval(252)/10 in Example 12.4.

12.4 Exercises

Exercise 12.1 Implement a real version of module hess_ari by replacing all interval
data types by the corresponding real data types. Then use the new module and apply
it to Example 12.3.

Exercise 12.2 Implement a real version of module grad_ari by replacing all interval
data types by the corresponding real data types. Then use the new module and apply
it to Example 12.4.

12.5 References and Further Reading

The implementations in this chapter have followed those of Rall [67] in Pascal-
SC. We use the forward mode of automatic differentiation in which the values of
the derivative objects are propagated through the code list in the same order as
intermediate values during the evaluation of f in ordinary arithmetic (see [66] or
[68] for example).

It is possible to optimize the time complexity of computing gradients or Hessians
by using the backward or reverse mode (also called fast automatic differentiation, see
[16] for example). The reverse mode is faster than the forward mode for computing
most large gradients, but it requires more storage space and is trickier to program.

Automatic differentiation methods can also be used to compute interval slopes
(see [64]). Further applications and differentiation arithmetics can be found in [20],
[21], and [69]. A large bibliography on automatic differentiation is given in [12].



Chapter 13

Nonlinear Systems of Equations

In Chapter 6, we considered the problem of finding zeros (or roots) of nonlinear
functions of a single variable. Now, we consider its generalization, the problem of
finding the solution vectors of a system of nonlinear equations. We give a method for
finding all solutions of a nonlinear system of equations f(z) = 0 for a continuously
differentiable function f : IR* — IR™ in a given interval vector (box). OQur method
computes close bounds on the solution vectors, and it delivers information about
existence and uniqueness of the computed solutions. The method we present is a
variant of the interval Gauss-Seidel method based on the method of Hansen and
Sengupta [3], [29], and a modification of Ratz [73]. Our method makes use of the
extended interval operations defined in Section 3.3.

In classical numerical analysis, methods for solving nonlinear systems start from
some approximate trial solution and iterate to (hopefully) improve the approxima-
tion until some convergence or termination criterion is satisfied. These non-interval
methods have their difficulties finding all solutions of the given problem. It is a
commonly held myth that it is impossible for a numerical method to find all solu-
tions to a nonlinear system in a specified region. The myth is true if an algorithm
only uses information from point evaluations of f. However, the algorithm of this
chapter uses values of f and its derivatives evaluated at interval arguments to show
that the myth is false.

13.1 Theoretical Background

Let f : IR — IR™ be a continuously differentiable function, and let z € {z] with
[z] € IIR". We address the problem of finding all solutions of the equation

f(z)=0. (13.1)

Let J; denote the Jacobian matrix of f. We will compute J; using automatic
differentiation as described in Chapter 12. Interval Newton methods are used in
general to sharpen bounds on the solutions of (13.1). They can be derived from the

mean value form
f(m([z])) = f(z*) = J¢(§)(m([=]) — =),

where z* € [z], £ = (€1,...,&n), and § € [z] for i = 1,...,n. If we assume z* to be

a zero of f, we get
f(m([z])) = J£(&) - (m([a]) — =7).
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If we assume J;(§) € IR**" and all real matrices in J¢([z]) € IIR™" to be non-
singular, we have

e = m([z]) — (Js(€))™ - F(m([z])
€ m([z]) - (Jf([ﬂ))“ - f(m([z])).

=: N([=])

N([z}) is the multi-dimensional interval Newton operator. Every zero of f in [z] also
lies in N([x]) and therefore in N([z])N[z]. However, this method is only applicable if
the interval matrix Jy([z]) is regular, i.e. if every real matrix B € J({z]) is regular.

Thus, we are lead to another form of the interval Newton method that relaxes
the requirement that J¢([x]) be nonsingular. We compute an enclosure of the set of

solutions z* of
fm([2])) = J5([z]) - (m([z]) — =¥). (13:2)

This method works better if we first precondition (13.2), i.e. if we multiply by a real
matrix B € IR**" to obtain

R- f(m([2])) = R - J5([z]) - (m([=]) — =¥).

Frequently, the inverse of the midpoint matrix m(J;([z])) is used as a preconditioner
R. We will do so, too. Define

R:=(m(Js([2])), b:=R-f(m(lz])), and [A]:=R-Js([z]), (13.3)
and consider the interval linear equation
b=[A]- (m([z]) - =%). (13.4)

The method we describe for solving equation (13.4) is based on the interval Gauss-
Seidel iteration, which can also be applied to singular systems (cf. [64]).

13.1.1 Gauss-Seidel Iteration
We are interested in the solution set
S={z€[z]| A-(c—z)=0b, for A€ [A]}
of the interval linear equation
[A]- (c—2) = b

with fixed ¢ & m([z]). In fact, we can use an arbitrary ¢ € [z]. Gauss-Seidel iteration
is based on writing the linear system A - (¢ — z) = b explicitly in components as

ZAij'(Cj—wj)=b,~ i=1,...,n,

i=1
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and solving the ith equation for the 7th variable, assuming that A;; # 0. Then we
have

& = Ci—(bi+iAij‘($j_cJ'))/A“

j=1
I

€ a— (bt M- (- / 14k (135)

j=1
J#

N J/

=: [#)

fori=1,...,nif 0 & [A];; for all .. We obtain a new enclosure {z] for by computing
the interval vector components [z]; according to (13.5) yielding

S C [N [z].

Moreover, it is possible to improve the enclosure [z] using the fact that in the sth
step improved enclosures [2]y,. .., [2]i-1 are already available. Thus, if we compute

1) += lo )

[y]i := (c, - (b; + ;;:[A];j ~(ly)i — Cj)) /[A]“) n ik , (13.6)
i1=1,...,n

Nes([z]) := [y] J

we have

§ C Nas([2]) € [} N [z],

and every zero of f which lies in [z] also lies in Ngs([=]). In (13.6), it is not necessary
to compute the [y]; in fixed order i = 1,...,n.

In summary, one interval Newton Gauss-Seidel step for the interval vector [x]
yields Ngs{[z]) by first computing b and [A] according to (13.3) and then computing
[y] according to (13.6). The interval Newton Gauss-Seidel iteration starts with an
interval vector [z](®) and iterates according to

[ft](k+1) = NGS([-T](’C))’ k= 0, 1’ 2,... (137)

The intersections performed in (13.6) prevent the method from diverging. If an
empty intersection occurs, we set Ngs([z]*)) := [y]® := §, and we know that [2]®
contains no zero of f.

If 0 € [A} for some 7, the method can be used if extended interval arithmetic
(see Chapters 3 and 6) is applied. In this case, a gap can be produced in the
corresponding components [y]gk) of [y]™, i.e. [y]fk) is given by one or two intervals
resulting from the extended interval division and the succeeding intersection with
the old value [z]fk). Therefore, Ngs([z](*)) is given by one or more interval vectors,
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and the next step of the interval Newton Gauss-Seidel iteration must be applied to
each of these boxes which possibly contain solutions of (13.1). Thus, it is possible
to compute all zeros of f in the starting interval vector [z]().

In the following theorem, we summarize the most important properties of the
interval Newton Gauss-Seidel method.

Theorem 13.1 Let f : D C IR® — IR" be a continuously differentiable function,
and let [z] € IIR" be an interval vector with [z] C D. Then Ngs([z]) defined by
(13.6) has the following properties:

1. Every zero z* € [z] of f satisfies z* € Ngs([z]).
2. If Ngs([z]) = 0, then there exists no zero of f in [z].

3. If Ngs([z]) ¢ [z], then there exists a unique zero of f in [r] and hence in
Nas([<]).

For proofs see [28] or [64].

Remark: The conditions of Theorem 13.1 can be checked on a computer. For
example, if Nogs([z]) denotes the machine interval computation of Ngs([z]) and if
condition 3 is satisfied for Nogg, then we have

Nas([z]) € Nogs([2]) C [z].

Thus, the condition is fulfilled for Ngs([x]), too. On the other hand, if we cannot
fulfill conditions 2 and 3 of the Theorem, then [z] may contain one or more zeros.
This is especially the case if the problem has infinitely many solutions. Qur interval
method can find and bound an infinite set of solutions consisting of a continuum of
points, but of course, none will be unique.

13.2 Algorithmic Description

The main algorithm AIINLSS (Algorithm 13.4) consists of two parts. The first part is
the extended interval Newton iteration itself, including the interval Newton Gauss-
Seidel step with intermediate checks for the uniqueness of a zero in a computed
enclosure. The second part is an additional verification step which tries to verify
the local uniqueness for enclosures that have not already been marked as enclosing
a unique zero.

Algorithm 13.1 describes the interval Newton Gauss-Seidel step, where (13.6)
is applied to the box [y] € I R" resulting in at most n + 1 boxes [V];. After
some initializations, we use Algorithm 10.1 (Matlnv) of Chapter 10 to compute an
approximate inverse of the midpoint matrix of the interval Jacobian J¢([y]). In Step
4, we compute [A], [8], and [y.] followed by some initializations for the loop. Interval
arithmetic must be used to compute f(c) to bound all rounding errors (denoted by
fo(c) in Step 4).

We first perform the single component steps of the Gauss-Seidel step for all i with
0 & [A]i; (Step 6) and then for the remaining indices with 0 € [A]i; (Step 7). Using
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this strategy, it is possible that the intervals [y]; become smaller by the intersections
with the old values [y]; in Step 6(b) before the first splitting is produced in Step
7(b). If a gap is produced in this case, we store one part of the actual box [y] in the
pth row of the interval matrix [V], and we continue the iteration for the other part
of [y]. The flag NoSolution signals that an empty intersection has occurred resulting
in p := 0. If the Gauss-Seidel step has only produced one box (p = 1) and if no
improvement for [y] is achieved, [y] gets bisected in Step 10.
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Algorithm 13.2 is a recursive procedure for the execution of the extended interval
Newton Gauss-Seidel iteration for the function f. The input parameter [y] specifies
the actual box. The input parameter ¢ corresponds to the desired relative accuracy
or tolerance for the resulting interval enclosures of the zeros. The calling procedure
AlINLSS guarantees that € is not chosen less than the relative machine accuracy (1
ulp). The input parameter yUnique signals whether we have already verified that
the incoming interval vector [y] contains a locally unique zero.

I 0 ¢ f([y]), then we know that no zero can lie within the interval vector [y].
Hence, a single interval function evaluation of f can guarantee that a complete range
of real values cannot contain a zero of f. If f([y]) contains zero, then the extended
interval Newton step given by (13.7) is applied to [y] resulting in p non-empty boxes
[Y)i withe=1,...,pand p <n+1 (Step 2). »

If the Newton step results in only one interval vector and if the local uniqueness
of a zero in [y] is not already proven, then the algorithm checks Condition 3 of
Theorem 13.1 for the resulting box [Y,]; and sets the flag yUnique in Step 3. In
Step 4 the actual box [V} ]; gets stored in the rectangular interval matrix [Sol] if the
tolerance criterion is satisfied. Otherwise, the procedure XINewton is recursively
called (else-branch of Step 4). The corresponding information on the uniqueness of
the zero is stored in the flag vector Info. N represents the number of enclosures of
zeros stored in [Sol].

Procedure XINewton terminates when no more recursive calls are necessary, that
is if 0 & f([y]) or if (dret,0([p)i) < €) for 2 = 1,...,p. The bisection in NewtonStep
guarantees that this second condition is fulfilled at some stage of the recursion.

Algorithm 13.3 describes an additional verification step which checks the local
uniqueness of the solution of the nonlinear system of equations enclosed in the
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interval vector [y]. The function f may have many zeros in the original box [z]. We
attempt to find subboxes [y], each of which contains a single zero of f. That is what
we refer to as local uniqueness. Algorithm 13.3 can be used for boxes which have
not yet been guaranteed to enclose a locally unique zero. This is done according to
condition 3 of Theorem 13.1 by applying interval Newton steps including an epsilon
inflation of the iterates [y], which can help to verify zeros lying on the edge of [y].
We use kmax = 10 as the maximum number of iterations, ¢ = 0.25 as the starting
value for the epsilon inflation, and a factor of 8 to increase ¢ within the iterations.
It turned out that these are good values for minimizing the effort if no verification
is possible (see also [46]).

Algorithm 13.4 now combines Algorithm 13.2 and Algorithm 13.3 to compute en-
closures for all solutions of equation f(z) = 0 within the input interval vector [z]
and tries to prove the local uniqueness of a solution in each enclosure computed.
The desired accuracy (relative diameter) of the interval enclosures is specified by the
input parameter €. 1 ulp accuracy is chosen if the specified value of ¢ is too small
(for example 0). The enclosures for the solutions are returned row by row in the
interval matrix [Sol]. The corresponding information on the local uniqueness of the
solution is returned in the Boolean vector Info. The number of enclosures computed
is returned in the integer variable N.

We use a function called CheckParameters as an abbreviation for the error checks
for the parameters of AINLSS which are necessary in an implementation. If no error
occurs, AlINLSS delivers the N enclosures [Sol];, ¢ = 1,2,..., N, satisfying

if Info; = true, then [Sol]; encloses a locally unique zero of f,
if Info; = false, then [Sol]; may enclose a zero of f.

If N =0, then it is guaranteed that there is no zero of f in the starting box [z].
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Applicability of the Algorithm

To keep our algorithm and implementation as simple as possible, Algorithm 13.2
uses only the very simple stopping criteria

dret,o0([Yp]:) < e.

Therefore, if the interval Newton steps do not improve the actual interval vector it-
erate, the method corresponds to a bisection method. The same applies to problems
where the solution set is given by a continuum of points. For more sophisticated
stopping criteria, see [28]. On the other hand, if the actual interval vector iterate
[y] causes no more extended interval divisions in NewtonStep, then the asymptotic
rate of convergence to a zero of f in [y] is quadratic.

The algorithm cannot verify the existence and the uniqueness of a multiple zero
" of f in the enclosing interval vector. Nevertheless, the zero is bounded to the
desired accuracy specified by . In this case, the corresponding component of the
Info-vector is false. As a consequence of the splitting of the intervals, it may hap-
pen that a zero lying exactly on the splitting point is enclosed in several boxes.
The method can be extended by a procedure to determine a single interval vector
representing a set of abutting boxes (see [73] for example).

13.3 Implementation and Examples

13.3.1 PASCAL-XSC Program Code

Our implementation of Algorithm 13.4 uses the extended interval arithmetic module
xi-ari (Section 3.3 and Chapter 6) and the automatic differentiation module grad_
ari (Chapter 12).
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13.3.1.1 Module nlss

Module nlss supplies the global routines AIINLSS (the implementation of Algorithm
13.4) and the corresponding function AIINLSSErrMsg to get an error message for
the error code returned by AIINLSS. The procedures NewtonStep, XINewton, and
VerificationStep are defined locally. All derivatives are evaluated in the differentia-
tion arithmetic.

The procedure AIINLSS uses the GTvector function f and the starting interval
vector Start as input parameters and stores all computed enclosures in the interval
matrix SoluVector (row by row) which is also passed to and from the procedure
XINewton. Before storing each interval vector in SoluVector, we check whether
the interval matrix has free components left. If not, the corresponding error code
is returned together with the complete SoluVector containing all solutions already
computed. The user must then increase the upper index bound of the first index
range of SoluVector to compute all zeros.

The same applies to the information about the uniqueness stored in the Boolean
vector InfoVector. Therefore, the user shall declare both vectors with lower index
bound equal to 1 and with upper index bounds which are equal. These conditions,
as well as the condition Epsilon > MinEpsilon are checked at the beginning of
procedure AIINLSS. Epsilon in our program corresponds to the parameter ¢ in the
algorithms, and MinEpsilon corresponds to 1 ulp accuracy.

Some of the routines in module nlss are implemented using the “modified call
by reference” of PASCAL-XSC (see [45, Section 2.7.9] for details) to avoid the very

inefficient allocation of local memory for the copies of the actual parameters.

{
{ Purpose: Computing enclosures for all solutions of systems of nonlinear
{ equations given by continuously differentiable functions.
{ Method: Extended interval Newton Gauss-Seidel method.
Note that some routines are implemented using the "modified call by
reference" of PASCAL-XSC (see Language Reference for details) to avoid
the very inefficient allocation of local memory for the copies of the
actual parameters.
Global procedures and functions:
procedure A1INLSS(...) : computes enclosures for all solutions
function AlINLSSErrMsg(...) : delivers an error message text

A A e e
o S S S s S s S S s S

module nlss;

use
i_ari, { Interval arithmetic
xi_ari, { Extended interval arithmetic
grad_ari, { Gradient differentiation arithmetic
mv_ari, { Real matrix/vector arithmetic
mvi_ari, { Interval matrix/vector arithmetic
b_util, { Boolean utilities
i_util, { Interval utilities
mvi_util, { Interval matrix/vector utilities
matinv; { Matrix inversion

e e e e e S

{ -3}
{ Error codes used in this module. }

i —

const
NoError = 0; { No error occurred. }

1bSoluVecNot1l
1bInfoVecNotl
VecsDiffer
VecTooSmall

wuw uwn
[NV S
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{ Lower bound of variable SoluVector is not equal to 1.}
{ Lower bound of variable InfoVector is not equal to 1.}
{ Bounds of SoluVector and InfoVector do not match.
{ SoluVector too small. Not all zeros can be stored.

{

{ Error messages depending on the error code.

(MNP W

{
global function ALLNLSSErrMsg ( Err : integer ) : string;

var
Msg : string;
begin
case Err of
NoError
1lbSoluVecNot1
1bInfoVecNotl
VecsDiffer
VecTooSmall
else
end;
it (Err <> NoError
Al11NLSSErrMsg := M
end;

{

. Msg

. Msg
. Msg
. Msg

1.

’Lower bound of SoluVector is not equal to 1’;
'Lower bound of InfoVector is not equal to 1’;
'Bounds of SoluVector and InfoVector do not match’;
'Not all zeros found. SoluVector is too small’;
'Code not defined’;

Msg
Msg

noun g n .Ii .Ii

) then Msg := ’Error: ' + Msg + ’!’;
sg;

{ Check if every component of interval vector ’iv’ contains the value ’n’ }

operator in (n: inte
var

k : integer;
begin

k:= 1b(iv);

while (k < ub(iv))

ger; var iv: ivector) ResIn : boolean;

and (n in iv{k]) do k:= k+1;

ResIn:= (n im iv{kl);

end;

{
{ Purpose: Execution
{ interval vector
{ Parameters:

In o

IYI

' JLY?
Out I A

lpl

Description:
'NewtonStep’ ex

‘p’ gives the n
'vlige, ..., vip

B N L e L L

for 'Y’ with result interval vector(s) ’V[il’ which can be empty.

of one single interval Newton Gauss-Seidel step for the
'Y’ and the function ’'f’.

: must be declared for the type ’'GTvector’ to
enable the internal use of the differentiation
arithmetic ’grad_ari’.

: starting interval.

: Jacobian matrix of ’f(Y)’, already computed
outside of ’'NewtonStep’.

: enclosures ’V[i]’ for the splittings
generated by the Newton step.

: number of non-empty interval vectors ’V[i]~’.

ecutes the extended interval Newton Gauss-Seidel step

umber of non-empty interval vectors stored as vectors

]

G 5 9 59 19 139 50 140 40 S0 8 10 Mt S0 0 o S S

procedure NewtonStep

var
[+

(function f (x: GTvector) : GTvector[1..ub(x,1),
0..ub(x,2)];

Y : ivector;

var JIY : imatrix;

var V : imatrix;

var p : integer);

: rvector[1..ub(Y)];

£C, b, Yin, Y_minus_c : ivector[1..ub(Y)];
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R : rmatrix[1..ub(Y),1..ub(Y)];

A »imatrix[i..ub(Y),1..ub({Y)];

i, i0, n, InvErr, j . integer;

NoSolution : boolean;

h . interval;

z . ivector([1..2];

begin

Yin:= Y;

c:= mid(Y); fEvalJ(f, intval(c), fC); { Midpoint evaluation of ’'f’ 3
{ >

MatInv(mid(J£Y),R,InvErr); { Invert the midpoint matrix 3

if InvErr <> 0 them R:= id(R); 3

A:= R * JfY; b:=R * fC; { Compute data for Gauss-Seidel step }

Y_minus_c:= Y ~ ¢; { 3

p:= 0; i:= 0; 10:= 0; n:= ub(Y); { Initializations, A[i0,i0] contains zero }

NoSolution:= false; {- 3}
while (i < n) and (mot NoSolution) do { Interval Gauss-Seidel step for }
begin { non-zero Ali,i] elements }
i:= succ(i); { 3
if not (0 in A[i,i]) then
begin

§:= ## (b[i]l + (for j:=1 to i-1 sum (A[i,j] * Y_minus_c[jl) )
+ (for j:=i+1 to n sum (A[i,3j] * Y_minus_c[j]) ) );
h:= ¢[i] - h / Ali,i];

if (Y[il >< h) them
NoSolution:= true

else
begin
YE{il:= Y[i] ** h; Y_minus_c[il:= Y{il - c[i];
end;
end
else
10:= i; { Largest i with 0 in A[i,i] }
end; { ==}
i:= 0;
vhile (not NoSolution) amd (i < i0) do { Interval Gauss-Seidel step for }
begin { zero A[i,i] elements }
i:= succ(i); { 3
it (0 im A[i,i]) then
begin
h:= ## ( b[i]l + ( for j:=1 to i-1 sum (A[i,j] * Y_minus_c[j]) )
+ ( for j:=i+l to n sum (A[i,j] * Y_minus_c[j1) ) );
z:= Y[i] ** (c¢[i] - h div A[i,i]); { Extended interval division }
if (z[1] = EmptyIntval) then { z[1] = z[2] = EmptyIntval }
NoSolution:= true { 3
else
begin { Compute new 'Y’ }
Y[il:= z{1}; Y_minus_c(il:= Y(i] - <[i}; = = d{-—-———————mmr
if z[2] <> EmptyIntval then
begin { Store further bisections }
p:= p+1; Vipl:= Y; VIpllil:= z[2]; { -}
end
end;
end; { if 0 in Af[i,i] ... }
end; { while (not NoSolution) ... }

if NoSolution then
p =0
else
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begin
p:= p+l; Vvipl:=Y;

it (p = 1) and (Y = Yin) then { Bisect the box }
begin S 3
i0:=1;
for i:=2 to ub(Y) do
if diam(Y[i]) > diam(Y[i0]) them i0:= i;

p:=2; vi2l:=vy;
V[1][10] .sup:= c[i0]; V[2][i0].inf:= c[io0]; { Bisection }
end; {---mmme }
end;
end; { NewtonStep }

{

{ Purpose: Recursive procedure for the execution of the extended interval

{ Newton Gauss_Seidel method for the function ’'f’.

{ Parameters:

In [ : must be declared for the type ’'GTvector’ to
enable the internal use of the differentiation
arithmetic ’‘grad_ari’.

'y’ : starting interval.
’Epsilon’ : desired relative accuracy
(interval diameter) of the result intervals.
‘yUnique’ : signals whether it is already verified that the
actual interval 'y’ contains a unique zero.
Out : ’SoluVector’ : enclosures for the zeros of ’'f’.

'InfoVector’ : corresponding information on the uniqueness of
the zero in each of these enclosures.

In/Out : ’SoluNo’ ! represents the number of the zero computed last
(in) and the total number of enclosures
computed at the end of the recursion (out).

Description:

The procedure ’XINewton’ is recursively called whenever the extended

interval Newton step results in a splitting of the actual interval ’y’

in two or more intervals, and the tolerance condition is not fulfilled

yet. Otherwise, the enclosures for the zeros of ’'f’ are stored in the
interval matrix ’SoluVector’ row by row, the corresponding information
on the uniqueness of the zero in each of these enclosures is stored in
the Boolean vector ’‘InfoVector’. The number of enclosures computed is
returned in the variable ’‘SoluNo’.
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procedure XINewton (fumctiom f (x: GTvector) : GTvector[1i..ub(x,1),

if 0 in fy then
begin
NewtonStep(f,y,Jfy,yp.p);

if (p = 1) then

0..ub(x,2)];
y : ivector;
var Epsilon : real;
yUnique : boolean;
var SoluVector : imatrix;
var InfoVector : bvector;
var SoluNo : integer);
var
fy 1 ivector[1..ub(y)];
Jfy ¢ imatrix[1..ub(y),1..ub(y)];
yp : imatrix[1..ub(y)+1,1..ub(y)l;
i, p . integer;
begin
fJEvall(f, y, fy, Jfy); { Compute f(y) and Jf(y) }

{ Start if 0 in f(y), else do nothing }
}

{ Extended interval Newton step with J}
{ results yp[il }
}

yUnique := yUnique or (yp[1] in y) <{ Inner inclusion ===> uniqueness }

else
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yUnique := false;
for i:=1 to p do
begin
if (MaxRelDiam(yp{i]) < Epsilon) then
begin { No more Newton steps }
fEvall(f, yplil, fy); { Compute f(yp[il) >
if (0 in fy) then { Store enclosure and info }
begin 3
SoluNo := SoluNo + 1;
if (SoluNo <= ub(SoluVector)) then
begin
SoluVector[SoluNo] := yplil; { Store enclosure of the zero }
InfoVector[SoluNo] := yUnique; { Store uniqueness info }
end; { }
end;
end
else { Recursive call of ’XINewton’ for interval ‘yplil’ }
XINewton(f,yp[i] ,Epsilon,yUnique,SoluVector,InfoVector,SoluNo);
end;
end;
end;
{ }
{ Purpose: Execution of a verification step including the use of an epsilen }
{ inflation. 3
{ Parameters: }
{ In RS &4 : function of ’DerivType’. 3
{ Out : ‘yUnique’ : returns ’‘true’ if the verification is successful. }
{ In/Out : 'y’ : interval enclosure to be verified. }
{ Description: This procedure checks the uniqueness of the zero enclosed in }
{ the variable ’y’ by an additional verification step including the use }
{ of an epsilon inflation of the iterates. i
{
procedure VerificationStep (fumction f (x: GTvector) : GTvector{i..ub(x,1),
0..ub(x,2)];
var y : ivector;
var yUnique : boolean);
const
kmax = 10;
var
yIn, fY, y0ld : ivector[i..ub(y)]l;
JEY :imatrix[1..ub(y),1..ub(y)];
ypP : imatrix[1..ub(y)+1,1. . ub(y)];
k, p : integer;
eps . real;
begin
yIn :=y; k :=0; eps:= 0.25; { Initializations }
yUnique := false; A=mmmmmmmemem——mee
while (mot yUnique) amd (k < kmax) do { Do kmax loops to achieve inclusion }
begin {
501d 1= blow(y,eps); f Epsilon inflation of 'y’ ;
k := k+1; fJEvall(f, yOld, fY, JfY); { Perform interval Newton step }
NewtonStep(f, yOld, JfY, yp, p); { -

it (p <> 1) then

{ No verification possible }
k := kmax -}

else it (yp[1] = y0ld) then { Increase ’eps’ }
eps := eps * 8 { -}
else
begin
y:= ypli1l; yUnique:= y im yOld; { Inner inclusion ===> uniqueness }

end; { _
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end;
if mot yUnique themn y:= yIn;
end;
{
{ Purpose: Computation of enclosures for all zeros of a continuously
{ differentiable multi-dimensional, vector-valued function.
{ Parameters:
{ In S &4 : objective function, must be declared for the
{ 'GTvector’ to enable the internal use of
{ the differentiation arithmetic ’grad_ari’.
{ ‘Start’, : starting interval.
{ 'Epsilon’. : desired relative accuracy
{ (interval diameter) of the result intervals.
{ Out : ’'SoluVector’ : stores and returns the enclosures for the
{ zeros of 'f’.
{ ’InfoVector’ : corresponding information on the uniqueness
{ of the zeros in each of these enclosures.
{ 'NumberOfSolus’ : number of enclosures computed.
{ 'Err’ : error code.
{ Description:
{ The enclosures for the zeros of 'f’ are computed by calling procedure
{ 'XINewton’. Then an additional verification step is applied to those
{ enclosures which have not been verified.
{ If an error occurs, the value of ’Err’ is different from 0.
{-
global procedure ALINLSS (functiom f (x: GTvector) : GTvector[1..ub(x,1),
0..ub(x,2)];
Start : ivector;
Epsilon : real;
var SoluVector : imatrix;
var InfoVector : bvector;
var NumberOfSolus : integer;
var Err : integer);
var
i . integer,;
MinEpsilon : real;
Startin : ivector(1..ub(Start)-1b(Start)+1];
begin

NumberOfSolus:= 0;

o M o S M o e e e S e e s W e e e S S G L

if (1b(SoluVector) <> 1) then { Check index bounds of result vectors }
Err:= 1bSoluVecNotl 3
else if (1b(InfoVector) <> 1) then
Err:= lbInfoVecNotl
else it (ub(InfoVector) <> ub(SoluVector)) them
Err:= VecsDiffer
else
begin { Start extended interval Newton method }
Err:= NoError; }
MinEpsilon:= succ(1.0) - 1.0; <{ Relative machine accuracy (1 ulp) }
Startin:= Start; { Resize to standard bounds 1..n >
}
it (Epsilon < MinEpsilon) then Epsilon := MinEpsilon; { Set ’‘Epsilon’ }
{ to 1 ulp acc. }
XINewton(f, Startin, Epsilon, false, e 3}
SoluVector, InfoVector, NumberOfSolus);

{ Check if there are more zeros }
it ub(SoluVector) < NumberOfSolus them { than storage space }
begin { }

Err:= VecTooSmall; NumberOfSolus:= ub(SoluVector);
end;



278 13. Nonlinear Systems of Equations

for i:=1 to NumberOfSolus do

if InfoVector[i] <> true then {
VerificationStep(f,SoluVecter[il,InfoVector[il);
end;
end;

{ Module initialization part

begin
{ Nothing to initialize }
end.

13.3.2 Example

{ Verification step for the enclosures }

LA

Our sample program uses nlss to compute all zeros of the function f : R* — IR"

with .
fil@)=06-2,—2+049 z;- Y 23, i=1...,n

j=1

in a specified starting interval vector. The function is taken from [29], where it is
chosen because it is easily programmable for arbitrary dimension. Its zero z = ()

is given by
45 . (1 . (T5n :
z; := ——— - sinh | 5 - arsinh , i=1,...,n (13.8)
v/n 3 2

{ }
{ This program uses module ’nlss’ to compute the solution of a system of }
{ nonlinear equations given by Hansen. A starting interval vector and a }
{ tolerance must be entered. i
{
program nlss_ex;
use

i_ari, { Interval arithmetic 3

mvi_ari, { Interval matrix/vector arithmetic 3

grad_ari, { Gradient differentiation arithmetic 3

b_util, { Boolean utilities }

nlss; { Nonlinear System Solver 3}
const

n = 20: { Maximum number of solutions to be computed 7

name = ’Hansen’’s Function’;
var

fDim : integer;
R L }
{ Function to prompt for the desired value of 'fDim’. It is cal;ed only once ;
{ within the declaration part of the first dynamic variable. This enables 3
{ full dynamics within the main program. .

function set_fDim : integer;
begin
write{’Desired dimension : '); read(fDim);

Search interval
Tolerance (relative) : 1le-10
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set_fDim := fDim;

}
}

end;
var
SearchInterval : ivector[i..set_fDim]; { Declaration using a call
Tolerance : real; { of function ’set_fDim’.
Solu ; imatrix[1..n,1..fDim];
Unique : bvector[l..n];
NumberOfSolus, i : integer;
ErrCode : integer;
{ Definition of Hansen'’s function in ’'fDim’ variables.
function f (x: GTvector) : GTvector[1..fDim,0..fDim];
var
sqrsum : GradType[0..fDim];
i : integer;
begin

sqrsum:= 0;
for i:= 1 to fDim do
sqrsum:= sqrsum + sqr(x[il);
for i:= 1 to fDim do
il := 6*x[i1/10 - 2 + 49*x[i]*sqrsum/100;
end;

{ Main program }
begin
writeln;
writeln(’Computing all solutions for ’, Name, ’ in ’, fDim, ’ variables’):
writeln;
write(’Search interval
write(’Tolerance (relative)
writeln;
A11NLSS(f, SearchInterval, Tolerance, Solu, Unique, NumberOfSolus, ErrCode)
for i:=1 to NumberOfSolus do
begin
write(Selu[i]l);
if unique[i] then
writeln(’encloses a locally unique zero!’)
else
writeln(’may contain a zero (not verified unique)!’)

'); read(SearchInterval);
’); read(Tolerance);

end;
if ErrCode <> 0 then writeln(A11NLSSErrMsg(ErrCode));
writeln; writeln(NumberOfSolus:1, ’ interval enclosure(s)’); writeln;

if (NumberOfSolus = 1) and (unique[1]) then
writeln(’We have validated that there is a globally unique zero!’);
end.

Desired dimension T2

Computing all solutions for Hansen’s Function in 2 variables

[-1,1] [~1,1]

0 interval enclosure(s)

(PRSP

’

If we execute this program for n = 2 and n = 6, we get the following runtime
outputs:
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Desired dimension ]

Computing all solutions for Hansen'’s Function in 6 variables

Search interval : [-1,1] [-1,1) [-1,1] [-1,1) [-1,1] [-1,1]
Tolerance (relative) : le-10

L 8.02350910330E-001, 8.02350910335E-001 ]

[ 8.02350910332E-001, 8.02350910334E-001 ]

[ 8.023509103324E-001, 8.023509103329E-001 ]

L 8.023509103325E-001, 8.023509103328E-001 ]

L 8.0235091033261E-001, 8.0235091033268E-001 ]

[ 8.0235091033264E-001, 8.0235091033265E-001 ]

encloses a locally unique zero!
1 interval enclosure(s)

We have validated that there is a globally unique zero!

For n = 2, we know from (13.8) that the solution z satisfies z; > 1 for ¢ = 1,2.
Thus, our routine delivers no solution in the search interval and therefore confirms
the fact that the solution given in [29] does not exist. For n = 6, our algorithm
guarantees that there is only one zero of our sample function within the specified
starting box.

13.3.3 Restrictions, Hints, and Improvements

The function f can only contain operators and elementary functions supported by
module grad_ari.

The procedure AIINLSS stores all enclosures in the rows of the interval matrix
SoluVector, which must be of sufficient length. If the first run of AIINLSS is not
able to compute all zeros because of insufficient length, then the routine must be
called again.

The method is not very fast if a very small value of ¢ (Epsilon) is used and the
interval Newton step does not improve the actual iterates because of rounding and
overestimation effects of the machine interval arithmetic. In this case, the method is
equivalent with a bisection method. The method can be improved by incorporating
a local iteration procedure, i.e. a non-interval Newton method which tries to find
an approximation of a zero starting from the midpoint of the current interval vector
iterate. The computed approximation can be used as the point of expansion in the
interval Gauss-Seidel step (see [28] or [72] for details on this improvement).

In XINewton, the evaluation of the function with differentiation arithmetic can
cause a runtime error if the interval argument of an elementary function does not
lie in the domain specified for this interval function (see [65]) or if a division by an
interval containing zero occurs. This is also due to the known overestimation effects
of interval arithmetic (see Section 3.1). To get rid of these errors, the user may try
to split the starting interval vector in several parts and call AIINLSS for each of
these parts.
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The rules for getting true enclosures in the presence of conversion errors (see
Section 3.7) also apply here. That is why we expressed 0.49z; as 49*x[i]1/100 in
our example in Section 13.3.2.

13.4 EXxercises

Exercise 13.1 Use the procedure AIINLSS to compute the zeros of the function
f ;ﬁRz — ﬂ%z “ﬁth

filz) = 23 —202; + 22 — 2z, + 100,

fa(z) = 22 —222, + z3 — 2z, 4 121.

These zeros correspond to the intersection points of the circle with midpoint (10, 1T
and radius 1 and the circle with midpoint (11,1)T and radius 1. They lie within the
box ([10,12],{0,3])T which can be used as starting box.

Exercise 13.2 Use the procedure AIINLSS to verify that y ~ (1.6641,1.6641)T is
a zero of the function f : R? — IR? with

o = (3)+(2)'
o) = (3)'+ ()

by simply taking a small interval vector [y] with y € [y] and drel,00([y]) = 107* as
input data for the procedure.

13.5 References and Further Reading

The method we discussed in this chapter is an a priori method because the iteration
starts with a (possibly large) interval vector enclosing all the solutions which have to
be found. Here, the iterates of the method are subintervals of the previous iterates.
There are also methods for finding (and bounding) a single solution of a system
of nonlinear equations called a posteriori methods. These methods start with an
approximation of a zero and apply a test procedure for a neighborhood interval of
the approximation to verify a zero within that interval. Our method presented in
this chapter can also be applied to verify such an approximation, if we start the
process with a small interval containing the approximation.

A large number of authors (Alefeld, Hansen, Moore, Neumaier, Kearfott, Rump,
and many others) have considered the problem of computing enclosures for the
solutions of a system of nonlinear equations. For further references in the field of
a priori methods and for improvements for our method, see [3], [8], [28], [62], [63],
[64], [71], or [72]. For a posteriori methods, see [11], [37], [38], [50], [53], [55], [60],
[64], [77], (78], or [79]. In the field of preconditioning of the interval Gauss-Seidel
step, interesting work and improvements can be found in [40] or [41].



Chapter 14

Global Optimization

In Chapter 7, we considered the problem of finding the global minimizers of one-
dimensional nonlinear functions. Now, we consider its generalization, the problem
of finding the global minimizers of multi-dimensional nonlinear functions. Our al-
gorithm is based on the method of Hansen [26]. The algorithm computes enclosures
for all global minimizers and for the global minimum value of a twice continuously
differentiable function in the interior of a given interval vector.

Classical numerical global optimization methods for the multi-dimensional case
start from some approximate trial points and iterate. Thus, classical optimization
methods sample the objective function at only a finite number of points. There is no
way to guarantee that the function does not have some unexpectedly small values
between these trial points.

Hansen’s algorithm uses interval arithmetic to evaluate the objective function
and its first- and second-order partial derivatives over a continuum of points, in-
cluding those points that are not finitely representable on a computer. Interval
analysis supplies the prerequisite for solving the global optimization problem with
automatic result verification, i.e. with the guarantee that the global minimum points
and the global minimum values have been found.

14.1 Theoretical Background

Let f : R* — IR be a twice continuously differentiable function, and let [z] € IR".
We address the problem of finding all points z* in the interior of [z] such that

f(z*) = min f(z). (14.1)

z€[x]

We are interested in both the global minimizers z* and the minimum value f* =
f(a").

We use the method of Hansen [26, 28] with the modifications of Ratz [73]. Our al-
gorithm does not find non-stationary minima on the boundary of [z]. A sophisticated
method for handling this case can be found in [73]. Starting from the initial interval
vector (box) [x], our algorithm subdivides [z] and stores the subboxes [y] C [z] in
a list L. Subintervals which are guaranteed not to contain a global minimizer of
are discarded from that list, while the remaining subintervals get subdivided again
until the desired accuracy (relative diameter) of the intervals in the list is achieved.
The power and speed of self-validating methods for global optimization comes not
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so much from the ability to find the answer as from the ability to discard from
consideration regions where the answer is not. The tests we use to discard pend-
ing subboxes are multi-dimensional analogues of those we used for one-dimensional
global optimization in Chapter 7. We use the four tests

e midpoint test,
e monotonicity test,
e concavity test, and

o interval Newton Gauss-Seidel step.

In the following sections, we consider each of these methods in detail. We use the
notation f, as abbreviation for the lower interval bound of the interval function

evaluation {f,] := fy(ly]) for [y] € TIR".

14.1.1 Midpoint Test

If we are able to determine an upper bound ffor the global minimum value f*, then
we can delete all subintervals [y] for which

L>F>r (14.2)

The midpoint test first determines or improves such an upper bound for f*. Initially,
let f = +o00. We choose a box [y] from the list L which satisfies f, < f, for all
intervals [z] in the list L. That is, [y] has the smallest lower bound for the range of
f. Hence, it is a likely candidate to contain a minimizer. Let ¢ = m([y]) (or any
other point in [y]), and compute f = min{f(c), f}. Such an upper bound can also
be computed on a computer when rounding errors occur: we compute fo(c) and use
the upper bound of the resulting interval as the possibly new value f

Now, with a possibly impioved (decreased) value of f, we can discard all intervals
[z] from the list L for which f < f;. The midpoint test is relatively inexpensive, and
it often allows us to discard from consideration large portions of the original interval
[z]. Figure 7.1 in Chapter 7 illustrates this procedure, which deletes the intervals
[¥)2, [¥la, [¥]s, and [y]s in this special case. The midpoint test remains valid if an
arbitrary ¢ € [y] is used instead of ¢ = m([y]). Our algorithm could be extended
by using a local approximate search to find a ¢ € [y] that is likely to give a smaller
upper bound for f than c gives.

The value f is also used for function value checks when entering newly subdivided
intervals [w] in our list L. If we know that [w] satisfies f,, > f, then [w] cannot
contain a global minimizer. Thus, we must only enter intervals [w] in the list L if
fu < f holds.

14.1.2 Monotonicity Test

The monotonicity test determines whether the function f is strictly monotone in
an entire subbox [y] C [z], in which case [y] cannot contain a global minimizer
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(stationary point). Therefore, if [g] := V f([y]) satisfies

0¢[g); forsomei=1,...,n, (14.3)

then f is strictly monotone over the subbox [y] with respect to the ith coordinate.
Thus, [y] can be deleted. Figure 7.2 in Chapter 7 demonstrates the monotonicity
test in the one-dimensional case.

We emphasize that if f is monotone in a single coordinate direction, that subbox
may be discarded. Therefore, a small number (relative to n) of interval-valued
evaluations of partial derivatives are often enough to discard large portions of the
original box [z]. We use the differentiation arithmetic of Chapter 12 to compute
Vf.

14.1.3 Concavity Test

The concavity test (non-convexity test) detects whether the function f is not conves
in a subbox [y] C [z], in which case [y] cannot contain a global minimizer. The
Hessian matrix of a convex function f must be positive semidefinite. We know
that a necessary condition for this is that all diagonal elements of the Hessian are

non-negative. If [H] := V2 f([y]) satisfies
Hi;<0 forsomei=1,...,n, (14.4)

then Hy; < 0 for H = V2f(y) and all y € [y]. Thus, f cannot be convex over [y],
the subbox [y] cannot contain a stationary minimum, and [y] can be deleted. Figure
7.3 in Chapter 7 demonstrates the concavity test in the one-dimensional case. The
Hessian for the concavity test is computed by automatic differentiation described in
Chapter 12.

14.1.4 Interval Newton Step

In our global optimization method, we apply one step of the extended interval
Newton Gauss-Seidel method described in Chapter 13 to the nonlinear system

Viy)=0, ye€lyl (14.5)

The subbox [y] is a candidate for containing a minimizer £*, which we have assumed
must satisfy V f(z*) = 0. When we apply the algorithm of Chapter 13, three things
may happen. First, we may validate that [y] contains no stationary point, in which
case we may discard [y]. Second, the Newton step may contract [y] significantly.
Subsequently, f can be evaluated on the narrower box [y] with less overestimation,
so the midpoint, monotonicity, and concavity tests are likely to be more effective.
Third, we may get splittings of the box [y] due to gaps produced by the extended
interval divisions applied in the Newton step. We only apply one Newton step
because this test is relatively expensive, and the other test (with bisection) may
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subsequently discard even subboxes containing local minimizers. In addition, a
stationary point is not necessarily even a local minimizer.

To apply the extended interval Newton Gauss-Seidel method, we first compute
[A] € IIR™" and b € IR™ by

[4]:=R-V*f([y]) and b:=R-Vf(m([y])), (14.6)
where R ~ (m(V?£([y])))~!. Then, we compute Njs([y]) according to
[2] := [4] )

(o) = (c,-—(bi+§[A1ij-({zlj—Cf>) /1) 0G| (147)
t=1,...,n

Nes(ly)) = [2] )

If the extended interval division results in a splitting of a component [z];, we will store
one part of the actual box [z], and we use the other part to continue the computing
in (14.7). Thus, our interval Newton step results in at most n + 1 subboxes to place
on the pending list L.

14.1.5 Verification

When all subboxes in the list L have been reduced to have widths less than a specified
tolerance, we have a list of small subboxes we could not discard by any of our tests.
We attempt to verify the existence and uniqueness of a local minimizer within each
subbox by checking two conditions. The first condition is

N&s(l)) € ), (14.8)

which guarantees the existence and uniqueness of a stationary point of f, i.e. a zero of
V f in [y] (cf. Theorem 13.1). The second condition (14.9) guarantees that V2 f([y])
is positive definite, i.e. all real symmetric matrices A € V?f([y]) are positive definite.
If the real matrix B := I — ||A||™! - A has only eigenvalues with absolute values less
than 1, i.e. the spectral radius p(B) < 1, then the symmetric matrix A is positive
definite. Thus, we use the following theorem:

Theorem 14.1 Let [H] € IR™" and [S] be defined by [S] := I — %[H] with
I[H]lleo < & € R. [S] satisfies

[S]- [2] C [2] (14.9)

for an interval vector [z] € IIR", then we have p(B) < 1 for all B € [S], and all
symmetric matrices A € [H| are positive definite,
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For a proof of this theorem, see [73].
To check the condition of Theorem 14.1, we first compute [H] = V? F(w)), &
with ||[[H]ll < &, and [S] := I — L[H]. Starting with an interval vector [2]©® with

every component [z]E") = [--1,1], we iterate
[2]*+D) = [S]- [2]®, k=0,1,...

until the condition [2]*+1) c [2]®) is satisfied. We stop the iteration if a certain
number of steps could not satisfy this condition.

We know of no way to verify the uniqueness of a global minimizer in general.
The global minimizer can even be one or more continua of points. Hence, we settle
for attempting to verify that intervals we compute as candidates for containing a
global minimizer contain unique local minimizers. Failure to verify the uniqueness
of a local minimizer in a subinterval is not grounds for discarding that subinterval
from the list of candidates.

In fact, our method produces a final list containing enclosures for locally unique
candidates for global minimizers. If we have in the final list exactly one subinterval
[y] in which we can validate a local minimizer, then we have validated a unique
global minimizer in the starting interval [z]. If we have two or more subintervals
validated to contain unique local minimizers, then the best we can say is that each
contains a candidate for a global minimizer, which need not be unique (but in this
case, the global minimizer could not be a continuum of points).

14.2 Algorithmic Description

The main algorithm AIGOp (Algorithm 14.7) consists of two parts. The first part is
the subdivision method including the tests and the extended interval Newton steps
described in Section 14.1. The second part is a verification step which tries to verify
the local uniqueness of a minimizer within each of the remaining intervals of the
pending list.

The algorithm for the monotonicity test (Algorithm 14.1) uses the interval gra-
dient [g] = V f([y]) and returns true if no further processing of the actual box [y] is
necessary because f is monotonic in [y], or false, otherwise.

Algorithm 14.2 executes the concavity test using the interval Hessian [H] = V2 f (lv])
returning true if no further processing of the actual box [y] is necessary because
is not convex in [y}, or false, otherwise.
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Next, we present the algorithm for the execution of the extended interval Newton
Gauss-Seidel step (Algorithm 14.3), where (14.7) is applied to the box [y] € IIR®
resulting in at most n + 1 boxes [V];. After some initializations, we use Algorithm
10.1 (Matinv) of Chapter 10 to compute an approximate inverse of the midpoint
matrix of the interval Hessian matrix [H] = V?f([y]). In Step 4, we compute [A],
(8], and [y.] followed by some initializations for the loop. Interval arithmetic must
be used to compute V f(c) for bounding all rounding errors.

We perform the single component steps of the Gauss-Seidel step for all ¢ with
0 ¢ [A]i; (Step 6) and then for the remaining indices with 0 € [A];; (Step 7). Using
this strategy, it is possible that the intervals [y]; become smaller by the intersections
with the old values [y]; in Step 6(b), before the first splitting is produced in Step
7(b). If a gap is produced in this case, we store one part of the actual box [y] in the
pth row of the interval matrix [V], and we continue the iteration for the other part
of [y]. The flag NoSolution signals that an empty intersection has occurred resulting
inp=_0.
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Algorithm 14.4 manages the bisection of subboxes and their insertion in the pending
list L. The subdivided boxes [y] are stored together with the lower bound of the
interval function evaluation [f,] := fy([y]) as pairs ([y], f,)- Pairs are stored in the
list sorted in nondecreasing order of lower bounds f,. Therefore, a newly computed
pair is stored in the list L according to the ordering rule (cf. [73]):

e either f, < & < f2 holds,
e or fy < f: holds, and (], L,_) is the first element of the list,

e or fu < £, holds, and (ly], &) is the last element of the list,
e or ([y], fy) is the only element of the list,

(14.10)

where ([w], fu) is the predecessor and ([z], f;) is the successor of ([y], f,) in L.

That is, the second components of the list elements may not decrease, and a
new pair is entered behind all other pairs with the same second component. Thus,
the first element of the list has the smallest second component. We can directly use
the corresponding box to compute f(c) for the improvement of f in performing the
midpoint test. We can also save some work when deleting elements in the midpoint
test, by deleting the rest of the list when we have found the first element to be
deleted. At each stage of our algorithm, f is the best known upper bound for the
global minimum value f*. The second component f, from the first element of the
list is the best known lower bound for f*. Therefore, we might choose to terminate
the algorithm on the basis of the interval [fy, f].

Given the list L and a list element E, we use the following notation in our
algorithms:

Notation Meaning

L:={} Initialization by an empty list

L:=F Initialization by a single element

L:=L+E Enter element E in L according to condition (14.10)
L:=L-E Discard element E from L

E:=Head(L) | Set E to the first element of L
MultiDelete (L, f) | Discard all elements from L satisfying condition (14.2)
Length (L) Delivers the number of elements in L
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In GlobalOptimize , we first compute an upper bound for the global minimum value,
and we do some initializations. Step 3 is the main iteration. Here, we first do a
bisection of the actual interval [y]. Then in Step 3(c), we apply the monotonicity
test, a function value check using the centered form, the concavity test, and the
interval Newton step to the bisected boxes [u]; and [u];. The interval Newton step
may result in at most p intervals. We have to handle them all in Step 3(c)viii,
where we again apply a monotonicity test and a function value check with centered
forms. If the actual box [V]; has not been discarded, then it is still a candidate for
a minimizer, and we store it in L.

In Step 3(e), we remove the first element from the list L, i.e. the element of L with
the smallest lower bound of the interval function evaluation, and we perform the
midpoint test. Then, we check the tolerance criterion for the new actual interval.
If the desired accuracy is achieved, we store this interval in the result list L.
Otherwise, we go to the bisection step.

When the iteration stops because the pending list L is empty, we compute a
final enclosure [f*] for the global minimum value in Step 4, and we return L, and
{f*]. Procedure GlobalOptimize terminates because the elements of I move t0 Lyes
if (dretoo([y]) < €) or if (dra([f*]) < €). The bisection step (Step 3(b)) guarantees
that the first condition is fulfilled at some stage of the iteration.
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Algorithm 14.5 applies the test given by Theorem 14.1 to check whether the interval
Hessian matrix over the current enclosure [y] is positive definite. We use kp, = 10
as the maximum number of iterations, ¢ = 0.25 as the starting value for the epsilon
inflation, and a factor of 8 to increase ¢ within the iterations. It turned out that
these are good values for minimizing the effort if no verification is possible (see also

[46]).

Algorithm 14.6 describes the verification step checking the local uniqueness of a
minimizer enclosed in the interval [y]. The procedure tries to do a “zero check”
for the gradient V f according to condition 3 of Theorem 13.1 by applying interval
Newton steps including an epsilon inflation of the iterates [y] (Step 4). We also
check the condition of Theorem 14.1 by applying function PosDef in Step 5. We use
the same values for knax and € as in PosDef .
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Algorithm 14.7 now combines these procedures to compute enclosures for all global
minimizers z* of the function f and for the global minimum value f* within the
input interval vector [z] and tries to prove the local uniqueness of the minimizers
within the computed enclosures. The desired accuracy (relative diameter) of the
interval enclosures is specified by the input parameter €. 1 ulp accuracy is chosen
if the specified value of € is too small (for example 0). The enclosures for the
global minimizers of f are returned in the interval matrix [Opt] row by row, the
corresponding information on the local uniqueness of the optimizer is returned in
the Boolean vector Info. The number of enclosures computed is returned in the
integer variable N.

We use a function called CheckParameters as an abbreviation for the error checks
for the parameters of AllGOp which are necessary in an implementation. If no error
occurs, AllGOp delivers the N enclosures [Opt];, i = 1,2,..., N, satisfying

if Info; = true, then [Opt]; encloses a locally unique minimizer of f,
if Info; = false, then [Opt]; may enclose a local or global minimizer of f.

If N =0, then it is guaranteed that there is no stationary global minimizer of f in
the starting interval [z].
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Applicability of the Algorithm

We have assumed that f is twice continuously differentiable. However, we can
apply our algorithm to functions that are only once continuously differentiable or to
functions that are not differentiable if we leave out some parts of the algorithm. If
we do not use the interval Newton step (Step 3(c)vii in Algorithm 14.4), and replace
it by the sequence

Vii=[u); p:=1

then our method works for functions that are only once differentiable. Algorithm
14.6 cannot be applied in this case.

If we replace Step 3(c) of Algorithm 14.4 by the sequence

fori:=1to2do
[fu] := f([u]s);
if > f,then L:=L + ([uls, fu);

then we can apply our method, consisting of subdividing and midpoint test, to
functions that are not differentiable.

The closer the upper bound f~ is to the global minimum value f*, the more
intervals we can delete in the midpoint test (Step 3(e)ii of Algorithm 14.4). Thus, the
method can be improved by incorporating an approximate local search procedure,
to try to decrease the value f. See [28] or [72] for the description of such local search
procedures.

For a multiple zero z* of V f, the algorithm cannot verify the existence and the
local uniqueness of ¢* in the enclosing result box. Nevertheless, the zero of Vf,
which is possibly a global minimizer, is bounded to the desired accuracy specified
by €. In this case, the corresponding component of the Info-vector has the value
false.

As a consequence of the bisecting of the boxes, it may happen that a minimizer
lying exactly at the splitting boundary is enclosed in several intervals. Furthermore,
because of the known overestimation effects of interval arithmetic, the algorithm may
also find “near-global” minima when rounding prevents determination of the true
minimum of several candidates. Sophisticated supplements to our method avoiding
these effects can be found in [28] or [73].
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14.3 Implementation and Examples

14.3.1 PASCAL-XSC Program Code

We begin by describing our implementation of the operations needed for handling
lists and list elements. Then, we describe the implementation of Algorithm 14.7 and
its subalgorithms.

14.3.1.1 Module Ist_ari

The dynamic concept of PASCAL-XSC does not allow to use dynamic arrays as
record components. Thus, we use an indirect list indexing for ordering the vectors
which have to be stored in our pending list. The list only stores an index value
k, whereas the pair ([y], f,), represented by an interval vector with an additional
0-component, is stored in the kth row of an interval matrix provided by the user of
module Ist_ari.

The module supplies the type PairPtr representing a list of pairs. The local
variable FreeList and the procedures NewPP, Free, and FreeAll generate and free
list elements and prevent memory garbage. MakePair, Int, and Fyi are transfer and
access functions for pairs.

The global function EmptyList represents an empty list. The function Enter
enters a new list element Pair in the list List (by storing the pair vector in the
matrix VecMat) according to condition (14.10). The procedure MultiDelete deletes
all elements P in List for which Fyi(P) > fmax. This procedure assumes that
the list elements are ordered according to condition (14.10). Function Next sets
the list pointer List to the next list element. Head delivers the first pair of List,
whereas DelHead deletes the first pair of List. Function Length delivers the number
of elements in List.

{ }
{ Purpose: Definition of a list arithmetic used in connection with an }
{ interval bisection method in global optimization for storing pairs of }
{ an interval vector and a real value. 3}
{ Method: Representing pairs of an interval vector and a real value by a }
{ interval vector with additional 0O-component storing the real value. 2}
{ Overloading of functions and procedures for the data type ‘PairPtr’. }
{ Global types, functions, and procedures: 2}
{ types PairPtr, PairElmt: list of pairs }
{ functions MakePair : transfer function for pairs }
{ Int, Fyi : access functions for pairs 3}
{ Next, Head . access functions for lists }
{ Length : access function to length of list 3}
{ EmptyList : delivers an empty list )
{ procedures FreeAll : free complete list }
{ MultiDelete : deletes several elements in a list >
{ DelHead : deletes first element of a list 3}
{ }
module lst_ari;

use

i_ari, { Interval arithmetic }
mvi_ari; { Interval matrix/vector arithmetic }
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{ —
g Global type definitions i
global type { List of pairs of an interval vector 'y’ and ;
PairPtr = tPairElmt; { the real value ’inf(f(y))’. The pair is re- }
PairElmt = record { presented by an interval vector with index b
P : integer; { bounds 0..n and the O-component contains the 3
N : PairPtr; < real value. Within the list, each pair-vector 3
end; { is represented by the index 'P’ and indirect- 2
{ ly stored in ’'VecMat[P]’, where ’VecMat’ is a }
{ storage matrix provided by the routine using }
{ this module. ’'N’ means NEXT, the pointer to }
£ the next element of the list. 3
c }
{ Local variable storing list of free elements (automatic garbage recycling) }
var
FreeList : PairPtr;
IndexNo : integer;
{ }
g Procedures for generating and freeing of list elements (pairs) 2
}
procedure NewPP (var pp: PairPtr); { 'NewPP’ generates a new list element }
begin { or gets one from 'FreeList’. }
it FreelList = mil then >
begin
new(pp); ppt.N:= nil; IndexNo:= IndexNo+1l; ppt.P:= IndexNo;
end
else
begin
pp:= FreelList; Freelist:= FreeListt.N; ppt.N:= nil;
end;
end;

procedure Free (var pp: PairPtr); { ’'Free’ enters one element of a }

begin { list in the ’‘FreeList’.
if pp <> nil then { }
begin
ppT.N:= FreelList; Freelist := pp; pp:= mil;
end;
end;

global procedure FreeAll (var List: PairPtr);{ ’FreeAll’ enters all elements }
var H : PairPtr; { of ’List’ in the ’FreeList’. }
begin
if List <> nil then
begin
H:= List;
while HT.N <> nil do H:= HT.N;
Ht.N:= Freelist; FreelList:= List; List:= nil;

end;
end;
{ }
{ Transfer and access functions for pairs }
}
global function MakePair (var int: ivector; fyi: real) : ivector[0..ub(int)];
var i : integer; { Generate pair

begin {——————
MakePair[0] := fyi;
for i:=1 to ub(int) do MakePair[i]:= int[i];

14.3 Implementation and Examples 295

end;

global function Int (var Pair: ivector) : ivector[1..ub(Pair)];

var i : integer; { Get interval vector component of pair }

begin , L }
for i:=1 to ub(Pair) do Int[i]:= Pairl[il;

end;

global function Fyi (var Pair: ivector) : real; { Get real component of pair }

begin

Fyi:= Pair[0].inf;
end;
{- }
{ Functions, and procedures for lists of pairs ;
{ Global function ’EmptyList’ representing an empty list of pairs. ;
global function EmptylList : PairPtr;
begin

EmptyList := mil;
end;
{ }
{ Function ’Enter’ enters ’'Pair’ the list ’List’ (by storing the vector in }
{ the matrix ’'VecMat’) in such a way that after entering, one of the four 2}
{ following condition holds: 3
{ 1) Fyi(0) <= Fyi(Pair) < Fyi(Q), }
{2) Fyi(Pair) < Fyi(Q) and ’'Pair’ is the first element of ‘List’, }
{ 3) Fyi(0) <= Fyi(Pair) and ’Pair’ is the last element of 'List’, }
{ 4) 'Pair’ is the only element of ’List’, }

{ where '0’ is the preceding and ’Q’ is the succeeding element of ’Pair’ in }
{ the resulting list. If the list (ie. the storage matrix ’‘VecMat') is full,}
{ the parameter ’Full’ returns true. 3}

F
global procedure Enter (var List: PairPtr; var VecMat: imatrix;
var Pair: ivector; var Full : boolean);
var
H, HN . PairPtr;
ready, alreadyIn : boolean;
begin
Full:= false;
if (List = mnil) then { List is empty, so new list }
begin { only contains ’‘Pair’.
NewPP(H); { 3
if HT.P > ub(VecMat) then
Full:= true
else

VecMat [HT.P]:= Pair;
Ht.N:= nil; List:= H;

end
else if (Fyi(VecMat[Listt.P]) > Fyi(Pair)) them { ’Pair’ becomes new first }
begin { element of the list. 3
NewPP(H); { 3
it HTt.P > ub(VecMat) then
Full:= true
else

VecMat [Ht.P]:= Pair;
HT.N:= List; List:= H;

end
else
begin
H:= List; HN:= Ht.N; ready:= false;
alreadyIn:= (Int(VecMat[H?.P]) = Int(Pair));
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while not (ready or alreadyIn) de { Search for the right 3
begin { position to enter ’Pair’
if (HN = nil) then { 3

ready:= true
else if (Fyi(VecMat[HN®.P]) > Fyi(Pair)) then
ready:= true
else
begin
g:= HN; HN:= HT.N; alreadyIn:= (Int(VecMat[HT.P]) = Int(Pair));
end;
end;

if not alreadyIn them
begin
NewPP(HT.N); H:= HT.N;

N { Enter ’Pair’ between H }
it HT.P > ub(VecMat) then

{ and HN. Return List. 2}

Full:= true { ¥
else
VecMat[Ht.P] := Pair;
HT.N:= HN;
end;
end;
end;
{

{ ‘MultiDelete’ deletes all elements ’P’ in ’List’ for which the condition }
{ 'Fyi(P) > fmax’ holds. This procedure assumes that the ’fyi’ components }
f of the list elements are sorted in increasing order (see function ’'Enter’).}

global procedure MultiDelete (var List: PairPtr; var MV: imatrix; fmax: real);
var

DelPrev, Del : PairPtr;

ready : boolean;
begin
it (List <> nil) then
begin
it (Fyi(MV[Listt.P]) > fmax) them { All list elements fulfill }
begin { 'Fyi(P) > fmax’. }
Del:= List; List:= nil; { 3}
end
else
begin

DelPrev:= List; Del:= DelPrevt.N; ready:= (Del=mil);

vhile not ready do
begin
it (Del = mil) them
ready := true
else it (Fyi(MV[Delt.P]) > fmax) then
begin
ready:= true; DelPrevt.N:= mil;
end
else
begin
DelPrev:= Del; Del:= Delft.N;
end;
end;
end;
FreeAll(Del);
end;
end;

global function Next (List: PairPtr) : PairPtr; { Sets list pointer to the }
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begin { next list element )]

Next:= Listt.N; ¥
end;

global functiom Head (List: PairPtr; var MV: imatrix): ivector[0..ub(Mv,2)];

{ Delivers first pair of the

begin { list, i.e. the pair P with
Head:= MV[List?.P]; { the smallest value P[0].

end;

global procedure DelHead (var List: PairPtr);
var

Del : PairPtr;
begin

Del := List; List:= Listt.N; Free(Del);
end;

Deletes the first pair of
the List.

(MNP W W)

e, A

global fumction Length (List: PairPtr) : integer; { ’‘Length’ delivers the
var i : integer; { number of elements in
begin { list ’List’,

i:= 0; {

while List <> nil do

begin

i:= succ(i); List:= Listt.N;

end;

Length := i;
end;

{

{ Module initialization

W

begin
FreeList nil; { List of freed elements which can be used again
IndexNo 0; { Index of last row of storage matrix used

end. {

WY NN

14.3.1.2 Module gop

The module gop supplies the global routines AlIGOp (the implementation of Algo-
rithm 14.7) and the corresponding function AlIGOpErrMsg to get an error message
for the error code returned by AIIGOp. The functions MaxDiamComp, MaxNorm,
PosDef, MonotonicityTest, and ConcavityTest, and the procedures NewtonStep,
GlobalOptimize, and VerificationStep are defined locally. All derivative evaluations
use the differentiation arithmetic hess_ari described in Chapter 12.

The procedure AIIGOp uses the HessType function f and the starting interval
Start as input parameters and stores all computed enclosures in the interval matrix
OptiVector, a vector of interval vectors). If this matrix is not big enough to store all
result interval vectors, the corresponding error code is returned together with the
OptiVector containing all solutions it is able to store. If this error occurs, the user
must increase the upper index bound of OptiVector to compute all optimizers.

The same applies to the information about the uniqueness, stored in the Boolean
vector InfoVector. The user must declare both vectors OptiVector and InfoVector
with lower index bound equal to 1 and with upper index bounds which are equal.
These conditions as well as the condition Epsilon > MinEpsilon are checked at
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the beginning of procedure AlIGOp. Epsilon in our program corresponds to the
parameter ¢ in the algorithms, and MinEpsilon corresponds to 1 ulp accuracy.

{

{ Purpose: Computing enclosures for all global minimizers and for the global }

{ minimum value of a twice continuously differentiable multi-dimensional, }
{ scalar valued function, assuming that the global minimum is a stationa- >
{ ry point. If it is a boundary point of the search area with gradient of }
{ the function being different from zero, the method fails in its form 3
{ presented here. 3
{ Note that some routines are implemented using the "modified call by }
{ reference" of PASCAL-XSC (see Language Reference for details) to avoid }
{ the very inefficient allocation of local memory for the copies of the }
{ actual parameters. 3
{ Method: Bisection method combined with midpoint, monotonicity, concavity >
{ test and extended interval Newton step. 2
{ Global procedures and functions: b
{ procedure A11GOp(...) : computes enclosures for all zeros 2
{ function Al1GOpErrMsg(...) : delivers an error message text 2
{ }
module gop;
use

i_ari, { Interval arithmetic >

xi_ari, { Extended interval arithmetic 3

1st_ari, { List arithmetic 3

i_util, { Interval utilities 3

b_util, { Boolean utilities 3

hess_ari, o Differentiation arithmetic }

nv_ari, { Real matrix/vector arithmetic }

mvi_ari, { Interval matrix/vector arithmetic }

matinv, { Inversion of real matrices

mvi_util; <{ Interval matrix/vector utilities }

const
ListSize = 1000;

{ List size, i.e. number of vectors which can be stored

{ Error messages depending on the error code.

}
1 }
{ Error codes used in this module. 3
}

const
NoError = 0; { No error occurred. >
1bOptiVecNotl = 1; { Lower bound of variable OptiVector is not equal to 1.}
1bInfoVecNotl = 2; { Lower bound of variable InfoVector is not equal to 1.}
VecsDiffer = 3; { Bounds of OptiVector and InfoVector do not match. }
VecTooSmall = 4; { OptiVector too small. Not all zeros can be stored. }
NoStatOpti = 5; 1 No stationary point is a global optimizer. }
ListTooSmall = 6; { Internal List is too small. }
{ }
}
}

global function A11GOpErrMsg ( Err : integer ) : string;

var
Msg : string;
begin
case Err of
NoError
1bOptiVecNotl:
lbInfoVecNotl:
VecsDiffer
VecTooSmall
NoStatOpti

: Msg

Msg
Msg

. Msg
. Msg
: Msg

Ii 1] Ii .ll mon

3.

’Lower bound of OptiVector is not equal to 1’;
'Lower bound of InfoVector is not equal to i’;
'Bounds of OptiVector and InfoVector do not match’;
'Not all optimizers found. OptiVector is too small’;
'No global optimizer (stationary point!) found’;

ListTooSmall : Msg :
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’Internal list too small. ’ +
’Increase "ListSize" and recompile “gop.p"!’;

else : Msg := ’Code not defined’;
end;
if (Err <> NoError) them Msg := ’Error: ' + Msg + ’'!’;
Al1GOpErrMsg := Msg;
end;
{

{ Determine the component ’'mc’ with maximum interval diameter of ’iv[mc]’.

function MaxDiamComp (var iv: ivector) : integer;

var
mc,
d

begin

d:= diam(iv);

end;

function MonotonicityTest (var gradY: ivector) : boolean;

var

k

integer;

: rvector[1b(iv). .ub(iv)];

i, n

Delete :

begin

Delete:= false; i:= 1;

mc:= 1b(iv);

for k:=1b(iv)+1 to ub(iv) do
if d[k] > d[mc] then mc:= k;

MaxDiamComp:= mc;

integer;
boolean;

}
}
}

{ returns true if }

{ ’f’ is monotone }

{

n:= ub(gradY);

while (i <= n) and (not Delete) do
begin

if (0 < gradY[i].inf) or (0 > gradY[i).sup) then { ‘f’ is monotone }
Delete:= true;

i:

end

’

= i+1;

MonotonicityTest:= Delete;

end;

function ConcavityTest (var HessY: imatrix) : boolean; <{ returns true if
{ ’f’ is not convex }

var

i, n

Delete :

begin

Delete:= false;

integer;
boolean;

i:=1;

{

n:= ub(HessY);

while (i <= n) and (not Delete) do
begin

it (HessY[i,il.sup < 0) then { ’'f’ is not convex }
Delete:= true;

i:= i+1;
end;
ConcavityTest:= Delete;
end;
{

}

{ Purpose: Execution of one single interval Newton Gauss-Seidel step for the
interval vector 'Y’ and the gradient of 'f’.

{

{ Parameters

N L L

In

Out

1

1y’

'HessY’

e

: must be declared for the type 'HessType’ to
enable the internal use of the differentiation
arithmetic ’‘hess_ari’.

: specifies the starting interval.

: Hessian matrix of ’f(Y)’, already computed
outside of ’'NewtonStep’.

: stores the enclosures 'V[i]’ for the splittings
generated by the Newton step.

}
}
}
}
}
}
}
}
}
}
}
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{ 'p’ : number of non-empty interval vectors ‘V[i]’. 3}
{ Description: }
{ ‘NewtonStep’ executes the extended interval Newton Gauss-Seidel step 2}
{ for 'Y’ with result interval vector(s) ’'V[i]’ which can be empty. }
{ 'p’ gives the number of non-empty interval vectors stored as vectors 2
{ vl1)e, ..., 'vlpl’. >
{ }
procedure NewtonStep (function f (x: HTvector) : HessType[0..ub(x,1),
0..ub(x,2)];
Y : ivector;
var HessY : imatrix;
var V : imatrix;
var p : integer);
var
c . rvector[i. .ub(Y)];
GradC, b, Yin, Y_minus_c : ivector[1..ub(Y)];
R : rmatrix[1..ub(Y),1..ub(Y)];
A : imatrix[1..ub(Y),1..ub(Y)];
i, i0, n, InvErr, j . integer;
NoSolution : boolean;
h, fC ¢ interval;
z : ivector([t..2];
begin
Yin:= Y¥; c:= mid(Y);
fgEvalH(f, intval(c), £C, GradC); { Midpoint gradient evaluation }
}
MatInv(mid(HessY),R,InvErr); { Invert the midpoint matrix }
if InvErr <> 0 them R:= id(R); 3
A:= R * HessY; b:= R * GradC; { Compute data for Gauss-Seidel step }
Y_minus_c:= Y - ¢; { }
p:= 0; i:= 0; 10:= 0; n:= ub(Y); g Initializations, A[i0,i0] contains zero }
}
NoSolution:= false;
while (i < n) and (mot NoSolution) do { Interval Gauss-Seidel step for }
begin { non-zero A[i,i] elements }
i:= succ (i); 3}

if not (0 im A[i,il) then
begin
h:= ## (b[i] + (for j:=1 to i-1 sum
+ (for j:=i+1 to n sum
h:= clil - h / A[i,i];

if (Y[i] >< h) then
NoSolution:= true

(Ali,3] * Y_minus_c[j]) )
(Al1,3] * Y_minus_c[3]) ) );

else
begin
Y0il:= ¥Y[i] #* h; Y_minus_c[il:= Y[i] - c[i];
end;
end
else
i0:= i; { Largest i with 0 in Af[i,il }
end; { }
i:= 0;
vhile (mot NoSolution) amd (i < i0) do { Interval Gauss-Seidel step for }
begin { zero Ali,i] elements }

i:= succ (i);
iz (0 in A[i,i]) then
begin :
h:= ## ( b[i] + ( for j:=1 to i-1 sum
+ ( for j:=i+l to n sum
z:= Y[i] #** (c¢[i] - h div A[i,i]);

}

(Ali,j] * Y_minus_c[j1) )
(Ali,3] * Y_minus_c[3]) ) );
{ Extended interval division }
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{
it (z[1] = EmptyIntval) then { z[1] = z[2] = EmptyIntval
NoSolution:= true {
else
begin { Compute new ’Y’
Y{il:= z[1]; Y_minus_c{il:= Y[i] - c[i]; {oemmmm

it z[2] <> EmptyIntval then

begin { Store further bisections
p:= p+1; VIpl:=Y; VIpl[il:= z[2]; {
end;
end;
end; { if 0 in A[i,i] ... }
end; { while (not NoSolution) ... }
if NoSolution then
p:=0
else
begin
p:= p+i; Vipl:=vY;
end;

end; { NewtonStep }

Purpose: Execution of the global optimization method including a bisection
method, midpoint test, monotonicity test, concavity test, and extended
interval Newton steps.

Parameters:

In RS 4 : must be declared for the ’'DerivIype’ to enable
the internal use of the differentiation
arithmetic ’ddf_ari’.

‘Start: : specifies the starting interval.
‘Epsilon’ : specifies the desired relative accuracy.
'VecMat’ : matrix for storing the vectors of the list.

Out : ’ResultLlist’ : stores the candidates for enclosure of a global

minimizer.
‘Minimum’ : stores the enclosure of the global minimum
value.
‘ListFull’ : signals that list (matrix VecMat) is full
Description:

The procedure manages the list 'L’ of pending subintervals that may
contain global minimizers. Subintervals are removed from the list and
placed in the accepted list ’ResultlList’ when they satisfy relative
error acceptance criteria. Subintervals are also removed from the list
by the midpoint, monotonicity, concavity tests, or by the interval
Newton steps. Subintervals are added to the pending list when an element
from the list is bisected or when the extended interval Newton step
yields two candidate intervals.

‘ResultList’ returns the list of enclosures of the global minimizers,
’Minimum’ returns the enclosure of the global minimum value.

P e e e e e e e e e e e e ey e e e e e

procedure GlobalOptimize (fumction f (x: HTvector) : HessType[0..ub(x,1),

0..ub(x,2)];
var Start : ivector;
Epsilon : real;
var ResultList : PairPtr;
var Minimum : interval;
var VecMat : imatrix;
var ListFull : boolean);
var
PairY : ivector[0..ub(Start)]; { Pair (Y, inf(£f(Y) )
Y . ivector[1..ub{Start)];
U : imatrix[1..2, { Subboxes of Y
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1..ub(Start)];

v ; imatrix[1..ub(Start)+1, { Subboxes of U
1..ub(Start)];

fy, fu, fv, £C, £CV : interval; { Function evaluations of f

gradU, gradv : ivector(l..ub(Start)]; { Gradient evaluations of f

HessU : imatrix[i..ub(Start), <{ Hessian evaluation of f

1. .ub(Start)];

Wy Wil W

fmax . real; { Upper bound for minimum

c, ¢V : rvector[i..ub(Start)]; <{ Midpoints of Y and V

WorkList : ‘PairPtr; { List of pairs

i, j, p, k . integer; { Control variables

Bisect : boolean; { Flag for iteration
begin

c:= mid(Start);
fEvalH(f, intval(c), £C);
fmax:= sup(£C);

{ Compute upper bound for minimum }
{

ResultList:= EmptyList; ListFull:=false;

if not UlpAcc(Start,1) then { Start iteration }
begin {—————— 3
Y:= Start; WorkList:= EmptyList;
repeat
k:= MaxDiamComp(Y); { d(Y[k] = max_1i d(Y[i]) }
Ultl:=Y; U[RI:=Y; { Bisect ’Y’ with respect }
UC11 k] .sup:= c[k]; UL2I[k].inf:= c[kl; { to component ’'k’. }
for i:= 1 to 2 do { }
begin
fgEvalH(f, U[i], fU, GradU); { Compute interval gradient }

if not MonotonicityTest(GradU) then
begin { Try centered form to get }
fU:= (fC + GradUx(U[i] - ¢)) ** fU; { better enclosure of 'f(U)’}
{ }

it (fmax >= inf(fU)) then
begin
fghEvalH(f, U[il, fU, GradU, HessU);{ Compute interval Hessian }
{ 3

if mot ConcavityTest(HessU) them
begin
NewtonStep(f,U[i] ,HessU,V,p);{ Extended interval Newton step }
{ 3

for j:=1 to p do
begin
fgEvallH(f, V[jl, £V, Gradv); { Compute interval gradient i
{

if not MonotonicityTest(GradV) themn
begin
cV:= mid(V[j1); { Try centered form}
fEvalH(f,intval(cV),fCV); { to get better en-}
fV:= (fCV + Gradv*(V[jl - cV)) ** fV; { closure of 'f(U)’i
{

if (fmax >= inf(fV)) then { Store V}
begin [
PairY:= MakePair(V[jl,inf(fV));
Enter(WorkList, VecMat, PairY, ListFull);
end;
end;
end; { for j ... }
end; <{ if not ConcavityTest(HessU) } .
end; { if fmax >= ... }
end; { if not MonotonicityTest(gradU) ... }
end; { for i ... }
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{ Get next 'Y’ of }
{ the work list }

Bisect:= false; T O, 3
vhile (WorkList <> EmptyList) and (mot Bisect) amd (mot ListFull) do
begin

PairY:= Head(WorkList,VecMat); DelHead(WorkList);

Y:= Int(PairY); c:= mid(Y);
fEvalH(f, intval(c), fC); { Compute f(c) }
1

if sup(fC) < fmax then fmax:= sup(£C);
MultiDelete(WorkList,VecMat,fmax) ;

Minimum:= intval(Fyi(PairY),fmax);
{ Check termination criteria }
it (RelDiam(Minimum)<Epsilon) or (MaxRelDiam(Y)<Epsilon) them

Enter(ResultList, VecMat, PairY, ListFull) { Store ’PairY’ }
else R 3
Bisect:= true;
end;

until (not Bisect);

end { if not UlpAcc(Start,1) }
else
begin { Store starting interval }
fEvalH(f, Start, fY); { and interval evaluation }
Enter(ResultList,VecMat,MakePair(Start,inf(fY)),ListFull);

end;
{ Compute good enclosure of }
if Resultlist <> EmptyList then { the global minimum value }
Minimum:= intval(Fyi(Head(ResultList,VecMat)),fmax);{ }
end;
{ }
{ 'MaxNorm’ delivers an upper bound of the maximum norm of a symmetric in- }
{ terval matrix ’'H’, i.e. the row sum norm or infinity norm. }
}
function MaxNorm (var H: imatrix) : real;
var
Nm, MaxNm : real;
i, j . integer;
begin
MaxNm:= 0;
for i:=1b(H) to ub(H) de
begin
Nm:= 0;
for j:=1b(H) to ub(H) do Nm := Nm +> sup (abs (H[i,jl1));
if Nm > MaxNm then MaxNm:= Nm;
end;
MaxNorm:= MaxNm;
end;
{ }
{ ’PosDef’ delivers true if it is guaranteed that all real symmetric matri- J}
{ ces enclosed in ’H’ are positive definite. }
}
function PosDef (var H: imatrix) : boolean;
const
kmax = 10; { Maximum number of iterations }
var
pd . boolean;

kappa, eps : real;
S : imatrix[1b(H,1). .ub(H,1),1b(H,2)..ub(H,2)];
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Z, U : ivector[1b(H,1)..ub(H,1)];
k . integer;
begin

kappa:= MaxNorm(H); S:= Id(H) - H/kappa;

tor k:=1b(Z) to ub(Z) do ZI[k]:= intval(-1,1);

k := 0; eps:= 0.25;

repeat
U:= blow(Z,eps); Z:= S * U; pd:=Z in U;
k:= k+1; eps:= 8%eps;

until pd or (k = kmax);

PosDef := pd;

end;

{
{ Purpose: Execution of a verification step including the use of an epsilon i
{ inflation. }
{ Parameters: 3
{ In RS & : function of ’HessType’. }
{ Out : 'yUnique’ : returns ’‘true’ if the verification is successful. }
{ In/Out : 'y’ : interval enclosure to be verified. }
{ Description: This procedure checks the uniqueness of the local minimizer }
{ enclosed in the interval variable 'y’ by a verification step including }
{ the use of an epsilon inflation of the iterates. }
3
procedure VerificationStep (function f (x: HTvector) : HessTypel[0..ub(x,1),
0..ub(x,2)];
var y : ivector;
var yUnique : boolean);
const
kmax = 10; { Maximum number of iterations }
var
Y : interval;
yIn, y0ld, GradY : ivector(1..ub(y)];
HessY : imatrix(1..ub(y),1..ub(y)];
yp :imatrix[1. .ub(y)+1,1..ub(y)];
k, p : integer;
eps : real;
begin
yUnique := (inf(y) = sup(y)); { y is a point interval vector }
it mot yUnique then { }
begin
yIn :=y; yo0ld :=y; k :=0; eps:=0.25; { Initializations }
;hii; (not yUnique) amd (k < kmax) do{ Do kmax loops to achieve inclus. J}
og }
y0id := blow(y,eps); g Epsilon inflation of ’y’ }
}
{ Perform interval Newton step }
k := k+1;
fghEvalH(f, y0ld, fY, GradY, HessY); f Compute gradient and Hessian }
NewtonStep(f, yOld, HessY, yp, p);
it (p <> 1) then { No verification possible }
k := kmax { }
else if (yp[1] = y0ld) them
eps := eps * 8 { Increase ’eps’ }
else { }
begin
y:= ypl1l; yUnique:= y in yOld;{ Inner inclusion ===> uniqueness J}
end; { of a stationary point }
end; }
if yUnique them yUnique:= PosDef(HessY); { Positive definite ===> local }

end; { minimizer is verified
if not yUnique then y:= yIn;

end;
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[\

{

{ Purpose: Computation of enclosures for all global minimizers and for the
global minimum value of a twice continuously differentiable multi-di-
mensional, scalar-valued function.

B T L L N T N N L T

Parameters:

In S A4 . objective function, must be declared for the
'HessType’ to enable the internal use of
the differentiation arithmetic ‘hess_ari’.

‘Start’, . specifies the starting interval vector.
'Epsilon’. : specifies the desired relative accuracy
(interval diameter) of the result boxes.

Out : ‘OptiVector’ : stores (row by row) and returns the boxes
(enclosures) for the global optimizers of
‘f’. ‘OptiVector’ is a vector of interval
vectors (ie. an interval matrix).

’InfoVector’ ! stores the corresponding information on the
uniqueness of the local optimizers in these
enclosures.

'NumberOfOptis’ : number of enclosures computed.

'Minimum’ ' : enclosure for the minimum value.

‘Err’ . error code.

Description:

procedure ’GlobalOptimize’. Then a verification step is applied.

The enclosures for the global minimizers of 'f’ are computed by calling

The enclosures (boxes) for the global minimizers of ’f’ are stored in
the interval matrix ’'OptiVector’ row by row, the corresponding
information on the uniqueness of the local minimizers in these
enclosures is stored in the Boolean vector ’InfoVector’. The number of
enclosures computed is returned in the integer variable ’NumberOfOptis’.
The enclosure for the global minimum value is returned in the variable
'Minimum’. If an error occurs, the value of ’Err’ is different from 0.

G 50 5 50 5 5 5 5 5 U 0 5 5 0 5 10 590 30 0 0 0 80 10 S 0 S s 0 o S s

global procedure A11GOp (function f (x: HTvector) : HessTypel[0..ub(x,1),

0..ub(x,2)];
var Start : ivector;
Epsilon : real;
var OptiVector : imatrix;
var InfoVector : bvector;
var  NumberOfOptis : integer;
var Minimum : interval;
var Err : integer);
var
i, k . integer;
ResultList, L : PairPtr;
Startin . ivector[l..ub(Start)-1b(Start)+1];
ResMat . imatrix[1..ListSize,0..ub(Start)-1b(Start)+1];
ListFull : boolean;
MinEpsilon : real;
begin
NumberQOfOptis:= 0;
it (1b(OptiVector) <> 1) then { Check index bounds of result vectors }
Err:= 1lbOptiVecNot1 }
else if (lb(InfoVector) <> 1) them
Err:= lbInfoVecNotl
else if (ub(InfoVector) <> ub(OptiVector)) then
Err:= VecsDiffer
else
begin { Start global optimization method }
Err:= NoError; { >

MinEpsilon:= succ(1.0) - 1.0; { Relative machine accuracy (1 ulp) 3}



306 14. Global Optimization

Startin:= Start; { Resize to standard bounds 1..n 3
-}
if (Epsilon < MinEpsilon) them Epsilon := MinEpsilon; { Set ‘Epsilon’ }
{ to 1 ulp acc. }
GlobalOptimize(f,Startin,Epsilon,ResultList,Minimum,ResMat ,ListFull);

NumberOfOptis:= Length(ResultList);
if NumberOfOptis = 0 them Err:= NoStatOpti;

if ListFull them Err:= ListTooSmall;
{ Check if there are more opti- }

if ub(OptiVector) < NumberOfOptis them { mizers than storage space }
begin { }
Err:= VecTooSmall; NumberOfOptis:= ub(OptiVector);
end;
L:= Resultlist; { Verification step for the }
for i:=1 to NumberOfOptis de { enclosure intervals }
begin { 3
OptiVector[il] := Int(Head(L, ResMat)); L := Next(L);
VerificationStep(f, OptiVector[il, InfoVector[i]);
end;
FreeAll(ResultList);
end;
end;
{ }
{ Module initialization part 3
}
begin
{ Nothing to initialize }
end.

14.3.2 Examples

We illustrate the use of AIIGOp to compute all global minimizers and the global
minimum of the function of Branin [85]

5 51 , 2 1
felz) = —xl—mx1+zz—6 +10 1—8—7r coszy + 10

T

in the starting interval vector ([-5,10], [0,15])T and of the function of Levy (see
[58])

ful@) = D icos((i =Dz +4) Y jcos((j +1)z2 + )

+ (21 + 1.42513)% + (24 + 0.80032)?

in the starting interval vector ([—10, 10}, [-10,10])T.

Figures 14.1 and 14.2 show the plots of these two functions. Branin’s function has
the global minimizers (—, )T, (r, %), and (37,2)T, and the global minimum
value 37. The large number of local optimizers of fr, make it extremely difficult
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Figure 14.2: Function of Levy with about 700 local minima

for an approximation method to find the global minimizer (—1.3068..., —1.424...)T.
The global minimum value is —1.7613....

We first define the functions fg and fi for the type HessType. Then, we use
a procedure compute with a function and a textual description of the function as
parameters. This procedure reads the necessary input data for the call of procedure
AllGOp. If we add additional function definitions in our program, we can apply this
procedure in the same way.

{

{ This program uses module ’gop’ to compute the global optimizers of the
{ function of Branin

£B(x) = sqr(5/pi*x[1] - 51/(40*sqr(pi))*sqr(x[1]) + x[2] - 6)
+ 10%(1-1/8/pi)*cos(x[1]) + 10
and the function of Levy

5 5
fL(x) = sum i cos((i-1)x[1] + i) sum j cos((j+1)x[2] + j)
i=1 j=t

+ sqr(x[1] + 1.42513) + sqr(x[2] + 0.80032)

e e o e e ey
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{ A starting interval and a tolerance must be entered. 3
program gop_ex; 4
use

i_ari, { Interval arithmetic 2}

mvi_ari, { Interval matrix/vector arithmetic }

hess_ari, <{ Differentiation arithmetic >

i_util, { Interval utilities }

b_util, { Boolean utilities }

gop; { Global optimization }
const

n = 20; { Maximum number of optimizers to be computed }

fDim = 2; { Dimension of sample functions

function fBranin (x: HTvector) : HessType[0..fDim,0..fDim];
begin
fBranin := sqr(5/Pi*x[1] - 51/(40*sqr(Pi))*sqr(x[1]) + x[2] - 6)
+ 10%(1-1/8/Pid*cos(x[1]) + 10;
end;

function fLevy (x: HTvector) : HessTypel[0..fDim,0..fDim];

var
isum, jsum : HessTypel[0..fDim,0..fDim];
i : integer;
begin
isum := 0; jsum := 0;
for i:=1 to 5 do
begin
isum := isum + i*cos((i-1)*x[1] + i);
jsum := jsum + ixcos((i+1)*x[2] + i);
end;

flevy := isum * jsum + sqr(x[1] + intval(142513)/100000) { Avoid real con- }
+ sqr(x[2] + intval(80032)/100000); { version error }
end;

{
{ Procedure for printing and reading informations to call the procedure

{ ’AllZeros’. This procedure must be called with the function 'f’, a string
{ ’'Name’ containing textual description of that function, and an integer

{ ’'dim’ specifying the dimension of the problem.

e N

procedure compute (function f(x:HTvector): HessType[0..ub(x),0..ub(x)];
Name: string;
dim: integer);

var
SearchInterval . ivector([t..dim];
Minimum : interval;
Tolerance : real;
Opti ¢ imatrix(1..n,1..dim];
Unique : bvector[i..n];
NumberOfOptis, i, ErrCode : integer;

begin
writeln(’Computing all global minimizers of the ’, Name);
write(’Search interval ’); read(SearchInterval);
write(’Tolerance (relative) : ’); read(Tolerance);
writeln;

Al1GOp(f, SearchInterval, Tolerance,
Opti, Unique, NumberOfCptis, Minimum, ErrCode);
for i:=1 to NumberOfQOptis do
begin
write(Opti[il);
if unique[i] then
writeln(’encloses a locally unique candidate for a global minimizer!’)
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else
writeln(’may contain a local or global minimizer!’)

end;
writeln;
it (NumberOfOptis <> 0) then
begin

writeln(Minimum); writeln(’encloses the global minimum value!’);
end;

if ErrCode <> 0 then writeln(AllGOpErrMsg(ErrCode));
writeln; writeln(NumberOfOptis:1, ’ interval enclosure(s)’); writeln;
if (NumberOfOptis = 1) and (unique[i]) them
writeln(’We have validated that there is a unique global optimizer!’');
end;

begin { Main program }
compute(fBranin, ’Function of Branin’, fDim); writeln; writeln;
compute(fLevy, ‘Function of Levy’, fDim);

end.

f we execute this program, we get the following runtime output:

Computing all global minimizers of the Function of Branin
Search interval : [-5, 10] [0, 15]
Tolerance (relative) : 1le-8

L 9.424777960768E+000, 9.4247779607T1E+000 ]
[ 2.474999999999E+000, 2.475000000001E+000 ]
encloses a locally unique candidate for a global minimizer!

[ 3.141592653589792E+000, 3.141592653589795E+000 ]
[ 2.27499999999999E+000, 2.27500000000001E+000 ]
encloses a locally unique candidate for a global minimizer!

[ -3.14159265358980E+000, ~3.14159265358979E+000 ]
[ 1.22749999999999E+001, 1.22750000000001E+001 ]
encloses a locally unique candidate for a global minimizer!

L 3.9788735772973E-001, 3.9788735772975E~001 ]
encloses the global minimum value!

3 interval enclosure(s)

Computing all global minimizers of the Function of Levy
Search interval . [-10, 10] [-10, 10]

Tolerance (relative) : 1e-8

[ -1.3068530097537E+000, -1.3068530097535E+000 ]

L -1.4248450415608E+000, -1.4248450415606E+000 ]

encloses a locally unique candidate for a global minimizer!

L -1.76137578003E+002, -1.76137578001E+002 ]
encloses the global minimum value!

1 interval enclosure(s)

We have validated that there is a unique global optimizer!

309

Thus, we know that there are three locally unique minimizers of fg which are good
candidates for global minimizers and one global minimizer of fy, within the specified

starting boxes.
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14.3.3 Restrictions and Hints

The objective function f must be expressible in PASCAL-XSC code as a finite
sequence of arithmetic operations and elementary functions supported by the differ-
entiation arithmetic module hess_ari.

The procedure AlIIGOp stores all enclosures for candidates for global minimizers
in the interval matrix OptiVector, which must be of sufficient size. If the first run of
AllIGOp is not able to compute all optimizers because OptiVector is not big enough,
then the routine must be called again with an increased index range for OptiVector.

The method is not very fast if a very small value of ¢ (Epsilon) is used, if the
interval Newton step does not improve the actual iterates, and if the different tests do
not discard intervals any more because of rounding and overestimation effects of the
machine interval arithmetic. Under these circumstances, the method is equivalent
with a bisection method.

In GlobalOptimize, the evaluation of the function with differentiation arithmetic
can cause a runtime error if the interval argument of an elementary function does not
lie in the domain specified for this interval function (see [65]) or if a division by an
interval containing zero occurs. This also may be due to the known overestimation
effects of interval arithmetic (see Section 3.1). To get rid of these errors, the user
may try to split the starting interval in several parts and call AIGOp for these parts.

The rules for getting true enclosures in connection with conversion errors
(see Section 3.7) also apply here. That is why we expressed 1.42513 as
intval(142513)/100000 in the code for the Levy function.

14.4 Exercises

Figure 14.3: Six-Hump Camel-Back function

Exercise 14.1 Use our procedure AlIGOp to compute the global minimizers and
the global minimum value of the Siz-Hump Camel-Back function [72]

1

f(z) =42} — 2.12% + 3

wf + 129 — 4.13 + 4:1:3
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shown in Figure 14.3 within the box ([—2.5, 2.5}, [-2.5,2.5])T. The global optimizers
are +(0.089842..., —0.712656...)T and the global minimum value is —1.03162.

Exercise 14.2 Use our procedure AlIGOp to compute the global minimizer and
the global minimum value of the function f : R® — IR with

f(w)=z<' -’fj) :

i=1 j=

Study the behavior of CPU time for our algorithm for increasing values of n.

Exercise 14.3 Use our procedure AlIGOp to compute the global minimizers (a
continuum of points) and the global minimum value of the function f : R? - R
with

f(z) = (21 + 22)".

Exercise 14.4 Use our procedure AlIGOp to compute the global minimizer
(1,...,1)T and the global minimum value 0 of f : IR* — IR with

n

f@) = 3 (100(z: — 22, )2 + (1 = 2ic)?) -

=2

f is a generalization of Rosenbrock’s two-dimensional function {75], which has be-
come accepted as a difficult test for new optimization routines. Study the behavior
of CPU time for our algorithm for increasing values of n = 5,10,15,....

14.5 References and Further Reading

The method we discussed in this chapter is an a priori method because the iteration
starts with a (possibly large) interval enclosing all the solutions which have to be
found. Here, the iterates of the method are subintervals of the previous iterates.

There are also methods for finding (and bounding) one single local optimizer
called a posteriori methods. These methods start with an approximation of a local
minimizer of f and apply a test procedure for a neighborhood interval of the ap-
proximation to verify that a zero of V f lies within that interval. There are a huge
number of approximate optimization methods for local and global optimization avail-
able without any verification of the result. For an overview on such approximation
methods, see [85] or [88].

The method presented in this chapter can be extended to become more efficient
and faster. For more sophisticated extensions, see [26], [28], [72], [73], and [74].



Appendix A
Utility Modules

The data types and routines described in the following sections are used by several
problem solving routines in this book. They are grouped according to the basic data
types of PASCAL-XSC.

A.1 Module b_util

The module b_util gives the definition of a dynamic vector whose components are
of type boolean. Variables of this type are used as tag fields to indicate whether the
components of a corresponding interval vector or matrix are verified.

{ }
{ Purpose: Utilities of type ’'boolean’. }
{ Global type: }
{ type bvector : Used as tag field to indicate whether the components of }
{ a corresponding interval vector or matrix are verified. 1}
{ }
module b_util; { Boolean Utilities }
- == }
global type
bvector = global dynamic array [*] of boolean;
{ }
{ Module initialization part 3
}
begin
{ Nothing to initialize }
end.

A.2 Module r_util

The module r_util provides the function Max to find the maximum of two real
numbers.

{ }
{ Purpose: Utilities of type ’‘real’. }
{ Global function: 3
{ function Max(...) : Delivers the maximum of two real numbers. }
{ }
module r_util; { Real Utilities }

-~ - }

global functiom Max ( a, b : real ) : real; { Maximum function for reals }
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begin
if (2 >= b) them Max := a else Max := b;
end;

{
{ Module initialization part
{
begin

{ Nothing to initialize }
end.

[N

A.3 Module i_util

The module i_util provides procedures and functions based on the type interval.
The real-valued functions AbsMin, AbsMax, and RelDiam may be used to compute
the smallest absolute value ([z]), the greatest absolute value |[z]|, and the relative
diameter dra([z]) of a real interval [z], according to the Definitions (3.1) and (3.2).
The Boolean function UlpAcc is used to check for a desired accuracy specified in
ulp (see Section 3.6). The interval function Pi delivers an enclosure of 7.

Finally, the module gives an implementation of the interval power function [2]"
with integer exponent n as defined in Example 3.5. The implementation makes
use of the local function Power for real argument z, positive (!) integer exponent
n, and a parameter indicating the rounding mode. Depending on the rounding
parameter, a lower or an upper bound of 2™ is computed using the binary shift
method. The binary shift method is used to reduce an exponentiation by an integer
to a sequence of multiplications. Therefore in general, it does not yield a result of
maximum accuracy. The number of multiplications depends logarithmically on n.
An algorithmic description of the method is given by Algorithm A.1.

The method works by binary shifting the exponent n. Depending on the digit which
was shifted out, the factor p is updated, while z is updated as long as n does not
vanish.
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Example A.1 To compute z'3, the following intermediate results are generated.
The binary representation of the exponent is 130 = 1101,.

Digit shifted out | p |z
1 z |2?
0 z |zt
1 z% | 28
1 xlS _

To get lower and upper bounds of z™, respectively, Algorithm A.1 is modified by
introducing directed-rounding multiplications (see the listing below).” For negative
z and odd n, we have 7(z") = —A(—2z") and A{z") = —7(—=z"). The complete

listing of the module i_util is given below.

}
{ Purpose: Utilities of type ’interval’. 3}
{ Global functions: 3
{ function AbsMin(...) : Smallest absolute value of an interval. }
{ function AbsMax(...) : Greatest absolute value of an interval. }
{ function RelDiam(...) : Relative diameter of an interval. }
{ function UlpAcc(...) : To check whether the width of an interval is }
{ less than a certain number of ulps (ulp = unit }
{ in the last place of the mantissa). ¥
{ function Power(...) : Exponentiation by an integer for intervals. }
{ function Pi : Returns an enclosure of pi. }
{ }
module i_util; { Interval Utilities }
- - }
use
i_ari; { Interval arithmetic }
var
LocalPi : interval; { Local variable to store an enclosure of pi }
global function AbsMin ( x : interval ) : real; { Absolute minimum of }
begin { an interval b
if (0 in x) then { ¥
AbsMin := 0
else if (inf(x) > 0) them
AbsMin := inf(x)
else
AbsMin := -sup(x);
end;
global functiom AbsMax ( x : interval ) : real; { Absolute maximum of }
var { an interval
a, b : real; { 3
begin
a := abs(inf(x)); b := abs(sup(x));
if (a > b) then AbsMax := a else AbsMax :=b;
end;
global functiom RelDiam ( x : interval ) : real; { Relative diameter }
begin { of an interval }
it (0 in x) then { }
RelDiam := diam(x)
else

RelDiam := diam(x) /> AbsMin(x);
end;
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{ 3
{ Checks whether the width of the interval ’'x’ is less or equal to ’‘n’ ulp. }
{ An ulp is an abbreviation for: units in the last place of the mantissa. 3
}

global functiom UlpAcc ( x : interval; n : integer ) : boolean;
var

i . integer;

Infimum : real;
begin

Infimum := inf(x);

for i := 1 to n do Infimum := succ(Infimum);

UlpAcc := (Infimum >= sup(x));

B N N N e L e T T T Tt

Purpose: The local function ‘Power()’ is used to compute a lower or an

Parameters:

Description:

upper bound for the power function with real argument and integer
exponent, respectively.

In ! 'x’ : real argument.
‘n’ : integer exponent.
‘RndMode’ : rounding mode,
(-1 = downwardly directed, +1 = upwardly directed)

This function is used to speed up the interval power function defined
below. The exponentiation is reduced to multiplications using the
binary shift method. Depending on ’‘n’, this function is up to 40 times
as fast as the standard power function for real argument and real
exponent. However, its accuracy is less than one ulp (unit in the last
place of the mantissa) since about log2(n) multiplications are executed
during computation. Since directed roundings are antisymmetric, one
gets

down(xtn) = -up((-x)tn) and up(xtn) = -down((-x)tn)
for x < 0 and odd n, where ’down’ and ’up’ denote the downwardly and
upwardly directed roundings, respectively.

B S N N T e P e e I N N e e e e S W e S e S

function Power ( x :

real; n, RndMode : integer ) : real;

var { Signals change of the rounding mode }
ChangeRndMode : boolean; { for x < 0 and odd n
P, 2 . real;

begin

ChangeRndMode := ((x < 0) and odd(n));
it ChangeRndMode then

begin z := -x; RndMode := -RndMode; end

else

p

case RndMode of

z = X;

=1 { Note: Seperate while-loops }
{ used to gain speed at runtime }

-1 : while (n > 0) do

begin
if odd(n) then p := p *< z;
n := n div 2;
it (n > 0) then z := z *< z;
end;
+1 : while (n > 0) do
begin
if odd(n) them p := p *> z;
n := n div 2;
if (n > 0) then z := z *> z;
end;
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end;
if ChangeRndMode then Power := -p else Power := p;
end;
{ }
{ Purpose: This version of the function ’'Power()’ is used to compute an }
{ enclosure for the power function with interval argument and integer }
{ exponent. F
{ Parameters: 3
{ In : ’x’ : interval argument. }
{ ‘n’ : integer exponent. 3
{ Description: }
{ In general, this implementation does not deliver a result of maximum 3
{ accuracy, but it is about 30-40 times faster than the standard power 3}
{ function for interval arguments and interval exponents. The resulting }
{ interval has a width of approximately 2*log2(n) ulps. Since xTn is }
{ considered as a monomial, we define x10 := 1. For negative exponents ¥
{ and 0 in ’‘x’, the division at the end of the function will cause a 2}
{ runtime error (division by zero). 3}
{ }
global function Power ( x : interval; n : integer ) : interval;
var
m . integer;
Lower, Upper : real;
begin
if (n = 0) then
Power := 1
else
begin
if (n > 0) then m :=n else m := -n;
it (0 < x.inf) or odd(m) then
begin Lower := Power(x.inf,m,-1); Upper := Power(x.sup,m,+1); end
else if (0 > x.sup) then
begin Lower := Power(x.sup,m,-1); Upper := Power(x.inf,m,+1); end
else
begin Lower := 0; Upper := Power(AbsMax(x),m,+1); end;
it (n > 0) then
Power := intval(Lower,Upper)
else { Propagates a ’division by }
Power := 1 / intval(Lower,Upper); { zero’ error if 0 in 'x’. }
end;
end;
}
{ The function 'Pi’ returns an enclosure of pi. To save computation time, pi }
{ is computed only once in the module initialization part by evaluating }
{ 4*arctan(intval(1)). Thus, this function only returns the value of the }
{ local variable ’LocalPi’. 3
}
global function Pi : interval;
begin
Pi := LocalPi;
end;
{

{ Module initialization part

(TN

begin
LocalPi := 4*arctan(intval{1));

{ Computes an enclosure of pi }
end.
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A.4 Module mvi_util

The module mvi_util provides procedures and functions based on the types ivector
and imatrix. The function MaxRelDiam may be used to get the maximum relative
diameter of an interval vector as defined in Section 3.4. The Boolean function
UlpAcc is used to check any component of an interval vector for a desired accuracy
specified in ulp. The complete listing of the module is given below.

{ }
{ Purpose: Utilities of type ‘ivector’ and ’‘imatrix’. >
{ Global functions: 3}
{ MaxRelDiam(...) : To get the maximum of the relative diameters of the }
{ components of an interval vector. ¥
{ Ulp4ce(...) : To check whether all components of an interval vector }
{ have a width less than a certain number of ulps 3
f' (ulp = unit in the last place of the mantissa). }
}
module mvi_util; { Matrix Vector Interval Utilities }
use
i_ari, { Interval arithmetic }
i_util; { Utilities of type interval }
4 }
{ Compute maximum of relative diameters of the components of ivector ’v’. }
}
global function MaxRelDiam ( var v: ivector ) : real;
var
k : integer;
Max, RelDiam_k : real;
begin
Max := 0;
for k := 1b(v) to ub(v) do
begin
RelDiam_k := RelDiam(v([k]l);
if (RelDiam_k > Max) them Max := RelDiam_k;
end;
MaxRelDiam := Max;
end;
}
{ Checks if the diameter of the interval vector ’'x’ is less or equal to ’n’ }
{ ulps. An ulp is an abbreviaticn for: units in the last place of the }
{ mantissa. }
}
global function UlpAcc ( v : ivector; n : integer ) : boolean;
var
k : integer;
begin
k := 1b(v);
while (k < ub(v)) and (UlpAcc(v[k]l,n)) do k := k+1;
UlpAcc := UlpAcc(v[k],n);
end;
{ }
{ Module initialization part }
}
begin
{ Nothing to initialize }
end.
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Index of Special Symbols

abs([z])
Ap

B

c

c

cp
cond(A)
d([=])
doo([2])
dra([z])
dret,oo([2])
£

(k)

£

f

5
f(=D
Su(l=))
So([=])
fum(l=])
fol=)
fo(l=))
I

Ic

IC

IR

IR

IR*

Absolute value of an interval

Submatrix of column vectors a, g with § € B
Set of basic indices

Set of index sets

Set of complex numbers

Subvector of components ¢g with 8 € B
Condition number of the matrix A

Diameter of an interval

Maximum diameter of an interval vector
Relative diameter of an interval

Maximum relative diameter of an interval vector
Set of examined index sets

k-th unit vector

Global minimum value of a function f

Upper bound for the global minimum value f*
Lower bound of f;;([y])

Range of f

Interval extension or evaluation of f
Standard centered form of f with center ¢
Mean-value form of f

Floating-point evaluation of f

Floating-point interval evaluation of f
Identity matrix

Set of complex floating-point intervals

Set of complex intervals

Set of floating-point intervals

Set of real intervals

Set of extended intervals

Jacobian matrix of f : R* — R®

Set of neighboring basic index sets

Pending list of pairs ([y], fy) in global optimization

Midpoint of interval data

Set of n-dimensional vectors over M
Set of n x m matrices over M

Set of nonbasic indices

35
196
196
201

44
196
177

32

43

32

43
201
177
105
106
106

36

36

37

37

45

47

31

46

38

45

31

41
228
198
105

32

31

31
196
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N([=])
Nas([z])
N'([=])
Ngs([=])
q‘

a([=], [3])

([-’B]i)i=1,...,n
([z]ij)ji=1,4.,,

1
[z]eae
[2] € [y]
[=] Y [4]
[zl (4]
[#re] + i[xim]
Zopt
vf
vif
O
a
ag..)
v
A
O
()

Interval Newton operator for f: R - R

Interval Newton Gauss-Seidel operator for f : R® — R

Interval Newton operator for the derivative of f: R — R

Interval Newton Gauss-Seidel operator for the gradient of f : R® — R

Coefficients of the deflated polynomial or eigenvector of the companion
matrix

Distance between two intervals

Set of floating-point numbers, floating-point system
Set of real numbers

Spectral radius of the matrix B

Set of index sets

Set of optimal basic index sets

Set of feasible solutions in linear optimization
Zero or minimizer of a function

Approximation of an exact value z

Lower bound of an interval

Upper bound of an interval

k-th iterate

Interval

Smallest absolute value of an interval

Greatest absolute value of an interval
Maximum norm for interval vectors or matrices
Interval vector of length n

n X m interval matrix

Epsilon inflation for an interval

Contained-in-the-interior relation
Hull of intervals

Intersection of intervals

Complex interval

Zero of a polynomial or eigenvalue of the companion matrix
Optimal value

Gradient of f: R® - R

Hessian matrixof f : R® — R
Rounding O:R— R

Rounding to the nearest

Evaluation with maximum accuracy
Downwardly directed rounding
Upwardly directed rounding
Interval rounding

Interval evaluation with maximum accuracy

87
266
108
285

152
33
43
31

285

197

197

195
87
58
31
31
31
31
32
32
42
42
42

47

31
31
31
38
152
195
225
226
43
43
45
43
43
46
46

Index

A posteriori method 52
— for linear optimization 197
~ for linear systems 178
— for local optimization 130, 311
— for nonlinear equations 104
- for nonlinear systems 281
— for zeros of complex polynomials
153
A priori method 52
— for global optimization 130, 311
— for nonlinear equations 104
- for nonlinear systems 281
AbsMax (function) 314
AbsMin (function) 314

Absolute
~ diameter, maximum 43
~error 132

Absolute value

~ , greatest interval 32, 314

—,interval 32

-, smallest interval 32, 314
Accurate (algorithm) 179
Accurate (procedure) 185

Accurate expressions 27, 45, 138, 160, 181

ACRITH 151, 194
Add (algorithm) 137
Algorithmic notation 3

Algorithms

- +,—,,/ (automatic differentiation)
72, 229

- Accurate 179

- Add 137

= AliCPolyZeros 171

- AllIGOp 291

- AllGOp1 113

— AIINLSS 271

— AllZeros 92

— Approximation - 157

— BasisStable 199

— CheckForZeros 179

— CheckParameters 91, 113, 270, 291
— ComputeTableau 199

— ConcavityTest 287

— CPolyZero 159

— Crout’s 176

-Div 137

~ DoSomething 3

— EmptySolutionSet 200

— Eval 136

- GlobalOptimize 111, 289

—Head 111, 289

~ Intervallteration 158

— Length 111, 289

~ LinOpt 202

— LinSolve 180

— Matlnv 177

— MonotonicityTest 286

- Mul 137

— MultiDelete 111, 289

— NaiveEval 134

— NeighboringList 201

— NewlinSolve 193

— NewtonStep 110, 268, 287

— PosDef 290

— PossiblyOptimalSolution 199

— Power 314

— RPolyEval 60

— s (elementary function, automatic

differentiation) 73, 230

-Sub 137

— Unbounded 200

— VerificationStep 91, 112, 180, 270,

290

— XiNewton 90, 269
AlICPolyZeros (algorithm) 171
AlIGOp (algorithm) 291
AllGOp (procedure) 297
AlIGOpErrMsg (function) 297
AlIGOp1 (algorithm) 113
AllGOpl (procedure) 119
AllGOp1ErrMsg (function) 119
AIINLSS (algorithm) 271
AIINLSS (procedure) 272
AIINLSSErrMsg (function) 272
AllZeros (algorithm) 92
AllZeros (procedure) 96
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AllZerosErrMsg (function) 96
Antisymmetric rounding 44
Approximate

- inverse 176

— inverse, refinement of an 193

— search, local 107, 114, 283, 292
Approximation (algorithm) 157
Arithmetic

-, complex interval 38

-, computer 7

-, differentiation 69, 71, 226

—, extended interval 40

-, floating-point 43

-, floating-point interval 45

-, multi-precision interval 131, 150

-, real interval 31

-, staggered 135, 138, 193
Arithmetic expressions

-, condition number of 135

-, evaluation of 68, 131
ARITHMOS 151, 194
Attributes, interval 32
Automatic differentiation 69, 225

—, backward method of 86, 263

- for gradients 225

— for Hessians 225

- for Jacobians 225

-, forward method of 73, 86, 263

-, multi-dimensional 225

— , one-dimensional 69

-, reverse method of 86, 263
Automatic result verification 11, 51

Backward method of automatic
differentiation 86, 263
Basic
- index set 196
— index set, optimal 200
~ solution 196
Basis stable 198, 199, 223
BasisStable (algorithm) 199
Binary
— format 48
— shift method 314
Boothroyd/Dekker system 190, 193
Boundary point 107, 108, 111
Box (interval vector) 42
Branin’s function 306
Brouwer’s fixed-point theorem 51, 153,
175

Clentered form 37

CheckForZeros (algorithm) 179
CheckForZeros (procedure) 185
CheckParameters (algorithm) 91, 113, 270,
291

cipoly (module) 162
CIPolynomial (type) 162
Code list 131, 138, 226
Companion matrix 152, 157
Complex floating-point number 44
Complex interval 38

— arithmetic 38

— elementary operation 39

-, floating-point 46

—hull 39

~ proper subset relation 39

-, thick 38

—, thin 38
Complexity

- of automatic differentiation 73

- of matrix inversion 157
Computation, scientific 11
Computational environment 6
Computer

— arithmetic 7

— programs in this book  vii, 4
ComputeTableau (algorithm) 199
Computing, history of 6
Concavity test 108, 284
ConcavityTest (algorithm) 287
ConcavityTest (function) 297

Concept
-, dynamic array 24
-, module 23

—, operator 21

-, overloading 22

-, string 28
Condition number 59

— estimate 180

—of a matrix 177

- of arithmetic expressions 135
Constants, rounding of 26, 50
Constraint matrix 223
Contained-in-the-interior relation 31, 42
Convergence

- of an interval sequence 33

- of interval Newton’s method 92

— of the interval Newton Gauss-Seidel

method 271

Conversion

-, data 26,47, 151

-error 48,192
Convex function 108, 284
cpoly (module) 161
CPolynomial (type) 161

CPolyZero (algorithm) 159
CPolyZero (procedure) 164
CPolyZeroErrMsg (function) 164
cpzero (module) 164

Crout’s algorithm 176

Data conversion 47, 151

-in PASCAL-XSC 26
ddf.ari (module) 73
ddfEval (procedure) 74
Decomposition, LU- 176
Definite, positive 285
DelHead (procedure) 115, 293
Derivatives 69, 225

-, first 69, 225, 228

— gradient 225

— Hessian 226

- ,second 71,226
DerivOrder (variable) 73
DerivType (type) 74
dfEval (procedure) 74
Diameter

—, interval 32

—~ , maximum absolute 43

— , maximum relative 43, 318

— of an interval vector or matrix 42

-, relative interval 32, 314
Difference quotient, second order 148
Differentiation, automatic 69, 225
Differentiation arithmetic

—, error handling of 86, 262

-, first order 69

—, interval 71

-, second order 71, 226
Directed rounding 18, 26, 27, 43
Distance, interval 33
Div (algorithm) 137
div (operator) 93
Division, interval 34
DoSomething (algorithm) 3
Dot product, exact 44
Downwardly directed rounding 18, 43
Dynamic arrays of PASCAL-XSC 24

Eigenvalue 152, 155, 156, 285
— problem 152
Eigenvector 152, 155
Elementary function
— in differentiation arithmetic 70, 71,
73, 227
— in Hessian arithmetic 227
—, interval 35, 46
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—,real 45
Elementary operation
—, complex interval 39
-, floating-point 44
—, interval 33
Empty
- —interval 93
—-list 111, 115, 288, 293
—-set 93
- set of feasible solutions 197, 203
EmptyIntval (function) 93
EmptyList (function) 115, 293
EmptySolutionSet (algorithm) 200
Enter (function) 293
Environment, computational 6
Epsilon inflation 47, 52
— for complex polynomials 156
— for global optimization 112, 290
— for linear systems 179
— for nonlinear equations 91
- for nonlinear systems 270
Error
—, absolute 132
— analysis 224
-, conversion 48, 192
~ handling of differentiation arithmetic
86, 262
-, relative 179
-, truncation 149
Eval (algorithm) 136
Eval (procedure) 138
EvalErrMsg (function) 138
Evaluation 57
— in differentiation arithmetic 70
—, interval 11, 36
~, left-to-right 132
~, naive interval 57
— of arithmetic expressions 68, 131
- of polynomials 57
- of real polynomials 61
Exact dot product 44
Exponentiation by an integer 133, 314
Expressions, accurate 27, 45, 138, 181
expreval (module) 137
Extended interval 41, 88, 93
- arithmetic 93
— operations 93
Extension
—, interval 36
~ of floating-point arithmetic 9

Factorization 176
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Feasible solutions

-, empty set of 197, 203

-, set of 195, 200
Features of PASCAL-XSC 17
fEval (procedure) 74
fEvalG (procedure) 245
fEvalH (procedure) 231
fEvalJ (procedure) 231, 245
fgEvalG (procedure) 245
fgEvalH (procedure) 231
fghEvalH (procedure) 231
Fibonacci number 146
Final list 109, 286
First derivatives 69

— gradient 225

— Jacobian matrix 228
First order differentiation arithmetic 69
Fixed-point

—form 52, 153

— problem 156
Fixed-point theorem

—, Brouwer’s 51, 153, 175

—, Schauder’s 152
fJEvalJ (procedure) 231, 245
Floating-point

- arithmetic 9, 43

— complex interval 46

— complex number 44

— elementary operation 44

— interval 45

— interval arithmetic 45

— number, normalized 43

- system 43
Format

-, binary 48

-, staggered correction 135

Forward method of automatic differentiation

73, 86, 263
Free (procedure) 115, 293
FreeAll (procedure) 115, 293
FreeList (variable) 115, 293

Functions
— AbsMax 314
— AbsMin 314

— AIIGOpErrMsg 297

— AllIGOp1ErrMsg 119

— AIINLSSErrMsg 272

— AllZerosErrMsg 96

—, Branin’s 306

— ConcavityTest 297

—, convex 108, 284

— CPolyZeroErrMsg 164

—, derivatives of the elementary 73

-, differentiation arithmetic elementary
70, 71, 227

-, elementary 20

— EmptyIntval 93

~ EmptyList

115, 293

— Enter 293
— EvalErrMsg 138

- Fyi 293

- GetFyi 115

- Getlnt 1
—, Hansen’s

15
260

— Head 115,293
—, Hessian arithmetic elementary

~Int 293

-, interval elementary 35, 46
— Length 293

-, Levy’s

306

-, linear 195
- LinOptErrMsg 211
— LinSolveErrMsg 185

— MakePair

115, 293

—, mathematical 20
— MatInvErrMsg 181

- Max 313

— MaxDiamComp 297

— MaxNorm

297

— MaxRelDiam 318
— MonotonicityTest 297
— Next 115, 293

-, nonlinear
-, objective

- of PASCAL-XSC, predefined

87, 264
195, 200

-, overloading of 50

-Pi 314

— PosDef 297
— Power 138, 314

-, range of

35

—, real elementary 45

— RelDiam

314

—, Rosenbrock’s 311
— RPolyEvalErrMsg 62

—, Shubert’s

125

20

-, Six-Hump Camel-Back 310

- UlpAcc 314, 318
Fundamental theorem of algebra
Fyi (function) 293

(S auss-Seidel method

-, interval

265

—, interval Newton 265, 284

GetFyi (function)
GetlInt (function)
Global minimizer

115
115
105, 282

152

227

Global minimum value 105, 282
— , upper bound for 106, 283
Global optimization 105, 282
-, classical method for 105, 282
-, interval method for 105, 282
— problem 105, 282
GlobalOptimize (algorithm) 111, 289
GlobalOptimize (procedure) 119, 297
gop (module) 297
gopl (module) 119
grad_ari (module) 245
Gradient 225
— arithmetic 226
GradOrder (variable) 245
GradType (type) 245
GTvector (type) 245

Holley’s method 84
Hansen’s function 260
Hansen’s method 105, 282
Head (algorithm) 111, 289
Head (function) 115, 293
hess.ari (module) 230
Hessian

— arithmetic 226

— matrix 226
HessOrder (variable) 230
HessType (type) 231
Hilbert matrix 192
History of Computing 6
Horner’s

— evaluation 153, 155

— nested multiplication form 57, 66

— scheme 62, 66
HTvector (type) 231
Hull

-, complex interval 39

—, interval 31

Til-conditioned matrix 192
Implementation 4
Inclusion

- ,inner 31

- isotonic 34
Index of special symbols 325
Index set

—, basic 196

-, initial 203, 204

-, optimal basic 197, 200, 208
Infeasible solution 197
Infimum, interval 31
Inflation, epsilon 47

Index 331

Initial index set 203, 204

Inner inclusion relation 31, 42

Int (function) 293

Integer, exponentiation by an 133, 314
Interior, contained in the 31

Interval 31

— absolute value 32

~ arithmetic, complex 38

— arithmetic, extended 40

- arithmetic, floating-point 45

— arithmetic, real 31

- attributes 32

-box 42

—, complex 38

-, complex floating-point 46

— diameter 32, 42

- diameter, relative 32, 314

— distance 33

- division 34

- elementary function 35, 46

- elementary operation 33

—,empty 93

- evaluation 11, 36

-, extended 41, 88, 93

— extension 36

—, floating-point 45

— function 155

~ Gauss-Seidel method 265

—, greatest absolute value of an 32,
314

-hull 31

—infimum 31

— iteration 158

-, lower bound of an 31

- matrix 42

~ midpoint 32, 42

— multiplication 34

— Newton Gauss-Seidel method 265,
284

~ Newton Gauss-Seidel step 266

— Newton’s method 87, 108, 264

— Newton step 88, 108, 265, 284

~, point 31

- power function 36, 314

—radius 32

—,real 31

- rounding 46

-, smallest absolute value of an 32,
314

- subdistributive law 35

—supremum 31

— tableau 197, 200

—, thick 31

-, thin 31,49
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Interval (continued)
—, upper bound of an 31
— vector 42
Intervallteration (algorithm) 158
Inverse, approximate 176
Inversion, matrix 176
Iteration procedure, local 280
Iterative refinement 51
— for arithmetic expressions 134
— for the evaluation of polynomials 58

Jacobian matrix 228
-, inverse of the 153, 171

Left-to—right evaluation 132
Length (algorithm) 111, 289
Length (function) 293
Levy’s function 306
Linear optimization 195
Linear programming problem 195, 196,
204, 218
-, parametric 224
—,set of 224
Linear systems of equations 175, 197
—, Newton-like method for 175
-, residual iteration for 176
-, unique solution for 175
LinOpt (algorithm) 202
LinOpt (procedure) 211, 219
LinOptErrMsg (function) 211
LinSolve (algorithm) 180
LinSolve (procedure) 185
LinSolveErrMsg (function) 185
LinSolveMain (procedure) 185
linsys (module) 185
List
—,empty 111, 115, 288, 293
-, final 109, 286
— of basic index sets 204
- of pending subboxes 282, 288
- of pending subintervals 105, 110
- operations 111, 288
— ordering rule 110, 288
Literal constants, rounding of 26, 50
Local
- approximate search 107, 114, 283,
292
— iteration procedure 280
— uniqueness of a minimizer 109, 285
~ uniqueness of a stationary point
109, 285
— uniqueness of a zero 91, 270

lop (module) 211
lop_ari (module) 204
Lower bound
~of an interval 31
- of the interval evaluation 106, 283
Ist_ari (module) 293
Istl_ari (module) 115
LU-decomposition 176

Machine
—interval 45
- number 43
MakePair (function) 115, 293
Mantissa 43, 48
-, overlapping 135
Matlnv (algorithm) 177
matinv (module) 181
Matlnv (procedure) 181
MatInvErrMsg (function) 181
Matrix
-, Boothroyd/Dekker 190
-, condition number of a 177
-, constraint 223
—, Hessian 226
-, Hilbert 192
—, ill-conditioned 192
-, interval 42
—inversion 176
-, Jacobian 228
-, lower-triangular 176
-, maximumnorm of a 42
—-,sub- 196
— , upper-triangular 176
Max (function) 313
MaxDiamComp (function) 297
Maximum norm 42
MaxNorm (function) 297
MaxRelDiam (function) 318
Mean-value form 37, 87
Method
-, backward of automatic
differentiation 86, 263
-, binary shift 314
— , forward of automatic differentiation
73, 86, 263
, global optimization 105, 282
—, Halley’s 84
-, Hansen’s 105, 282
-, interval Gauss-Seidel 265
, interval Newton Gauss-Seidel 265,
284
-, interval Newton’s 87, 108, 264
~, Newton-like 175

~, Newton’s 84, 256, 257, 259
-, reverse for arithmetic expressions
151
-, reverse of automatic differentiation
86, 263
— , revised simplex 208, 223
—, root-finding 87
—, simplex 196
Metric space 33
Midpoint
- of an interval 32
— of an interval vector or matrix 42
- test 106, 283
Minimizer
—, global 105, 282
—, local uniqueness of a 109, 285
Minimum value 105, 282
Module concept of PASCAL-XSC 23
Modules

- b_util 313

- cipoly 162
—-cpoly 161

— cpzero 164
~ddfari 73

— expreval 137
-gop 297
-gopl 119

~ grad-ari 245
— hess_ari 230
—iutil 314

- linsys 185
-lop 211

— lop-ari 204
~ Ist.ari 293
—Istlari 115

- matinv 181

- mviutil 318

- nlfzero 96

—nlss 272

— of PASCAL-XSC, predefined 28

- rautil 313

- rev.simp 208

— rpeval 62

—rpoly 61

- xiari 93
Monotone rounding 43
Monotonicity 35

- test 107, 283
Monotonicity Test (algorithm) 286
MonotonicityTest (function) 297
Mul (algorithm) 137
Multi-dimensional problems 173
Multi-precision arithmetic

—,interval 131, 150

Index 333

-, staggered form of 135
MultiDelete (algorithm) 111, 289
MultiDelete (procedure) 115, 293
Multiplication, interval 34

NaiveEval (algorithm) 134
Nearest, rounding to the 43
Neighboring basic index sets, set of 198,
200

NeighboringlList (algorithm) 201
NewLinSolve (algorithm) 193
NewLinSolve (procedure) 193
NewPP (procedure) 115, 293
Newton-like method 175
Newton’s method 84, 256, 257, 259

-, interval 87, 108, 155, 264

-, simplified 153
Newton step, interval 88, 108, 265, 284
NewtonStep (algorithm) 110, 268, 287
NewtonStep (procedure) 119, 272, 297
Next (function) 115, 293
nlfzero (module) 96
nlss (module) 272
Non-convexity test 108, 284
Non-private types in PASCAL-XSC 23
Nonbasic index set 196
Nonlinear equations in one variable 87
Nonlinear functions 87, 264
Nonlinear systems of equations 264

— for arithmetic expressions 131

— for zeros of complex polynomials

153

Normalized floating-point number 43
Notation

-, algorithmic 3

- of list operations 111, 288
Numerical verification 6, 14, 51

Objective function 195, 200

-, unbounded 197, 200, 203, 222
One-dimensional problems 55
Operation

-, elementary complex interval 39

-, elementary floating-point 44

-, extended interval 93

-, interval elementary 33
Operator concept of PASCAL-XSC 21
Operators

—%x 93

-+ (for lists) 115

-div 93

— of PASCAL-XSC, predefined 19, 20
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Operators  (continued)
—, overloading of 50
Optimal
— basic feasible solution 197, 204, 208
— basic index set 197, 204, 208
- solution 195
- value 195, 197, 208

—vertex 197
Optimization

-, global 105, 282

-, linear 195

Ordering rule of pending list 110, 288
Overlapping mantissa 135
Overloading

- concept of PASCAL-XSC 22

- of functions 50

- of operators 50

Pair (type) 115
PairPtr (type) 115, 293
Parametric linear programming problem
224 ]
Partial pivoting 176
Partitioning 196
PASCAL-XSC
- constants 26
— data conversion 26
— data types, predefined 18
— dynamic arrays 24
— features 17
— functions, predefined 20
— literal constants 26
~ module concept 23
— modules, predefined 28
- non-private types 23
— operator concept 21
- operators, predefined 19, 20
- overloading of subroutines 22
— private types 23
- rounding 18, 26
- slice notation 25
- gtring concept 28
— subarrays 25
— use-clause 23
Pending list 105, 110, 282, 288
— ordering rule 110, 288
Pj (function) 314
Pivoting, partial 176
Point
-, boundary 107, 108, 111
— interval 31
-, stationary 109, 285
Polynomial

-, complex 152, 161
-, complex interval 162
, deflated 152, 157, 171
-, evaluation of a 57
- ,real 57,61, 160
-, root of a complex 156
—,scaled 67
—, value of a real 62
-, zero of a complex 152, 161
PosDef (algorithm) 290
PosDef (function) 297
Positive definite 285
PossiblyOptimalSolution (algorithm) 199
Power (algorithm) 314
Power (function) 138, 314
Power function, interval 36, 314
Preconditioning of the interval Gauss-Seidel
step 265
Preliminaries 15
Private types in PASCAL-XSC 23
Problems
- multi-dimensional 173
- one-dimensional 55

|

Procedures
— Accurate 185
- AlIGOp 297

- AllGOp1 119

- AIINLSS 272

— AllZeros 96

— CheckForZeros 185
— CPolyZero 164

- ddfEval 74

— DelHead 115, 293
—dfEval 74

— Eval 138

~fEval T4

- fEvalG 245

- fEvalH 231

- fEval] 231, 245

- fgEvalG 245

- fgEvalH 231

- fghEvalH 231

- fJEval] 231, 245

- Free 115,293

— FreeAll 115, 293

- GlobalOptimize 119, 297
- LinOpt 211, 219

— LinSolve 185

— LinSolveMain 185

— MatInv 181

— MultiDelete 115, 293

— NewLinSolve 193

- NewPP 115, 293

— NewtonStep 119, 272, 297

— RevSimplex 208, 219
— RPolyEval 62
— VerificationStep 96, 119, 185, 272,
297
— XINewton 96, 272
Program verification 14
Programs in this book  vii, 4

Radius, interval 32
Range of a function 35
Rate of convergence
- of interval Newton’s method 92
— of the interval Newton Gauss-Seidel

method 271
Real interval 31
Refinement

—, iterative 51, 134

- of an approximate inverse 193
Relative

— diameter, maximum 43, 318

—error 179

— interval diameter 32, 314
RelDiam (function) 314
Residual iteration 154

-, convergence of 61

— for linear systems 176

~ for the evaluation of polynomials 58

- for zeros of complex polynomials

155

Result verification

-, automatic 1

— , numerical 6
rev_simp (module) 208
Reverse method

— for arithmetic expressions 151

— of automatic differentiation 86, 263
RevSimplex (procedure) 208, 219
Root 157

-, local uniqueness of a 91

— of a complex polynomial 152, 164

— of a nonlinear function 87, 264
Root-finding method 87
Rosenbrock’s function 311
Rounding 43

— , antisymmetric 44

-, downwardly directed 18, 43

- for accurate expressions 27

— in arithmetic operations 18

—in i/o operations 26

-, interval 46

— , monotone 43

— of literal constants 26

— to the nearest 43

Index 335

—, upwardly directed 18, 43
rpeval (module) 62
rpoly (module) 61
RPolyEval (algorithm) 60
RPolyEval (procedure) 62
RPolyEvalErrMsg (function) 62
RPolynomial (type) 61

Schauder’s fixed-point theorem 152
Scientific computation with automatic result
verification 11

Screen 43
Search, local approximate 107, 114, 283,
292

Second derivatives 71
— Hessian matrix 226
Second order differentiation arithmetic 71
— for gradients and Hessians 226
Semimorphism 44
Sensitivity analysis 224
Set
—,empty 93
- of basic indices 196
- of feasible solutions 195, 200
—of index sets 197
— of linear programming problems 224
— of neighboring basic index sets 198,
200
~ of nonbasic indices 196
— of optimal basic feasible solutions
197, 204
- of optimal basic index sets 197, 204
Shubert’s function 125
Simplex method 196
—, revised 208, 223
Six-Hump Camel-Back function 310
Slack variables 219
Slice notation of PASCAL-XSC 25
Solution
—, basic 196
-, basic feasible 196
-, basis stable 199
—, feasible 195
—, infeasible 197
—, optimal 195
-, optimal basic feasible 197, 204,
208
-, unique optimal 198
Special symbols, index of 325
Spectral radius 285
StaggArray (type) 146
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Staggered

- arithmetic 138, 193

— correction format 135
Staggered (type) 138
Standard form of linear programming

problems 195

Stationary point 109, 285

-, local uniqueness of a 109, 285
String concept of PASCAL-XSC 28
Structure of the book 2
Sub-

— boxes 282

- distributive law 35

— division 105, 282

—interval 105

- matrix 196

- vector 196
Sub (algorithm) 137
Subarrays of PASCAL-XSC 25
Supremum, interval 31
Symbols, index of special 325

Ta.bleau, interval 197, 200
Tag field 313
Test

-, concavity 108, 284

-, midpoint 106, 283

~ , monotonicity 107, 283

-, non-convexity 108, 284
Theorem

-, Brouwer’s fixed-point 51, 175
Thick

— complex interval 38

—interval 31
Thin

~ complex interval 38

- interval 31
Toeplitz form, bidiagonal 58
Tolerances of input data 223
Truncation error 149
Types

— CIPolynomial 162

— CPolynomial 161

~ DerivType 174

~ GradType 245

~ GTvector 245

— HessType 231

~ HTvector 231

— , non-private 23

- of PASCAL-XSC, predefined 18

— Pair 115
— PairPtr 115, 293
—, private 23

— RPolynomial 61
— StaggArray 146
— Staggered 138
- xinterval 93
Typography 3

Ulp 47
Ulp-accuracy 47, 314, 318
UlpAcc (function) 314, 318
Unbounded (algorithm) 200
Unbounded objective function 197, 200,
203, 222
Unique solution
— for linear systems 175, 180
Uniqueness
- check 89, 109, 267, 285
- of a global minimizer 109, 285
- of a minimizer, local 109, 285
- of a stationary point, local 109, 285
- of a zero (root), local 91, 270
Upper bound
- for the global minimum value 106,
283
- of an interval 31
Upwardly directed rounding 18, 43
use-clause of PASCAL-XSC 23

Variables
— DerivOrder 73
— FreeList 115, 293
~ GradOrder 245
— HessOrder 230
Vector
-, interval 42
-, maximum norm of a 42
— of reduced costs 196
—,sub- 196
Verification 51
— a posteriori method 52
— a priori method 52
—, automatic result 51
-, numerical 6, 14, 51
-, program 14
—,result 6
- step, additional 89, 109, 267, 285
VerificationStep (algorithm) 91, 112, 180,
270, 290
VerificationStep (procedure) 96, 119, 185,
272, 297
Vertex 196
-, neighboring 198
-, optimal 197

Wrapping effect 40

Xi.ari (module}) 93
XiNewton (algorithm) 90, 269
XINewton (procedure) 96, 272
xinterval (type) 93

Zero
—,close 170
-, cluster of 170
—, local uniqueness of a 91, 270
-, multiple 160, 170
-, multiplicity of a 152
— of a complex polynomial 152, 161
- of a nonlinear function 87, 264
-, simple 160
Zero-suspicious entry 179

Index
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