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Preface

Information about the range of a function f or related functions
(derivative, partial derivative, inverse, etc.) is of great interest to people
working in the fields of numerical and functional analysis, differential
equations, linear algebra, approximation and optimization theory and
other disciplines.

The problem of finding the global minimum (infimum) or the global
maximum (supremum) of f over a domain X is, for example, a basic
problem of global optimization theory.

The bounds of the range of the derivative are furthermore used to
construct Lipschitz constants or other constants which are required in
existence or convergence assertions in fixed point theory and iterative
procedures.

In order to choose an appropriate algorithm for finding an approximate
property of f it is often necessary to have information about the geometry
and other properties of f obtained from knowledge of the range of f.

If f(X) denotes the range of f over the domain X, for example, then the
set f(X) U X contains all fixed points of f and if f(X) U X is empty then f has
no fixed points, etc. Or, if f(X) denotes the range of the derivative over X,
then 0 & f'(X) says that fis monotone over X, or if 0 < inf,.x f'(x), then fis
convex over X, or if 0 & f(X) then a programmer can use procedures where
it is possible to divide through values f(x) for any x € X, or if the set of
values [f(x) — f(»)}/(x — y), x # y has an upper bound then this bound is a
Lipschitz constant for f, etc.

The aim of this book is to present formulas and methods that may be
applied to the problem of finding the range of a function in one or several
variables over an interval yielding the range or intervals including the
range. This is equivalent to saying that the formulas or methods yield the
global minimum (or maximum) of f or lower (upper) bounds for the global
minimum (maximum). The reason for choosing outer (and not inner)
estimations for the range is that the logic of methods for solving for zeros of
equations, etc. require outer estimations.
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As an example let F(X) be an outer and y(X) an inner estimation of the
range f(X), that is,

Y(X) € f(X) € FX).
Then, returning to the previous examples, the conclusion
ifFX)NnX=@ then (X\)NnX=¢

is valid. The statement ‘F(X) N X contains all fixed points of F’ is also
valid. If F(X) is replaced by y(X), then neither the conclusion nor the
statement are valid in general. Similar considerations hold for the other
examples that were mentioned.

In this book a theory is treated whose application will guarantee safe
bounds for the range (or the global minimum, etc.) for each function
considered. Furthermore, good convergence properties of the bounds to
the range are obtained via an iterative approach. The theory is essentially
based on two very simple but, nevertheless, extremely effective principles
due to Moore (1966).

The first principle is the repeated utilization of the fact that for each
continuous function f: X — R, X € I (R denotes the set of reals, [ the set of
compact intervals of R) an interval F(X) € I exists with

fX) € F(X).

The important practical point is that such inclusions F(X) not only do
exist, but that they can also be obtained both in theoretical investigations
and in numerical calculations on a computer. These inclusions are obtained
via the use of interval arithmetic. Additionally, if interval arithmetic is
implemented on a computer then for any function f that can be evaluated
by a computer the inclusion F(X) is obtained almost automatically by
replacing the variable x of the function procedure by the domain X.

At this point it is necessary to emphasize that the theory and the contents
of this book do not depend on a computer or on the interval arithmetic
equipment of a computer or on any other practical, numerical, or
programming aid. However, the theoretical or historical background of
some part of the theory developed in this book needs some theoretical facts
of interval arithmetic.

The additional advantage of the described theory is that the related
methods can easily be translated into computer programs.

The programming of the methods is not done in the book, it is left as an
option for the reader. The reader is, however, aided in this task by some
hints and remarks.

The second of the two above-mentioned principles consists of an
appropriate technique for constructing inclusions F(X) such that, together
with a subdivision method of X, quadratic convergence of the inclusions to
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the range can be attained by an iterative procedure. This technique is
called the centred form. Using this technique an inclusion F(X) is obtained
practically in most cases by a Taylor-development of f at the ‘centre’ of X
and replacing the variable x of f by the domain X.

As the manuscript was being completed a totally new method for
obtaining inclusions F(X) was brought out by Cornelius-Lohner (1983).
The essential feature of this technique is to represent f in the form

f=g+r

such that g is a ‘good” approximation of f and such that the range g(X) can
be computed exactly (neglecting the rounding errors). If the interval S(X)
is an inclusion of 7#(X) then the interval

F(X) = g(X) + S(X)

is an inclusion of f(X). This is called a remainder form. If g is chosen as a
Hermite interpolation polynomial, then F(X) is called an interpolation
form. The advantage of using interpolation forms is that theoretically any
order of convergence can be gained. Convergence order 3 or 4 is
recommended in practice.

We have not included methods in our book which are known from global
optimization theory since the interested reader can find very good guides
to these methods in, for example, McCormick (1972), Spang (1962),
Dixon-Gomulka-Szego (1975), Wilde (1978) and Dixon-Szego (1978b),
and several collections of articles of the subject, for example, Lootsma
(1972) and Dixon-Szegé (1975), (1978a). These methods contain grid
techniques, random methods, gradient methods, techniques for determin-
ing the local minima first and then proceeding to the global minimum, etc.
Seemingly none of these methods ‘can be guaranteed to locate the global
minimum but considerable success has been achieved. It is probably for
this reason that random methods for global optimisation are still so
popular’ (Dixon-Gomulka-Szegd (1975)). Interval methods, however,
guarantee always the location of the global extremum and, in most cases,
with arbitrary accuracy.

Methods for determining the range of functions which are given only
implicitly have also not been included in our book. Examples of such
functions are given by functions defined by differential equations, integral
equations, or other operator equations. Methods for obtaining the range of
such functions depend very deeply on the special theories like the theory of
differential equations, etc.

We now give a short description of the content of the book. A somewhat
better overview would be obtained by reading the introductions at the
beginning of most of the chapters and sections.

Chapter I offers an introduction to interval arithmetic and the
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background for its application for obtaining inclusions of the range. Special
attention is given to Lipschitz conditions of interval functions, since these
properties are responsible for the quadratic convergence assertions
discussed in the sequel.

Chapter II. The standard centred forms are explicit formulas for
inclusions of the range of arbitrary rational functions in one or several
variables. There are forms of different order. The higher the order the
better is the inclusion. Centred forms that are recursively defined via
interval slopes are further discussed. These are called Krawczyk’s centred
forms. They have a lower computational complexity than the standard
centred forms.

Chapter III. The standard and Krawczyk’s centred forms are applicable
for rational functions only. A more general definition of a centred form
extends its applicability to non-rational functions as well. However, this
generalization gives no explicit formula for concrete inclusions as was the
case with the standard centred form. Rather, a criterion is given to show
whether or not any given formula can act as a centred form. The main
theorem on quadratic convergence is developed and proven with all
details. It is shown that Krawczyk’s centred form, the standard centred
form, the mean-value and Taylor-forms satisfy the general definition of a
centred form. An extensive explanation of this general definition follows
since there are several differences between this definition and those of
other authors. These differences arise mainly with the steps from a centred
form to a centred form function and from the ‘centre’ of the domain to a
developing point function. These steps are accomplished in this chapter
and are necessary for a clear exposition. Finally, many hints for the
application of the centred form are given. For example, the computational
complexity of the formulas can be considerably reduced if fis known to be
monotone in some of the variables.

Chapter IV. The subdivision method is a procedure to improve the
inclusions of the range obtained by some method by subdividing the
domain. If the diameters of the subdomains which are generated tend to
zero then, under certain conditions on the function f, the inclusions of the
range tend to the range quadratically.

Chapter V. It is shown that the standard centred form is an optimal
formula for constructing the desired inclusions in the sense that no other
formula which processes the same data (information) of f as the standard
centred form, is better than the standard centred form.

Chapter VI. Some other methods for constructing inclusions for the
range are discussed. They also depend merely on interval ideas or are
extensions of the real case to the complex case. Advantages and
disadvantages of these methods are discussed. For example, the use of
Bernstein polynomials brings out criteria that allows one to decide whether

Preface 11

an inclusion of the range is already the range itself. The method of
Cornelius-Lohner (1983), that is the construction of interpolation forms,
which leads to higher than quadratic convergence, is extensively discussed
and explicit formulas for inclusions are given that have a third order
convergence.

Acknowledgements. Thanks are due to the National Science and Research
Council of Canada and the Killam Foundation for financial support.



Chapter I

Interval Arithmetic

Suppose p(x) = ag + a;x + ... + a,x" is a polynomial and suppose we wish
to compute an inclusion for the range of values of p(x) over an interval X.
If we compute p(X) = ap + a; X + ... + a,X" using interval arithmetic then
the interval p(X) will include the range as required. This shows that
interval arithmetic is an important tool for our considerations. Some of the
basic facts are therefore developed in this chapter.

1.1 THE TRICK OF INTERVAL ARITHMETIC

Interval arithmetic was introduced by Moore (1966). Here we briefly
discuss the reasons for using interval arithmetic.

Present-day computers employ an arithmetic called fixed length floating
point arithmetic or short floating point arithmetic. In this arithmetic real
numbers are approximated by a subset of the real numbers called the
machine representable numbers (or short machine numbers). Because of
this representation two types of errors are generated. The first type of
error occurs when a real valued input data item is approximated by a
machine number. The second type of error is caused by intermediate
results being approximated by machine numbers.

Interval arithmetic provides a tool for estimating and controlling these
errors automatically. Instead of approximating a real value x by a machine
number, the real value x is approximated by an interval X having machine
number upper and lower boundaries containing the usually unknown value
x. The width of this interval may be used as measure for the quality of the
approximation. The calculations therefore have to be executed using
intervals instead of real numbers and the real arithmetic is replaced by
interval arithmetic.

Let us consider an example. The real number 1/3 cannot be represented
by a machine number. It may, however, be enclosed in the machine
representable interval A = [0.33, 0.34] if we assume that the machine
numbers are representable by two-digit numbers (without exponent part).

[Sec. 1.1] The Trick of Interval Arithmetic 13

If we now want to multiply 1/3 by a real number b which we know lies in
B = [-0.01, 0.02] then we seek the smallest interval X which

(a) contains b/3,

(b) depends only on the intervals A and B, and does not depend on 1/3
and b,

(c) has machine numbers as boundaries.

The realization of these requirements is accomplished by two steps:

(1) Operations for intervals are defined which satisfy (a) and (b),
(i) the application of certain rounding procedures to these operations
yields (c).

These two steps and the properties resulting from their application have
been developed extensively during the last two decades, cf. Moore (1966,
1979), Nickel (1975), Alefeld-Herzberger (1974, 1983). Further applica-
tions of interval arithmetic may be found in Nickel (1980).

It should again be mentioned that only a few principles of theoretical
interval arithmetic are used in this monograph, and that it is possible to
program the formulas and results on computers which are not equipped with
interval arithmetic procedures. In the latter case, however, the rounding
errors may falsify the results.

Readers who are interested in how to implement interval arithmetic on a
computer may consult, for instance, Kulisch-Miranker (1981).

1.2 INTERVAL ARITHMETIC OPERATIONS

Let I be the set of real compact intervals (these are the ones normally
considered). Operations in I satisfying the requirements (a) and (b) of
Section 1.1 are then defined by the expression

A*B={a*b:aec A, b e B} forA,Bel (1.1
where the symbol * stands for +, —, -, and /, and where A/B is only defined
if 0 ¢ B.

The expression (1.1) is motivated by the fact that the intervals A and B
include some exact values, « respectively f, of the calculation. The values
« and P are generally not known. The only information which is normally
available consists of the including intervals A and B, where « € A, € B.
From (1.1) it now follows that

a*feA=*B.

This means that the (generally unknown) sum, difference, product, and
quotient of the two reals is contained in the sum, difference, product, or
the quotient of the including intervals.
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It is emphasized that the real and the corresponding interval operations
are denoted by the same symbols in the sequel. So-called point intervals,
that is intervals consisting of exactly one point

[a, a]

are denoted by a. The expressions ad,a + A, Ala, (—1)A, etc. forae R, A
€ I are therefore defined (R denotes the set of real numbers). The
expressmn (=1)A is written as —A in the usual manner.

It is always assumed in interval analysis that the operations given above
are really interval operations, that is, the result of applying the above
operations is always a compact interval. A proof of this fact appeared in
Moore (1962), but this reference is not readily available. The following
lemma is therefore included here:

Lemma 1.1 If A, B € I, then A * B € I, if * represents any interval
operation provided A * B is defined.

Proof Let * be one of the interval operations. The restriction of * to the
Cartesian product A X B is then equivalent to a real binary operation, and
therefore continuous. Since A X B is compact with respect to the natural
topology of R, it follows that A * B as image of A X B under * is also
compact, see for example, Wilansky (1970). Furthermore A X B is
connected. The image of a connected set under a continuous function is
also connected. This means that A * B is connected and A * B is therefore a
compact interval since these are the only compact and connected subsets of
R, cf. Wilansky (1970). o

Proofs avoiding topological theorems also exist. They are based on some
properties of R relating to order and continuity.

Expression (1.1) does not present a practical way of implementing the
operations since it is not represented by an arithmetic expression. The
following formulas are therefore used for practical calculations.

Lemma 1.2 The definition of the interval operations is equivalent to
la,b] + [c,d] = [a+ ¢, b+ d],
[a,b] — [c,d] = [a—4d,b -],
[a, b][c, d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)},
la, b)/[c, d] = [a, b][1/d, 1/c] if O & [c, d].

Proof. The proof that the above formulas result in the same results as
those given by (1.1) is not difficult. One only has to show that any point of
a result [a, b] * [c, d] of the left side is also a point of the interval on the
right side, and conversely. The execution of the proof is tedious mainly
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because of the occurrence of four possible cases. A fairly simple proof may
be found in Ris (1972). o

Lemma 1.2 shows that subtraction and division in I are not the inverse
operations of addition or multiplication as is the case in R. For example,

[0,1] - [0, 1] = [-1, 1],
[1, 2111, 2] = (112, 2].

This property is one of the main differences between interval arithmetic
and real arithmetic. Another main difference is given by the so-called
subdistributive law,

AB+ C)SAB+ AC forA,B,Cel (1.2)

The proof of (1.2) is evident, from the fact that any point x € A(B + C) is
of the form x = a(b + ¢) forsome a € A, b € B, and c € C. This means that
x = ab + ac € AB + AC, from (1.1). It is not possible to prove the
converse since a point y € AB + AC may only be represented by y = a;b +
ac with a,, a, € A, b € B, and ¢ € C and since it is not always possible to
find an a € A such thaty = a(b + ¢),i.e. y € A(B + C).

Example 1.1 [0, 1][1 — 1] = 0,
[0, 111 — [0, 1]1 = [-1, 1].
The distributive law is valid in some special cases.

Lemma 1.3 Fora e Rand B, C € I we get
a(B+ C) =aB + aC. O

The proof is trivial using Lemma 1.1. A complete list of conditions which
lead to distributivity is given in Ratschek (1971) and Spaniol (1970).

In the following lemma we give some further properties of interval
arithmetic.

Lemma 1.4 (i) Addition and multiplication are commutative and
associative.

(ii) For A, B, C, D € I and any interval operation * it follows that A € B,
C < D implies A * C < B * D, if the operations are defined (inclusion
isotonicity of the interval operations). m]

The proof of this lemma is evident using (1.1).
Let I be the set of all interval vectors A = (A4,, ..., A,,), 4; € I, and
(0, ..., 0). Interval vectors are usually interpreted as right
parallelepipeds A; X ... X A,,. They will also be called intervals when it is
clear from the context whether real intervals or interval vectors are



16 Interval Arithmetic [Ch.1

intended. Vector operations are defined in the usual manner by
Ay,..., Am) = (dAq,..., ®A,,) ifeeR, A el,
(Ay,..., An) £ (By,...; Bp) = (AL £ By,..., A, £ B)
if A;, B;e I
The inner product of I'” is denoted by
A-B=AB +..+A,B,.

Further relations on I are to be understood componentwise, for example
ASBoracAforA,BeI" aeR".

If D © R™, then I(D) S I shall denote the set of all m-dimensional
intervals X € D.
The width of an interval A = [a, b] is defined by

w(A) = b — a.
The width of an interval vector A = (A4,..., A,,) € I'" is defined by
w(A) = max {w(A,): i =1,..., m}.

We list some properties of the width, cf. for example, Alefeld-Herzberger
(1974, 1983): If A, Be I, C, D € I, a € R, then

A < B implies w(A) < w(B),
w(C x D) = w(C) + w(D), (1.3)
w(aB) = |a|w(B).

These statements follow directly from the definitions. The midpoint of an
interval A = [a, b] is defined as

m(A) = (a + b)/2,
and the midpoint of an interval vector A = (Ay,..., A,,) € I'" as
m(A) = (m(A,),..., m(A)).

The following important property follows directly from the definition of
the midpoint,

m(A + B)=m(A) £ m(B)  ifA,B,elI" (1.4)

The interested reader may find further properties of interval arithmetic
in Alefeld-Herzberger (1974, 1983), Moore (1966, 1979), Nickel (1975,
1980).
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1.3 NORMS AND METRICS IN INTERVAL SPACES

One could hardly conceive of the existence of an analysis not using the
tools of norms and metrics. These tools are also essential for interval
analysis. In this section we therefore introduce the basic facts on norms and
metrics in interval spaces. (The reader may delay studying this section until
the contents are needed.)

Let R* be the set of non-negative real numbers.

Definition 1.1 A function “ ” I" — R* is called a norm on I if
1. )4 = 0iff A = o,
2. [laal] = |of ||a]}if o € R,
3.l + B < la]l + [}
The norm is called inclusion isotone if
A < B implies ||4]| < ||B].

We will only introduce one norm on I since all continuous norms on [
are equivalent in the usual sense of analysis, as shown in the Appendix.
The expression

|A[ = max {|a], |b[} (1.5)

is called the absolute value (or modulus or maximum norm) of A = |a, b].
It can easily be checked that the absolute value is an inclusion isotone norm
onl If A =(Ay,..., A,) € I" then

”AH = max {|A,»|: i=1,..,m)}

is called maximum norm of A. The maximum norm is also an inclusion
isotone norm on /. In the sequel, the symbol || ” will always denote the
maximum norm on I™.

A number of properties for the absolute value have been verified in for
example Alefeld-Herzberger (1974, 1983) or in Moore (1979). If A, Be I
then we list a few of the properties:

|AB| = |4] |B],
4| < w(a)ifo e 4,
w(AB) < 2|A|, . (1.6)
w(AB) < w(A)|B| + |a|w(B),
w(l/A) < |U/A> w(A)  if 0 ¢ A.

The proofs for these properties are found in the above references.
Furthermore, if A € I and if “ || also denotes the maximum norm on R™,
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then
w(A) = max {||a—b||:a,beA}. (1.7)
Letting x, y € R, we define (after Sunaga, 1958)

[x,y] ifx<y,
VY = |, x]  ifysux

We see that x v y is the interval spanned by the reals x and y, that is, the
smallest interval that contains x and y. It exists since the intersection of
compact intervals is either a compact interval or the empty set. If x =
(X155 Xm), ¥ = (V15---, Ym) € R™, then we define

XVY=(X{VY1yeeir Xy VY,,) €T (1.8)
Clearly, x v y is the interval that is spanned by the vectors x and y. We
recognize the following relation:

wxvy) = ||x - y|| for x, y € R™.

Furthermore, if X = (X1,..., X,,,), Y = (Y4,..., Y,,) € I" then the smallest
interval Z € I'" that contains X and Y is denoted by X v Y and is equal to
(Xl \' Yl,..., Xm \' Ym)

Although the definition of a metric is known and independent of special

algebraic structures such as interval spaces we still mention it in order to be
complete:

Definition 1.2 A function p: I X I'" — R™ is called a metric on I'" if

1.p(A,B) = 0iff A = B,
2. p(A, B) = p(B, A),
3. p(A, B) < p(4, C) + p(B, 0),

holds for all A, B, C € I'". A metric p is called homogeneous if
p(aA, aB) = |a| p(A, B) foraeR, A, Bel™
A metric p is called translation invariant if
p(A+ C, B+ C)=p(A, B) for A, B, CeI™.
A metric p is called chain inclusion isotone (since the assumption is a chain)
lfA S B < C implies p(4, B) < p (4, O) forA,B,Cel”

where the inclusion of interval vectors is understood componentwise.
The most important metric in interval arithmetic is the Hausdorff metric
|.,.| in I, defined as follows:

|[a, B], [c, d]| = max {|la — |, [b — d[},
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and if A = (Ay,..., A,), B = (By,..., B,,) € I',
|A, B| = max {|A;, B|:i=1,..., m}.

It can easily be shown that the Hausdorff metric is homogeneous,
translation invariant, and chain inclusion isotone. Furthermore, the
Hausdorff metric induces the maximum norm, that is,

|A,0|=]l4]] foraer. (1.9)

Warning: Since subtraction in I and I is not the inverse operation of
addition as is the case in vector spaces, the relation |A, B| = HB - A|| is not
valid. For a discussion of this phenomenon, see Ratschek (1975).

Some properties of the Hausdorff metric in I are (see, for instance,
Alefeld-Herzberger (1974, 1983) or Krawczyk-Nickel (1982)): If A, B, C,
D, A;, B;e I(i = 1,..., m) then

|AB, AC| < |A| |B, |, } .
w(B) — w(A) < 2|A, B| < 2[w(B) — w(A)]if A < B, ‘

|a+cC,B+D|<|A,B|l+]|C D] (1.11)
| gAi,:ZlBil sé |a,, B. (1.12)

Formula (1.12) is proven by applying (1.11) and natural induction.
Formula (1.11) is proven using the triangle inequality and the translation
invariance of the Hausdorff metric:

lA+C,B+D|<|A+C,B+C|+|B+C,B+D|=|A,B|+|CD|.
A further important formula needed is
|A-B,A-C|<ml|A||B,c| forA,B,Cel™ (1.13)

It is only necessary to use (1.12) and (1.10) for the verification of this
formula:

|4-B, A-C| < 2|A,~B,~, AC| < 2 |l |B;, ¢

< Zlall [, c| = m|la] |8, |
where A;, B;, C; denote the components of A, B, and C.

Lemma 1.5 (Krawczyk-Nickel, 1982). If A, B,C,D e landif A 2B 2
CND# @ then

|, B| < max {|4, C|, |4, D|}.
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Proof First we verify a special case of the lemma, that is
cnD=0.

If in addition C = 0 or D = 0, the assertion follows directly from the
definition of the Hausdorff metrics. Therefore we can assume that neither
C nor D is 0 and that, without restricting the generality, C is to the left of
D, that is,

C =[c0,c=<0,
D = [0,d],d=0.
The remaining assumptions lead to the notation
A =ay,a)], B=1[b1,b;], and a, <b,<0<b, <a,,

and the following inequalities:

,|ay—d|} = A, D

lay — by| < a, < max {|a, — 0|, |a; — ¢|} = |4, cl.

|a1 - b1| = |a1| < max {Ial -0

’

The assertion is evident when using the definition |A, B| = max {|a1 - b1| ,
|a2 - bzl}

The proof of the general case is reduced to the special case. It is only
necessary to remember that, given intervals U = [uy, u;}] S V = [vy, vy},
there exists exactly one interval Z = [v; — u;, v, — u,] satisfying the
equation

U+zZ=YV.

Let now intervals A, B, C, D be given as required by the lemma. Then
there exist intervals A’, B’, C’, and D' satisfying

A=A"+CnD,B=B"+CnD,C=C"+CnNnD,
D=D +CnD.

It is easy to check that the intervals A’, B’, C’, and D’ satisfy the
assumptions of the proven special case, i.e.,

A'2B 2CuD =0.
Therefore we get the inequality
4", B'| < max {|4’, C|, |4’ D]},

which is equivalent to the asserted inequality by translation invariance. O

1.4 INCLUSION OF THE RANGE — A COMBINATORIAL PROBLEM?

Let us now investigate the set theoretic background for finding interval
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expressions that include the range of a function f in the same manner as the
centred form will do it. The range of f over an interval X (in one or several
dimensions) is denoted by

fX) = {f(x): x € X}.

What can now be done with a rational function f in order to get a centred
form inclusion for f(X)? The answer is very easy: It is only necessary to
write fin a certain manner, to replace the variable by the domain X, and to
evaluate this expression using interval arithmetic operations.

In general, an inclusion of the range is obtained if f is written in a
completely arbitrary form and the variable x is replaced by the domain X
and then evaluated using interval arithmetic. For example, if

fx) = x = 22

is defined over the domain X = [0, 2], then f may be written as
fx) = x(1 - x)

or as

fx)=c—c2+ (1 - 2)(x — c) — (x — c)* for some c € R.

The last representation is nothing but the Taylor expansion of f at the point
c. The range of f over X is

fX) = [-2, 1/4].

If we replace x by X in the above expressions and use simple interval
arithmetic (that is, a power X" is calculated as X-X-...-X (n times), see
Section 2.3) then the following inclusions of f(X) are obtained:

X-X =[-4,2],

[—4’ 2] ifc= O’

-2,2 ifc=1,
c-+(1-20)X-)-(X-¢f= {_2, 2{ if ¢ = 1/2,

[-2,32] ifc=3/4.

From (1.1) it follows that the resulting intervals are always inclusions of
f(X) (see also Theorem 1.1). For example, if x € X then

f)ec—A+ (1 -2)X—-c¢c)— (X -3

Since the interval on the right side does not depend on x it follows that it
contains all such f(x) and therefore f(X).

The question now arises how to write a function or how to choose an
expression for fsuch that the replacement of x by X yields the best possible
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or at least a reasonable inclusion. Since there are infinitely many
possibilities of writing the function f we cannot say that the search for an
appropriate expression is a finite combinatorial problem. Also, we cannot
say whether there exists a solution to this question at all. We can only
prove that there is no better inclusion than some specified centred form if
in the competition of all possible expressions for f a certain computational
complexity is given, see Chapter V.

From the above discussion it clearly follows that it is necessary to both
distinguish between a function and its defining arithmetic expression as
well as to have some precise notation for the process of replacing x by X.
The above heuristic discussion may then be made more precise.

Let f(x) be any real arithmetic expression (abbreviated, an expression) in
the real variable x or in the vector variable x = (xy,..., x,,,) € R™. That
means that f(x) is a finite meaningful string of symbols in the sense of
arithmetic consisting of

the variable (or its components),
real numbers (coefficients),

the four arithmetic operations, and
parentheses, brackets, etc.

This means that x — xx is an expression in the variable x € R, or
abbreviated, x — x?, if the common power notation is used. Furthermore,
X1 — Xpx3 0r 3 — 4/(x1x,x3) are expressions in the variable x = (x;, x5, x3) €
R®. The symbol strings 3 — (x or +4 or sin x are not expressions, however,
since they are not meaningful strings in the above sense.

Two expressions are said to be equal if the corresponding strings are
equal (and not the resulting functions). This means that an expression f(x)
is only then equal to x — x? if it is x — x? itself. The expressions x(1 — x)
and x — x? are not equal since the strings are not equal. Each arithmetic
expression f(x) clearly defines a rational function, and this expression is
called the underlying or defining expression (or, abbreviated the
expression) for this function.

Each rational function can be described by infinitely many expressions.
The function f(x) = x — x* for example has among others the following
underlying expressions:

x —x*+ nx — nx for each integer n.

An interval expression (usually abbreviated to an expression) is defined
analogously to an arithmetic expression. In the text of the definition one
has only to replace ‘variable’ by ‘interval variable’ and ‘real numbers’ by
‘intervals’. The operations are clearly then the interval operations.

If f(x) is an expression and X an interval of the same dimension as x,
then the (interval-) expression which is obtained by replacing each

o]

e
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occurrence of x in f(x) by X is denoted by f(X). The expression f(X) is then
called the natural interval extension of f(x) on X, see Moore (1979). The
function which is defined by the assignments X — f(X) is called the
natural interval extension of f(x).

For simplicity of notation we also allow f(x) or f to denote the rational
function defined by the expression f(x), and we speak usually about the
natural interval extension of the function f(x) on X if there is no doubt or
confusion regarding the underlying expression. We also denote by f(X) the
interval obtained as the value of the calculation implied by the expression
f(X) if there are no disallowed divisions. In this case the interval f(X) is
called the value of the interval extension.

The following theorem due to Moore (1966) forms the basis for the
theory of inclusions of ranges.

Theorem 1.1 Let D S R™, X € I(D), and let f(x) be an arithmetic
expression in the variable x € D. If the interval extension f(X) is defined,
then

X)) < f(X).
Proof Leta € f(X). Then there exists an argument y € X such that f(y) =
a. The application of Lemma 1.4 yields a = f(y) € f(X). o

If f is a rational function, then f(x) is undefined as an expression, since
the underlying expressions are not unique. When we define a rational
function, however, it is usually written down as an ‘expression’ which then
shall be seen as the current defining expression of the function. For
example, let p(x) = 1 + 3x — 5x* be a polynomial. By the expression p(x)
we then imply that the expression 1 + 3x — 5x* is considered.

We will also use the usual abbreviations of arithmetic when we write
expressions. For example

n

X", > ax’

i=0
where x° means 1, etc.

We are certain that our definition of an expression is sufficient for the
purposes of this book. The reader who feels that this definition is not
precise enough may choose a recursive definition and may orient himself
by looking at the definitions of a well-formed formula in logic, cf.
Mendelson (1964) or a polynomial symbol in universal algebra, cf. Gritzer
(1979).

1.5 INCLUSION ISOTONICITY AND LIPSCHITZ CONDITIONS

In this section we will consider some connections between real and interval
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functions. These conditions enable us to carry certain properties of real
functions over to interval functions or to guarantee similar or other
properties of interval functions. Most of the material of this section was
first given in Moore (1966, 1979).

Let D S I'" and let F:I(D) — I* be an interval function. F is said to be
inclusion isotone if

X S Y implies F(X) € F(Y)

Lemma 1.4 states that the four interval operations are inclusion isotone.
The range function f:1(D) — I* of a function f: D — R* which is defined by
AY) = {f(y): y € Y} is furthermore inclusion isotone. Many interval
functions are not inclusion isotone, however, for example, the interval
function F: I — I, defined by

F(X) = m(X) + (X — m(X))2

is not inclusion isotone, see Moore (1979). We have F([0, 2]) = [1/2, 3/2],
and F([0, 1]) = [1/4, 3/4] and clearly F([0, 1]) is not contained in F([0, 2]).

It is important to consider inclusion isotonicity since various properties
of centred forms are connected to inclusion isotonicity as seen in the
sequel. The following lemma shows that inclusion isotonicity is a very
‘natural’ property that is valid in the large and frequently used class of
natural interval extensions.

for all X, Y € I(D).

Lemma 1.6 If f is an arithmetic expression in one or several variables then
the natural interval extension of f is inclusion isotone.

Proof The four interval arithmetic operations are inclusion isotone. The
assertion follows by complete induction since a rational function consists
only of finitely many applications of the arithmetic operations. o

It is clear that the concatenation of inclusion isotone functions is
inclusion isotone.

In order to handle Lipschitz conditions it is necessary to say something
about the manipulation of limits and the topology used in I". The natural
way of defining limiting operations is via the 2m endpoints of the m
coordinate intervals or the 2m related boundary functions, cf. Apostola-
tos—Kulisch (1967).

For example, let (Y,),-o be a sequence of intervals of I and Y,, =
Yutsoos Youm)s Yui = Wni> Znil, i = 1,..., m. This sequence is said to
converge to an interval Y = (Y,,..., Y¥,,,), Y; = [§;, 2], i = 1,..., m, iff for
each i = 1,..., m the endpoint sequences (y,;)n=0 and (z,,;)=o converge to
y: and Z; respectively. This means that the topology on I is defined in such
a manner that the mapping i: I — R>™, defined by

([)’1, Zl]"'-s [ym’ zm]) - ()’1, 215423 Ym> zm), (114)
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is a topological embedding with respect to the natural topology on R>™.
This topology can also be defined via the Hausdorff metric on I", see, for
example, Moore (1979).

Let D € I, Y € I(D), and F: I(D) — I*. In the above topology F is said
to be continuous at Y if lim,_, . F(Y,) = F(Y) for each sequence (Y,)n-o
converging to Y. If F is continuous at each Y € D, then F is said to be
continuous (in D). This definition of continuity is equivalent to the &- 8-
definition expressed by the Hausdorff metric, as is the case in analysis. A
simple proof may be made using the fact that the definition of continuity
involves the endpoints of the coordinate intervals. In this manner we get a
componentwise reduction to known analogous relations in real analysis.

As an example we consider an interval valued polynomial P(x) =
2o Ax', where A; = [a;, b;] and x € R™. Since the boundary functions of
P are continuous in R it follows that P is continuous. The boundary
functions, defined by P(x) = [g(x), h(x)], are g(x) = 27-0 ax' and h(x) =
2o bx'.

We note, however, that such an easy definition cannot be given for the
derivative concept, see Ratschek—Schroder (1971) and Markov (1977).

Lemma 1.7 Addition, subtraction, multiplication, division, max, and min
in I are continuous operations.

Proof The limiting process that is necessary in the proof is separated into
limiting processes for the left and right endpoints. In this manner the proof
is reduced to the continuity of addition, subtraction, multiplication,
division, max, and min in R. a

We now introduce a kind of a Lipschitz condition (Moore, 1979). This
condition will be essential in our investigation of quadratic convergence in
Section 3.3.

Definition 1.3 Let D S R™ and F: I(D) — I*. Then Fis called Lipschitz if
there exists a real number K (Lipschitz constant) such that

w[F(Y)] < K w(Y) for all Y € I(D).

The properties of being continuous and Lipschitz are independent. The
following examples are designed to demonstrate this independence.

Example 1.2 (Lipschitz condition does not imply continuity). Let & be
Dirichlet’s jump function,

0(x) = 1ifx >0,
=0ifx < 0.
Let F: I(X) — I with X = [0, 1] be defined by
HY) =Y + 3(w(Y)).
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Then by (1.3),
wlF(Y)] = w(Y),

and F is Lipschitz. However, F is not continuous at 0. The sequence
(Y,)5=1, given by Y,, = [0, 1/n] converges to 0, the sequence of the function
values F(Y,) = [0, 1/n] + 1 converges to 1, but F(0) = 0.

Example 1.3 (Continuity does not imply a Lipschitz condition). Let X =
[0, 1] and let the function F: I(X) — I be defined by

E(Y) = [0, VW(Y)].

Then, F is continuous but not Lipschitz in I(X). The continuity follows
from the continuity of the square-root function and the width function.
Furthermore, a Lipschitz constant cannot exist, since the set of quotients

wF(Y)Jw(Y) = Vw(Y)w(Y) = IVw(Y), w(Y) 0,
is unbounded.
Lemma 1.8 For an interval X € I'", the set I(X) is compact in I".

Proof The set I(X) is compact iff each sequence in /(X) has a convergent
subsequence, see, for example, Wilansky (1970). Now, if X = (X,..., X,n)
and if a sequence (Y,)n=o is given in I(X), where Y,, = ([Vut, Zn1l,---» Vnm>
Z,,]) and if the image of Y, under the homeomorphism i, see (1.14) is
denoted by Y, = (Vu1» Zuts-++» Yrm» Znm)s then (¥,)i is a sequence in the
compact set X; X X; X..X X,, X X,, € R* and has therefore a
convergent subsequence, whose preimage is a convergent subsequence of
(Yn):=0' o

The following theorem shows that both the large class of natural interval
extensions of rational functions, and also the class of those extensions
which are combined with continuous Lipschitz functions as the midpoint
function Y — m(Y) or the width function Y — w(Y) are Lipschitz.

Theorem 1.2 Let X € I'" and let the functions @y,..., @i 1(X) — I be
continuous and Lipschitz. Assume that the function F: I(X) — I is
constructed from the functions @y,..., @y, interval constants, and a variable
Y € I(X), using only the four interval operations. Then F is Lipschitz.

Proof The basic idea of the proof is due to Moore (1979). In the proof
complete induction is used with respect to the number of occurrences of
the interval operations in F. With the exception of the start of the
induction, each induction step can be executed by one of the following
cases.

If G, H: I(X) — I are continuous Lipschitz functions with Lipschitz
constants K and L respectively then each of the following functions are
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continuous and Lipschitz:

(a) G £ H, and this function has a Lipschitz constant which is K + L,

(b) GH, and this function has a Lipschitz constant which is given by
L max {|G(Y)|: Y e [(X)} + K max {iH(Y)|: Y e I(X)},

(c) aG for a € R, these functions have Lipschitz constants [}a|K,

(d) 1/G, if defined and this function has a Lipschitz constant which is
K max {{/G(V)*: Y € I(X)}.

These four cases can easily be verified:
(a) By (1.3),
w[G + H)(Y)] = w[G(Y)] + wlH(Y)] < (K + L)w(Y).
(b) By (1.6),
wl(GH)X(V)] < [GM|wH(V)] + [HY)| wG(Y)] < [G(Y)|L +
|H(Y)|K.
The last expression can be estimated upwards as asserted. The maxima
exist since /(X) is compact and both G, H and the norm are continuous.
(c) By(1.3),
w[aG(Y)] = |a|w[G(Y)] < alKw(Y).
(d) By(1.6),
wl/G(Y)] < |[UG(Y)PW[G(V)] < |UG(Y)]? Kw(Y).
The maximum of the Lipschitz constant exists due to the compactness and
the continuity. o

Remark 1.1 For simplicity, Theorem 1.2 is formulated only for simple
interval valued functions and not for interval vector valued functions. It is
naturally also valid in this last mentioned case.

Corollary 1.1 If Fis a natural interval extension of a rational function, then
a Lipschitz constant for F can be computed explicitly in finitely many steps.

Proof The analytical steps of the proof of Theorem 1.2 consist of the
determinations of the various maxima. In the absence of the functions
P1,..., Px, these determinations can be replaced by arithmetic or logical
steps,

max {|G(Y)|: Y € I(X)} = |G(X)|,
max {|V/G(Y)[%: Y € I(X)} = [UG(X)
etc., because the norm and the initial operations are inclusion isotone. O
Example 1.4 Let X = [0, 1] and let F: I(X)* — I be given by
FY)=Y,\Y,+Yi/(1+Y,) forYelX)*
Then by (1.3),
w[F(Y)] = w(Y1Y2) + w[Y3/(1 + Y,)].

2
5
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Using Corollary 1.1 and the formulas of the proof of Theorem 1.2, we get
w(Y1Y,) < |X| w(Yy) + |X|w(Yy) < 2|X|w(Y)
and
w[Yy/(1 + Y] < |X| w1/ + Y] + 1/(1 + X) w(Y3)
< x| [VQ + X)Pw(Ys) + [1/(1 + X)|w(Y3)
< (x| [v@ + 02 + (1 + D))w(y).

Since | X| = 1 and |1/(1 + X)| = |[1/2, 1]| = 1, the number 4 is a Lipschitz
constant for F, and clearly, F is Lipschitz,
wlF(Y)] < 4w(Y) forall Y € I(X).

A trivial but important lemma is the following:

Lemma 1.9 If F and G are interval functions that satisfy the Lipschitz
condition and the concatenation G o F is defined, then G o F is Lipschitz.

Proof Clearly, if K and L are the Lipschitz constants of F and G, then
w[G » F(Y)] = w(G[F(Y)]) < L w[F(Y)] < LKw(Y). a

The significance of the following theorem is its applicability to real (and
not only to rational) functions.

Theorem 1.3 Let X € I'" and let the function f: X — R be Lipschitz in the
usual sense of analysis, that is, there exists a constant K such that

@) =l <Kl =y forallx,yex. (1.15)
Then the range function f: (X) — R, given by Y — f(Y), satisfies the
Lipschitz condition.

Proof It is shown that

wlf()] < Kw(Y) forall Y € I(X)

holds. Let Y € I(X). Since Y is compact and since f is necessarily
continuous, there exist vectors x = (xy,..., X,n), ¥ = (¥1,..., ¥m) € Y such

that f(Y) = [f(x), f(y)]. By (1.15), it follows that
WD = f0) ~ fx) < Klly ~ |
= Kmax{lyi - x,~|: i=1,..,m} < Kw(Y).

Although Theorem 1.3 is formulated with the maximum norm it holds
for any norm since each two norms are equivalent in R™.
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Example 1.5 If X = [x;, x;] e I and if Y = [y, z] € I(X) is an interval
variable then the following range functions are Lipschitz, cf. Moore (1979):
; = [&, €],
Y2 = 2, 2 x> 0,
InY [Iny, In z] if x; > 0,

sin Y = [siny, sin z] if X € [—1, 1] n/2,

sin Y = [min {sin x: x € Y}, max {sin x: x € Y}],

etc.



CHAPTER 1I

The standard centred form

Among the most important inclusions of the ranges of functions are the
so-called centred forms, first suggested by Moore (1966). Explicit formulas
for these forms were found by Hansen (1969) for polynomials and by
Ratschek (1978) for rational functions. They will now be called the
standard centred forms in the sequel. These forms will therefore be
developed and investigated in detail in this chapter. Recursively defined
centred forms were recently introduced by Krawczyk (1983). These forms
of lower complexity than the standard centred forms, will also be discussed
in this chapter.

2.1 INTRODUCTION

The concept of a centred form is due to Moore (1966). When he computed
the range of specific functions he noticed that he got better results on the
average if he developed the functions in a certain manner around tt}e
centre of the domain of the function. Moore discussed this phenomenon in
some detail and he also compared these forms with other possibilities for
evaluating the range of a function. His observations were later gopfirmed
by the work of Goldstein-Richman (1973). The original definition of
Moore was: Let f be a rational function in one real variable x and let X be
an interval contained in the domain of f. Furthermore, let ¢ be the
midpoint of X, that is, ¢ = m(X). It then follows that there exists an
arithmetic expression s(y) such that

fx) = f(c) +s(x =€) 2.1

is valid. It is assumed that the expression s(y) is as simple as possible. If we
replace the variable x by the interval X and if we use interval arith;netic
instead of real arithmetic in the evaluation of the expression we obtain the
centred form of f on X, denoted by

F(X) = f(c) + s(X — ¢).

Sec. 2.1] Introduction 31

This centred form had the property that
F(X) 2 flXx)

where f(X) = {f(x): x € X} denotes the range of f over X. Moore wrote
(1966, p. 45) that his definition of the centred form was ‘rather vague’, and
he hoped that a ‘more precise and elegant presentation will be found’.

An explicit and useful definition of the centred form was not discovered
immediately. In the case of polynomials, Hansen (1969) noticed that a
useful centred form was the natural interval extension of the Taylor
expansion of the polynomial developed at the point c. He also noticed that
the function s must be written in the form

s(x) = (x — c)glx — ¢)

in order to get the so-called quadratic convergence which is a measure of
how quickly arbitrarily good inclusions can be computed, see for example,
the end of this section as well as Chapter IV and Section 3.3. The function f
is then written as

fx) = fle) + (x = c)g(x = o), (2.2)
and the centred form of f on X is
F(X) = flc) + (X = c)g(X = ¢). (23)

It also turned out that the underlying expression for g was not of
importance.

Explicit formulas for centred forms for arbitrary rational functions in
one and several variables were given in Ratschek (1978, 1980a). It was also
shown in Ratschek (1978, 1980a)-that better approximations of the range
can in general be found, if the condition that the expression s(y) should be
as simple as possible is dropped. Krawczyk’s (1983) recursively defined
centred forms are also of importance because of their low complexity.

The first attempt to define centred forms for real functions was
undertaken by Alefeld—Herzberger (1974). A very convenient and useful
version may also be found in Krawczyk—Nickel (1982). This version will be
developed in Chapter III. Centred forms for interval valued polynomials
are defined in Rokne (1981), and centred forms for rational functions over
the complex plane are studied in Rokne-Wu (1982, 1983). One of the most
recent results is due to Krawczyk (1982). His results show that the so-called
Krawczyk operator may be described using centred forms for operators.

Many authors have investigated the properties of the centred form for
the case that c is not necessarily the midpoint of the domain of f, see
Chuba-Miller (1972), Miller (1972), Alefeld-Herzberger (1974, 1983),

Krawczyk-Nickel (1982), Moore (1966). We discuss this point in Section
2.3.
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The so-called quadratic convergence is closely connected to the
treatment of the centred forms. The quadratic convergence is usually
written as

w(F(X)) — w(f(X)) = O(w(X))?,

if w(X) converges to 0. This means that there exists a constant y € R
depending on f and on X such that

w(F(Y)) — wf(Y)) < yw(Y)*  for Y e I(X).

Quadratic convergence indicates that it is appropriate to use centred forms
since it shows that the inclusion of f(X) can be improved ‘quadratically’, if
the domain X becomes smaller or if X is subdivided, see Section 4.2.
Centred form definitions are now in general only accepted if they have the
property of quadratic convergence which guarantees an efficient improve-
ment of the including estimation by subdivision methods.

In this chapter we discuss some classes of centred forms, the standard
and Krawczyk’s centred forms. If the reader is then familiar with these
forms and their properties he may easier understand the axiomatic
viewpoint that will be discussed in Chapter III. If the reader is only
interested in concrete inclusions for the applications then the explicit
representations of this chapter are more direct effective tools.

2.2 THE STANDARD CENTRED FORM FOR RATIONAL FUNC-
TIONS IN ONE VARIABLE

In this section we introduce the standard centred forms for functions in one
variable since this case provides a clear view of the main ideas. The case of
several variables is obscured by technical details. An example of this is the
use of multi-indices necessary for a reasonable development of centred
forms in several dimensions. These are treated in Section 2.5.

Let f = p/q be a rational function of one real variable represented by the
quotient of two polynomials p and q. Let n be the maximum of the degrees
of p and gq. For a real compact interval X contained in the domain of f and
the midpoint ¢ = m(X) we define

t; = pP(c) — flc)g®(c) fori=1,...,n. (2.4)
Let also H = X — c.

Definition 2.1 The interval

t4H + ... + t,H"/n!
g(c) + q'(c)H + ... + ¢"™(c)H"/n!

F(X) = flc) +
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is called the standard centred form of f on X if 0 does not lie in the
denominator.

It should be noted that although we stated in Section 1.4 that f(X) would
in general denote the natural interval extension of a particular expression
we reserve the notation F(X) for the standard centred form of f on X in this
chapter.

We furthermore eschew the recent trend in the study of centred forms of
being as general as possible and to admit any point of the domain of f as the
point c. A critical discussion of our standpoint can be found in Remark 2.5.
The reader may, however, disagree with us and join this line of
investigation.

We now have to show that Definition 2.1 is reasonable and that F(X) is
indeed a centred form as shown in our initial discussion. This therefore
implies that F(X) should be quadratically convergent and that F(X) =2
f(X). The quadratic convergence is shown in Section 4.2. Therefore we
restrict ourselves to proving that

fX) € F(X) (2.5)
holds if F(X) is defined. For this purpose we define
s0)=( 3wt 5 o). @9)

The standard centred form is then the natural interval extension of the
expression f(c) + s(y) to the interval H (that is, y is replaced by H).
Equivalently, it may be considered to be the natural interval extension of
the expression f(c) + s(x — ¢) to X (that is, x is replaced by X). We only
have to demonstrate that the expression f(c) + s(x — ¢) defines f, that is,
that f(x) and f(c) + s(x — ¢) are identical as functions. Then (2.5) is verified
by Theorem 1.1.
We write f in the following form:

px) _ px)g(c) +p(c)g(x) —pE)q(x) + p(c)a(c) — p(c)q(c)

= 9@)q(c)
_ Pl p&) = pl _ o) q(x) — q(c)
q(c) q(x) q(x)
— O+ (p(x) = p(c)) — fle)(g(x) — q(c))
q(x)

Writing the expressions g(x), p(x) — p(c) and g(x) — g(c) using their
Taylor expansions we obtain the desired expression for f(c) + s(x — c) after
an unimportant rearrangement. This proves (2.5).
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Example 2.1 Letf(x) =1 — x + x?and X = [0,2]. Forc = 1we gett; = 1,
t, = 2, and f(c) = 1, such that

f=fl)+nx—c)+Lx—c)2=1+(x—c)+ (x — ¢
FX)=1+H+ H =1+[-11] + [-1,1]? = [-1,3].
The range of f over X is f(X) = [3/4, 3].

Example 2.2 Let the rational function f(x) = (—3x* + 4x> — 2)/(4x? + 4x
+ 2) be evaluated over the interval X = [0.8, 1.2]. The range is first
estimated by evaluating f at 100 equally spaced points in X obtaining f(X)
= [—0.1522, —0.09489] with w[f(X)] = 0.05728. (Evaluating at 1000
equally spaced points did not change the above results.) We furthermore
obtained f(X) = [—0.2314, 0.09856] with w[f(X)] = 0.3299. Estimating the
range using the centred form resulted in F(X) = [-0.1717, —0.02838] with
w[F(X)] = 0.1433,

Example 2.3 The range of the rational function f(x) = (3x> — x +
3.5)/(4x* + x> + 2) is to be estimated over the interval X = [0.9, 1.1].
Estimating the range as in the previous example we obtained f{X) =
[0.6958, 0.8942] with w[f(X)] = 0.1984 (again no difference between 100
and 1000 evaluations in the estimation). Furthermore, f(X) = [0.5210,
1.195] such that w[f(X)] = 0.6732. Using the standard centred form we
obtain F(X) = [0.6141, 0.9573] with w[F(X)] = 0.3432.

If we use the techniques of extended power evaluation and of the nested
form evaluation we obtain better approximations to f(X) than those
obtained by computing F(X). These improvements are of a technical
nature and we refer the discussion of these improvements to Section 2.3
since the expressions become more involved and unclear. The symmetry of
s(X — c) is lost and the improvement vanishes quadratically as w(X) tends
to zero.

In order to determine the width of the centred form and in order to
derive a criterion for the existence of the centred form we need the
relations:

0 ¢ a + [—v, v]is equivalent to |a| >vforaeR,v=0, 2.7
—u,u 2
w( [ ] > - foru,vy =0, |a| >v. (2.8)
a+ [-v,v] la] —v

The proof of (2.7) is trivial. Equation (2.8) can be verified by a simple
rearrangement of the interval

[-uu] [—u,u]
a+ [~v,y] B [a —v,a+ V]

= [—u,u)/(Ja] — v).
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In the following lemmas we let z = w(X)/2 such that
H=X-c=[-zz]. (2.9)
Lemma 2.1 The standard centred form F(X) for f on X is defined if and
only if
lg@)] = lg'@|z = ... = lg®()|z"n! > 0.
The proof follows directly from (2.7). O
Lemma 2.2 The width of the standard centred form is given by
|tz + ... + |t,]2"/n!

wlF(X)] =2 - -
Ol 2 -l @ — -~ 1@
Proof The lemma is a direct consequence of the definition of the standard
centred form and the relations (1.3) and (2.8). a

Remark 2.1 If fis already a polynomial, f = p, then the expression f(c) +
s(x — ¢) can be interpreted as the Taylor polynomial of p at c, cf. Hansen
(1969b). The standard centred form is therefore

P(X) = p(c) + p'(c)H + ... + p"™(c)H"In!. (2.10)

Remark 2.2 The denominator of the standard centred form of f is the
standard centred form for g on X, see Remark 2.1. This means that F(X)
can be written as

F(X) = fc) + ( 21 t H’Yi!)/Q(X).

Remark 2.3 Considering the coefficients ¢; of the standard centred form
we almost recognize the Taylor coefficients of p and g. If

pic) = pO(c)/it and gi(c) = g0,

for i = 0,1,...,n, denote the Taylor coefficients of p and g at ¢ then the
standard centred form can be written as

2alpde) — f(C)‘Ii(C)]ff )
2o q,-(c)H‘

F(X)= f(c) +

One should therefore use Moore’s recursive technique of evaluating
Taylor coefficients (Moore, 1966, 1979) in order to have an effective and
fast method for calculating the coefficients #. It is only necessary to make a
small change in this technique in order to compute the terms p®(c) and
q9(c) of t,.
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Remark 2.4 If there is no interval arithmetic compiler available then
there is a very simple procedure for computing the standard centred form.

It is sufficient to note that each interval A = [a4, b] admits the
representation
A=m(A) + [-1,1]w(A)2 (2.11)

which easily can be verified by writing m(A) = (a + b)/2 and w(A) = b — a.
The meaning of (2.11) is that an interval A is uniquely determined by its
midpoint and its width:

a = m(A) — w(A)/Z,} (2.12)

b =m(A) + w(A)/2.

This means that if we wish to calculate F(X) we first apply Lemma 2.1. This
tells us whether F(X) exists or not. If it exists then we may evaluate the
endpoints of F(X) using (2.12), taking f(c) to be the midpoint and
computing the width w[F(X)] as in Lemma 2.2. It should, however, be
realized that the computation of F(X) in this manner will not guarantee an
inclusion of f(X) due to round-off error contamination, although the
chances are that the inclusion indeed is valid.

Remark 2.5 It is theoretically possible to choose any ¢ from the domain of
f in order to define F(X), in the definition of the standard centred form.
This would certainly constitute a more general definition. The current state
of both theoretic and practical investigations indicates, however, that the
centre of X should be chosen for c. The reasons are:

(i) Practical experience has shown that in the average, the centre is a
very good value for c, see Section 2.3.

(ii) So far there has been no investigation made of the best possible
choice of ¢ depending on f and X.

(iii) If ¢ = m(X), then all the intervals H = X — ¢ and their powers are
symmetric intervals. This leads to considerable computational and
theoretical advantages, see Section 2.3. For instance, f(c) is always the
midpoint of F(X). Because of the symmetry there also exist simple
formulas for the width of F(X) such that the quality of F(X) can easily be
estimated.

(iv) The evaluation of the standard centred form without using an
interval arithmetic compiler causes no problems and no additional
computational effort, see Remark 2.4.

(v) In the discussion of the general centred form it is known that the
overestimation of the range f(X) by the centred form can be improved by
50 per cent if ¢ = m(X), see Remark 3.2.

(vi) Almost all the operators which can be described by a generalized
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centred form use the midpoint as developing point, cf. Krawczyk (1982)
and Section 6.6.

2.3 SYMMETRIC INTERVALS — OR NOT?

Intervals of the form [—a, a] for a = 0 are called symmetric intervals. They
possess important computational and theoretic advantages which are the
main reasons for choosing as ¢ the midpoint of X in the definition of the
centred form, see Remark 2.5. All the intervals H,...,H" are now
symmetric according to this definition.

Some of the facilities for calculating with symmetric intervals which are
used when considering centred forms are:

(1) Adding or subtracting a symmetric interval [—a, 4] to an interval A
preserves the midpoint,

m(A + [—a, a]) = m(A).

(2) If one factor of an interval product is symmetric then the product is
symmetric.

(3) Symmetric intervals can be represented by only one parameter, for
instance the right endpoint,

[-a,a]l =[-1,1]a fora=0.

Addition and multiplication of symmetric intervals can therefore be
reduced to addition or multiplication of the parameters:

[—a, a]lx[-b, b] = [-1, 1](a + b), }
for a,b = 0.
[—a, a][-b, b] = [-1, 1]ad

(4) If A is symmetric and B = [c, d] then the following formulas hold:
AB = AlB|,

Alcif¢>0
A/B = >
{A/d ifd <0, (2.13)

w(AB) = w(A)|B| = 2|A]| |B|.

All these assertions can be verified easily. We notice that (2) follows
directly from (4). The standard centred form can furthermore be computed
without additional effort if the user does not have interval arithmetic
software because of (3). The second formula of (4) was used for deriving
formula (2.8). If (4) is compared to the multiplication and division rules
(Lemma 1.2) then the large improvement in the computational complexity
when using (4) should not be disregarded.
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If one is willing to give up the advantages offered by the use of
symmetric intervals, one may

(a) choose an arbitrary point of the domain of f as c,

(b) use extended power evaluation,

(c) use the nested form (also known as small Horner scheme) if ¢ #

m(X).
As we know, (a) permits a more general definition of the centred form and
leads sometimes to better (but frequently to worse) inclusions of f(X).

The methods (b) and (c) are known interval arithmetic techniques.
Applying them to the centred forms will always yield improvements of the
centred forms although they are only significant if the domain X is not too
small. We will now introduce these two techniques:

Interval arithmetic distinguishes between the simple and the extended
power evaluation. Using the extended power evaluation, the symmetry of
the powers of H is lost but the centred form is improved.

The simple version of the power evaluation (also called power evaluation
by simple arithmetic) is defined by

A°=1 and A"=A ... A(ntimes) ifn=1.

The simple version of the power evaluation is the one that we have used up
to this point. It will also be the version used in the sequel unless otherwise
specified.

If A is symmetric, A = [—a, a], then
A" =[-d" a"] ifn=1,

that is, A” is also symmetric.
The extended version of the power evaluation (also called power
evaluation by extended arithmetic) is defined by

A" = {a" a€ A} ifn=0.
If A is symmetric, A = [—a, a], then

gn = [—d", a"] if nis odd,
110, a"] if nis even, n # 0.

The following two examples explain the use of two different kinds of
power evaluation: If x,y € A then A? is the smallest interval that contains
x,y. If x € A then A? is the smallest interval that contains x>. Nevertheless,
A? often is used for the inclusion of x* because the general assignment A —
A? is not a rational assignment, that is, it cannot be calculated using only
the four interval arithmetic operations and constants.

If the powers that occur in an expression are evaluated using the
extended version, then we shall indicate this by a tilde above this
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expression. This means that we write H", F(X), O(X) if the extended
arithmetic is used, and H", F(X), Q(X) if the simple arithmetic is used.

If x € X, then we have x — ¢ € X — ¢ = H for ¢ = m(X) and by definition,
(x — ¢) € H for i = 0,1,...,n, such that f(x) € F(X) and f(X) S F(X)
follows if defined. This means that F(X) is also an including approximation
of the range of f.

Since H' < H' for i = 0,1,...,n, the inclusion F(X) S F(X) follows by
Lemma 1.4. This inclusion is nearly always a proper inclusion since H' <
H' is a proper inclusion when i # 0, i even. We recapitulate:

H' S H  forall non-negative i, (2.14)

fX) € F(X) € F(X). (2.15)

Clearly, (2.14) and (2.15) are also valid if ¢ # m(X).
In order to construct interval functions which satisfy a Lipschitz
condition it is important that the extended power evaluation

X—> X"

is Lipschitz. This is a consequence of Theorem 1.3 since X — X" is the
range function of the function f(x) = x".

The nested form (small Horner scheme) is used in computational real
analysis to evaluate polynomial values, since the influence of rounding
errors is diminished. The nested form consists of a rearrangement of a
polynomial in a certain manner, that is, if the polynomial or expression

px) = ap + aix +...+ ax"
is given, then the nested form of p is the expression
Prest(x¥) = ag + x(a; + x(a; + x(az+...+ x(a,—1 + xa,)...))).

It is clear that p(x) and pp.q(x) are identical as functions. The interval
extensions of p(x) and pp..(x) to an interval X satisfy the following
inclusion:

pnest(X) = P(X) . (2 16)

This inclusion is a direct consequence of the subdistributive law, (1.2).

Let us now apply (2.16) to the centred form while dropping the
assumption ¢ = m(X). We arrange the expression f(c) + s(x — c), see (2.6),
such that the numerator and the denominator of this expression are
developed in nested form. The natural interval extension of this new
expression will be denoted by F,.;(X) and is an including approximation of
f(X) by Theorem 1.1. The interval F,.(X) is furthermore contained in
F(X), by (2.16) and Lemma 1.4. We therefore have

f(X) = Fnest(X) = F(X) (217)
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If ¢ = m(X) as in the definition of the standard centred form it follows
that

Fnest(X) = F(X)’

that is, the application of the nested form then only makes sense if c #m(X).
The reason for this equality is that in (2.16), equality holds for symmetric
X. This can be verified either by calculation using formulas (3) and (4)
mentioned above, or as direct consequence of the validity of the
distributive law in the case in question, see for example, Ratschek (1971).

We remark that it is not possible to use the nested form with extended
arithmetic since each method needs its own specific rearrangement of F.

Example 2.4 Let again f(x) = 1 — x + x* and X = [0, 2]. We have seen v

from the Example 2.1 that
f(X) =1[3/4,3] and F(X)=[-1,3].
Applying the extended arithmetic we get
F(X) = flc) + 4tH + LH*2 =1 + [-1,1] + [0, 1] = [0, 3].

In order to demonstrate the workings of the nested form we choose ¢ = 0.
We may also construct the standard centred form using the parameter ¢
and we obtain:

f(C) = 1, Hh = "'1, and th = 2,

H=X-c=[0,2], H?*=H =[04].
Then

F(X)=FX)=fc) + tH + LH*2 =1+ [-2,0] + [0,4]2 =[-1,3].
The nested form of the expresssion

sx—c)=tHx —c) + Lx — )2 = —x + x*
iS Spest(* — ¢} = x(—1 + x) such that

Foest(X) =1+ X(-1+ X) =1+]0,2][-1,1] = [-1, 3].

We will now give a plausibility argument to show that, in the average, it
is best to choose the midpoint of the domain X of f as developing point c in
defining a centred form. We will not only discuss the standard centred form
as defined above but we will also extend our consideration to each
reasonable kind of a centred form of rational functions as defined later.
Because of the rationality, each such centred form is an expression in the

powers (X — ¢)” and some constants (coefficients). These coefficients
depend on the function f, the domain X, the developing point ¢ (which is
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not necessarily the midpoint of X), and the current centred form. If we
assume arbitrary (random) coefficients for f then the coefficients of the
centred forms are also nearly arbitrary and random ones. We therefore
focus on the powers (X — c)’, these being the proper constituent parts of a
centred form that are invariant over the class of all centred forms.

The following calculation shows that the smallest width of the powers
(X — ¢) is obtained (X is fixed) if ¢ is the midpoint, and that the
width increases with order r with respect to the difference | c— m(X)l .

We define the following quantities,

ce X,

X =m(X) + [~z 2],
S=X-mX) =[—z 2],
d=c - mX),
H=X-c

Without loss of generality we assume that

m(X) <csm(X)+ z.

(The reason for choosing ¢ € X is that this condition is needed for proving
quadratic convergence, see Theorem 3.2.)
The last inequality is equivalent to

0<d<z. (2.18)

We will now compare the widths of the powers H” and $" if r is a natural
number. They represent the powers occurring in the centred forms if any
¢ € X or m(X) is the developing point. Using the above assumptions we
obtain

S =[-7, 71,

w(S") = 2z,

H=X-c=X-mX)+m(X) —c=8S—-d=[-z-d, z — d].
Using (2.18) the power of H is computed as

H =(-1)[d -z, d+ z] = (-1)7[(d — 2)(d + 2)"',(d + 2)].
Furthermore

w(H") = 2z(d + z)" L.
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The difference of the widths is now
w(H") — w(S") = 2z[(d + z)" ' — 277}

r—1 r — 1 . .
— 22 2 ( ; )dtzr—l—l
i=1

=or— 1)z 'd = Bd’

for some constants o and f. The last estimation shows the dependency on
d. The previous estimation shows the influence of the width.

2.4 STANDARD CENTRED FORMS OF HIGHER ORDER FOR
FUNCTIONS IN ONE VARIABLE

In this section centred forms of higher order are defined. The name ‘of
higher order’ originates from the use of Taylor expansions of order k in
defining the standard centred form of order k, where k is any natural
number larger than 0. The term ‘kth order’ does not imply that the
convergence W[Fi(X)] — w[f(X)] is of order k if w(X) — 0, where the
standard centred form of order k& is denoted by F,(X). The convergence is
again of order 2. The advantage of the form of order k is that a
considerable improvement is obtained in comparison with the standard
centred form defined earlier. The standard centred form turns out to be the
form of first order. Furthermore, it is shown that the form of order k is
better than the form of order k — 1. If the rational function is a polynomial,
however, then the standard centred forms of all orders are equal such that
in this case there is no proper improvement. The proofs are again only
sketched since they are special cases of the proofs for functions in several
variables. This distinction is made since the main ideas are clearer in the
case of one variable due to the simpler technical machinery.

The background for defining new inclusions is again to rearrange the
function f(x) = f(c) + s(x — ¢) or s(x — ¢) in a suitable manner and then to
form the natural interval extension which is an inclusion of f(X) by
Theorem 1.1.

Again, let f = p/q be a rational function of one real variable represented
by the quotient of the two polynomials p and g. Let n again be the
maximum of the degrees of p and g. For a real compact interval X
contained in the domain of f having the midpoint ¢ = m(X), and for any
positive natural number k, we define for A = k,...,k + n the coefficients,

ta=r"@ - 2 (1)1 4. 2.19)

These coefficients may also be written in the equivalent form,

A
Lin =i§ (?)f(i)(c) q*79(c). (2.20)

Sec. 2.4] Higher Order for Functions in One Variable 43

The equivalence of (2.19) and (2.20) is seen by substituting the Ath
derivative of f(x)q(x) at ¢ for p™(c) in (2.19), that is using the formula

2 =2 (}) ) 0. @a1)

The coefficient #; ., = 0 is not needed for defining centred forms. It is
only used in comparisons like

U = te—1p = — (k } l)f(k_l)(c)q(}‘_kﬂ)(c) (2.22)
which then is valid for every k = 2 and for each A = k,....,k + n — 1. Let
again H = X — ¢ = [—z, z].

Definition 2.2 The interval
F(X) = flc) + f(0)H +...+ f* () H* Y(k — 1)! +
taH K + o+ g HE (K + 0= 1))
qc) + q'(c)H + ... + g™ (c)H"/n!

is called the standard centred form of order k for f on X if 0 does not lie in
the denominator.

Clearly F;(X) is the natural interval extension of the right-hand side of
the following expression:

k-1 k+n—1 n
fix) = ;0 ®(c) KA + ( > t,dh*/x!> / ( ;ﬂ qM(c) hw) (2.23)
= A=k =
where h = x — c. This means that in the interval extension x is replaced by
X or h is replaced by H. Therefore we only have to verify the equality
(2.23). Once that has been proven, the inclusions

FX) SFu(X) fork=1,2,3,.. (2.24)

are valid by Theorem 1.1.

The formula (2.23) is nothing but the Taylor expansion of order k for f at
¢ where the remainder is given by the quotient which replaces the usual
representation of a remainder in terms of an unknown mean value & € X.

The verification of the equality (2.23) is accomplished by multiplying
(2.23) by

ax) = 3 ¢V,
=0

and by substituting the terms (2.20) for the coefficients #, and performing
some rearrangements. All the remaining factors can then be cancelled,
without having to evaluate the derivatives f(c).
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Lemma 2.3 The standard centred form F,(X) of order k for f on X is
defined if and only if

lg@)| = lg'©)lz = ... = |¢"Xc)|z"m! > 0.

Proof The denominator is independent of k and it is equal to Q(X) for all
standard centred forms. The same conditions as given in Lemma 2.1 are
therefore valid. o

Lemma 2.4 The width of the standard centred form of order k is given by
k+

WF(x)] = 2k§_:i V()| 2wt + 2 ( é_” ltkv[z"/v!>/

(I‘I(C)I —él |q(v)(c)|z"/v!)
where z = w(X)/2.

Proof The lemma follows directly from the definition of the standard
form of order k and from formulas (1.3) and (2.8). o

Remark 2.6 The standard centred form of f of first order is equal to the
standard centred form.

Remark 2.7 If fis a polynomial, f = p, then #;, = p™(c) and Q(X) = 1
such that

P(X)=P(X) fork=1,2,....

Remarks 2.1 to 2.5 and also Section 2.3 are valid for standard centred
forms of higher order. This means that the Taylor coefficients are again the
constituent parts of Fy(X). Moore’s recursive technique may therefore
again be used for their evaluation, see Remark 2.3. The computation of
Fi(X) is furthermore easily accomplished without access to interval
software, see Remark 2.4. Again, it is possible to shift ¢ from the midpoint.
This is not recommended, see Remark 2.5 and Section 2.3. Extended
arithmetic or, in the case of shifted ¢, the nested form, yields better
inclusions, see Section 2.3.

In order to demonstrate that F,(X) is better than F;_,(X) we define for
each natural number k =2 andforA =k, k+ 1, ..., kK + n — 1 the number

€ by
o = Itk—l,)»l — Jtw | + |tk—1,k —ta |
From the triangle equality written in the form
lto | = [t — tecian + ti-12l

< |t —te—1 | + |tk—1,>~ I
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it follows that

€ = 0.

Let f = p/q be a rational function represented by the quotient of two
polynomials p and g which have a maximum degree n. Furthermore, let X
be a real compact interval lying in the domain of fand let ¢ = m(X). Then,
provided the standard centred forms of all orders are defined (see Lemma
2.3), we have the following theorem:

Theorem 2.1 The inequality

W[F(X)] < wFi-1(X)]
is satisfied for k = 2,3,... .

Proof The inequality
0 < w[Fe—1(X)] — w[Fu(X)]

is rearranged in such a manner that its validity is immediately obvious.
First, the widths are replaced by the formulas given in Lemma 2.4. Then,
the inequality is multiplied by the denominator. This does not change the
direction of the inequality since the denominator is positive from Lemma
2.3. The factor 2 is now cancelled from the inequality, leaving

k+n—1

0< X enz/Al ifz=wX)2
A=k
which is valid since g, = 0 and z = 0. O

Corollary 2.1 For each k = 2,3,... the inclusions f(X) S Fx(X) S Fe_1(X)

are valid.

Proof The first inclusion is valid because of (2.24), the second one follows
from the representation (2.11) and Theorem 2.1. o

Theorem 2.1 and Corollary 2.1 do not express whether the improve-
ments gained by the forms of higher order are proper improvements or
not. A large number of examples which cannot be reproduced here as well
as the following consideration demonstrate that these improvements are in
general proper:

Theorem 2.2 Let k = 2 be a natural number and z = w(X)/2 # 0. Then the
equality Fi(X) = Fi_1(X) holds if and only if

go.=0forh=k,. .k+n—1.

Proof Since f(c) is the midpoint of all forms of higher order the equality
Fi(X) = F—1(X) is equivalent to the equation W[Fy(X)] = w[F,_,(X)]
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which is furthermore equivalent to

k+n-1

0= gk € 2! (2.25)

adopting the rearrangement described in the proof of Theorem 2.1.
Because of the assumption z # 0 equation (2.25) holds if and only if all the
coefficients g, = 0. m]

Remark 2.8 Theorem 2.2 shows that the inclusion Fi(X) S F;_1(X) is in
general proper because the construction of the numbers gy, is such that the
condition of Theorem 2.2 is usually not satisfied. The improvements
gained by the centred forms of higher order are therefore significant.
There is one systematic exception: If f is a polynomial then there is no
improvement (see Remark 2.7). In this case the reader may wish to verify
that

€ =0 forA=k,. ,k+n—1.

Remark 2.9 A partially recursive computation of the standard forms of
higher order is possible. In order to proceed from Fy_,(X) to Fi(X)it is not
necessary to compute the coefficients #;; from scratch. One may use the
already known coefficients #,_, ; in order to compute #; using (2.22). A
more refined technique for recursive computation of these forms will be
described in Section 2.5 where the standard forms for functions in several
variables are treated.

Remark 2.10 It is interesting to note that the inclusion chain Fi(X) <
Fi_1(X) is no longer valid if the extended power evaluation is used, see
Corollary 2.1. The following counter-example shows that the conjectures
Fi(X) < Fr_1(X) as well as the conjectures Fy(X) S Fy_,(X) are false.

Example 2.4 Let f(x) = (1 + x + x*)/(1 + x) be defined on the domain
X = [1,3]. Then we get the following values:

wlf(X)] = 1.75
k wF(X)]
1 3.166
2 1.833
3 1.85185
4 1.84567 9012

(All computed results are exact; 3, 6, and 185 etc. indicate periodic
decimals.)
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Remark 2.11 From Definition 2.2 and from Corollary 2.1 it follows that
lim;_, . Fi(X) exists if F;(X) exists. In this case the limes has the value

k% FO(Q) H K.

One can check without difficulty that f(X) = lim,_,.. Fi(X) iff f¥(c) = 0
forall k = 1.

In the following examples we show the result of the computation of the
standard centred forms of higher order for domains having small and large
widths.

We note that the given results of the following examples were first
computed using a machine interval arithmetic (see, for example,
Apostolatos—-Kulisch, 1967) and a 28-bit machine number representation
with an additional exponent part. These intermediate results were copies
from the computer print-outs to a 4-digit representation. The printed
interval results are therefore falsified by rounding errors but they include
in any case the exact interval result. The printed results for the widths are
rounded up in the normal manner.

Example 2.5 The function
fx)=0Cx* +32 + X2+ 3x +3)/3° + x* + 4x + 2)

is given. We first compute inclusions of the range of this function over X =
[0.9, 1.1] with the help of the standard centred forms:

k Fi(X) w[Fi(X)]
1 [1.203, 1.397] 0.1933
2 [1.228, 1.372] 0.1437
3 [1.229, 1.371] 0.1414
4 [1.229, 1.371] 0.1412

We furthermore calculate

Ff(X) = [1.240, 1.370], w[f(X)] = 0.1294
f(X) = [0.9191, 1.849], w[f(X)] = 0.9298
(see remark in Example 2.2 on the approximation of f(X)). We now

compute the standard centred forms over [0.9, 1.1] using the extended
interval arithmetic and we obtain
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k Fi(X) w[Fi(X)]
1 [1.222, 1.396] 0.1733
2 [1.234, 0.372] 0.1373
3 [1.234, 1.371] 0.1361

The range of the same function is now included over the interval X =
[0.6, 1.4] using the standard centred forms and first simple and then
extended interval arithmetic. The results are given below.

k F(X) W[ Fi(X)] F(X) wFi(X)]
1 ~1.322,3.922] 5.243 0.4306, 2.820) 2.390
2 0.5140, 2.086] 1.572 0.9626, 1.865] 0.9023
3 0.8050, 1.795 0.9899 0.9524, 1.704] 0.7508
4 0.9170, 1.683] 0.7659 1.014,1.676] 0.6610
5 0.9296, 1.671] 0.7408 1.017, 1.669] 0.6517
6 0.9306, 1.670] 0.7388 1.017, 1.668] 0.6506
7 0.9319, 1.6681] 0.7361 1.018, 1.668] 0.6496
8 0.932188, 1.66782] 0.735625 1.01808, 1.66751] 0.649418
9 0.932195, 1.66781] 0.735609 1,01806, 1.66750] 0.649440
10 0.93226, 1.66778] 0.735550 1.01808, 1.66750] 0.649415

The approximation to the range (see Example 2.2) is f([0.6, 1.4]) = [1.145,
1.626] such that w{f([0.6, 1.4])] = 0.4795. Furthermore, f([0.6, 1.4]) =
[0.3482, 5.348] with w[f([0.6, 1.4])] = 4.999.

From the above results as well as further experimentation we note that if
the domain is wide then it makes sense to compute the higher order (k = 3,
4, 5) centred forms as significant improvements may be noticed. For small
widths of the domain it is probably better to compute only the second order
form.

Example 2.6 Let
= +x*+xX -x*-x+1)
I(x* + 2 + x> +2x + 1)

be a given rational function and let X; = [0.03, 0.1] and X, = [0.15, 0.5]
such that w(X;) = 0.07 and w(X;) = 0.35 = Sw(X,). The following results
were obtained.
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i=1 i=2
wlf(X)] 0.1783 0.4424
w[f(X))] 0.1790 0.5224
w[F(X))] 0.1956 0.7641
w[Fy(X))] 0.1865 0.7358
w[Fs(X))] 0.1860 0.5728
w[F4(X))] 0.1860 0.5769
w[Fs(X,)] 0.1860 0.5769
w[Fs(X))] 0.1860 0.5768
wlF1(X))] 0.1930 0.6865
w[F»(X))] 0.1824 0.6028
w[F3(X;)] 0.1822 0.5136
w[F4(X))] 0.1822 0.5098
w[Fs(X))] 0.1822 0.5098
w[Fe(X))] 0.1822 0.5096

In the above table we note that the natural interval extension f(X) is
better than the centred forms Fi(X), k = 1,...,6.

2.5 STANDARD CENTRED FORMS FOR FUNCTIONS IN SEVERAL
VARIABLES

The ideas of the last section are now carried over to functions of several
variables. Since the motivations are the same as for the centred forms in
one variable we eschew these here in order to concentrate on the technical
developments.

Let f be a rational function of m real variables x = (x1,...,x,,,) and let X =
X, X ... X X, be any right parallelepiped lying in the domain of f where
X;eIfori=1,...,m. Let the function f again be represented as quotient of
the polynomials p and g,

f=rlq,

and let n denote the maximum degree of p and q.

Explicit rational expressions Fy(x) are given which define the function f.
Their natural interval extensions F;(X) are called standard centred forms
of order k of f. It is again shown that F;(X) 2 f(X) and that Fi(X) is an
improvement over Fy_(X).

We employ multi-indices in order to avoid involved formulas.
Multi-indices are vectors A, p, u € N™, where N = {0, 1, 2,...}. The
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notations A = (Aq,...,A,,) and 0 = (0,...,0) are used. The following common
abbreviations are also used here:

[M] =M ot Ay A= ML

At = AP AP -A)r forAeR™orAel™or A = x where A, are
the components of A,
: (x,,,>
Pm/) ’

)= () G-
a)q+ .. +)~mf(x)

D'f(x) =
axM- .- axhn
Furthermore, A < p denotes A; < p;, for i = 1,2,...m. The symbol 2% _¢ by
for some k € N denotes the sum over all b, with |)\.| = 0,1,...,k. Similarly,
the notation X.§_, b, denotes the sum over all b, where \ satisfies 0 < A <
p, etc.

We need some further abbreviations. Let ¢; be the midpoint of the
interval X; and ¢ = (cy,....cm). If X; = [¢; — z;, ¢ + z] for some
non-negative real z;, then H; = X; — ¢; = [—z,, z;] is symmetric for each i.
The interval H = X — ¢ = [~z, z] is now used in the calculations.

For A € N and any positive integer k < |k| we define

=090~ 5 (%) 020 070 q(0 (2.26)
(or equivalently,
W
f. = M=§osk();)) D*fc) D™* 4(c)). (2.27)

The equivalent formula arises directly if D*p(c) is replaced by D*[f(c)g(c)]:
A
D'p(c) =p§~=:o<};)) D*f(c)D*Pq(c). (2.28)

The formula (2.28) is nothing more than the product rule for higher partial
derivatives.

Definition 2.3 Let k be a positive integer. Then the interval
AT YA

k—1
F = + X DMM(c)HM\! +
K ) D G et

is called the standard centred form of order k for the function f on X if 0
does not lie in the denominator.
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For instance, the standard centred form (of first order) as defined by
Ratschek (1978) is the interval

Zh=1 tHMA!
=0 D*q(c)H'IM!

FX) = Fi(X) = f(c) +
In order to show that F,(X) is an outer approximation of f(X) we first

notice that F(X) is the natural interval extension of the rational expression

(x = o N IR falx — MM
A -0 DPq(c)(x — )AL

F®) = 0 + 2, Do) (2.29)

This means that we only have to prove that F, and f are identical.

Lemma 2.5 The functions f and Fy are identical.

Proof Write h instead of x — ¢ for compactness and define

L(h) = lZI D*q(c)RM,
=0
M(h) = HZ [D*p(c) — QD q(c) .

The function L(h) is the Taylor expansion of g at the point c. Applying the
Taylor’s formula of order k to f and denoting the remainder by g(h), we
obtain

flc+h) - flc) = ;gl DM(c)HM\! + g(h). (2.30)

In order to obtain the exact value of g(h) the value of f(c + k) — f(c) is
calculated in a different manner, by writing the terms p(c + k) and g(c + h)
as Taylor expansions:

plc + ) = fic)g(c + h) _ M(h) (2.31)
g(c + h) L(h)

fle + h) = fle) =

In identifying (2.30) and (2.31) we get an explicit formula for g(h), namely
the quotient of the two sums in (2.29),
M(h) g
h)y = —— — X DM(c)h"/\\.
s = T = 01O

The details of the proof are now as follows. First, the following term is
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rearranged:
k-1 h)‘
L(h D —
() 2 *flc) o (2.32)
n W

( kg D¥f(c) ﬁ)(ﬂ;ﬂ Dkq(c))\_!)

+)~

S 2 D”f(C)qu(C)

lul=1
k=1 Iu’+n

2, 2 DD () ———

=1 =
Ivvlzllul (
k=1  k—1+n

= 2 2 DD ()

!

k=14+n k-1

e
MR (>
- 3 3 DD (o (,I)
k—=14+n k-1 )

W=k =1

(@

Ipl=1

psA
k—=1+n k§—:1 v h'v
DM Dv—u < )__
o f(c)D*"#q(c) w) o

Using (2.28) and considering the equation
D'p(c) =0  for || >n
the expression for M(h) is rearranged:

My = 3 [2 DAfe)D**q(c) () - f(C)D‘q(C)] :
n A A
- Ix\§=:1 LS%’I DPf(c)D**q(c) (p)]
515 vrorno (S
uék [éﬁ; DPf(c)D*~*4(c) (3)]%:

N
i
KA
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Using this expression for M(k) and remembering (2,32), we obtain:

1 k=1 h)»
g = — [0 - Ly 3 D'f0) - |

L(h)

L:h) { M'Zk [12 DPf(c)D*~ "q(c)( ) hh]

h‘V

iulik ]EID"f(c)D" “q(c)( )]

v

-5 S pep g (D]% |

M=n+1 Liu/=1f
usv

n Al

-z L& 2 Blemor o]

[

35 () rore

- ﬁ [HZ lpllilppf(c)w- 4@ () 37

hl

k_§n % A A s

+ DPRc)DMP, ( ) o

M=n+1 |p|=k f( ) q(C) P, Al
p<r

1 k—1+n [\ "

) BN
L(h) |x|2=k |p|§=:k (p) DFf(c)D*~Pq(c) X

psA

Inserting this term into (2.30) gives the expression Fy(x). O

Theorem 2.3 For all positive integers k the inclusion f(X) S Fi(X)holds.

Proof This assertion is an immediate consequence of Lemma 2.5 and
Theorem 1.1. O

Lemma 2.6 (Ratschek—Schréder, 1981). For every positive integer k, the
standard centred form of order k is defined if and only if

lg(c)| - mi:l | D*q(c)| 2\ > 0.

Proof The existence of the form of order k is independent on k because
all forms have the same denominator, L(z), as defined in the proof of
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Lemma 2.5. The condition
0 £ L(z)
is equivalent to the above inequality because of (2.7). i

Lemma 2.7 (Ratschek-Schréder, 1981). The width of the standard centred
form of order k is given by
k=1 z ST ol 2
WE =2 3 |Dfio) =+ o e
=1 M lg(c)] = Z =1 [D*q(c)|2"/M!

Proof The assertion is a direct consequence of the definition of a form of
order k and of formulas (1.3) and (2.8). o

Theorem 2.4  For each natural number k = 2 the inequality
WF(X)] < w[Fi—1(X)]
is satisfied.

Proof There is a simple arithmetic relation between the coefficients of
order k — 1 and order k, given by:

ta=teia=— 3 DRAODq(c) (A). 2.3)
o=
psA
This follows directly from (2.26). We now define
K= 3 S Do)

v;;here z = w(X)/2. Since Iq(c)l > K from Lemma 2.6, it suffices to show
that

d = {(W[Fi_1(X)] — w[F(X)]}{|q(c)| -K)2 = 0. (2.34)

First, we perform the following calculation in which the notation is
changed twice. The first time p is substituted for A’s. The second change in
notation is that u is replaced by A — p:

(Eaalzn) 3 bl

3 |DP(c)D q(c)| 2 *(ptut)

lpl=k-1 |u/=1!
k+n—1 k+n-1 Al Z)‘
= Y 3 |pefic)D*g(c)| ———
o2 & [DHROD P vl
r=p
kai—l }»
- DD ()
Z 2 S |D°fD (0| N

p<A
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A

> 3 l 3 DD () (z)

M=k

M
A

= |tk 1a "k x| - (2.35)

lM
With the help of the estimation for (2.35) developed above, the desired
inequality (2.34) can be derived:

=— z |D*f(c)q(c)|z*/m + K|M=Zk_l]D"f(c)|z"/}»!

1
+|)\|2 |tk 1;\|Z /A + M (|tk-—1,)\| - |tk)\|)lh/)\v!
k+n 1 )\.
= |tk A~ th| - + E (|- 1x|—|thl)““
\M k [\=k
=0.
The last inequality follows from the triangle inequality. O

Corollary 2.2 For each k = 2,3,... the inclusions f(X) < Fi(X) < Fr_1(X)
are valid.

Proof The first inclusion is just Theorem 2.3 and the second inclusion
follows from the representation (2.11) and Theorem 2.4. O

Remark 2.12 If fis a polynomial, f = p, then 5, = D*p(c) and Q(X) = 1
such that

P(X) = P (X) fork=12,...

The proof of Theorem 2.4 shows, however, that the inequality w[F(X)] <
w[Fr_1(X)] is in general a proper inequality. The improvements obtained
by the use of forms of higher order are therefore significant.

Remark 2.13  If Fi(X) exists for some k, then lim_, . Fix(X) exists and has
the value

‘ Mio DM()HL,

as in the case of one variable. The equality lim;_, . Fx(X) = f(X) holds iff
DM(c) = 0 for all [A| = 1.

Remark 2.14 It is possible to compute Fy(X) in a recursive manner. This
computation consists of three parts:

(a) The constituent parts of the coefficients #, are again the Taylor
coefficients. We can therefore use Moore’s technique for the recursive
computation of Taylor coefficients without writing the coefficients down or
programming them explicitly, see Moore (1966, 1979). Since we use
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multiindices the formulas for functions in several variables are almost the
same as the formulas for one variable as described in Moore (1979).
Explicit numerical data for the complexity of the computation of Taylor
coefficients can easily be derived from the concept given in Moore (1979,
pages 24 and 40), see also Rall (1981).

(b) In addition to (a), the coefficients t,; can be calculated recursively
using formula (2.33).

(c) The recursive computation of F,(X) is possible in the following
manner: In order to proceed from F_;(X) to Fi(X), we write Fx_;(X) as

k+n-2
Fii(X) =S+ (T + IZ te1a H*/M)/U,

M=k

where

S = flc) + ’;221 DM(c)H/\!,

T= 2 4o HW=q() 3 DM)H'M,
1Al 1

A =k-1

U= mgo D*q(c) HY\!.
The values S, T, U, t_,,, and H\! should be recorded. Using the
definition of Fi(X) it follows that

k+n-1

Fk(X) =S5+ (T/q(C) + 2 tin H}\/)\")/U,
iy

|=k-1

_ A
o= ten = % D) D) (),
p[=k=
p<h

which means that the computational effort is relatively small. The new
values Df(c) occurring for p| = k — 1 may also be computed recursively,
see (a) above. The binomial coefficients, factorials, and, if simple
arithmetic is used, the powers H* may similarly be computed.

If the evaluation of Fi(X) is reduced to the form of order k — 2 or lower
then the same principles as described in (a) are applicable, the only change
being that the splitting of the sums must be finer.

We note that all the remarks of the former sections as well as the content
of Section 2.3 are also valid for standard centred forms for functions in
several variables. It should be remembered that Lemmas 2.6 and 2.7,
Theorem 2.4, and Corollary 2.2 are only proven if ¢ = m(X). One
additional remark is to mention a problem which arises mainly in case of
several variables:

If we are given an expression for a rational function f(x) then there does
not seem to exist a general criterion that states whether the interval
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extension f(X) of this function provides a better or worse inclusion for f(X)
than F;(X). Some results are, however, known as to when the interval
extension f(X) gives the exact range, f(X), and is therefore equal to or
better than F,(X). This is for instance the case, if in the rational expression
f(x) each variable occurs only once and only to the first power, see Moore
(1979). More generally, if some of the variables x;,...,x,, occur only once in
the expression f(x), then these variables need not be taken into account
when developing the centred form, see Skelboe (1974) and Moore (1976).
These points are discussed extensively in Chapter IV.

Example 2.7 Some numerical examples are now given. Let f(x;, x;) =
/(% + x; + x5+ x,+ 1), X =[-0.1,0.1] X [-0.1,0.1], and Y = [-0.01,
0.01] x [—0.01, 0.01]. Then we obtain the following values:

w[f(X)] = 0.3 9983 90884, w[f(Y)] = 0.03 9999 99841

k w(Fi (X)) wlFi (V)]

1 0.5 2500 00000 0.04 1020 40816
2 0.4 6000 00000 0.04 0416 32653
3 0.4 5100 00000 0.04 0408 24489
4 0.4 4960 00000 0.04 0408 12326
5 0.4 4942 50000 0.04 0408 12165
6 0.4 4939 95000 0.04 0408 12163

Example 2.8 Let the function
flx1, x2) = (1 + x12)/(2 = x1x2)
be defined on the interval
1 1 1 1
X; = [_ > —] X [— — —] fori =1, 2, 4,10,|100, 1000.
l l 1 1
The ranges are:

i fx) wlf(X)]
1 [02 .. 2
2 [0.38,0.6428571] 0.2539685397
4 [0.4772,0.5241935484] 0.0469208212
10 [0.4970149253, 0.5030150754] 0.0060001501
100 [0.4999745012, 0.5000255013] 0.0000510001
1000  [0.4999997495, 0.5000002506] 0.0000005011
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The following numerical results for F;(X;) and w[F,(X;)] were obtained

by Rausch (1981).
i Fl(Xi) = F(X) W[Fl(Xi)]
1 [-1.0,2,0] 3.0
2 [0.3571428751, 0.6428571429] 0.2857142858
4  [0.4758064516, 0.5241935484] 0.0483870968
10 [0.4969849246, 0.5030150754] 0.0060301508
100  [0.4999744987, 0.5000255013] 0.0000510025
1000  [0.4999997495, 0.5000002506] 0.0000005011
i F3(X) w[F3(X))]
1 [-0.75,2.0] 2.75
2 [0.3660714286, 0.6428571429] 0.2767857143
4 [0.4763104839, 0.5241935484] 0.0478830645
10 [0.4969974874, 0.5030150754] 0.0060175879
100  [0.4999754000, 0.5000255013] 0.0000510013
1000  [0.4999997495, 0.5000002506] 0.0000005011

Remark 2.15 It can be seen from the above example that there is little to
be gained by going to k > 1 for small w(X). This phenomenon is not an
exception. It is connected to the fact that for every k, the quotient
w[F(X))/w[F1(X)] converges to 1 if X converges to c, as long as it is
fassumed that F;(X) exists, c is the centre of X, and w[F;(X)] # 0 for all the
intervals X. This property can easily be proved by writing down the
quotient of the two widths, inserting the formulas for the widths,
multiplying the numerator and the denominator with

lg(o)| - |Mi=1 |D*q(c)| 20,

and cancelling as much as possible. An expression of the following form is
therefore obtained,

WIFX)] _ q(c) Zpi=, DM + Sy 2"

w[F(X)] q(c) 2|K|=r |D*f(c)|zk/)\! + 2|x|>erZ)‘ ’

where u;,v, € R and where r is an integer with 1 < r < n, such that there
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exists a multi-index Ao with |)\0| = r and D™f(c) # 0. The existence of Ag
results from the assumption w[F(X)] # 0. Remark 3.6 furthermore
guarantees that g(c) # 0. Now w(X) — 0 means z — o, and the limiting
process can therefore be carried out in the usual way.

2.6 KRAWCZYK’S CENTRED FORMS

The standard centred form is an explicit formula for an inclusion of the
range f(X) for a rational function f = p/q over X. If the dimension of X is
one, then the computational complexity, that is the number of arithmetic
operations, of the standard centred form is O(n®), where n is the maximum
of the degrees of the polynomials p and g. Krawczyk (1983) found a
centred form that needs only O(n) arithmetic operations for the just
mentioned case. The gist of his centred form is the dependence on a
function procedure and the use of interval slopes. The advantage of
Krawczyk’s form is a low computational complexity. This is contrasted by
some disadvantages. The first disadvantage is that an explicit formula for
Krawczyk’s form cannot be given in general. Further, the form
manipulates not only the symmetric interval X — m(X), but also the
unsymmetric interval X such that the general symmetry is lost. This implies
that evaluations of Krawczyk’s form are best done using a computer where
interval arithmetic is implemented. The quadratic convergence of this form
is proven in Section 3.4. The content of this section is due to Krawczyk
(1983).

It is first necessary to introduce the concept of a function procedure.
This concept was already used by Chuba-Miller (1972) and Miller (1972)
for proving quadratic convergence properties of centred forms.

Definition 2.4 Let B = {b,,...,b,} be a finite set of real constants, x =
(x1,...,xm) @ variable over R™ and U = {uy,...,us} a finite set of
(dependent) variables over R. Then the finite sequence of instructions

U; = X; fori =1,....m,
u; = b, fori=m+1,....m+r,
w = u; % U for some j, k < i and
* e {+,—, -/} for i=m+r+1,...58

is called a function procedure S.

It is obvious that for any i € {1,...,s}, the first i instructions of S define a
function f; = fi(x) on a domain D; S R™ on which the functions fi,..-.fi do
not give rise to forbidden divisions through zero. We call f; the function
corresponding to u; or defined by the ith instruction of S and f = f; the
function of the procedure S. If the variable x is replaced by an interval
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variable X = (Xj,...,X,,) € I"" in the function procedure §, then we call the
resulting sequence of instructions an interval function procedure. Again,
the first { instructions of it determine an interval function F; = F(X) on a
subset of I on which no forbidden division occurs. As is the case with
expressions, functions and interval functions can be defined by arbitrarily
many different procedures.

Example 2.9 If m = r = 1 and B = {1} then the function procedure
ui=x(=x1), up:=1, wuz:=u+uy, Uy:= s, Us:= U+ Uy
defines stepwise the functions
filx) = x, fo(x) = 1, fa(x) = x + 1, fux) = x(x + 1),
fs(x) = x + x(x + 1) = ¥* + 2x.

The corresponding interval function procedure produces stepwise the
interval functions

Fi(X) =X, F(X) =1, [;(X) = X + 1, Fi(X) = X(X + 1),
Fs(X) = X + X(X + 1).

If now fis a rational function in x € R™ and if Xe I is an interval lying in
the domain of f, then an interval G € I"" satisfying

fx)—flc)eG-(x—¢) forallxe X (2.36)

where ¢ = m(X) or any other point of X, is called an interval slope of fin X.
Krawczyk’s method now consists of the construction of an interval function
procedure for an interval slope G € I of fin X such that the relation (2.36)
can be subordinated to Moore’s concept of a centred form (see Section
2.1).

Let e; € I'" denote the ith unit-vector and o € R™ the null-vector, let X €
I'" and ¢ = m(X) or any other point of X. Operations of the form AB or
A/B where A € I'" and B € [ are to be performed component-wise in this
section. Contrary to our conventions, G; does not denote the ith
component of the interval vector G in this section, but autonomous
interval vectors of I".

Definition 2.5 Let a function procedure S be given as in Definition 2.4.
Then the interval slope G = G; € I'" of S over X is recursively defined by

G;=¢;fori=1,....m,
Gi,=ofori=m+1,....m+r,
Gi= G]i Gkifu,-:= u]'i U,
. fori =
G,' = Gj Fk(X) + ka}((,') if u; .= U; Uy, m+r+ 1,...,S,
G; = G/F(X) — Gi(X)f{c)/F(X) if u; := wiuy
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if no forbidden division occurs.

We show next that the interval slope G of S is also an interval slope of
the function f defined by S. Therefore G can be used for including the
range f(X) via (2.36). Slopes for bounding the range of polynomials were
already used by Alefeld (1981).

Lemma 2.,8 Let f be the function of the function procedure S. If the
interval slope G of S is defined over X, then G is an interval slope of f over
X.

Proof We show by induction that
G; is an interval slope of f; over X 2.37)

for i = 1,...,s. Then the assertion is proved. First, the validity of (2.37) is
evident fori = 1,...,m + r. Let us now assume that m + r + 1 < i <sand
that (2.37) holds for j < i and k < i. Then, in case of addition and
subtraction,

filx) = file) = fix) = fi(©) £ (fulx) = filc))
€EGi-(x—¢c) £ Gr-(x—c¢)
=G;-(x — o).
The last rearrangement is done by Lemma 1.3. If u; := u; u,, we get
fix) = fe) = (fitx) — fi(0)) filx) + (filx) — fil))fi(c)
€ (GiFiX) + Gifi(c)) - (x — ©)
=G; - (x — o).
If w; := wju,, we get
fix) = file) = (fix) = fi))/filx) = f{e)fulx) = file))/
(F(x)filc))
€ (G/FX)) - (x = ) = (Gific)/Fi(X)) - (x = ©)
=G;-(x—o). o

We are now ready for the final definition.

Definition 2.6 Let f be the function of the function procedure S and G the
interval slope of S over X € I'"". Then the interval

FX)=flc)+ G- (X -0

is called Krawczyk’s centred form.
It follows from (2.36) and Lemma 2.8. that F(X) 2 f(X). We will see that
G = G(X) satisfies a Lipschitz condition and hence, that F(X) is



62 Standard Centred Form [Ch.2

quadratically convergent if X is seen as an interval variable over a compact
domain in Section 3.4.

The computational complexity of Krawczyk’s centred form is very low
compared to the standard centred form. Since k = s — m — r arithmetic
operations are needed for describing the function procedure S, only O(k)
interval operations are needed for the computation of the interval slope G
and of the form F(X). If for example, f = p/q is a function in one variable x
€ R and n is the maximum degree of the polynomials p and g, then one can
find a function procedure S for f which has 5» arithmetic operations. Hence
O(n) interval operations are necessary for the calculation of F(X).

Krawczyk (1983) compares several kinds of function procedures with
respect to the quality of the resulting centred form.

Example 2.10 Let f(x) = 1/x* be defined on the interval X = [2, 4]. Then
w[f(X)] = 0.18750.
Two different function procedures for f shall be considered:

The function procedure S shall be given by u := x, u; := 1, u, := uguy, us
= uj/u, and leads to the interval slope G = — [5/144, 7/36] and to a
centred form F(X) with

w[F(X)] = 7/18 = 0.38889.

Let another function procedure S be given by uy := x, uy := 1, uy : = uy/uy,
Uz := upluy. It leads to an interval slope G = —[7/144, 5/36] and to a
centred form F(X) with

w[F(X)] = 5/18 = 0.27778.

Comparing these results with the standard centred forms Fy(X)
calculated with extended arithmetic we get (see Ratschek, 1980a):

ko wEX)
1 0.48148
2 0.30864
3 0.29630
4 0.24966
5 0.24371

e

CHAPTER I11

General definition of centred
forms

In Chapter II we treated the standard centred forms for rational functions.
They are easy to manipulate and easy to program. Furthermore, they have
been applied to practical problems of various kinds. Presently we will
introduce and discuss an axiomatic definition of centred forms valid also
for real functions. This definition has its origin in the work of
Krawczyk—Nickel (1982). A number of considerations relating to centred
forms are also pursued.

3.1 THE REASONS FOR A GENERAL DEFINITION

The definitions of standard centred forms given in Chapter II are adequate
for many purposes. In some instances, however, these definitions do not
suffice. A general definition of centred forms by axioms as given in the
sequel will have the following advantages:

(a) The centred form method can be extended to real, complex, vector
valued functions, etc. via the axioms.

(b) The mean value form turns out to be a special centred form
(Krawczyk-Nickel (1982) and Section 3.5). The theories of both
forms which have up to now been developed separately may
therefore be represented in an unified manner.

(c) It is possible to generate various concrete centred forms depending
on the actual purpose and the information available.

(d) The general definition is not given by explicit and complicated
formulas but implicitly by few characteristic arithmetic and analytical
properties which are easy to deal with. It is therefore an appropriate
and convenient basis for theoretical investigations.

(e) Krawczyk—Nickel (1982) give an important characterization of a class
of centred forms which are inclusion isotone a property which
facilitates the subdivision method given in Chapter IV.
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(f) The proof of the quadratic convergence is elegant and can be
executed in very general normed or metric interval spaces
(Krawczyk—Nickel, 1982).

Since the general definition given in Section 3.2 is a framework for
theoretical investigations rather than an explicitly applicable formula we
do not insist that ¢ = m(X). For actual forms satisfying the axioms the
choice ¢ = m(X) is again recommended by us. The reasons are the same as
discussed in Section 2.3. Some examples of centred forms for non-rational
functions will also be given. We will devote some space to these examples
since, as far as we know, there are no such examples available in the
literature.

The general definition is discussed in interval and normed spaces in
Krawczyk-Nickel (1982) in order to obtain convergence theorems that are
as general as possible. It is shown, however, in the Appendix that all
continuous norms on I"” are equivalent. Since there are close connections
between the width of intervals and the maximum norm (see Section 1.3), a
definition using norms and special metrics such as the definition of
Krawczyk—Nickel (1982) may therefore be replaced by an equivalent
definition using only the width. This is the approach followed here.

3.2 GENERAL DEFINITION OF CENTRED FORMS

In the definition of the standard centred forms the underlying domain X
was a constant interval (or parallelepiped). The concept of quadratic
convergence will only make sense if we let the domain vary (shrink). The
domain is therefore now considered to be an interval variable Y € X. It
also follows from this that the developing point c is in general a variable.
The functional relationship between the domain Y and the developing
point c is represented by a function «. If the reader is less interested in
quadratic convergence than in obtaining an inclusion for the range it is
possible to suppress the use of the variable Y as well as the function «.

We consider continuous functions f: D — R with D S R™. The notation
X=X, X..XX,=(Xy,...,X;n) € [(D) means a right parallelepiped with
X;eland X € D. This is also called an interval. If X; = [x;, y;] then X is
also represented by [x, y] = [(x1,.--»%m), (V15---,Ym)]. Furthermore, ¢ =
(c1,-.-,Cm) always denotes a point of D, and H = X — c is known as the
‘centring’ of X. The dot ‘-’ denotes the inner product R X R™ — R in the
usual manner. It can also be extended to the case

R"xI"—>1I or I'"xXI"— 1

For instance, if H = (Hy,...,H,,) € I and G = (Gy,...,G,,) € I'" then we
have

G-H= G1H1 + ...+ GmHm.
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Definition 3.1 Let f, D, and X be defined as above, Dy S D, and let
«: I(X) — Dg be a function. The function s: X X Dy — R is defined by
s(x, ¢) = f(x) — f(c) for all x € X, ¢ € D,. If there exists a positive integer r
and interval functions S: I(X) — [ and G*: I(X) — I'", p = 1,...,r, such that

s, (V) €5() €3, (¥ - a(1) - G°(Y) XY
for all Y € I(X), x € Y, then the interval function F: I(X) — I, defined by
K(Y) = fl(Y)] + () (3.2)

is called a centred form function of f on X with a developing point function
a. If Y e I(X), ¢ = «(Y), then the interval F(Y) = f(c) + S(Y) is called a
centred form of f on Y and c its developing point.

The difference between a centred form and a centred form function is
normally not considered. Definition 3.1 is rather complicated. It deviates
from the usual definitions and an extensive discussion of this definition will
therefore be given in the next section. In the present section we only give
some simple facts as well as an example which will supplement Definition
3.1.

The desired inclusion property

fX) < F(X) (3.3)

is valid. This follows directly from (3.1). It can be written more generally in
the form

f(Y)YS KY) forallYel(X). (3.9

A function F: I(X) — I which satisfies (3.4) will be called an inclusion
function for f over X.

Remark 3.1 In our definition we only consider functions f with values in
R. That is not a restriction since in the case of vector valued functions, f =
(f1,.--»fx) with f: D— R, and D € R™, the definitions and theorems can be
applied componentwise, that is, to each component f;,....fi, in order to get
the assertions for f.

A simpler definition of the general centred form is given for readers who
are not interested in quadratic convergence.

Definition 3.2 Letf, D, and X be defined as above. Letce Dand H = X
— ¢. The function s: X — R is defined by s(x) = f(x) — f(c) forall x € X. If
there exists a positive integer r and intervals S € I and G',...,G" € I'"" such
that

s(x)yes < 21H - G*,
o=
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then the interval F(X) = f(c) + S is called a centred form with ¢ as
developing point.

It can be verified at once that Definition 3.2 is a special case of
Definition 3.1 by considering s as independent of the former variable c,
and the interval functions S and G* as independent of the interval variable
Y € X '

3.3 THE QUADRATIC CONVERGENCE

The quadratic convergence of a centred form function tells us that the
centred form function converges quadratically to the range function if the
width of the domain converges to 0. Since the centred form methods and
the quadratic convergence strongly influence each other we prove the main
results on quadratic convergence in this section and continue the general
discussion of quadratic convergence in Chapter IV.

An inclusion function F: I(X) — I for f is called linearly convergent (to
the range function f) if there exists a real number K such that

wlF(Y)] — w[f(Y)] < Kw(Y) forall Y € I(X).

Furthermore, F is called quadratically convergent (to f) if there exists a real
number K such that

w[F(Y)] — w[f(Y)] < Kw(Y)?  forall Y € I(X).

The quadratic convergence property was first conjectured by Moore
(1966) and, for rational functions in one and several variables, first proven
by Hansen (1969b). A very interesting proof for rational functions in
several variables was developed by Chuba-Miller (1972), Miller (1972).
This proof uses simple recursive steps. A further proof of quadratic
convergence is given by Alefeld-Herzberger (1974, 1983). The most
general proof which we follow in the present monograph is due to
Krawczyk—Nickel (1982). This proof formulates the quadratic convergence
theorems in very general normed spaces using several metrics and seems to
be the first proof which is also valid for non-rational functions. In this
monograph we simplify the proofs by using the width of intervals in
describing the convergence theorems. This is not a restriction from the
mathematical point of view as discussed in Section 3.1. We do, however,
use the Hausdorff metrics and norms in the proof of the convergence
theorem in order to keep the proof as simple as possible.

The key to the convergence proof is provided by the following two
lemmas:

Lemma 3.1 (Miranda, 1941). Let H = (H,,...,H,,) € I'" and H; = [u;, v}].
Let the function k = (ky,...,k,,): H— R™ be continuous and satisfying the m
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sign conditions (i = 1,...,m),

ki(hy,...shioq, Ui, Rivyse.shpy) < 0,
ki(hy,...;hi1, Vi, hivise. k) = 0.
Then a zero of k exists in H. O

The proof depends on the Brouwer’s fixed point theorem and will not be
repeated here.

Lemma 3.2 (Krawczyk—Nickel, 1982). Let H = (H,,...,H,,) € I, 0 € H,
and let the function g = (g1,...,8m): H— R™ be continuous. If the functions
@: H— R and ® = [¢,, @,]: H— [ are defined by

m

oh) = h-gh) = ,21 higi(h),

() = H-g(h) = 3, Hgh),
then there exist two vectors h,, h* € H that satisfy

o(hy) = @i(hy) and  @(h*) = @p(h7).

Proof It is sufficient to prove the existence of £*, since the existence of &,
follows by symmetry. Let the function k: H — R™ be defined
componentwise by

(hi — vi)gi(h) if g(h) = 0
(u, — higih) if g(h) <O,

where H; = [u;, v;]. The continuity of & follows from the continuity of g.
From the definition of k; we have

kl(h) < 0if hi = u,,
kl(h) = 0if hi = V;

This means that the sign conditions of Lemma 3.1 hold which implies that
there exists a zero A of k in H. Using the relation

kih) = {

max(H - g(h)) = ¥ max{ugi(h), vigi(h)}

as well as the relation

min{(ﬁi - uy) gi(ﬁ), (ﬁi i) 8i(ﬁ)} = ki(ﬁ)Sgn gi(ﬁ)

which follows from the assumptions u; < 0 < v; as well as the definition of
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ki(h) we get
@(h) — @a(h) = h - g(h) — max(H - g(h))

=2 [hgi(h) — max{ugh), vigi(h)}]

i

3

m

1min{(ﬁ,— — u;) g(h), (hi — v) gi(h)}

i

é ki(h) sgn gi(h) = 0. -

If Y € I'" and if c € R™ then we recall the notation Y v ¢ for the smallest
interval in I containing both Y and c (see also Section 1.3).

Lemma 3.3 (Extension Lemma). Let G, Y €I",ce R",andletg: Y — G
be continuous. Then there exists a continuous extension g: (Y v c)— G of g.

Proof If ¢ € Y, then we do not have to prove anything. We therefore
assumec ¢ Y. If “ || g denotes the Euclidian norm on R™, then there exists a

nearest point iz € Y to each point u € Y v ¢. This means that
||u - 1‘4||E < “u - x”E forallxeY.

The point & is uniquely determined and, if the components of Y are Y; =
[a;, bi], then we have

ili =U; if uiEY,-
ili =bi if u,->b,-
; =a;if u; < a;.

The mapping u — i is continuous since the component functions u — i#; are
continuous. The extension g of g is then defined by

gu)=gl) forueYvec.
The function g is continuous since it is the composition of continuous
functions. Since iz € Y we have g(u) = g(&) € G. a

We are now ready to state the main theorems on linear and quadratic
convergence of the centred form functions. The following theorem has its
origin in Moore (1966).

Theorem 3.1 Let a centred form function F of a function f be defined as in
Definition 3.1. If the functions G°: I(X) — I'", p = 1,...,r, are bounded and
if the developing point function o: 1(X) — Dy satisfies «(Y) € Y forall Y
I(X), then F is linearly convergent to the range function f.
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Proof Suppose that K is a bound for the functions G°. The formulas (1.3)
and (1.6) are used for the following estimation valid for Y € I(X):

WIE(Y)] — wlA(D)] < wlF(V)] = wS()]
<3 w[(Y - () - G°(¥)]

<3 S[w(¥, - QK + w(¥, - o (¥)) 2K]

srm[w(Y)K + w(Y)2K] = 3rmKw(Y). O

The following lemma is due to Krawczyk—Nickel (1982) and contains the
crucial estimation of the width-difference w[F(Y)] — w[f(Y)]. It should be
pointed out that in this lemma only a fixed interval Y € I(X) is considered.
Relationships depending on all Y € I(X) are first encountered in Theorem
3.2.

Lemma 3.4 LetD S R™ ce D,Y € I(D), G € I'", and let the function
f: D — R be continuous in Y and representable on the form

fX)=fc)+(x—c)-glx) forallxeY (3.5)
where g.. Y — G is a suitable continuous function. If a centred form of f on
Y is defined by

FY)=fl)+ (Y -¢)-G
then
WwF(Y)] = wlA(")] < 2mw(G) [|Y — || (3.6)

Proof First we extend g. to a continuous function g.: (Y v ¢) —» G by
Lemma 3.3. Then we introduce the following abbreviations and notations:

h=x-c forxe Yve,

Y = [y1, y2),
H=((-¢vo,

gh) = gh +c)=gJx) for h € H respectively x € Y v c,
@h) = h-g(h) for h € H,

@(h) = H-g(h) = [91(h), 92(h)] forh e H,

®(H) = {@(h): h € H}.
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Now, we have
ph)epH) S H-G forallh € H,
FY) < f(c)+ H-G,
AY) = f(c) + §(H).

We use the Hausdorff metric for brevity. Applying its chain inclusion
isotonicity to the chain

fY)sFRY)Sfl)+H-G
and then using the translation invariance we get
|F(), {(V)| < |H- G, o(H)|. (3.7)

Since g, and therefore g is continuous using Lemma 3.2, and the fact that 0
€ ®(h) for h € H we get

@(hy) = i(hy) <0,
@(h*) = @o(h*) = 0.
Accordingly we have
®(h,) U @(h*) = [9(h.), P2(R*)] U [@1(R7), @(h*)]
= [max{g(h.), @:(h")}, min{ga(h.), @(h*)}] <
< [@(hy), ®(h™)] < G(H).
We can therefore apply Lemma 1.5 to the following chain,
®(h,) N ®(h*) € H) S H-G,
since the intersection is non-empty, see (3.7), and we get
|H- G, p(H)| < max{|H- G, ®(h,)|, |H G, ®(h*)]}. (3.8)

In order to make the distances occurring in (3.8) more transparent we use
(1.13) and get for any h € H,

|H- G, ®h)| = |H- G, H-gh)| <m|H| |G, gh).

Inserting this inequality in (3.8) eliminating the terms in which the

Hausdorff-metrics occur by (1.10) and using the identity ||Hﬂ = ||Y - ¢ |, we
get

wlF(V)] = wlf(Y)] < 2|F(v), /()|

< 2m||Y — o (W(G) — w(g(H))] = 2m||Y — || w(G),
using the equation (3.7) as well. O

We will now prepare the assumptions for the Theorem 3.2.
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Let D € R™, X € I(D), and let a: I(X) — D, be bounded, where D,
D. Let the continuous function f: D — R be represented on X in the form

fx)=flc)+ (x—=c)-glx,c) forallce Dy, xe X (3.9

where g: X X Dy — R™ is a suitable mapping continuous in the first
variable (over X). Let the interval functions G: I(X) — I and S: I(X) — I
be defined such that for all Y € I(X) and x € Y the following two conditions

g(x, «(Y)) € G(Y), (3.10)

(x = «Y)) - g(x, «Y)) € S(Y) < (Y — «(Y)) - G(Y) (3.11)
are valid. Clearly the function F: I(X) — I defined by

FY) = f((Y)) + S(Y) forall Y € I(X)

is a centred form function for f in X. The following theorem contains the
main results of linear and quadratic convergence of F to f and is applicable
to many convergence problems with arise in connection with centred
forms. The notation and assumptions which have just been introduced are
assumed to hold.

Theorem 3.2 (Krawczyk—Nickel, 1982). If the function G is Lipschitz,
then the centred form function F converges linearly to the range function f. If
further (YY) € Y for all Y € I(X) then the convergence is quadratic.

Proof The assertions follow directly from Lemma 3.4. We only have to
keep in mind that the intervals G and Y are fixed in Lemma 3.4. In the
present theorem, however, Y acts as a variable, and a certain G
corresponds to each Y € I(X). It is natural to handle this relationship as a
function Y — G(Y).

Since G is a Lipschitz function, there exists A € R such that

w[G(Y)] < M(Y) for all Y € I(X),
and, by Lemma 3.4, we have
WF(V)] = wif(D)] < 2mw(0) [[Y = (V)| (3.12)
Since « is bounded and Y S X there exists K € R such that
ly -« <Kk forall Y e I(X).
This means that the linear convergence is obtained, i.e.,
WIF(Y)] — wI(Y)] < 2mhKw(Y).
If «(Y) € Y, then

Y — (1)l < w(¥), (3.13)
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and the quadratic convergence follows from (3.12), that is

w[F(Y)] — wlf(Y)] < 2miw(Y)>. o (3.14)

Remark 3.2 (Krawczyk—Nickel, 1982). The estimation (3.14) of previous
proof can be improved by 50%, that is,

WwlF(Y)] - wl(Y)] < miw(Y)?
if « is the midpoint function, since in this case (3.13) can be replaced by
¥ — «(r)ll = w(xy2.

Remark 3.3 It is also possible to express the Lipschitz condition for G in
terms of a homogeneous, translation invariant, chain inclusion isotonic
metric (for a definition see Section 1.3), see, for instance, Krawczyk—
Nickel (1982), Raith-Rokne (1982).

3.4 THE STANDARD AND KRAWCZYK’S CENTRED FORMS

The standard centred form for a rational function f = p/q of any order &, in
one or several variables, is a centred form where the function G satisfies
the Lipschitz condition. The developing point function is a(Y) = m(Y)
where Dy, = X. We first look at the case of one variable. We obtain

s(x, c) =i§ ()M + (k:glt,dhmo / [ éo q(x)(c)hk/)\!]

for all x, c € X, where h = x — c. It is understood that the coefficients #;;
that occur in the above expression depend on the variable c as expressed by
(2.19). In order to construct the interval function S we consider, for given
Y € I(X), the function value S(Y). Comparing the function s to Definition
2.1, we recognize that S(Y) is nothing but the natural interval extension of
s(x, a(Y)) to Y where x is replaced by Y and where 4 is replaced by Z = Y
— a(Y). We therefore obtain

k+n—1

S(Y) =:=2:f<*>(c)z*/u + <x§k thZ*/M)/Q(Y) (3.15)

where Q(Y) is the standard centred form of g on x of first order if f = p/q
and where ¢ = «(Y). It is now easy to check that the following formula
holds for intervals A € I and symmetric intervals U, V € I,

UA+V)=UA+ UV. (3.16)
Applying (3.16) to (3.15), we get
S(Y) = ZG(Y)
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where
k+n—1

k—1
G(Y) =x21 P2 + ( kzk t,dZ”‘l/M>/Q(Y).
The function S (or G) exists if Fi(X) exists which is assumed.

We remark that the proof that F; is a centred form is easy since Z = Y —
o(Y) is symmetric which yields » = 1 and § = ZG, where G = G, see
Definition 3.1.

In case of several variables the procedure is similar. We have
nevertheless separated the two cases since in the present consideration it is
more troublesome to find the function G = G.

By (2.29) and Lemma 2.5 we get

s(x, ©) = fx) — fic) =|k§1 D)

k+n—1 n
+ ( > tk;\h"/)»!)/(| IE D"q(c)hMM) forx,ce X
=0

M=k

where h = x — ¢ and where the coefficients #;; depend on the variable ¢ as
in the previous case.

First, we remember the notation h = (hy,...,h,,), Z = (Z,,...,Z,,), etc.
Then we denote the ith unit-vector of the space R™ by ¢; = (0,...,1,...,0).
Furthermore, we introduce the notation ®,(A) for multi-indices A as
abbreviation for the condition

)\.1 = .= }"i—l = O, )"i >0 (l = 1,..‘,m).

We notice that U7;{A: @A)} is a disjunct partition of the set of all
multi-indices A.
The function s can now be written as

s(x, ¢) = _21 six, ¢) forxeX,ceX
where

six, ¢) = hg(x, c)
and

k-1 k+n—1 k+n—1
gi(x, ©) =1)\121D)‘f(c)h"_e‘/)\! + > (thh"‘e‘/)»!)/< > D“q(c)h“/u!).
= A=k =k
s |q>|,.(x) I
Defining g = (g1,...,8m): X X X— R™ we may write s(x, c) = h - g(x, c¢). In
order to be precise we now consider the previous equation as being

dependent on the intervals Y € I(X). Furthermore, we only consider the
special case ¢ = «(Y). This results in

s(x, «(Y)) = (x = «Y)) - g(x, «(Y))
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forall Y € I(X), x € Y. If we now compare s with the definition of Fi(X) in
Definition 2.2 we realize that the interval S(Y) is the natural interval
extension of s(x), «(Y)) to Y where x is replaced by Yand hby Z = Y —
a(Y). We therefore obtain

k+n—1

S(Y) =k§ DM(c)ZMA! + ( > t,dZ*/M>/Q(Y).
[A|=1 A=k

The interval extension of g(x, «(Y)) to Y, that is, replacing x by Y, gives
the interval G(Y) = (Gy,...,G,,)(Y) € I'" where

k—1 k+n—1
G(Y) =I Iz DM(c)Z ¢\ + ( | > tkaA“"’/M)/Q(Y).
Al=1 =
(M) D,(\)
It remains to show that
S(Y)=Z-G(Y) = 2 ZG(Y). (3.17)

The proof is feasible since Z is symmetric and since the distributive law is
applicable to perform the necessary rearrangements. In fact, we use (3.16)
and the formula

AU+ V)=AU+ AV (3.18)

valid for arbitrary intervals A € I and symmetric intervals U, V € I. The
proof of (3.18) is simple and is left to the reader. In order to avoid involved
formulas we replace the real coefficients in the previous formula for S(Y)
by a; and we set A, = a,/Q(Y) whenever appropriate. With this we obtain:

k+n—1

k—1
s = S az+ (3 az)iom
pf=s |

k+n—1
= lz anZ + 2 AZ
In=1

I
M3

k+n—1
1[2 Zale “+ 7, > AZM ]
i= Al=1
|<l>|.(7~) l<1>(>~)
= _gl Z,G(Y)=Z-G(Y)

The second equality in the proof is valid by (3.18), the third one is only
based on a rearrangement, the fourth and fifth one uses (3.16).
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The symmetry of Z is again the reason for the simple proof. This means
that S(Y) = Z - G(Y) is valid, and that it is sufficient to consider only one
GP (that is, r = 1).

Finally, it is easy to show that G satisfies a Lipschitz condition. We only
have to show that each G; satisfies a Lipschitz condition. The functions G;
are described in Theorem 1.2. First, we provide the continuous Lipschitz
function @;(Y) = m(Y) for the construction of G;, see Theorem 1.2. Then
the function value G(Y) can be calculated from the argument Y, some
constants (coefficients of f, etc.), and @,(Y), using the four interval
operations only. (Note that it is not possible to represent the function Y —
m(Y) by an expression which uses only Y, constants, and the four
operations. The reason for this is that in order to calculate m(Y) we need
not only the interval Y, but also the endpoints of Y explicitly.) The
existence of the functions G; (which is necessary for applying the theorem),
that is the condition 0 & Q(Y), follows from the assumed existence of F;(Y)
and the inclusion isotonicity of the standard centred form as in the case of
one variable.

We now turn our attention to Krawczyk’s centred form. If X € I is the
basic interval then the functional version of this form is

FY)=f(c)+ G(Y) - (Y —¢) for Y € I(X)

where ¢ = «(Y) is the midpoint function or any other developing point
function. It follows immediately from Definition 2.6 and Lemma 2.8 that
this form is a special case of the general case presented in Definition 3.1. If
a(Y) € Y then Krawczyk’s form is quadratically convergent by Theorem
3.2, since the interval slope G(Y) is Lipschitz, which is a direct
consequence of applying Theorem 1.2 to the recursive steps of Definition
2.5.

3.5 MEAN-VALUE AND TAYLOR-FORMS

In Moore (1966) it was suggested that the mean-value theorem may be
used to obtain inclusions for the range of real functions over a
parallelepiped. For the case of one real function of one real variable the
suggestion was to first expand the function f around a point ¢ € X obtaining

fx) = flc) + f'(c + 6(x = O))(x — ©)

for some 0 € [0, 1]. Moore now assumed that f’ had an inclusion F’, that is
f'(x) € F/(X) for X € I and all x € X. We note that F’ is not the derivative
of F. With this it followed that

fx)eflc) + F(c+[0,1](x —c))x —¢), xe X

and therefore that the inclusion
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fX) € fle) + F(c + (X = 90, IN(X - o)

was valid.

This inclusion therefore requires the determination of an interval
including the range of the derivative. Moore (1966) claimed that this could
be accomplished using techniques for the automatic differentiation of
symbolic expressions (see Chapter 11 of Moore, 1966). Based on these
observations he claimed that the mean-value form was computationally
simpler than the centred form. Numerical examples given in Moore (1966)
showed that the mean-value form also gave better results than the standard
centred form in some cases.

Both Alefeld-Herzberger (1974, 1983), Skelboe (1974) and Caprani—
Madsen (1980) discussed the convergence of the mean-value form in the
sense of Section 3.3. This convergence was, in particular, shown to be
conditional upon the quality of the inclusion F' for f'. In Caprani-Madsen
(1980) it was shown that the mean-value form was inclusion isotone. Raith
(1980) discussed the forms obtained by using the arguments of Moore
(1966) on the Taylor-series of a function using inclusions for the remainder
term, see also Rall (1983).

Although it would seem that the mean-value form is a better choice for
computing the range of a real function than the standard centred forms
since it is applicable to a larger class of functions it has several
disadvantages.

The main disadvantage of the mean-value form is that the problem of
estimating the range of one function only has been reduced to the problem
of estimating the range of another function, namely the derivative of the
function. If the estimation of the derivative is too ‘coarse’ then the
mean-value form will no longer possess the property of quadratic
convergence. This problem may be alleviated by using the higher order
Taylor-forms as will be shown later in this section.

An advantage is gained if the evaluation of the range of the derivative of
the function is in some sense ‘easier’ than the evaluation of the function.
This may happen for example in differential equations.

Let for example f, g: R— R and let f'(x) = g(x). Then the range of f over
X € I may be found using the mean-value form on

flx) = f ; g(#) dt + const

if the function g(x) has an inclusion.

In this section we will show the mean-value form is a particular case of
the general definition of a centred form given in Section 3.2 that was first
discovered by Krawczyk-Nickel (1982). We will do this by defining a
general Taylor-form which includes the mean-value form. Having thus
related the Taylor-forms (and hence the mean-value form) to the general

[Ch.3
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centred form it follows that all the properties of centred forms discussed in
Sections 3.1 and 3.4 are valid for the Taylor-forms.

We first describe the Taylor-form of order & for a real function f of one
variable f: D S R — R. The reason for not describing the mean-value form
in detail is that it is obtained as the Taylor-form of order 1. We
furthermore discuss the case of a function of one variable separately since
the main ideas of the Taylor-forms are contained in this case and since
these forms provide an important example of centred forms. The proof for
Taylor-forms for several variables which is given in the latter part of this
section is obscured by the usual notational burden present in higher
dimensional spaces.

For the case of one real variable we assume that f*) exists on X and that
X € I(D). Furthermore, it is assumed that there exists an interval estimate
F®: I[(X) - I(R) of f®, that is f®(x) € FO(Y) forall Y € I(X) andx € Y.
Let «: I(X) — X be a developing point function in the sense of Definition
3.1.

Definition 3.3 The Taylor-form (function) of order k for a function f of
one variable is defined by

f(”( ) FO(Y)

T(Y) = f(c) + 2 (Y- o+ X (Y - o)f

for Y € I(X) and where ¢ = m(Y).
It will now be shown that this definition of a general Taylor-form
satisfies the conditions of Definition 3.1 of a centred form.
We first define
20 .
k!

(3.19)

k=1 ()
s(x, )— f(}\fc)

with & = x — ¢ and where the parameter 6 is a function of ¢ and x satisfying
0 € x v c. We now seek an interval function S: I(X) — I as well as a function
G =G I(X) — I such that (3.1) is valid. For this let

S [P(a(Y)) FO)

S(Y) = Z Y Y - (V) + R (Y — «(Y))*

for Y € I(X). It clearly follows using Taylor’s theorem that
s(x, «(Y)) € S(Y) forall Ye I(X),x e Y.

forx,ce X

Now let
») F®
61 = 2D (v ey + ED v - anp gy
where the summation is understood to be empty for k = 1. Then clearly
S(Y) € (Y = «(Y)) G(Y)
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using (3.16) and (3.1) is satisfied. The interval

T (Y) = («(Y)) + S(Y)

is called the Taylor-form of f on Y of order k.

The conditions for Theorem 3.2 showing the quadratic convergence of
the general centred form required that the function G satisfies a Lipschitz
condition as in Definition 1.3. For the Taylor-forms we now have the
following theorem concerning quadratical convergence.

Theorem 3.3 Letf: D S R— R and let F® be as defined above for k = 1.
Then
(1) the Taylor-form of order k is quadratically convergent if k > 1
provided F* is bounded,
(2) the Taylor-form of order 1 (i.e. the mean-value form) is
quadratically convergent if the estimation FV = F' satisfies a
Lipschitz condition.

Proof Let G be the function (3.20). For all k¥ > 1 the estimation G
satisfies a Lipschitz condition since it has the form
1190 FO(Y)
— -1
GV = 2 == (V- — =
which satisfies a Lipschitz condition because of Theorem 1.2 since F**) is
bounded.
If k = 1 then we have

G(Y) = F|(Y)

which satisfies a Lipschitz condition iff F'(Y) does.
The result now follows from Theorem 3.2 where the Lipschitz condition
on G implies quadratic convergence. o

(Y_ C)k 1

Remark 3.4 The mean-value form, obtained by setting ¥ = 1 in
Definition 3.3 is clearly inferior to the higher-order Taylor-forms in the
following sense: In Theorem 3.3 it is required that the estimation F’ of f
satisfies a Lipschitz condition in order that the Taylor-form of order 1 (the
mean-value form) is quadratically convergent. The higher order Taylor-
forms (k > 1) only require that F*) is a bounded estimate for f*). In
practice it is therefore much easier to work with Taylor-forms of order 2
(or higher order) since there is no explicit requirement for a Lipschitz
condition.

Example 3.1 We now calculate the range of the polynomial f(x) = x — x*
over the interval X = [2 — ¢, ¥2 + €] (from Moore, 1966). We obtain f'(x)
= 1 — 2x and we therefore choose an estimation F'(X) as

F(X)=1-[2—¢ % + ¢
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in a natural manner. This estimate is exact. With ¢ = 4 we obtain the
mean-value form

Ti(X) = fle)) + S(X) = Va+ {1 -2[% —¢, Y2+ €]} [—¢, €]
= [Va — 262, Va + 2¢7).

The width of this mean-value form is 4¢.
The standard centred form is

FX) = f(0) + £(0) (X - 0) + f—;—)(x 02

=Us—{[Va—¢, Yo t+e] - W) =[Va— €, Va+ €Y,

and its width is 2¢2.
The Taylor-form of second order is identical to the standard centred
form if

FO(X) = f'(c).

We note that although F'(X) is estimated exactly, the mean-value form
is a poorer estimate than the standard centred form.

We now turn to Taylor-forms for functions of several variables. Before
we proceed with the development of these forms we alert the reader to the
strong connections between these forms and both the Taylor-forms of one
variable as well as the standard centred form in several variables. These
connections will become apparent as we develop the forms.

We use the notations introduced in Section 2.5 including in particular the
use of multi-indices. Therefore let f: D S R™ — R and assume that the
derivative of order k exists on X € I'" for some k = 1. Assume further that
each partial derivative D’f, |A| = k has an interval estimation F*® for which
DM(x) € FM(Y) e Ifor Y € I(X) and all x € Y.

Analogous to the standard centred form we use the notation ¢,(A) to
denote the condition

)\.1 = L. F }"i—l = 0, )\.,- >0 (l = 1, 2,...,m)

(see also Section 3.2). Furthermore, let « again be the midpoint function.
With this we may define the Taylor-form function 7}, of order £ as follows.

Definition 3.4 The Taylor-form (function) of order k = 1 on X for the real
function f of m variables is defined by

T = fi) + S 21O (y o
Al=1 M
FO(Y)
o - (3.21)

for Y € I(X) and where ¢ = m(Y).



80 General Definition of Centred Forms [Ch.3

We first show that this definition of a Taylor-form provides an inclusion
function for f.

Lemma 3.5 Using the notation of Definition 3.3 it follows that

f(Y) € T(Y)
for all Y € I(X).

Proof Taylor’s theorem in m variables states that if the derivative of order
k exists then it follows that

St Df(e)

A
fx) = f(>+HE_ 29 c)qu_D{f")(x_c)x

where 6 = 8(x, ¢) € x v c. Since FM(Y) is an inclusion for f*(Y) for each Y
e I(X) and |A| = k it follows that

1(8) € FO(Y) = FO(). |
Therefore, for each x € Y we get
_1 pr j20)
e + 3 Oy _py 5 T v op
=1 Al M=k A
which shows that f(Y) € Ti(Y). o

We then verify that this definition of a general Taylor form indeed
results in a centred form.

Lemma 3.6 The Taylor-forms in m variables of order k = 1 are centred
forms in the sense of Definition 3.1.

Proof We again use Taylor’s theorem in m variables and we write

_ A
) =) — ) = 3 2D op
A=1 Al
A
s D10
A=k A

where 8 = 0(x, c) such that 6 € x v c. We now seek an interval function
S: I(X) — I as well as a function G = G': I(X) — I"" such that (3.1) is
satisfied.

In order to do this we define G(Y) = (Gy,...,G,,) (Y) € I by
D FO
G(Y) = 2 D) Y-+ 3 & (Y =) e. (3.22)
A=1 Al A=k Al
(M) o)

Since Y — c is symmetric it clearly follows that

S(Y) = G(Y) - (¥ = o).
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In the same manner as in the previous lemma it follows that s(x, c) € S(Y).
The conditions of Definition 3.1 are therefore satisfied. o

Analogously to the one-dimensional case we have the following
important theorem.

Theorem 3.4 Letf: D S R™ — R and F™ for |)»| = k be as defined above.
Then
(1) the Taylor-form of order k is quadratically convergent if k > 1
provided the F®, X| = k are bounded,
(2) the Taylor-form of order 1 (the mean-value form) is quadratically
convergent if the FM(Y), l)»| = 1 satisfy a Lipschitz condition.

Proof Let G be as defined by (3.22). If kK > 1 then G is Lipschitz from
Theorem 1.2 and since the F® for |A| = k are bounded. If k = 1 then G is
Lipschitz from Theorem 1.2 since the F® for |)»| = 1 are Lipschitz.

The result now follows from Theorem 3.2 where the Lipschitz condition
for G implies quadratic convergence. O

Remark 3.5 The Taylor-forms may be generalized to functions on spaces
more general than R™. An example of this is given in Caprani-Madsen
(1980) where a mean-value form is applied to an operator mapping Cla, b]
into itself.

Example 3.2 Let f(x;, x;) = x;(1 — x; + x,) — x% and let X = ([0, 1],
[0, 1]) (see also Moore, 1976). We wish to find an estimate for the range
f(X) using the mean-value form. We first obtain

9 )
f 1"2X1+X2 and —f=x1—2xz
dxq sz

and their natural interval extensions. From this it follows that we may
choose

GX)=(1-2X; + X5, X; — 2Xy).
The mean-value form for f on X is therefore
Ti(X) = flo) + (1 — 2X; + Xo)(X1 — 1) + (X1 — 2X2)(X2 — c2)
= Ya+ [-1,2]["Y%, 2] + [-2, 1][" Y%, V2] = [ 74, Y4].
The range is f({[0, 1], [0, 1]}) = [—1, V5] for comparison.

3.6 DISCUSSION OF THE GENERAL DEFINITION

The definition of the general centred form is not very transparent. The
following remarks and examples are given to facilitate the understanding of
Definition 3.1. The rather involved nature arises from the requirement that
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the definition should cover as many known centred forms as possible and
provide a framework for the investigation of quadratic convergence.

First, we discuss the relationship between the functions S and G in
Definition 3.1. That is, we try to make it plausible that a definition of a
centred form by

fle) + H - G(X)

that is, r = 1 and S(X) = H - G(X) where H = X — c, as is usually found
does not cover sufficient examples of centred forms. We will now use
Definition 3.2 instead of Definition 3.1 since convergence considerations
do not play a role.

Let us look at the standard centred form calculated for a polynomial p of
degree 2 using extended power evaluation as in Section 2.4. If X is any
proper interval then

P(X) = p(c) + p'(c)H + p'(c)H*2

where ¢ = m(X) and H = X — c. Since H? is not symmetric the same is true
for

p'(c)H + p"(c)H*12. (3.23)

Therefore, it is never possible to represent the expression (3.23) in the
form HG since the symmetry of H implies the symmetry of HG (see
Section 2.4). If we set

S(X) = p'(c)H + p"(c)H*12
c p'(c)H + p"(c)H*2 = HG(X)

where G = p’(c) + p"(c)H/2 then P(X) is a centred form according to our
definition but not according to definitions using the form § = HG.
Therefore, it is necessary to distinguish between S and a representation of
the form H - G.

The reason for using a sum 2%_, H - G® instead of H - G as outer
estimation of § is that the distributive law is not valid in interval arithmetic.
This means that there are centred forms which are supersets of the
corresponding inner product, H - G such that § < H - G does not hold. If,
however, G is rearranged as a suitable sum,

G=G'+..+G,
then
SCSH-G'+..+H-G.

We will give an example to illustrate these assertions again using the
simpler Definition 3.2.
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Let f = p/q be a rational function in two variables where the maximum
degree of the polynomials p and q is one. Then the standard centred form
of order 2 on the interval X = (X, X;) with developing point ¢ = (¢, ¢,)
and ¢; # m(Xy), ¢; # m(X,), is of the form

Fy(X) = ag + a1H; + ayH, + (asHi + a,H\H, + asH3)/Q(X)

where ay,...,as € R and H = (H,, H,) = X — ¢. The denominator Q(X) is
the standard centred form of g on X (where the developing point c is as
defined above).

In order to achieve a representation of the form H - G, we must apply
the denominator Q(X) to each summand of the numerator. In this manner
F,(X) is enlarged due to the subdistributive law and we get

Fz(X) c ag + alHl + a2H2 + A3H% + A4H1H2 + A5H% (324)

where A; = a/Q(X). It is now easy to rearrange the right side of (3.24) as
an inner product H - G. The intervals H; are, however, not symmetric
which implies that the distributive law cannot be applied and the
subdistributive law is valid then in the direction opposite to that of (3.24).
We therefore obtain

ag+aHy+ ...+ AsH32 ag+ HiG, + H,G,=ay+ H-G  (3.25)
where for instance,

G, = ay + (asH; + a,H,)/IQ(X),

G, = a, + AsH,.

Because of the different directions of the inclusions in (3.24) and (3.25) it is
not possible to compare F,(X) and ay + H - G directly. If, however, more
than one function G is admitted, then one can proceed as follows.
Depending on the form of the expression for F,(X), functions G° = (G¥,
G%) can be defined in a natural manner,

G' = (a1, @),

G* = (A;3H3, 0),

G = (AsH3, 0),

G* = (0, AsH,),
such that

F(X) =flc) + S
with ag = f(c) and such that
SCH-G'+..+H-G*
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is valid. If numerical data is inserted then it can be seen that these
considerations are not only of a theoretic nature.

The second part of our discussion deals with the significance of the
function « with respect to quadratic convergence. In a heuristic sense we
may explain the quadratic convergence in the following manner. Suppose
we have computed a centred form estimate F(X) for f(X) such that f(X) <
F(X). If we now wish to improve the estimate F(X) by subdividing X into
two (or more) subintervals Y; and Y, such that X = Y, U Y, and calculating
the centred forms F(Y;) and F(Y,) then we obtain

fX) = {(Y) v f(Y2) € F(Y)) U F(Y,)

which is an improvement on F(X) if the centred form function F is
inclusion isotone. The partioning is now applied to Y; and Y,, and so on,
and the generated sequence of inclusions converges quadratically to f(X) if
the Lipschitz condition for the corresponding function G holds. The
method itself is called the subdivision method and it is extensively
discussed in Chapter IV. These few lines show, however, that we must be
able to reduce the given domain X to subintervals Y € I(X) and to choose a
corresponding developing point ¢ for each Y in the subdivision. This
correspondence is governed by the function «, and Dy is provided as the set
or the superset of all developing points that occur in an actual subdivision
or in a special class of subdivisions.

Some of the definitions found in the literature do not take this
connection between Y and the developing point «(Y) into account. They
use a fixed c such that it is not possible to use the definition with respect to
the subdivision method. There is no possible way of investigating the
quadratic convergence without considering this connection.

Further, the developing point function « plays an important role if the
centred form definition is used in the description of iterative methods, see
Krawczyk (1982) and Section 6.6. As an example, let us consider the
Krawczyk iteration operator (Krawczyk, 1969). Let X be the starting
interval containing a zero x, of a function f where x, is to be located, F’ an
interval function including the derivative f, that is

f(x) e F'(Y) forall Y e (X) and x € Y,

and assume 0 ¢ F'(X) which implies that x, is the only zero of fin X. If the
interval sequence (Y,)7-o is defined by Y, = X with (z,)3-, being a
sequence such that z, € R, z,, # 0 and if

Y, !
ol , (y_ O

Vs = lo(¥,) = =22+ (1= = 22) (v, - a(v))] 0 V,,

then the condition a(Y,,) € Y, is already sufficient for (Y,,) to be a nested
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sequence, that is, Yy 2 Y7 2 ... and to converge to the zero x,. Usually,
«(Y,,) is again chosen as midpoint of Y,,.

3.7 PRACTICAL CONSIDERATIONS FOR CONSTRUCTING
CENTRED FORMS

In this section we discuss when it makes sense to construct centred forms as
well as some practical guidelines for their actual construction. We do not
consider the requirement of a user who is only concerned with the
computation of any inclusion (arbitrarily poor) for the range of a given
function f. The effort of computing a centred form would not be warranted
for such a user. A simple inclusion may almost always be found by
partitioning the expression for f into appropriate subexpressions such that
inclusions may easily be found for the subexpressions. Interval arithmetic
may then be used to compute an inclusion for the whole expression. The
following two examples will illustrate this technique.

Example 3.3 Let
x[siny + €/(9 + x + y — 32)] + xyz/log (1 + x)

cos (xy) sin z + xy

flx,y, z) =

andx,y,ze X =[2,4] letalso Y = X X X X X. If we wish to find any
inclusion for the range f(Y) then we can proceed as follows: First,
inclusions for the subexpressions are developed as follows:

x2e[1,2],siny € [-1, 1], & € [¢%, ¢] <[22, 3*] = [4, 81],

x+y-—3z€e[2,4] +[2,4] - 3[2, 4 =[-8, 2], xyz € [2, 4
= [8, 64],

log(1 + x) € [log 3, log 5] < [log e, log 2¢] < [1, log 2 + log e]
S [1,loge + loge] = [1, 2], 1log (1 + x) € [¥, 2],

cos(xy) sin z € [—1, 1], xy € [4, 16].

Secondly, the subexpressions are replaced by their inclusions and interval
arithmetic is used to obtain an inclusion of the range using also Lemma 1.4,

__ [L2J0=1, 1] + [4, 81V01, 11]) + [8, 64][%%, 1]
0 =< [-1, 1] + [4, 16]
< [0, 76].

The next example shows that discontinuous function may also be
handled by this method.
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Example 3.4 Let [x] be the largest integer which is not larger than a given
integer number x, for instance, [3] = 3, [-7] = =7, [3.3] = 3,[-3.3] = —4.
Let

fx,y, 2) = (x = [x]) (sgn 2 - y))/[2]
forx,y,ze X=[1,4], Y = X X X X X. Then

x = [x] €[0,1], sgn(3 - y) e [-1, 1], [z] € [1, 4],
and

AY) [0, 1] [-1, 1)/[1, 4] = [-1, 1].

Although a user may be only interested in a roughly estimated inclusion
of the range, it is sometimes necessary to improve this estimation. This
may for example happen if one wishes to check whether 0 ¢ f(X) or not in
cases where one wishes to assure that f has no zeros. If § 2 f(X) is an
estimation with 0 & S then one can be certain that 0 & f(X). If S is estimated
too roughly then frequently 0 € S will occur. This means that 0 € f(X) and
0 ¢ f(X) is possible. In order to obtain a decision it is necessary to improve
S, for instance, by a sequence of inclusions,

$§2..28,28,412... 2 (X).

If there exists an n such that 0 ¢ S,,, the question is solved. If there does not
exist such n, then the question is theoretically solved if S, converges to
f(X). The method may, however, not be realized by a computer program
because of the finite representation of the reals by computers.

In general it is not sensible to construct centred forms for functions of
the type shown in Example 3.4 that are not continuously differentiable.
The reason is that the advantages of centred forms are based on an analytic
(and not only an arithmetic) rearrangement of the difference f(x) — f(c)
which is only possible if proper differentiability conditions exist such that
the factor (x — ¢) may be split off from the difference with the remainder
being at least bounded. For instance, the standard centred form depends
on the Taylor expansion of f. If f(x) — f(c) can only be treated
arithmetically, that is, only using the four arithmetic operations without
using limit operations, then, a general improvement of the range
estimation cannot be guaranteed or observed in practice. In order to make
this discussion plausible we give a simple but typical example.

Example 3.5 Let f(x) = x — [x] be defined on the interval X = [0, 2].
Clearly, f(X) = [0, 1]. If we proceed automatically in order to get an
inclusion of the range, then we get as ‘natural’ interval extension,

fX) = X - [X]

where [X] is the smallest interval that contains the set {[x]: x € X}, and

i
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fx) =1[0,2] - [0, 2] = [-2, 2].
If the real representation is used that underlies the centred form, see
Definition 3.1, it is still possible to determine the function s,

s(x, ¢) = f(x) = fley =x = [x] = c +[c]
= (x = o) = (x] = [eD-
Treating the term [x] — [c] is more complicated than treating x — [x], and

this rearrangement furthermore does not gain any advantage. If we try to
split off the factor (x — ¢) and to represent s in the form

s(x, ¢) = (x — ¢) gx, ¢),
as in (2.2) and to find a reasonable inclusion for g, then this procedure
fails, since on the one hand, the function

g(x, ) =1—([x] = [cD/x —©)
is unbounded and on the other, it contains a zero in each interval extension
of the denominator which means that the division is not allowed.
We will now give some directions that may be helpful in order to find a
centred form function as required in Definition 3.1.
Let X € I and let f: X — R. The following steps are generally successful
in constructing an inclusion function for f:

1. Find a function g: X X X — R™ such that s(x, ¢) = f(x) — f(c) =
g(x,c) - (x —c¢)forallx, c e X.

2. Find an interval function G: I(X) — I'" such that g(x, ¢) € G(Y) for
alYe I(X),xe Y, c=m(Y).

3. The function F: I(X) — I. defined by F(Y) = f(c) + G(Y) - (Y — ¢)
where ¢ = m(Y) is a centred form function for f on X.

4. In order to get reasonable and natural representations and
expressions it is frequently necessary to split the functions g and G,

g=2>g" and G=2 G’
p=1 p=1

such that g°(x, ¢) € GP(Y) for all Y € I(X), x € Y, ¢ = m(Y), see Section
3.6.

5. In order to obtain improvements (distributive law, extended power
evaluation) one may choose a function S: I(X) — I such that

S(Y) Epéle (Y=o for all Y € I(X), ¢ = m(Y).

Having done this, one has to check that the improvement S is not too good,
that is, S still has to satisfy the condition

s(x, ¢) € S(Y) forall Y e I(X),x e Y, c = m(Y).
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6. Inorder to get a quadratically convergent centred form function one
has to make certain that the necessary assumptions for G are valid, namely
that G satisfies a Lipschitz condition as seen in Section 3.3.

If the reader is less interested in the sophisticated considerations treated
in this section so far, but more interested in an easy recipe for getting a
quadratically convergent centred form function that nearly always works,
then an approximation of the Taylor-form function of second order (and
not of the mean-value form) is highly recommended.

Recipe 1 If fis a rational function in one or several variables the standard
centred or Krawczyk’s form function yields quadratically convergent
inclusions of the ranges f(Y).

Recipe 2 Assume that f: X — R is twice differentiable on the interval X
I'". Fore each multi-index A € N™ with I}»I = 2 find a bounded interval
function F*: I(X) — I such that

DM(x) e F(Y) forallxeY,Y € I(X).
Then the function F: I(X) — I defined by

K(Y) = f(c) +‘ IE DMf(c) (Y = ) +' |Z P(Y) (Y = o)*/M
Al=1 A|=2

where c is an abbreviation of m(Y), is a centred form function for f on X
and quadratically convergent, as seen in Section 3.5.

The proof of the assertions of the recipes are given in 3.2 and 3.5.

It is very convenient to use Recipe 2 since the functions F* are only
required to be any (arbitrarily bad) inclusion isotone estimation which can
be as simple as a constant interval, for instance

F(Y)=[a,blel forall Y € I(X) and all A with | = 2.

Therefore we need only bounds of the partial derivatives D*f for Ill =2,
and as discussed in Section 3.5 it might seem that Recipe 2 only provides a
shift of the task of finding boundaries from the function f to the partial
second derivatives. We repeat that this conjecture is wrong because we
have mentioned at the beginning of this section that any inclusion nearly
always can be found and we will now focus on the search for arbitrarily
good estimations. The recipe says that if any (and only one set of) bounded
inclusions for the second partial derivatives are found then the quadratic
convergence of F, see Theorem 3.4 is guaranteed. -

If we compare Recipe 2 with the mean-value form function for f we
notice that for the latter method only differentiability is assumed for f but
that there are some further conditions which are not too easy to realize. If f
is therefore twice differentiable we recommend Recipe 2 in any case, if
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not, then clearly the mean-value form functions still provide an interesting
possibility.
Let us give some simple examples for Recipe 2.

Example 3.6 Letf(x) = x cosx forx € X = [—n, n]/2. We get f'(x) = cosx
— x sinx and f'(x) = —2 sin x + x cos x where f'(x) € [-2, 2] + ([—=, }/2)
[—1, 1] € [—6, 6]. Using the recipe, the interval function F: I(X) — I given
by

F(Y) = fc) + £(c) (Y = &) + [-3,3)(Y = ¢} for ¥ € I(X)

where c is written instead of m(Y) is a quadratically convergent centred
form function for f. The reader may apply the mean-value form and
compare the effort.

In the next example we consider a monotone function in order to be able
to calculate the width w[f(Y)] directly and to compare it with the width of
the centred form function.

Example 3.7 Letf(x) = ¢ forxe X =[0,1]. We getf'(x) = ¢*and f'(x) =
e* € [0, 4]. By Recipe 2, a quadratically convergent centred form function
for f is given by

FY)y=¢+e(Y—c)+[0,2)(Y —c)* forYelX)

where c is an abbreviation of m(Y). We shall now verify the quadratic
convergence directly by using Taylor’s formula and equation (1.3):

wlF(Y)] = ew(Y) + 2w(Y)?,
and, if Y = [y, 2],
W(Y)] = ¢ —e =¢" —e + e — ¢
=e(z—c)+ez—c)R2—e(y—c)— ey — )2
= ew(Y) + (5 — ") w(Y)*8,
where € € [c, z] and n € [y, c|. Therefore
WF(Y)] = wlf(Y)] = 2w(Y)* + (e" — e*w(Y)*8
< 2w(Y)?
for every Y € I(X).

3.8 THE KNOWLEDGE ABOUT MONOTONICITY

If a function f is monotone in some of the variables then the complexity of
computing the centred form of fis reduced. If fis a continuous function in
one variable, the case is evident, and we have
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A(a, b)] = fla) v f(b)

if defined. If a function f(xy,...,x,,) is defined for x; € X; € I(i = 1,...,m),
we say that f is monotone in the variable x, if for each choice of values ¢; €
X, (i=1,..,k—1,k+1,...,m), the function

g(xk) = flcryeesCh—1> Xiy Chi1seeesCrm)

is monotone. The facilities of using monotonicity properties are based on
the following lemma which is due to Skelboe (1974).

Lemma 3.7 Let the continuous function f(xy,...,x,,) be defined for x; € X;
(i = 1,...,m) and monotone in x, (without restricting the generality). If X, =
[a, b] and the function g, is defined for any ¢ € X; by g(xa,...,%,n) =
fle, x2,....x) for x; € X; (i = 2,...,m), then

f(X],...,Xm) = ga(Xz,...,Xm) \% gb(Xz,...,Xm).

Proof Assume y = f(cy,...,c,,) for some ¢; € X; (i = 1,...,m). Since a < ¢;
< b using the monotonicity we get

8a(C25esCm) < flC1,.sCm) < 86(C2y--esCrm)

or the opposite chain, and the value y lies in the interval hulls g,(c,,...,c,,)
V 8p(€25--Cm) S 8alX2s-..,. X ) V 86(X2,...,X,,). The continuity of f is used
for finding a term f(cy,...,c,,) which lies between given values f(a,
dy,...,d,,) and f(b, e,,...,e,,) in order to prove the inclusion in the opposite
direction. O

If this lemma is applied repeatedly then it can be generalized to functions
monotone in several variables.

Therefore, if it is required to determine the range of the function e*/(x?
+y)forx € X = [~1, 1] and y € [3, 4] then it is sufficient to determine the
interval hull of the (exact or estimated) ranges of the functions g3(x) =
€/(x* + 3) and g4(x) = €*/(x* + 4) for x € X. The ranges g;(X) and g,(X)
can be calculated by using the centred forms G5(X) and G,4(X).

Corollary 3.1 If the continuous function f is representable in the form
f(xly'--’xm) =g(x17“',xm—l) *h(xIn) (326)

forx; e X; (i = 1,....m) and * € {+, —, -, /}, where h is a monotone
function, then

f(Xl’---,Xm) = g(Xla'“aXm—l) * il(Xm)

Proof Since x,, is separated, the interval hull which is provided in Lemma
3.7 has the desired form. ]
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There are two advantages of this corollary. The first is that it is not
necessary to calculate the interval hull, the second is that an inclusion
procedure such as the centred form is only required once, i.e. for the
inclusion of g(X7,...,Xm-1)-

Since each occurrence of a variable in which the function f is monotone
diminishes the number of variables in the centred form, it is suggested to
manipulate the expression of fin a way that allows the use of Corollary 3.1
as often as possible, cf. the following example of Skelboe (1974), Moore
(1976). Let

.+.
g yz forxe X=[1,2],yeY=[5,10],andz € Z

x=y

fx, y, 2) =

= [2, 3], then an optimal arrangement of f is

f(x,y,2)=<1+ﬁ_—1>z

such that the range is determined directly by

fiX,Y, 2)= <1+ #>Z
Xry) -1

If f is a function in the two variables (for simplicity) x € X and y € Y it
may happen that f is monotone in y but that f is not representable in the
form (3.26), for example, the function f(x, y) = e*""?(x + 1). In such a
case there seems to be no advantage in simply replacing y by Y, since,
when applying the centred form, the variable y will occur several times in
the centred form formula. Thus, the use of Lemma 3.7 is again
recommended.

The knowledge about monotonicity is also helpful in making the
subdivision method more efficient, i.e., the following lemma will be used.
But first we need some notions.

If a variable x; occurs in an arithmetic expression f(xi,...,x,,) at most
once and of first order, then for brevity x, is said to occur only once in this
expression. Thus x3 occurs only once in (x; + x3)/(3x3) or in x5 orin xox3!
(since x5! is the abbreviation for 1/x3), but x3 does not occur only once in
x1 + 3x> or in x3/x3.

Lemma 3.8 Let f(xy,...,X,) be an arithmetic expression in which each
variable occurs only once. Then
X1y Xm) = (X1, s X)) for Xy, X, €1

if defined.
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Proof One only has to show that f(X;,...X,,) S f(X;,...X,,). Let y €
f(X,...X,,). Since each variable occurs only once, there exist reals ¢; € X;
such thaty = f(cy,...,c,n) € f(X1,...X,). o

The occurrence and distribution of monotone functions in the class of all
functions is investigated by Nickel (1977).

CHAPTER 1V

More about quadratic
convergence

In the previous chapters we developed the centred form for computing a
good inclusion for the range of a function over an interval. The inclusion
was considered to be good if it converged quadratically to the range of the
function when the width of the domain tended to zero. The original
problem was, however, to compute a good inclusion on a fixed domain.
This may be stated as: Given a function f: D & R™ — R, a fixed interval
X € I(D) and & > 0 find an including estimate F(X) for the range f(X) of f
such that

wlFX)] - wlf(X)] <e.

Clearly it is not possible in general to compute such an estimate using only
the centred form. |

We therefore develop and discuss the subdivision method due to Moore
(1966) as well as refinements due to Skelboe (1974), Moore (1976, 1979)
and Asaithambi-Zuhe-Moore (1982). When we now combine the centred
form with the subdivision method we obtain an effective tool for
computing including estimates of the range of functions of required
accuracy.

This chapter is divided into three parts. We first introduce and define the
subdivision method. We then show that the subdivision method is very
effective when combined with an estimate such as a quadratically
convergent centred form. Finally, we discuss the method given by Skelboe
(1974), eliminating the logical flaws in the method.

4.1 THE SUBDIVISION METHOD

The subdivision method was originally developed by Moore (1966). It was
based on the simple idea that the interval arithmetic estimate of the range
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of a rational function over an interval could be improved by subdividing
the interval and then computing the union of the interval estimates over
the subintervals for an improved estimate.

In this section we develop the subdivision method in the more general
setting of including functions.

We first introduce some notation for the uniform subdivision of an
interval X = (X, ..., X,,) € I'". Let n = 0 be a given fixed integer. For each
X; =[x, yi], i = 1, 2,..., m we define the subintervals

X = [x; + (—1) w(X))/n, x; + jw(X,)/n],
j=12, .., n
Clearly X; = U}'=1 Xy, i =1,2,..., m. If we now define the index set
Jm=A{1,2,...,n}"
then it follows that
X=UJX,

1€J,,

where
X.[ = (Xl,jl’ ceey erfm) fort = (il,jz, ...,jm) (S Jm-
From the definition of X;; and X it follows that

w(X,) = Zv—(nﬁ forallteJ,,. 4.1

Letnow f: D S R™ — R, X € I(D) and assume that there exists a general
inclusion function of f over X, that is, a function F: I(X) — I with the
property that

fiY) S FY) forallYeI(X). (4.2)
We then define
Sa(X) = g F(X;) (4.3)

to be the nth uniform refinement (or refinement for brevity) of F. Clearly
5.0 = U Fx) 2 U fix) = f0

from the inclusion property (4.2). The subdivision method then simply
consists of computing refinements S, for n = 1, 2, ... or for some
subsequence.

Moore (1966) furthermore gives some estimations of the computational
complexity of the subdivision method.

= s
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4.2 GLOBAL CONVERGENCE IN THE SUBDIVISION METHOD

In the previous section we introduced the subdivision method. By applying
it to an inclusion function F: I(X) — I of a range function f: I(X) — I,
estimations S,(X) 2 f(X) were obtained. We will now consider the
convergence properties of this method, in particular we will show that if F
converges quadratically to f, then S,,(X) converges quadratically to f(X) as
n — o, In the subdivision method we therefore have a tool whereby we
may compute improved estimates S,,(X) of the range f(X) over the interval
X by allowing the computations to progress over successively smaller
intervals Xj;.

Let therefore X € I, f: X — R and F: I(X) — I be any inclusion function
for the range function f: I(X) — I such that

i) SFKY) forallY e I(X)

Let now S,(X) be the nth refinement of F(X) obtained from (4.3). Then
the following is valid.

Theorem 4.1 If the inclusion function F for f on X is quadratically
convergent to the range function f, then

wIS.(X)] — wlf(X)] = O(1/n?).

Proof Let Y, and Y, be the intervals of the nth subdivision of X, which
determine S,(X), that is,

Sn(X) = F(Yl) v F(Yr)

where the left endpoint of f(X) is contained in F(Y)) and the right endpoint
of f(X) is contained in F(Y,). (Studying the subdivision method one can
check that such intervals Y, and Y, do exist.) From the assumption, it
follows that

wlF(Y)] - wlf(Y)] = O(Un?)  for Y e (Y, Y,},
and from f(X) < f(Y,) v f(Y,) we obtain
w[S(X)] — wlf(X)] < w[F(Y))] — w(f(Y))]
+ w[F(Y,))] - w(f(Y,)] = O(1/n?). 0

Remark 4.1 If the inclusion function F for f on X is only linearly
convergent to f then the proof of Theorem 4.1 shows that

W[S.(X)] — wlfX0] = O(Un).

Remark 4.2 Both Theorem 4.1 and the previous remark are still valid if
the subdivision is not uniform. In this case, however, there must exist a
constant y such that the subintervals X;; of the nth subdivision satisfy
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W(X;) < vin

where Xj; is the jth subinterval of X; and where the constant Y is
independent on n. Such a subdivision can be useful if w(X;)/w(X) is very
small for some coordinate direction i in that it may reduce the number of
evaluations, see also Example 4.1.

Example 4.1 A large saving in computations may be possible using the
idea in Remark 4.2. Let for example the range function fof f: D < R” — R
have an inclusion function F with a Lipschitz constant L. Furthermore, let
X = (kY, Y, ..., Y) € I(D) for some k = 0. Then w(X) = kw(Y).

In order to compute a refinement S, (X) by the uniform subdivision
method that satisfies

WS.X0] - W) < e

for some prescribed accuracy € > 0 one can use the estimation

WS.(] = wIA0)] < 2Lw(X)/n

which can either be derived from the proof of Theorem 4.1 using the
constant L or can be found in Moore (1979). Thus, in order to attain the
required accuracy, n = 2Lw(X)/e must be chosen and therefore
approximately

&)

€

evaluations F(Xj;) are necessary for computing S,(X). However, if with
respect to Remark 4.2 the subdivision is such that at the first step only
X; = kY is uniformly divided into k intervals of length w(Y) and no
subdivision of X,,..., X,, is done, and then the further steps of the
subdivision are a uniform subdivision of the generated k subintervals in all
directions, then only approximately

<2LW(X))m/km—1

€

evaluations F(Xj) are necessary in order to attain the accuracy .

In order to compute the nth uniform refinement S,(X) we have to
evaluate F over each X, T € J,,.. Since the set J,, contains n” elements it is
clear that even for moderate dimensions the amount of computational
effort may be rather large. For 10 subdivisions in three dimensions we
already get 1000 evaluations. We therefore consider some further
improvements to the subdivision method that either depend on the
function to be evaluated or on the results already obtained from a previous
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calculation. The second and most important improvement is the recursive

method of Skelboe (1974) which will be discussed in Section 4.3. Here we
discuss two ways in which the subdivision method may be improved if
further information about the function f is available.

The following two theorems due to Skelboe (1974) may aid in reducing
the number of evaluations in the subdivision method substantially by
reducing the number of coordinate directions in which a subdivision is
necessary. The theorem is valid for inclusion functions that are obtained as
natural interval extensions to rational functions.

Theorem4.2 LetD SR™ X = (X4, ..., X,,) € (D), and n > 0. Let f: D
— R be a rational function and let f(Y) be the natural interval extension of
f(x) on Y € I(X). If the component x;. of x occurs only once in the expression
for f, then

f(Xl"“7Xk’ ,Xm) = ).91 f(Xla"'a ij,""Xm)

where X,; is defined as in Section 4.1.

Proof If we replace the first occurrence of x; by x%l'), the second by x?,
etc., and in general, the jth occurrence of x; by x{’ then an expression
h(xgl),..., x{Y,...) is generated in which each variable x¥ occurs exactly
once. Let o; be the number of occurrences of x; in f, then the expression
h(x{Y, ..., xD, ...) generates fif x) = x;forj =1, ..., ;.

Now let Y* = Y®' X ... X Y°" € I°**-*°" be defined for any Y € I(X).
From Lemma 3.8, since each variable x{’ occurs only once in &, we have

h(Y*) = h(Y™)

where h(Y*) is the natural interval extension of 4 to Y*. Furthermore, by
the definition of a natural interval extension, we have

f(Y) = h(Y™).

Since X; = U;’=1 X, using the just mentioned relations we get,

fX) = h(X*) = h(X™)

y R(XT, ..., Xijs . XS)

=

= U h(X?, ..., Xy, ..., X37,)

-
[

= Hf(Xl,""Xk—l,ijaXk+1a~"’Xm)' O
j=

The Theorems 4.1 and 4.2 will now be combined for the following result:
if the variables x;, ..., X occur only once in a rational expression f(x, ...,
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Xm), if F is, as natural interval extension of f, a quadratically convergent
inclusion function to the range function f, and if the subdivision is done
only for the coordinate directions {1,..., m}\{ki,..., k,} when using the
subdivision method, then the quadratic convergence of the inclusions to
the range f(X) in the sense of Theorem 4.1 is retained. The justification for
this assertion is given by the following theorem.

Theorem 4.3 Let f be as in Theorem 4.2 such that the variable x; occurs
only once in the expression for f. If the natural interval extension f(Y) of f to
Y € I(X) converges quadratically to f(Y) and if S}(X) is the inclusion
computed by a uniform subdivision of all components of X except X, then

wSTH(X)] — wlfX)] = O(1/n?).
Proof Let the index set J,, = {1,..., n}™, the intervals X, for t € J,,, and
the nth refinement be defined as in Section 4.1. To each T = (jy, ..., j,.) €
Jm let the (m — 1)-tuple v = (jy, ..., jx—1, jk+1» ---» jm) and the subinterval
Xt* = (X1j19 L) Xk—l,jk_,’ Xk; Xk+1,jk+l’ LRRE ij,,,)
be defined. The X.. are precisely those subintervals that occur in the nth
refinement S7,(X). If t € J,,,, then by Theorem 4.2 we get

fXe) = U fX,),

o*=1

and from this it follows that

S50 = U fixw) = U U fX,),

= U fx) = 5,(0).

The quadratic convergence of S,(X) and hence of $%(X) follows from
Theorem 4.1. ]

Remark 4.3  Another procedure for reducing the computational effort of
computing estimates for the range f(X) for f: D € R™ — R for some X €
I(D) was suggested by Moore (1975) (see also Moore, 1979). For this we
assume that the partial derivatives

)

ax i

filx) =

exist and have inclusions

F(Y) 2 f(Y) foreachY € I(X).
If it now turns out that
0 < min F(Y)
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for some i, 1 < i < m and for some Y € I(X) then we may conclude that

g(xi) =f(x19 ey Xiy oees xm)

is a monotonically increasing function of f in x; over Y and the techniques
of Section 3.7 may be used for Y. A similar statement is valid if

0 = max F(Y).

Further, various hints to reduce the number of function evaluations at the
subdivision method are given by Moore (1976, 1979), Asaihambi-Zuhe-
Moore (1982), and Hansen (1980).

4.3 THE METHOD OF SKELBOE

The subdivision method discussed in Section 4.1 has a very large
computational complexity. In the method suggested by Skelboe (1974) the
number of computations required is reduced by using information obtained
during the computations to select a relatively small number of intervals to
be subdivided. ' _

Skelboe’s method produces a sequence of values (y,)n-1 Wwhich
converges under certain conditions to the left endpoint of f(X) for an X €
I"™, on which fis defined. Analogously, the method may be applied to —f to
get the right endpoint of f(X).

The following example of Skelboe (1974) describes the essential features
of his method in the one-dimensional case, m =1.Let X e I, f: X— R, and
F: I(X) — I be an inclusion function for f which need not be inclusion
isotone.

If the subdivision method of Section 4.1 is applied to produce
refinements S,(X) for n = 1, 2, 4, ... then a sequence of intervals F(X}) =
[a}, bf],j = 1,2, ..., n are computed where Xj is the jth interval of that
subdivision for which w(X}) = w(X)/n (see Fig. 4.1) and where we have
suppressed the coordinate index used earlier in this chapter in the notation
Xjsince i = 1.

In Skelboe’s procedure an interval X7 is subdivided only if af is the
lowest value in a certain ordered list of endpoints. This list has a key role in
the procedure which is best seen by describing the first steps of the
procedure.

1. (i) Subdivide X = X} into X2, X3.
(ii) Compute the values a3, a3.

(iii) Arrange these in a linearly ordered list (see Fig. 4.1), L* = (a3, a3)
such that a2 < 43.

(iv) Select X7 for further processing (since a3 is the first member of the
list L?).
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2. (i) Subdivide X% into X}, X3.
(ii) Compute af, ai.

(iii) Delete a2 from the list L? and insert a4, a% on the list such that the
linear order is kept (see Fig. 4.1) thus obtaining
= (a3, a}, a3) with a} < a} < @3.

(iv) Select X3 for further processing (since a, is the first member of the
list L4).

3. (i) Subdivide X3 into X%, X3§.
(i) Compute a$, af.

(iii) Delete a3 from the list L* and insert a8, a§ on the list such that the
linear order is kept thus obtaining ...

and so on.
FIX) b {
FX) - {
FIX3) | —]
FIX3) ——
FIX3) b——
FIX3) | -
FX3) | |
Fig. 4.1

The interval X3 for example is only subdivided if a3 is the first member of
some list L” (this will never happen in the situation shown in Fig. 4.1).

Continuing the procedure which is initiated by the steps 1, 2, and 3 we
get an infinite sequence of values (y,), n = 2, 4, 8, 16, ... where y, is the
first element of the list L".

Theorem 4.4 Let X € I'", f: X — R be continuous and F: I(X) — I an
inclusion function for f which converges to f, that is

w[F(Y)] = 0 if w(Y) = 0.
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Then the sequence (y,) of left endpoints generated by Skelboe’s method
converges to the left endpoint of f(X).

Proof Let y* = min f(X). Then, by construction,
Yn S Y%
If Y,, is the interval which determines y,,, that is,
¥, = min F(Y,),

then y,, y* € F(Y,). Since w(Y,) — 0 by construction, also w[F(Y,)] — O
and therefore y,, — y*.

We now give some hints for the practical realization of Skelboe’s
procedure.

Remark 4.4 In order to obtain a termination criterion one may use the
fact that y* € F(Y,) (see the proof of Theorem 4.4). If one calculates F(Y,)
or w[F(Y,)] at each step (or after some initial steps) then the termination
criterion could be

w[F(Y,)] < &.

This means that the absolute error is required to be smaller than €. (There
is no additional computational effort required to compute w[F(Y,)] or max
F(Y,,) if the centred form is used.) An estimate of w[F(Y,,)] may also be
obtained via w(Y,,) if a Lipschitz constant is known for F.

Remark 4.5 If F is inclusion isotone then the sequence (y,) is
monotonically increasing, that is

Yn, < Yn, whenever n, < n,.
In this case the equality

Yn, = Ynz for ny ?é na (44)

may theoretically happen any number of times. If now the subdivision
method is executed on a computer, then instead of y, only numerical
approximations y, are calculated. (It is clear that left rounding should be
used in the numerical calculations.) The equality

Vn, =Vn, Wheren, #n, (4.5)

may again happen. The equality (4.5) may on the one hand be caused by
property (4.4) and on the other, it may indicate that an improvement due
to further subdivision is swamped by rounding errors such that it is
pointless to continue the calculation. It is therefore not opportune to use
this equality as a termination criterion as is done by several authors since it
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is not known by numerical calculation which of the two reasons is
responsible for the equality (4.5). However, Asaithambi-Zuhe-Moore
(1982) pose a class of functions where the equality (4.5) can only be caused
by rounding errors.

Remark 4.6 If the list L"” becomes too long then it may be possible to
remove the members of the tail from the list. Let y,, be the first member of
the list, let Y, be the related subinterval such that F(Y,,) = [y,, z,] for some
z,. Then we may delete a member y from the list and also the related
subinterval Y from the further processing if the condition

Zp <Yy

is satisfied since Y will never be used to approximate the lower bound. The
same holds for all members of the list behind y.

The following version of Skelboe’s procedure is due to Moore (1979). It
subdivides the intervals X at each step only in one coordinate direction
which changes cyclically. For instance, if X = (X, ..., X,,,) is subdivided in
the ith direction, then we get (X1, ..., X}, ..., X,y and (X1, ..., X}, ...,. X))
where X; = X; U X’;. The next subdivisions are along the (i + 1)st,..., mth,
1st,..., directions and so on.

The cyclic bisection algorithm (not including a termination criterion)

(1) Set by = min F(X); set Y = X.

(2) Initialize list with the pair (Y, bg).

(3) Set coordinate index i = 1.

(4) Bisect (subdivide) Y in coordinate directioni: Y = Y, u Y.

(5) Set bl = min F(Yl) and b2 = min F(Yz)

(6) Remove (Y, by) from the list (that is, the first pair of the list).

(7) Enter the pairs (Y3, b;) and (Y5, b,) on the list in proper order (such
that the second members of the pairs ascend).

(8) Denote the first pair of the list by (y, by).

(9) Cycle i (if i < m, then replace i by i + 1 else by 1).

(10) Go back to (4).

A new version of this algorithm which has some improvements for a
practical computation can be found in Asaithambi-Zuhe-Moore (1982).
Instead of the cycling bisection the bisecting is done at each step in the
coordinate direction where the region has maximum width. This is done
since these authors report simple two-dimensional examples where the
cyclic choice of coordinate directions for bisection produces a sequence of
thiner and thinner slit-shaped regions so that the method does not appear
to converge. Further, this algorithm is enriched with some other
improvements which will not -be discussed here, see also Moore (1976).
Finally, a termination criterion is provided that is valid for rational
functions.

CHAPTER V

Optimality of the standard
centred forms

The standard centred form of a rational function f over an interval X has
turned out to be a good approximation for the range f(X) judging from
many practical examples and tests. This chapter will demonstrate the
reason for the good numerical results, that is, it will be shown that the
standard centred form is an optimal approximation of f(X). This result is
due to Ratschek—Rokne (1980a). The underlying concept of an optimal
approximation is not the one that is commonly used, but it has constructive
features which are extensively discussed in Ratschek (1980b). There are
also some connections between this concept and the ideas of Traub-
Wozniakowski (1980). For simplicity, we will only treat functions of one
variable.

5.1 COMPUTABLE APPROXIMATIONS
Let F be a class of interval valued functions. A partial operator
awFXI->I

is said to be an including approximation for the ranges of the functions of F
(abbreviated: an approximation for F) if

o, X\) 2f(X) forallfeF, Xel (5.1)

provided the terms «(f, X) and f(X) are defined. (The attribute ‘partial’
indicates that it is possible that «(f, X) is not always defined.)

In this chapter we will only admit approximations which carry
constructive features. That is, if « is such an approximation for F then there
shall exist some formula, algorithm, or instruction, etc., that evaluates the
inclusion «(f, X) of f(X) for each f € Fand X e I. Two conclusions may be
drawn from this idea:
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(i) There is some kind of algorithm & which is associated with the
approximation « and which has the purpose of evaluating o(f, X). The
class of allowable operations or steps which may be allowed to be used is
fixed and will depend on the actual case. For instance, this class can
contain interval operations, max, min, comparisons, logical operations,
definition by cases (if-statements), or also nth root, exp, log, sin, etc.
Those who are interested in computer applications will certainly admit the
usual computer instructions and statements. The present discussion only
admits the class consisting of the four interval arithmetic operations.
(ii) For evaluating o(f, X), the algorithm & manipulates only a finite set
of information. This requirement is in accordance with the usual
circumstances in computers and principles of formalized logic (Hilbert’s
finitist standpoint). The finite set of information enters the algorithm & via
the (finitely many) input parameters of &. The finite set of information will
be presented by values for f: The values for (the functions of) F are
understood to be finitely many mappings W: F — I, i = 1,...,k. The
mappings W, can be constructive or not, they can be estimations, results of
exact or numerical calculations, or information about any properties of the
functions of F, etc.

An approximation « for F is said to be dependent on the values W,...,W,
if there exists an interval function &: D — I, where D S I**! such that

(X(f, X) = &(Wl(f)’“" Wk(f)’ X)

for all f € F and all X € I, provided that o(f, X) is defined. If & is a rational
function, that is, only the four interval arithmetic operations are used, then
« is called computable from the values W1,...,W,.

This concept of dependence of the calculation on some restricted
information for a function f, and not on all the information about a
function f, is very realistic and occurs practically, for example in physical
observations, measurements, storage limitations of computers, etc.

The standard centred form of a rational function f = p/q on X depends
on the values p(c),..., p*™(c), (c),..., ¢"(c), and H = X — c, where ¢ =
m(X). Therefore we demand that the approximations we admit for a
comparison with the standard centred form shall depend on these data,
since a reasonable comparison between various kinds of approximations is
certainly only then possible if for all these approximations the same
information, in our case the same data, is available. Clearly, if the
information for one approximation consists of the data cited above, and
the information for a second approximation consists of the lowest and the
greatest values of f over X, then the second approximation will be the
better approximation because with the two given values one knows the
exact range immediately.
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5.2 APPROXIMATIONS FOR THE RANGE

We are now going to apply the ideas developed in the previous section, to
the standard centred form. We need:

(i) A class F of functions for which the range is to be evaluated; (ii) the
values of the functions of F that are admitted or known for further
calculation; (iii) the approximations that are admitted, that is, the formula
that will provide inclusions for the range, using only the data of the
functions of F.

Let F be the class of polynomial quotients p/q, where p and g are
polynomials of degree at most » in one real variable. Important: We will
identify two quotients p/q and pi/q,, iff p = p, and ¢ = q,. This
requirement is necessary because on the one hand, f = p/q and f; = p,/q,
have in general different data and different centred forms, even if f and f;
are identical as functions, and on the other hand, because in practical
calculations it is not always decidable if f = f; or equivalently, if p and ¢
have a common polynomial factor.

Now, the values for the functions of F are the assignments

Wy F> R fork=1,..,2n+2

where

Wl(f) = p(c)a"', Wn+1(f) = P(n)(c)9
Wn+2(f) = q(c)7“" W2n+2(f) = ‘I(")(C)
for f = p/q € F and ¢ = m(X). Therefore the values depend on X, that is,

the actual argument of the range function. For the sake of compactness we
let

W (Wla---’ W2n+2)9
Wf = (Wl(f),---, W2n+2(f)).

An arithmetic formula which may be used to evaluate the standard
centred form (of first order) for the functions of F in the sense of Section
5.1is given as

U + 2z=l(uk+1 - ulun+k+2/un+2)Hk/k!

s(u, H) =
Un+2 EZ=oun+k+zH"/k!

where the powers H* are evaluated in the simple form and where u =

(41,..., Uznsp) is a variable over R***2. That means, given a rational

function f € F and an interval X such that the standard centred form of f on



106 Optimality of the Standard Centred Forms [Ch.5

X, F(X), is defined, then

s(Wf, H) = F(X)
where H = X — ¢ and ¢ = m(X).

Thus s can be seen as some kind of an algorithm with uy,..., U3,+,, and H
as input variables, that is, s is an underlying rational formula for the
standard centred form and the operator

(f, X) > F(X)

is a computable approximation from the values W defined previously.
Henceforth we will not distinguish between an approximation for F and the
underlying formula in the sense of Section 5.1, because there is no danger
of confusion.

The character of the standard centred form s suggests that it should be
compared to approximations for F of a similar character.

Let the function B: R*"*? x I — I be representable in the form

B, 1) = ( 3 ccr) /(£ dewrr) 52)

where H* is evaluated in the simple form, m is a non-negative integer, and
Cx, dy are real-valued rational functions over R***2, Let B be the class of all
such functions § which satisfy for each f € F and X € I the inclusion
condition

B(Wf, H) 2 f(X) (-3)

where H = X — c and ¢ = m(X) provided the terms are defined. We notice
that B is a class of approximations for F which are computable from the
values W. ' 4

We are now going to compare the standard centred form with the
approximations from B and it will be shown that no approximation from B
is ‘better’ than the standard centred form, that is, the approximation s is an
optimal approximation in the class B u {s}. The concept of ‘better’ is made
precise in the following manner:

If B and y are approximations of B U {s}, then B is said to be better than y
if

B(WS, H) = v(Wf, H) G4

forallfe F, X € I, where H = X — c and ¢ = m(X), provided both sides of
the inclusion of (5.4) are defined.

If B is an approximation of B and if we set H = 0, then we get from (5.2)
and (5.3)

co(WfYldo(Wf) = f([c, c]) = flc) = Wi(N/W,12()-
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Since the previous equality holds for all f € F, provided B(W¥, 0) is defined,
it follows that co(u)/do(u) = uy/up.». Since we can multiply the numerator
and the denominator of B with reals without changing the functional

assignment, we normalize § such that do(u) = u,,,,. Thus, we get for each
€ B,

CO(u) = U, dO(u) = Up+2, 55
W) = p(c)  do(WP) = q(c) bﬁ=pM€F} 3

5.3 A SPECIAL CASE

In this section the approximations B of B will be applied to a certain
subclass G © F and then, in Section 5.4, we will obtain the final results.
Let G be the calss of all functions p/q € F with

p®(c)e2?241,2] fork=0,...,n (5.6)
and where

0<gq() <1,

-1<q®(c) =<0, fork=1,...,n—1, 5.7

q"(c) < - n!

These conditions permit us to make some conclusions about the
monotonicity of f = p/q and the location of the zeros of p and g, as can be
seen in the proofs of Lemmas 5.1 and 5.2.

Lemma 5.1 If p/q € G then the polynomials p(z) = 2o p®(c) z*/k! and
4(z) = 2%-0 ¢®¥(c) z*/k! have no common polynomial divisors.

Proof We will show that p and ¢ have no common (real or complex)
zeros. It follows from (5.6) that the coefficients of p are positive and that
[P® )k p**P(c)/(k + 1)!] = 2. By a theorem about polynomials we
get |§l = 2 for each zero € of p, cf. Marden (1966, p. 137). It follows from
(5.7) that
(k)

q'“(c)/k! 1

— < — < = -

q(")(c)/n! r 1, fork=0,.,n—-1.
By a theorem about polynomials we get |§| < 2 for each zero § of g, cf.
Marden (1966, p. 123). O

Let again F(X), P(X), and Q(X) denote the standard centred forms of f,
pandqover X =c + H, H =[-z, z], where c = m(X), z = w(X)/2, and p
and q are polynomials of degree n such that (5.6) and (5.7) hold when we
write f = p/q € G.
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Lemma 5.2 Let B be an approximation for F of B. If B(Wf, h) € F(X) for
all f = plq € G and all X € I, provided the occurring intervals are defined,

then

B(Wf, H) = P(X)/Q(X)
and

= Ik!

W) =t forue R"*?and k=0, ...,n. (5.8)

di(u) = Upir+2lk!
Proof We write f in the form

thx—c)+ ... + ty(x — ¢)"/n!

f) = fie) + — -
q(c) + ... + ¢"(c)(x — o)"/n!
see (2.1) and (2.6). The numbers t, = p®(c) — f(c)g®(c) are non-
negative for k = 1,...,n. Thus, fis monotonically increasing for x = ¢ and
we get

ﬂhc+ZD=ﬂd+[0

hz + ... + t,2%n! ]
" g(e) + ... + ¢™(c)2"/n!

Comparing this interval with F(X) we see that for all z = 0 the right
endpoints of these both intervals are equal. Since

fc, c + z]) € f(X) € B(Wf, H) € F(X) for all possible X

the right endpoints of B(Wf, H) coincide with the right endpoints of F(X),
that is, using (5.5) and writing ¢, and d, instead of c,(Wf) and dx(Wf) we
get:

p(e) + Ty ez fe) + 7oy tiZlk!

q(c) — Z7=y ldil2* " _o 4% (c)z* k!

_ Zioo pM(e)Z k!
"_o q®(c)z¥ k!

The second of the two equations arises by arranging the partial fraction of
the left side of the second equation as one fraction. By Lemma 5.1, the
numerator and the denominator of the right quotient have no common
divisors. Furthermore, the absolute coefficients of the denominators of the
quotients are equal and the equation above holds for some proper interval
[0, zo], thus the following comparison of coefficients is possible:

x| = p®(c)k!  fork =1,....m,
g®(c)k!  fork =1,...,n,

cx = dp=0 for k > n.

A
=
I
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Inserting these values for the coefficients we get B(Wf, H) = P(X)/Q(X).
Since the coefficients c; and d, for k # 0 only occur in connection with the
symmetrical interval H, we can assume c;, d; = 0 for k # 0.

It remains to verify (5.8). For this it is sufficient to consider ¢, for some
fixed k. First, we consider the proper parallelepiped K = [ A;, where
A; is given by '

Ay = 27731, 2] fork = 0,...,n,
Apvi+e = [-1, 0] fork=1,....n — 1,
An+2 = [07 1],

A2n+2 = [—2’ _1] n!’

see (5.6) and (5.7). Then the equation c,(«) = uy,,/k! holds in K, because
for every u € K there exists an f = p/q € G with u; = p(c),..., Uppsz =
q"(c), and cx(u) = co(Wf) = p®@(c)/k! = ug,1/k!. Since cp(u) = g, ,/k!
holds for all u € K and c,(u) is a rational function in u, the equality c, (1) =
Ur.1/k! holds for all u € R#*+2, a

5.4 THE GENERAL CASE

The lemmas of Section 5.3 will be applied to get a contradiction by
assuming that an approximation exists that is better than the centred form:

Theorem 5.1 Let B be an approximation for F of the class B. Then B is not
better than the standard form.

Proof (by contradiction). Let us assume that for all f € F the inclusion

B(WS, H) < F(X)

holds. Then for all f € G using Lemma 5.2 we get ¢, () = u;,1/k! and di(u)
= U, x+2/k! for all u and k = 0,..., n. It follows that

c(Wf) = p®(c)/k! and  d(Wf) = ¢®(c)/k!

and finally B(Wf, H) = P(X)/Q(X) for every f = p/q € F.

There exists an f = p/q € F, however, such that F(X) < B(Wf, H) is a
proper inclusion, and the contradiction is achieved. It suffices to choose
fx) =8+ x)/(4 +x),c=0and H= X =[—1, 1]. Then we get

p(0)=8,p'(0)=1,49(0)=4,40)=1,4 = —1
and

P02 s

ki

L1515

o(x) Ei;ﬁ]'

F(X)=[15 " 15
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Remark 5.1 The standard centred form is not representable as a quotient
(C() + ...+ C,,Hn)/(do + ...+ dnH")

(Assuming such a representation and denoting it by f, the proof of
Theorem 5.1 shows how to get a contradiction.)

Remark 5.2 Since the standard centred form is an expression of the form
co+ (H+ ... + C,H"(dy + ... + d,H")

it is reasonable to ask if approximations of this form can be better than the
centred form. It can also be shown that it is not possible. A proof of this
assertion is similar to the proofs in this chapter and is therefore omitted
here.

Remark 5.3 If an approximation is optimal for the class F, then it need

not be the case for a subclass Fy © F, cf. Ratschek (1980b). Therefore, a -

special discussion for the class of polynomials of F, which is a very
important subclass of F, is reasonable. Such a discussion appears in
Ratschek—Rokne (1981). There it is shown that the standard centred form
is also optimal for this subclass and additionally, the optimality is saved if
the powers H* are evaluated in the extended form. The optimality of the
standard centred form for polynomials with respect to the interval width is
also proven there. This means that the ‘better’ relation (5.4) is replaced by
the relation

wB(Wf, H)] < wly(Wf, H)]-

Remark 5.4 We keep in mind that the standard centred forms of higher
order manipulate the same data as the standard centred form and are
better approximations for F than the standard centred form. The forms of
higher order have, however, a greater computational complexity than the
form of first order. Thus the class B of approximations can be seen as a
boundary with respect to the complexity and it is not possible to represent
the standard centred forms of higher order by an approximation of B.

CHAPTER VI

Other inclusions for the range
of a function

In this chapter we discuss a number of methods for including the range of a
function that are either not based on the idea of a centred form or that use
the centred form in a manner different from the previous use. These
methods have in some cases only restricted applicability. Advantages and
disadvantages of these methods are also treated. We also discuss an
application of the centred form to iteration operators. Finally the
remainder and interpolation forms are considered. These give convergence
of higher than second order.

6.1 QUOTIENTS OF CENTRED FORMS

.Let f = filf, be the quotient of two real functions f, and f, defined on an
interval X and let F1(Y) and F,(Y) be centred form functions for f; and f,
respectively for Y e I(X). The quotient

FI(Y)/Fz(Y) for YEI(X)

is an inclusion function for the range function f(Y) although it is not
necessarily a centred form function. Such quotients are investigated in this
section. In the case of rational functions it turns out that the evaluation of
Fi(Y)/Fy(Y) requires fewer operations than the evaluation of the standard
centred form. The disadvantage is that the quadratic convergence of
Fi(Y)/Fx(Y) to f(Y) may only be shown to be valid for a very restricted
class of functions.

Quotients of centred forms were first discussed by Alefeld-Rokne
(1981) for the standard centred form as well as for the mean value form. As
a particular example consider f: X — R defined by

fx) = 1g(x)

where g(x) is a polynomial. Clearly, in order to compute the standard
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centred form for f over X € I more operations are required than for the
form

1/Q(X)

where Q(X) is the standard centred form for g over X. This particular case
turns out to be always quadratically convergent.

The result of Alefeld-Rokne (1981) in one variable was as follows: let p
and g be polynomials and let f = p/q be defined on X € I. Let

F(Y)=P(Y)Q(Y) forallY e I(X) (6.1)

where P(Y) and Q(Y) are the standard centred forms for p and g on Y
provided 0 ¢ Q(Y). If it is assumed that

flop'(©)q'(c)<0 forallce X, (6.2)

then it can be shown that F is quadratically convergent to f, that is, there
exists an o such that

|F(Y), (V)| < aw(Y)?  for all Y € I(X).

Clearly, the condition (6.2) is quite restrictive and hence only satisfied
by few functions. Furthermore, it is numerically quite difficult to check
whether (6.2) is satisfied or not. The quotient form is therefore not very
suitable for use with a subdivision method unless (6.2) is known to be
satisfied a priori. If, however, it is only required to produce a rough
estimate of f(Y) for a single Y then the quotient form (6.1) is a candidate
because of its lower computational complexity.

In this section we consider the quotient of general centred forms. The
results of Alefeld-Rokne (1981) will then follow as special cases of the
general results.

Let X € I'" and let the real functions f,, f,, and f = f,/f, be defined on X.
Fori=1,2,let F(Y) = f{c) + S(Y) be a centred form function for f; with
S(Y) € 251 (Y — ¢) - GP(Y) and with a common point evaluation
function ¢ = a(Y) € Y. Assuming 0 ¢ F,(Y) we set F(Y) = F;(Y)/F,(Y) for
all Y € I(X). We then prove the following results:

Theorem 6.1

) AY) € KY) for all Y € I(X),
(i) if GY, G8, and 1/F, are bounded, then F(Y) converges linearly to f(Y)

if w(Y) tends to 0.

Proof
(i) Clear, since f(x) = fi(x)/fo(x) € Fi(Y)/FX(Y) ifx € Y.
(ii) In the following estimation we use the formulas (1.6):
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WF(Y)] < [F(D)[WI/Fx(Y)] + w{F(V)][VE(Y)

< |F(V)| [VUE(Y)? w[Fx(Y] + |VF(Y)| w[Fy(Y)]
Since the functions Gf and G¥ are bounded, we get

w[F(Y)] < Kw(Y) fori = 1,2 and all Y € I(X)

for some constant K, see the proof of Theorem 3.1.
The remaining terms are bounded by the assumption such that there
exists a constant L with

WlF(Y)] - wA(")] S wFE(Y)] < Lw(Y)  forall Y € I(X). O

The condition that 1/F, is bounded in Theorem 6.1 can easily be
satisfied. For instance, it holds if F; is continuous since I(X) is compact by
Lemma 1.8.

Theorem 6.2 Let the functions f, and f, be twice differentiable, let the
functions G; = (Gy,...,G;»,) be Lipschitz on I(X), and let c = m(Y) be the
midpoint function. If
L a
floye 2 GU(Y),—v=1,..m, i=12, (6.3)
p=1 0x,

and

ftx)

a,(f;x(x) %) _ o forv=1,...m (6.4)

v ax\'
then F(Y) converges quadratically to f(Y).

Proof Since the functions f; are twice differentiable they can be written in
the form

@) =ai+b;-(x— o)+ ok - P

for x € Y € I(X) using Taylor’s formula. The coefficients of this represent-
ation depend on Y via the developing function ¢ = m(Y), that is,

a; = ai(Y) (S R, b,’ = b,()’) € R™ (l = 1, 2).

The assumptions (6.3) and (6.4) are then written as

n

b;, € 21 G2(Y) v=1,...,m, and i=12 (6.5)
o=

(ai/ay) byy by, <0 forv=1,...,m. (6.6)

Using the boundedness of the functions GP and the easily verifiable
formula

1A = Ala* + £/(a*A)
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which holds for intervals A = a + [—t, f with 0 < ¢ < |a
following inclusion for F(Y),
KY) = F(Y)/FXY) S (a1 + T1)/(ax + T)
= (a1 + Th) (ay + T, + Bl(ay + T3))/a}
C aj/a; + (ar/a3) T> + Tila; + O(w(Y)?)
where the definition
T, = [t 1] =§1 (Y = ¢)- GX(Y), i = 1, 2 is used.

is used. Using (2.13) we then estimate the following upper bound for the
width of F(Y):

wlF(Y)] <

, we get the

L3 3 |6 wivs)

> 3 lcevml w(Y.) + O(w(Y)?)

v=

+ Ow(Y)?). (6.7)

In order to get an upper bound for w[F(Y)] — w[f(Y)] we now construct a
lower bound for w[f(Y)]. Using the series development of 1/(1 + z) for
lzl <lwegetforxeY

f(x)=[a;+by-(x—¢) + O(”x — c“z)]/[az +by-(x—c)+
O(llx - Pl
=+ (x—c) =B (x =)+ O — ) (6.8)
where op = ay/a; € R, a; = by/a, € R™, and B, = (ap/ay) b, € R™. Ify, z €
Y, then
fO) —f@) =1 - (0 —2) = B1 - (v — 2) + OW(Y)?)

Z [alv(yv zv) - Blv(}’v Zv)] + O(W(},)z)

Now we chose y and z such that

) oy —2,) =0 forv=1,...,m
(1) Biv(yy —2zy) <0  forv=1,..m,
(iii) |yy—z| = w(¥y) forv=1,..,m

The conditions (i) and (ii) are reasonable since o;,B1v = bvboyai/a3 < 0
forv = 1,...,m by (6.6). Condition (iii) means that Y, = y, v z, and further
that Y = y v z. Then, f(y) — f(z) can be written as follows,

= 5 o @ z lGa.ml+ 3, lowm)

3

st
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10) = 72) = £ (s +[Brw(¥s) + Ow(1?). (6.9)

If f(y) — f(z) = 0, then we can replace this difference by its absolute value
in (6.9). If f(y) — f(z) < 0, then (6.9) implies that both the difference as
well as the sum are O(w(Y)?). It follows in this case that also | f(y) — f(z)| =
O(W(Y)?) and we get

WD [10) = 12)] = 2 (] + [BrDw(rs) + 0w(¥7)  (6.10)
We finally apply the formula
|A| = |al s w(4) ifacAdel

to the relations (6.5) and get the following estimations

3 G S wlGnm | < k),

- ‘alvl =

Iz!

(Y)l — Bl < u 2 w[GSV(Y)] < Lw(Y).

The constants K and L are independent of Y and arise since the G%, are
Lipschitz and since 1/a, = 1/f,(c) is bounded for ¢ € X due to the existence
of 1/F,. The above estimations together with (6.7) and (6.10) leads to the
desired quadratic convergence property, i.e.

w[F(Y)] — wl(Y)] < IW(YV) [Kw(Y) + Lw(Y)] + O(w(Y)?)
< m(K + L)w(Y)? + O(w(Y)?). o

We now illustrate our results by some simple examples.

Example 6.1 Let X =[-1,1],f(x) = 2 -x)/(2 +x), F(Y) =2 —¢
— (Y —¢),and F5(Y) =2 + ¢ + (Y — c), where the point function ¢ = «(Y)
€ Y is arbitrary. One can easily check that the assumptions of part (iii) of
Theorem 6.2 hold, such that quadratic convergence follows. In fact, if

= [, v], then f(Y) = [2' vo2- “ | ana v = o),

-V
and quadratic convergence is trivially fulfilled.

Although condition (6.4) seems at first sight to be rather artificial and
only necessary for the given proof of Theorem 6.2, the following example
shows that without (6.4) the statement (iii) of the theorem is not true in
general:

Example 6.2 LetX=[-1,1,f(x) =1 +x)/2+x),Fi(Y)=1+c+ (Y
—0),F(Y)=2+c+ (Y —¢), and ¢ = «(Y) € Y be arbitrary. One can

1

'azl

las|
2
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easily check that condition (6.3) does not hold. Quadratic convergence is
not given: if Y = [u, v], then

14+u 1+v
f(Y)=[2+u’2+v]
and
_[1+u 1+v
F/Y)_[2+v’2+u]

In particular, we set u = 0 such that v = w(Y) and get

WF(V)] = wlA(Y)] = vi2 = w(Y)/2.

Thus we have at most linear convergence in a special case, such that
quadratic convergence cannot be expected in general.

Remark 6.1 In the discussion on the use of the mean-value theorem in
Section 3.5 it was pointed out that it was often difficult to obtain a
satisfactory inclusion for the derivative. This is not the case in Theorem 6.2
since it is simple to find an inclusion for the derivative of a function which
satisfies (6.5).

6.2 THE CIRCULAR COMPLEX CENTRED FORM

In this section we consider the problem of bounding the range of a complex
polynomial over a circular interval (= complex disc). This problem was
discussed in Rokne-Wu (1982, 1983) where it was shown that the complex
centred form is better than some other forms and that the radius [centre] of
the complex centred form converges quadratically [linearly] to the radius
[centre] of the smallest disc containing the domain as the diameter of the
domain tends to zero. We follow that development here and we also prove
the quadratic convergence of the just mentioned centres. Finally,
Krawczyk’s circular centred form for complex rational functions is
described. Further circular centred forms are compared by Petkovié

e
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interpretations. Let (c, p) € I(C), let Z; = (¢;, p) € I(C);i= 1,2, ..., k and
let a € C. The following operations were defined by Gargantini-Henrici
(1972):

a+Z=@+c,p={a+zzeZ}
aZ = (ac, |a|p) = {az: z€ Z} (6.11)

k k k k
,_21 Zi=<§Ci,§Pi)= {gziiziezi,i=1,---,k}
Z2,Z; = (16, lcl|p2 + |Czlp1 + P1p2)-

Unfortunately, the set {z,z,: z; € Z;, i = 1, 2} is in general not a disc. It
is, however, a subset of Z;Z, which implies that the given operations
remain within the aims of interval arithmetic as discussed in Sections 1.1
and 1.2. The subdistributive law

Z(Zy+ 2Z3) S 2172, + 2174 (6.12)
is also valid and the equation
z' = (c", (e[ + p)" = |e[") (6.13)

is easily proven using complete induction.

The complex circular arithmetic used in the sequel is the one defined by
equations (6.11) having properties (6.12) and (6.13).

Leta;e C,i=0,1,2,...,n. Then p(2) = X% a;z’, z € Z, is a complex
polynomial. We seek outer circular interval estimates for the set

p(2) = {p(2): z € Z}
for a Z € I(C). One such estimate is the circular interval
ps(Zy=ay+arZ + ... +a,Z"

which we will call the power sum evaluation of p(z) over Z. It is nothing but
the natural extension of p(z) to Z. A second estimate is

(1983).
The set of complex numbers is denoted by C. Let ¢ € C and p € R such
that p = 0. The set

Z={z:|a—c|$p}

Sy

SRR

pu(Z)=(...((e,Z + a,_)Z + a,_2)Z + ... + ap) (6.14)

which we will call the Horner scheme evaluation of p(z) over Z. Clearly,
pu(Z) is the natural interval extension of the Horner scheme representa-

is called a circular interval. The set of circular intervals is denoted by 1(C). tion of p(z) to Z. For these two evaluations we have the following result.

A circular interval Z € I(C) may be written as
Theorem 6.3 Let p(z) = 27— a;z’ be a complex polynomial and let Z = (c,
p) € I(C). It then follows that ps(Z) = (cs, ps) and pu(Z) = (cu, pu) are
given by

Z=(,p)

and the notations ¢ = mid Z and p = rad Z are used with their obvious
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cs = p(c)
ps = Slal (el + oy =l | €2
cu = p(c),
Furthermore, the inclusions
P(Z) € pu(Z) < ps(Z) (6.17)

are valid.

Proof Using (6.11) and (6.13) it follows immediately that (6.15) holds.
The proof of (6.16) is somewhat longer and proved using complete
induction on the degree n of the polynomial. For n = 1 the assertion is
obvious. Assume that (6.16) is valid for polynomials with degree less than
n. Then if the degree of p(z) is equal to n we obtain

pPH(Z) = pu(Z) - Z + a9

where p%(Z) denotes the Horner scheme evaluation of the polynomial
p*(z) = 27, a;z' ! over Z. Using the induction hypothesis for p*%(Z) we
obtain

Pu(Z) = PHD) Z +
('@, 05 {del + 011 15 1 1)) (.0} +
= (a0 + 0@, el +  fo 3 [(e] + oy
IS 4 =]} + ole)
- <a0 + c.é a Y, p{ ) [(Icl + py!
|2, am el 1S g e))
=(p@, 0 3 (el + 071 | £ g 1)

This proves (6.16).

The inclusion py(Z) < ps(Z) follows from the subdistributive law (6.12)
and the inclusion p(Z) < py(Z) is valid because of (6.11). 0

Sec. 6.2] The Circular Complex Centred Form 119

A further possibility for estimating the range of a complex polynomial is
given by the generalization of the standard centred form for real
polynomials to the complex case. The standard circular centred form
function (shortly, circular centred form function or centred form function)
for a complex polynomial p(z) = 27, a;z' over a circular interval Z is a
natural interval extension of the Taylor expansion

20 D)z — oyl (6.18)

of p(z) at ¢ € Z,, analogously to the real case. Let I(Z,) denote the set of
all circular intervals Z € Z, and ¢ = ¢(Z) = mid Z the developing point
function (we will always write ¢ instead of ¢(Z)). Then the centred form
function of p over Zy, pc: 1(Zy) — I(C) is defined by

pA(Z)=2pc)(Z - c)li!  forall Z e I(Zy). (6.19)
i=0
A single disc value p(Z) is called the (circular) centred form of p over Z.

We have the following result for pc(Z).

Theorem 6.4 Let p(z) = X7 a;2' be a complex polynomial, Z = (c, p) €
I(C), and pc(Z) = (cc, pc) the centred form of p(z) over Z. Then

Cc = p(C), }
pc=2 [p(0)|o!

as well as

p(2) € pc(2).

Proof From (6.11) the equations (6.20) are immediately obtained.
Furthermore, equation (6.18) describes an identity for all values of z € C
which implies, using inclusion msonotonicity that p(Z) € p(Z). O

(6.20)

A further comparison is possible for these inclusions of the range of p(z)
over Z.

Theorem 6.5 Let p(z) = X7 a;z' be a complex polynomial and let Z €
I(C) then it follows that
P(Z2) € pc(Z) < pu(Z) = ps(2). (6.21)

Proof If we prove that pc(Z) S py(Z) then the rest follows from the
previous results. From (6.16) and (6.20) we have

¢y = cc = p(c)

and
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o= 3 el + 97 3 071y
as well as
b = 3 [pOlofi
We therefore have to prove pc < py. For this we need

kil (k?]> B (iil)

which may be proven by complete induction. We proceed as follows
(changing the initial indexing for convenience):

}

o> {(ICI + py<!

n .
2 a,' Cl_k
k=1 =k

- péﬂ? (7)o

X
|
—

3
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—t— —t— —— —
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o
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- |
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j=itl k=i+1

. n o I k=1 I
i+1 . (i+1)
P ,‘51 4 ¢ kg'ﬂ( i ) }

. n 1 . .
pt+1 ]=%1<l4{1) a; c/—(t+l) ‘}
(i+1) )
{pm P (c) }= S p(c)
i=1

@+ 1 i!

Theorem 6.5 shows that the circular complex centred form gives an
estimate of the range of a complex polynomial over a circle in the complex
plane that is always smaller than that obtained through both the
power-sum evaluation and the Horner-scheme.

I
3w
- O

I
— =]

LI
i

-
]
=)

Pi = Pc- o

et )
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We now discuss the quadratic convergence of the centred form function
as the radius of the domain tends to zero. In order to do this we will
introduce the concept of a diameter inclusion.

Definition 6.1 Let Z,, Z, € I(C). If there exists d;, d, € Z, U Z, such that
|d1 d2| = 2 rad Z, then Z, is said to be diameter included in Z,. This is
written as

Z, K Z,.

This definition says that Z; < Z, iff there exists two opposite points d;, d,
on the periphery of Z; which lie (together with the line segment connecting
d; and d,) in Z,; or equivalently, iff one half of Z, lies in Z,. Clearly, if Z,
€ Z,, then Z, < Z,. The converse is not true, however. The relation < is
also not transitive. Let, for example, Z; = (0, 2), Z, = (4, 5), and Z; = (10,
10) Then Zl < Zz, Zz < Z3, but not Zl < Z3.

We will now give a brief explanation of the meanings of the diameter
inclusion. First, if B is the smallest disc containing p(Z), then B < B, holds
for any disc B, containing j(Z), see Lemma 6.1 in the sequel. Secondly,
the diameter inclusion is the basic relation which occurs at subdivision
methods for circular intervals. In the treatment of the subdivision method
for rectangular intervals of I, the usual inclusion can be used. Considering
now the circular interval Z = (0, 2) one may ask, how can it be subdivided?
Figs 6.1 and 6.2 show the situation when Z is subdivided. Fig. 6.1 shows
that one cannot find four subdiscs Z; of Z with rad Z; = (rad Z)/2 that
cover Z. However, Fig. 6.2 shows a possible covering of Z by four subdiscs
Z; with rad Z; = (rad Z)/V2. We see that Z; < Z.

A -

Z,

Z,

Fig. 6.1.
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[ J |

Fig. 6.2.

We now introduce the following quasimetrics ¢ on I(C), defined by
92, Z,) = Irad Z, — rad 22|

One can easily check that the axioms of a quasimetric (positively
semidefinite, symmetry, triangle inequality) hold. (Quasimetrics are for
example defined and used in Collatz (1964).)

Lemma 6.1 Let Z € I(C) and let p be a complex polynomial. Then there
exists a uniquely determined smallest disc B 2 p(Z) in the sense that

rad B <rad B,
for all discs By 2 p(Z). Furthermore, B < B, holds for all discs B, 2 p(Z).

Proof First, we state that the lemma holds iff the lemma holds for conv
p(Z) (that is the convex hull of p(Z)) instead of p(Z). Since p(Z) is
compact, conv p(Z) is a so-called convex body for which the lemma holds,
cf. Bonnesen-Fenchel, 1934, p. 54. ]

Lemma 6.2 Let Z = (c, p)>, Z; = (1, p1), and Z < Z,. Then
lo — o1l = 92, 2)),
lc — ol < V20 q(2, 2)).

Proof The asserted equality is just the definition of the quasimetric q.
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The inequality follows from the obvious inequality
pi=p+c—af
as well as the estimation,
e~ e1? < (p1 = p) (o1 + P) < 4(Z, Z1) 201 o

Theorem 6.6 Let p(z) = 27—, a;z' be a complex polynomial and let Z = (c,
p) € I(C). If B € I(C) is the smallest disc containing p(Z) then

q(B, pc(2)) < ap?

where

a =2 [pP)|p i
i=2
Proof Let us first construct a disc A = (a, p,) € I(C) by setting
a = (p(u) + p(v))2
and
= |pw) - p)|12
where

) = pO)]= max {lp(z1) - p(z2)])-

Then clearly
A< B

For brevity we write Z¢ = pc(Z) = (cc, po)- The relation p(Z) € Z¢
furthermore implies that B < Zc. It remains to prove that

q(A: ZC) s«

From this fact together with g(B, Z¢) < q(A, Z¢) the result then follows
directly.

Let z, z, € Z such that
|21 — 22 | = 2p.

The distance between p(z;) and p(z,) can be calculated as follows:

n (’) n 0}
e - pteal = | 3 22 - o = 5 52 - o
n (') Q)
- b@E -2 - 52 G- -5 - o |
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(@)
>l |z -zl -1 5 20 “( - © (o - o
n (‘)
> 20l - 13 52 - -5 5 - of

2|
n @) .
- 2plp@l - 2.3 =2l

From the definition of p, it follows that
pa = %lp(z1) — p(2))|
(¢
p '( ) 0

i!

n

=elr'@l -2,

From Theorem 6.4 we have
PP ,
P

i!

n

Pc‘—‘z

i=1y

Furthermore, from the definition of ¢ it follows that

q(A, Z¢) = pc — Pa

Therefore, we get

n

()
q(A: ZC) = (::21 ( )

(é

)

i = @l + 3 22

-)

P“’(C)

n

Letoz—22

i=2

ALGIR

i!

Then we have
q(A, Z¢) < op,. o

Theorem 6.7 Let Z € I(C) and let p(z) = 27— a;z'. Furthermore, let B(Z)
be the smallest circular interval containing p(Z) for each Z € I(Z,). Then the
centred form function p(Z) converges quadratically to the function B(Z) as
rad Z tends to zero.

Proof We have to find constants o and f such that for any Z € I(Z,),
|rad B(Z) — rad p(Z)| < «(rad Z)?,
|mid B(Z) — mid p(2Z)| < B(rad Z)%.
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For this let Zy = (co, po) and Z = (c, p). If
(’)(z)

i!

n

o = 2 max >,

i—2
2€Zy =2 Po

then by Theorem 6.6 and Lemma 6.1
[rad B(Z) - rad p(2)| = 4(B(2). pc(2)),

0]
5 pP@)|
p* 2 | p"7? < plw
=21l
Setting
n (’)(Z) )
V= max | e

which is an upper bound for the radius of p~(Z) that is independent of Z,
we get by Theorem 6.6 and Lemma 6.2 that

|mid B(Z) — mid p(Z)| < V2 r1ad p(Z) q(B(Z), p(Z))

< aV2ypt
Hence, § = «V2y is a constant for the second inequality as desired. O

Remark 6.2 Theorem 6.7 is also valid if the condition Z S Z, for the
circular interval variable is replaced by

Z< Z,

This weakening is of importance if the subdivision method is used as
explained by Fig. 6.2.

Example 6.3 This example is typical of the inclusions that are obtained
for the range of a complex polynomial using the methods discussed in this
section. The polynomial

p(z) = (0.112 — i0.1022) + (0.1056 + i0.1096)z
— (0.1036 + i0.1219)z* + (0.1037 + i0.219)z°
+ (0.1058 — i0.1921)z* + (0.1072 — i0.1921)2°
+ (0.1091 — i0.1039)z% + (0.1039 — i0.2018)z’
+ (0.1652 — i0.1036)z® + (0.1036 — i0.1005)2°

is to be evaluated over the disc Z = (—0.1023 + i0.2011, 0.9913). Using the
three methods discussed earlier the following inclusion estimates for the
range p(Z) are obtained.
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Area of
Evaluation Resulting circle resulting circle
Power sum (0.1224 — i0.0591, 4.354) 59.55
Horner
scheme (0.1224 — i0.0591, 4.069) 52.01
Centred
form (0.1224 — i0.0591, 1.910) 11.46

These circles are plotted in Fig. 6.3. Furthermore, by computing the
value of the polynomial at 200 uniformly spaced points along the domain
circle and then joining together the values obtained a close polygonal
approximation to the range is plotted.

VAN

Power sum

\—\ _———— Horner scheme

Centred form

1

Range

Fig. 6.3.

Example 6.4 A further example is given by the polynomial
p(z) = (0.15 — i0.1) + (0.15 — i0.12)z + (—0.2 — i0.2)z°
+ (0.1 + i0.3)2> + (0.1 — i0.2)z* + (0.1 — i0.2)z°
+ (0.2 — i0.2)z° + (0.1 — i0.2)2" + (0.2 — i0.1)z®
+ (0.1 — i0.1)2°
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evaluated over the disc Z = (—0.1 + i0.2, 0.9). The results are given below.
A plot is given in Fig. 6.4.

Area of
Evaluation Resulting circle resulting circle
Power sum (0.1590 — i0.0405, 3.221) 37.58
Horner
scheme (0.1590 — i0.0405, 3.059) 29.40
Centred
form (0.1590 — i0.0405, 1.718) 9.272

Power sum

Horner scheme

ar

Centred form

Range

Fig. 6.4.

Example 6.5 The polynomial
p(z) = (0.1 —i0.1) + (—i0.1)z
+ (0.1 — i0.1)z? + (0.4 + i0.3)2°
+ (=0.1 — i0.1)z* + (0.1 — i0.1)(z° + 2° + Z7)
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is to be evaluated over the circle Z = (1.0 — 0.5, 1.0). The results are given
below.

Area of
Evaluation Resulting circle resulting circle
‘Power sum (—0.6117 — i0.1117, 55.40) 9636.0
Horner
scheme (—0.6117 — i0.1117, 42.17) 5586.0
Centred
form (—0.6117 — i0.1117, 41.54) 5419.0

A plot is given in Fig. 6.5. Changing the domain to Z = (—0.40 + i0.60,
1.0) gives the results below. A plot is given in Fig. 6.6.

Area of

Evaluation Resulting circle resulting circle
Power sum (0.08846 + i0.1381, 14.28) 640.4
Horner

scheme (0.08846 + i0.1381, 9.424) 279.0
Centred

form (0.08846 + i0.1381, 6.923) 150.6

Power sum

/\ Horner scheme
[ P
&J Centred form

Range

Fig. 6.5.
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JAY

Power sum

(\ Horner scheme
] D

\/A,

Centred form

Range

Fig. 6.6.

Finally we want to describe the circular centred form for complex
rational functions over C™, which was developed by Krawczyk (1983). We
can be brief since this form is only the analogy of the real case developed in
Section 2.6, for the complex case. For handling rational functions, the
circular complex arithmetic (6.11) is to be supplemented by division in
I(C). If Z = (c,p) and Z, € I(C), then we define

UZ = @(|c|> = p?), p/(|c|* = p?)  ifp <lc
ZJZ = Z,(UzZ)  ifp <]|c|.

Now we only have to extend the concepts of a function procedure of the
corresponding function, interval function procedure, interval function, and
of an interval slope to the complex case. This means, that the constants
by,...,b, and the variables x4,...,X,,, uy,...,us in Definition 2.4 are allowed
to be constants or variables of C. Let ef € I(C)™ for i = 1,...,m denote the
point vector, the jth component of which is (1, 0) if j = i and (0, 0) if j # i,
and let o° € I(C)™ denote the vector ({0, 0),...,(0, 0)). Let now a complex
function procedure S be given and X € I(C)™. Then the definition of the
complex interval slope of S over X arises from Definition 2.5 if in
Definition 2.5 the vectors e; and o are replaced by the vectors ef and o and
the arithmetic is replaced by the arithmetic for circular intervals. Then, like

’
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the real case, G € I(C)™ is an interval slope of f over X if f is the function
defined by the complex function procedure S and G is the complex interval
slope of S over X.

The circular interval

FX)=flc)+ G- (X -0

where ¢ is the midpoint of X or any other point vector of X, is called
Krawczyk’s circular centred form. Clearly, F(X) 2 f(X). The computation-
al complexity is again very low, i.e. if k arithmetic operations are needed
for describing the procedure S, then O(k) circular interval operations are
needed for the computation of the form F(X).

6.3 THE METHODS OF CARGO-SHISHA AND RIVLIN

An interesting method for bounding the range of a polynomial over an
interval is obtained through the use of Bernstein forms. These forms are
intimately connected to Bernstein polynomials. A survey of Bernstein
polynomials and some of their applications is found in Lorenz (1953). The
first application to the range of polynomials was given by Cargo—Shisha
(1966). Improvements and convergence results were given by Rivlin (1970)
and algorithms and applications to interval polynomials by Rokne (1977,
1981).

In this section we discuss the ideas of Cargo—Shisha and Rivlin and we
show how these forms may be used to obtain bounds for the range of a
polynomial over an interval. We also prove that the Bernstein form
converges linearly to the range of the polynomials with respect to the order
of the forms. The slow convergence is compensated for by obtaining
criteria that indicate whether the calculated estimation is the range or not.

We also discuss a further method by Cargo-Shisha (1966) and Rivlin
(1970) based on a simple estimation of the second derivative in a Taylor
expansion of a polynomial.

In the following we develop estimates for a polynomial p(x) = 27 ax’
over the interval [0, 1]. This is no restriction since estimates for the values
of the polynomial over X = [a, b] are obtained by a linear transformation
of the domain X to {0, 1] which leaves the range p(X) invariant.

We first introduce the Bernstein functions.

Definition 6.2 For k = 0 the Bernstein functions Bf are defined to be
Bfx)= (O 1 —x)*7  j=0,1,2,..k
where 0° = 1.

The following two lemmas, due to Rivlin (1970) describe some
important properties of the Bernstein functions.
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Lemma 6.3 Lets, k € N such that k = s = 0. It then follows that

X = iQB,.k(x).

=)

Proof We calculate
k—s
X = x‘(x+ (l — x))k“ = % (klfs)xsﬂ' (1 _ x)k—s—i

k(0 k(¢
= Q(;"‘)xj(l—X)k_j=2QBf(x)~ .

&0 )

Based on this lemma we prove that a polynomial may be represented
uniquely in terms of Bernstein functions.

Lemma 6.4 Let p(x) be a polynomial of degree n. If k = n then p is a
unique linear combination

k
p(x) =]_=20 bf Bf(x) (6.22)

of B¥(x), j=0,... k.
Proof Using the previous lemma we obtain
k(1)
X0

k i j (1) k
=2 Bf (x) 2 a == > b¥ B¥(x)

i
= h T (kK 4
j=0 i=0 'i) j=0

pe) = S an' =S a3 5 B

where

i ]
PO )
bj _i=20ai (lk) ]_Oa
The representation (6.22) says that the polynomials BY,...,BX span the
space of a!l polynomials of degree smaller than or equal to k. Thus, they
form a basis of this space which gives the asserted uniqueness. a

The unique representation of a polynomial p of degree n over [0, 1] in
the form

a

ey

(6.23)

P = 3 bt B)

for a k = n is called the Bernstein form of order k for p- The coefficients bf
are called the Bernstein coefficients of p (of order k).
The following theorem, essentially due to Cargo-Shisha (1966), shows

that the Bernstein coefficients provide bounds for the range of the
polynomial.
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Theorem 6.8 Letk, n € Nwithk =n = 0 and let

k
px) = 3, bf B
be the Bernstein form of p of order k. Then

([0, 1]) S[ m1<n b¥, max b,"]

osj<k

Proof By Lemma 6.4 we get
p) = 3 bf B,
From Lemma 6.3 it follows that
1=2x"= Ek: M) (1 - x)*7 = i B(x).

Therefore for each x € [0, 1] the sum 2% 0 b" B"(x) is a convex
combination of the Bernstein coefficients b]", j= .,k of order k. This
means that for all x € [0, 1] we get

k<SS pk B k
min b < 3 b Bf(s) < max b
or equivalently.

5([0,1]) < [ min bf, max bk] O

Osj<k

The next theorem also due to Cargo—Shisha (1966) is concerned with an
important property of the Bernstein form, namely when the estimate
provided by the Bernstein form is the range.

Theorem 6.9 Let k, n € N with k = n = 0 and let p(x) = 2*_, b B¥(x) be
the Bernstein form for p of order k and let p ([0, 1]) = [a, b]. Then

k _ X
a= Orglg b iff m1<n bf = min (b§, b%)

and

b = max b iff max bf = max (v%, bY).

o< I<

Proof We first note that

and
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k (k)
bllg 2 ( k) 12: a; = P (1)
Suppose now that @ = ming<;<x by and that x€ (0, 1). Then if b§ = b% =
= bk we have that p(O) = bO =g = = p(1) and the theorem is

valid. Tf b§ = b¥ = ... = bl is not satisfied then ZE bk () XY - ) >
MiNg<j<k b Wthh means that the minimum cannot occur at an interior
point of [O 1]. Hence it must ocurr at an endpomt of the interval.

Conversely, suppose that ming<j<x b¥ = min (b§, b%) and assume that
mm0<,<k = bo for simplicity. Then the bound is sharp, i.e. a = p(0) = bl =
MiNg<j<k b The same argument is valid if ming<j<k b = bk.

The second part of the theorem regarding the sharpness of the upper
bound is proven in the same manner. o

An important consequence of Theorem 6.9 is given in the following
corollary.

Corollary 6.1 Let p(x) of degree n = 00 be monotonic over [0, 1]. Then for
allk=n

p((0, 11) = [ min bf, max bf],

Osj<k
that is the Bernstein form of order k computes the range.
Proof The corollary is an immediate consequence of Theorem 6.9. O
Based on the above results we now make the following definition.

Definition 6.3 Let p(x) be a polynomial of degree n = 0 and let k = n
Then the interval
- k K
B = min of. max ]
is called the Bernstein approximation of order k to p([0, 1]).

We now present results due to Rivlin (1970) which show that the
Bernstein approximations B, converge at least linearly to ([0, 1]). For this
we need an idea from approximation theory due to Bernstein (1912) given
in the following definition.

Definition 6.4 Let f: [0, 1] — R be a real function. The Bernstein
polynomial of f of order k is then defined by
. .
J
Bif, ) = 2 £( ) B,
=0~ \ k.

If now the function f in Definition 6.4 is the polynomial x°, 0 < s < k,
then

Bi(¥, x) = ,io |Q£)st(x)
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and from this it follows that

By, %) — 2()mmg+z<vs égwu
=§M@wm (6:24)

using Lemma 6.3 and defining

o - (;])s ifj<s
|48

The factors §,(s) may now be estimated as in the following theorem.

ifs <j<k.

Theorem 6.10 Ifk = n > 1 then
(s — 1)

o,(s) = forj=20,1,.k s =0,,...n.

Proof It is known that By(1,x) = 1 and Bi(x,x) = x, see for example,
Cheney (1966). This means that §,(0) = §;(1) = 0, j = 0,1,...,k. We may
therefore assume s = 2.

From (6.24) we have for 0 < j < s that

0= (L) = (1) = (22 = (=)
k k k k
We now consider 2 < s <j. Then

) -6 6 -5

—_ s)'k'

- (4
<%) - ,:'3;: e

|~

SN———
©“

s a -1 ...-(1—=(— 1)/1')}
L A= V) ... (1= (s = 1))

e O e ]
)

x I\.

[-(-50)7)

A

I\
—~

x I\.
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Applying the mean-value theorem to (1 — x)*~' we obtain

— s—1 — 2
1_(1_s‘1) s(s 1)
J j

from which

s <EZ (L7 o

Tk
follows. 0

Based on the above results we now show as in Rivlin (1970) that the
Bernstein approximations converge to the range and that the convergence
is at least linear in the order of the approximations.

Theorem 6.11 Let p(x) be a polynomial of a degree n > 0 and k = n. Then

0sj<k

w([mm b¥, max b"]) - w(p[0, 1]) < A/k
where A = 25=22 (s = 1)? [p(0)|/s!.
Proof From (6.24) we obtain
Bu(p) - p(x) = 3 a/By(#, ) -
=03 8080
where a, = p®)(0)/s!. Writing
Bi(p,x) — p(x) = éo 8;Bi(x)
which by using Theorem 6.10 results in
2
n D ~ ) p0) |

6] = gzas 61(5) < _k_xgz
from which |6j| < A/2k follows. Since this is the excess width on each end
the bound is obtained. O

Remark 6.3 In Theorem 6.11 a bound is given that depends on the order
of the Bernstein approximation, but not on the width of the domain which
is fixed at [0, 1].

Remark 6.4 The Bernstein coefficients b may be computed by difference
tables, see Cargo—Shisha (1966) and Rokne (1979a).
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In Cargo—Shisha (1966) a further method is suggested for the inclusion of
the range of values of a polynomial p over X € I. Although we describe the
method relative to [0, 1], the application relative to any X € I is
self-evident. The method is based on the computation of function values at
a set of points in [0, 1]. The following theorem by Rivlin (1970) is an
improvement on the result of Cargo-Shisha (1966).

Theorem 6.12 Letk>0,0=1t,<t; <... <ty = 1l andlet d; = max (t;,
t),j=0,1, ...,k — 1. Then

di )
i ) - — < < max ) +
min pi) — g[%{g]\p () | <p() < max p(y)
di 2
max x)|. 6.25
8 x<[0,1] |p ( )| ( )

Proof Let ([0, 1]) = {4, b]. Then there exists a € € [0, 1] such that p(§) =
b. Furthermore, for some 0 < j < k we have

ls—el<|u-E], i=01,.k
as well as
|t — €] < du2.
From Taylor’s theorem we obtain
p() = p(E) + (5 — &) p'(§) + (4= 8 p'(m)2 (6.26)

where nj € [0, 1]. If £ = 0 or 1 then the right-most inequality in (6.25) is
trivially true. If 0 < & < 1 then p’(§) = 0 and (6.26) implies that
b<max p(y)+ (5~ §)’ max Ip"(x)|12
<max p(t) + d% max |p"(x)l/8.

osj<k

The lower bound is established analogously. o

1 =
Corollary 6.2 Let k > 0 and set r, = e 2) G — 1)jlaj|. Then
2

p(o0, 1) € [ min p(i—)— re, max p(-g) + rk].

osjsk osj<k

Proof Setting t; = i/k, i = 0,1,...,k in Theorem 6.12 it follows that di =
1/k. For each x € [0, 1] it furthermore follows that

@l =126 - Dal <3G~ laf

and the result is evident. O
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6.4 THE METHOD OF DUSSEL-SCHMITT FOR POLYNOMIALS

A further method for computing the range of a real polynomial over a real

interval is given in Dussel-Schmitt (1970). The principle of the method is

simple. A polynomial p of degree n has at most n + 1 relative minima and

maxima on a compact interval. These relative extremal values are

computed via the zeros of p’. This is the basic mathematical idea.

Numerically, further complications arise:

(1) the search for all the zeros of p’ is involved and unstable,

(ii) the numerical computations only give points ‘near’ the zeros and
therefore only points ‘near’ the relative extremal values of p.

The method of Dussel-Schmitt uses knowledge about monotonicity of
the derivatives of p to overcome these difficulties. The search for the zeros
is facilitated and the computation is controlled in such a manner that the
inclusion of the range is guaranteed, contrary to what one would expect
from (ii) above.

The description of the method now follows that of Dussel-Schmitt
closely, only omitting some inessential details.

Let p(x) = 27_oa; x' be a polynomial of exact degree n. Furthermore let
X € 1. We are required to compute a good outer approximation P(X) to
P(X). In the sequel if Y € I(X) then the notation p)(Y) is used to denote
the natural interval extension approximation to 5)(Y). This approxima-
tion may be computed using, for example, the Horner-scheme, or the
standard centred form. The approach selected by Dussel-Schmitt (1970)
consists of two stages, a differentiation stage followed by an integration
stage. In the differentiation stage an integer i, is determined such that 0 ¢

(i)
pAX).

Clearly iy < n since p™(x) = a,,, a constant # 0 by assumption. In the
integration stage inclusions for the zeros of p j =1, 2,...,ip — 1 are
determined in that sequence. The advantage of proceeding in this manner
lies in the fact that not only are inclusions for the zeros of p’ computed, but
information about the slopes of p’ in the intervals containing the zeros is
obtained. The inclusions for the zeros of p’ on X then provide intervals
where the relative extremal values of p are found. Evaluating p over these
intervals using the additional information on the slopes of p’ will therefore
result in lower and upper bounds for the range of p over X.

The implementation of the differentiation stage poses no problems
algorithmically or numerically. The detailed implementation of the
integration stage is, however, more difficult and we therefore proceed with
a fairly complete description of the algorithmic implementation of this
stage, also considering the numerical problems that arise due to the use of
finite length floating point arithmetic.

The first two steps of the integration stage are now described. It was
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shown in the differentiation stage that p™(x) # 0 for x € X. This means
that p~1 is strictly monotonic in X. Therefore it follows that p*~1 has at
most one zero in X. This zero is enclosed in an interval [y,, x,] using, for
example, the procedure developed by Nickel (1967). The polynomial
p®2 is now strictly monotonic both in [a, y,] and in [x;, b] and it has
therefore at most one zero in each of these intervals. It is, however, not
possible to make any statement about the monotonicity of p®~2 in the
interval [y;, x;]. If therefore 0 € p®@2([yo, x;]) then a special
computation, to be described below, must be performed in order to decide
whether a subinterval of [y, x;] must be considered to contain a zero of
p@=?_For example this is the case if [p®@~2(x)|< 8, where & is the smallest
machine respresentable floating point number, for some x € [yo, x;]. A
second possibility will be treated later.

In the general case we consider p' of degree n — i. The zeros of p” are
enclosed in m intervals [y, x;41}, 1 =0,1,..., m — 1, where x; < y, | = 1,
2,..., m — 1. These intervals are defined using the condition |p(i)(x)| <3d
for some x € [y;, x;41]- The number of intervals m may be larger than the
number of zeros of p?. We therefore call these intervals suspect intervals
since it is only suspected that they contain a zero of p®. Furthermore,
bounds g, and z,,, are also given for 5?([y, x,.1]) and therefore for the
slope of p“~Vin [y, x;41] for/ =0, 1,..., m — 1. These bounds satisfy g, ,
<0<2z.,1=0,1,..,m— 1. We seek the suspect intervals of p¢~b as
well as the bounds for the slope of p~1 over these intervals.

The polynomial p¢~? is now strictly monotonic in the intervals [x,, y], !
=0,1,...,m(xo = a, y,, = b). In the intervals [y, x;41],/=0,1,...,m -1
we only have bounds ¢q;, ; and z,, ; for the slope of p(i'l). We therefore call
[x;, y.] a monotonicity interval and [y;, x;1] @ non-monotonicity interval. In
order to determine the non-monotonicity intervals [v,, wi,] of p@~ as
well as the estimate 7, and s, for the slope of p¢~2 in [vy, wi4] We
now investigate pairwise the monotonicity interval [x;, y;] and the
non-monotonicity interval [y, x;.,]. The details of this investigation are
now dealt with. The signs of p¢~(x;) and p“~1(y,) are compared in order
to decide whether or not p~» has a zero in the monotonicity interval
[x1, ;. If it has no zero in this interval then one proceeds at once to the
non-monotonicity interval [y;, x;.;]. The same happens when the interval
[x;, y:] has zero width (this can only occur when ! = 0, that is [a, yo], or l =
m, that is [x,, b]). If p“» does not have a zero in [x;, y], then it is
included in an interval [ug, 4] using the zero-finding procedure. At the
same time bounds  and s are computed for the slope of p*~2(x) in [u, u3].
If the interval [ug, u;] borders on a previously calculated non-monotonicity
interval, [v;, wgyq] with the bounds r;,; and si.; then the intervals
[Vi, we+1] and [ug, u,] are joined together forming an interval [vg, Wiiq] =
[vk, u1]- The new bounds for the slope are taken as the minimum of rq
and r as well as the maximum of s;,; and s.
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If the two zeros do not border on each other then we set [vyi1, wyyo] 1=
[uo, u1}, ri42 = 7, Sg4+2 = s. Furthermore, the index £ is increased by one.
One now proceeds to the non-monotonicity interval [y;, x;.1]. Since one
is not able to make any conclusions about the monotonicity one starts with
the question of whether

0e P(l_l)([)’l, X141))

in order to determine whether or not one should suspect the interval
[y x14+1] of having a zero. If it turns out that 0 € p¢~V([y,, x,.,]) then one
should set [vy, Wi+1] := [y5 X;+1] and therefore consider [y, x;44] to be an
interval suspected of having a zero. It turns out that this gives too coarse
results when [y, x;.1] is a zero of multiplicity greater than one. At this
point a procedure that treats double zeros is used. This procedure will be
described in Remark 6.5 at the end of this section.

Now it suffices to note that a linear inclusion for p“~V in [y,, x,,] using
the estimates g;,; and z,,, for the slope of p“~ ", is computed. Using this
linear inclusion a smaller interval [ug, u;] as well as smaller bounds r and s
are computed for the slope of p¢~2 in [u, u,]. Depending on the case this
new interval is either joined with an existing bordering interval or it is
treated as a new non-monotonicity interval. One then proceeds to the next
pair [x;11, Yreal, Vie1, Xi42]-

When all non-monotonicity intervals [v, wy.;] for p¢~ as well as the
corresponding bounds 7., and s, for the slopes of p¥~? have been
determined then one proceeds to determine the zeros of p¢~2 in the same
manner as above obtaining k;_, zeros. From the above integration phase
we now have intervals [v;, w;,1], [ = 0,1,..., k; — 1 containing the zeros of
p' in [a, b]. In order to compute an estimate P(X) for the range p(X), one
might then simply compute the reals or the intervals Py = p(a), P, = p([v,,
wial]), 1 =0, 1,..., ky — 1 and P, = p(b) and then set

P(X) = [02’,22, (inf P;), max(sup Pz)].

If the width of the interval [v, wj,] is comparatively large then the
evaluation p([v,, w;,1]) will in general give poor bounds using any of the
previously mentioned methods. One therefore tries to improve these
bounds by enclosing p in a rhomboid in each interval [v, wy 4], | =
0,1,...,k; — 1. The sides of this rhomboid are constructed using the values
p(v)) and p(w,.1) as well as the slopes r,,, and s, as calculated in the last
integration step. This results in

g1 being the line through the point (v;, p(v,)) with the slope s, ;.
g» being the line through the point (v; p(v;)) with the slope r;, 4,
gs being the line through the point (w1, p(w;;)) with the slope 7,4,
g4 being the line through the point (w;.1, p(w,+;)) with the slope s;+1.
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The intersection of the lines g; and g is denoted by S; = (cy, ;) and the
intersection of the lines g, and g, by S, = (c,, t,). We then have P, = [t1, 2]
2 p([v, wi+1]). An improvement is obtained by taking the intersection of
P, and P, obtaining

Pf:= P,NP; 2 p([vy, wisi]).

. L « . .
In this manner a sequence P§ := Py, PY,...,. P 1, Py = Py is computed
from which

P(X) := | min (inf P¥), max (sup P{)]

is computed.

This estimate P(X) of the range j(X) converges to the range for
increasing word-length of the computing device employed, provided the
zero-finding procedure also finds the zeros with increasing accuracy (in the
limit a point).

Remark 6.5 Particular considerations have to be taken care of in the case
of a double zero since the zero-finding procedure tends to produce poor
results for double zeros. Let p satisfy the following conditions in Y = [c,
d,

(a) 0 € p(Y)
) g<piDx)<z forxey.
Then p® is enclosed in the rhomboid

G:={(xy) | c<x<d gi(x) Sy < &), g:(x) <y < ga(x)}
where

g1 is the line with slope g through (a,p'?(a)),
8> is the line with slope z through (a, p“)(a)),
83 is the line with slope g through (b,p®)(b)),
84 is the line with slope z through (b,p®(b)).

The assumptions (a) and (b) are clearly designed for the case that Y is the
non-monotonicity interval [y, x;4;] and that 0 € p®([y, x,.4]) thus
indicating a suspicion of a zero in that interval.

The intersection of the lines g; and g; is denoted by S; = (cy, t,) and by
S> = (¢, 1) the intersection of g, and g,. If the interval [t;, t,] does not
contain a zero then there is no zero of p® in [y, x,,4]. Otherwise the
intersection of the rhomboid with the real axis is calculated. The bounds
and s for the slopes of p“~" in [y, u,] are obtained from the intersection of
the intervals p([ug, u;]) and [t1, t,].

Remark 6.6 A complete ALGOL program of the method is provided in
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Dussel-Schmitt (1970). These authors report that although their method
gives good results, it is fairly expensive. A comparison with other methods
is not given.

6.5 THE METHOD OF HANSEN

The method described in Hansen (1979, 1981) combines several principles
into a very efficient method for estimating the global minimum of functions
of one or several variables. These functions are assumed to be twice
continuously differentiable and to have only a finite number of stationary
points. The method may also be applied if the above conditions are
relaxed. In that case, however, it loses its effectiveness.

Hansen developed his ideas on the basis of the tools of optimization
theory. This theory is concerned with stationary points of functions f and it
applies gradient methods to obtain these points as well as the global
minimum of f. One of Hansen’s basic ideas is therefore to apply the
interval Newton method to the derivative f' in subintervals Y S X, where
X is the domain of f. In this manner a subset § < Y is generated containing
all the zeros of f'. The remainder of Y, Y\S, can therefore be discarded
since Y\S cannot contain the global minimum point (except for the case
that the global minimum point occurs at the edge of X). This idea is now
linked to the checking of the concavity of f over the subintervals Y using
the test condition F"(Y) < 0. This is explained later. If indeed it is the case
that f” < O then it follows that the global minimum cannot occur at an
interior point of Y. The checking of concavity does not result in an
additional computational effort since outer estimates F"(Y) of f”(Y) are
known from the application of the interval Newton method over Y.

In this section we describe Hansen’s method in detail for the
one-dimensional case following Hansen (1979). We then give a short
outline of the multidimensional case. In this connection it should be noted
that the main steps of the algorithm remain unchanged when going from
the one- to the multidimensional case.

The basic premise for the method is that a global minimum is to be
computed on a compact interval X = [a, b] € I for a function f that is twice
continuously differentiable on X and where f has at most finitely many
zeros in X. This, together with the application of the algorithm to —f,
constitutes a computation of an outer estimate for the range of f over X.

The algorithm is now described in detail.

A first estimate of the lower bound is obtained by computing

I'= min(f(a), f(b))-

If /* is the global minimum in X then clearly / = [*.
The algorithm proceeds by dynamically subdividing the interval X into
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subintervals. In order to proceed it is then assumed that including
estimates F, F' and F” can be computed for f, f and f” for each Y € I(X).
These estimates cannot only be based on the present technique, but must
also include one or more of the methods considered in the other sections of
this monograph.

As the algorithm proceeds, f is evaluated at various points x of X. This
is, for example, the case as a new subinterval Y is generated when an
estimate F(Y) is computed using the centred form (recall that in this case
f(c) = fim(Y)) must be computed). Furthermore, let / denote the currently
smallest value of f found so far.

Three types of subintervals are now deleted from consideration.

(1) Y S Xis deleted if 0 € F'(Y)
(2) Y € Xis deleted if F(Y) > [ since this implies that min F(Y) >/
(3) Y < Xis deleted if max F"(Y) < 0.

These intervals are deleted since the global minimum cannot occur at
points in these intervals with the exception of the endpoints a or b in X. If
f(a) or f(b) is the global minimum, however, then the interval Y under
consideration can still be discarded since the information that the minimum
is the one or the other of these values is retained in the current values of /.
The calculation of F(Y) is furthermore expedited using the estimation
F"(Y) in a second order Taylor-form (see Section 3.5).

If the interval Y € X is not deleted then f(Y) may potentially contain the
global minimum and two courses of action are possible. Either the interval
Y is further subdivided or the interval Newton method (Moore, 1966) is
applied to f' over Y in order to estimate including intervals for f in Y. This
procedure is given by the computation of

YO = Y,
N(Y,) = m(Y,) — f(m(Y,))/F"(Y,) if 0 € F'(Y,),
Yooi = Y,ONY,), n=012,..

It was observed in Alefeld (1968) and Hansen (1978a) that the problems
arising from 0 € F"(Y,) may be circumvented by considering N(Y,,) to be
an unbounded interval that is reduced by the intersection operation to
either an empty set, a single interval or two intervals.

This therefore provides for a procedure for the computation of a set S
consisting of intervals containing all the zeros of f in Y. The complement
of S with respect to Y will contain no zeros of f” and hence no points where
f can have a local or a global minimum (with the possible exception of the
points a and b) and it may therefore be deleted. A convergence theorem
for this Newton-type iteration is found in Hansen (1978b).

In summary: the whole process starts, as mentioned above, by setting Y
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= X. Each of the above steps are in turn applied to Y, either eliminating Y
or parts of Y. The subintervals of X that remain to be considered as
candidates for containing the global minimum are entered on a list and the
process is repeated with the subinterval of maximal width.

Initially, the number of subintervals on the list can tend to grow rapdily.
At a certain point in the calculations the intervals will become small
enough so that the overestimations in the calculations of F, F’ and F” are
small and either one new interval is calculated or the interval is eliminated
completely. At the end of the calculations the number of intervals will have
been reduced to small intervals containing the points where f takes on the
value of the global minimum.

The method now suggests a number of strategic decision criteria:

(a) Itis best to choose the largest interval on the list as the next interval.
This is because we wish to home in on /* quickly and the smaller / is
the larger portion of an interval Y that we will be able to delete using
criterion (2) of the deletion list.

(b) Iff, f and f" are expensive to evaluate then it pays to search for the
next largest interval (see option (a)). If f, f’ and f" are not expensive
to evaluate then the search itself may be too time-consuming.

(c) If f, f and f" are expensive to evaluate then all the previous
techniques should be applied at each step.

Hansen discusses several termination criteria for his algorithm. They
depend on the actual purpose of the optimization of Hansen (1979). We
mention only one which terminates the algorithm if

I-I*=<c¢e

where / is again the current minimum of all the values which occur at the
computation. Since the global minimum, /* is not known the condition / —
I* < ¢ is replaced by

l-p=<ce
where p is the minimum of the left endpoints of intervals F(Y) which are

supposed to contain the global minimum. If all such intervals are discarded
by the algorithm, then

| = min f(X).

At a numerical realization of the algorithm, rounding errors make a
modification of this criterion necessary. This can be found in Hansen
(1979).

Example 6.6 In Shubert (1972) the gl&bal minimum is computed for the
function
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fx) = —é:lk sin [(k + 1)x + k]

over [—10, 10]. This function has period 2x and global minimum at three
points x;, x, and x3 (both these facts will not be used at the application of
the algorithm). Using a slight modification of the above method, Hansen
(1979) required about 77 evaluations of f, f and F” to obtain

x, € [—6.7745 76144, —6.7745 76143],
x, €[ 5.7917 89015, 5.7917 89064],
x3 € [—4.9139 21876, —4.9139 21811],

flx1) € [—12.03124944, —12.03124943],
f(x,) € [—12.03124945, —12.03124943],
flxs) € [—12.3124944, —12.3124943].

The method by Shubert required 444 evaluations of f as well as a
knowledge of a Lipschitz constant for f.

The extension of this method to m dimensions involves the same
principles, but considerably more complicated machinery than that used
for the one-dimensional case. The extended algorithm used the second
order Taylor method as described in Section 3.5. The interval Newton
method is similarly developed for m dimensions taking into consideration
the cases where a singular matrix technically should have been inverted. A
complete numerical example is also presented in Hansen (1980).

The complete description of the m-dimensional case of the algorithm is
not included here, but it is found in Hansen (1980). A few supplements are
given by Di-jan-Yuo-kang (1983).

6.6 CENTRED FORMS AND INTERVAL OPERATORS

In order to obtain a solution € of an equation f(x) = 0, where f:R™ — R™,
one may use the so-called Newton-transform Q(x) = x — af(x), where ais a
non-singular matrix. In Krawczyk (1982) centred forms of the Newton-
transform are investigated and it is noticed that some of these forms yield
known interval operators for solving f(x) = 0. Among these are found the
operators used by Moore (1966), Nickel (1971, 1981), Hansen (1968,
1978b), Hansen—Sengupta (1981), Krawczyk (1969), Krawczyk—Selsmark
(1980), Alefeld-Herzberger (1970), Wolf (1980) and Qi (1981).
Although the theory developed in Krawczyk (1982) is of great interest
we omit discussing it in detail here since it relates mainly to iteration
methods rather than to the range of a function. The connection to the
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general theory of centred forms nevertheless justifies a short discussion of
Krawczyk’s ideas via an example in order to give the reader an impression
of the type of results that are obtainable.

In this section it is assumed that the centred forms are defined for
vector-valued functions ¢, f: D — R™ where D S R,,. This is simply
obtained by applying Definition 3.1 m times (see also Remark 3.2). The
reason for this slight modification is that the usual iteration methods for
systems of equations on R™ are defined as vector iterations rather than
componentwise iterations.

Let first

fiD< R"— R™
be a function on D and let
fx)=0 (6.27)

be the corresponding system of equations. The following simple definitions
are required to establish some elementary facts for operator iterations. An
extensive treatment of this topic is found in Ortega—Rheinboldt (1970).

Definition 6.5 The vector § in R™ is a solution of (6.27) iff f(§) = 0.
Definition 6.6 The vector & € R™ is a fixed point of f iff f(E§) = E.
Definition 6.7 The Newton-transform of f is defined by

() = x — af(x) (6.28)
where a € R™*™ is a non-singular matrix.

Remark 6.7 It is obvious that § is a solution of (6.27) iff £ is a fixed point
of ¢. This means that Definition 6.7 provides a method for generating
Newton-like iteration methods, hence the name.

Remark 6.8 Other operators for solving f(x) = 0 may be generated not
using the Newton-transform. In the one-dimensional case one has for
example

$1(x) = x — alfx)P,
$2(x) = x — a flx)x.

In order to obtain a centred form for ¢ we now proceed as in Section 4.1.
Given X € I(D) a function

s: XX D— R"
is defined by
s(x,c) = x — af(x) — ¢ + af(c)
(x = ©) — a(fx) — fic)).
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The general centred form now requires us to find functions
S I(X)—> 1

as well as functions
G®: I(X) —» ™™,

such that

s(x, «(¥)) < S(Y) .c_pél GP(Y)(Y — oY) for YeI(X),xe Y

where o: I(X) — X is the developing point function.
Suppose now that there exists a function G*: I[(X) — I"*™ such that

f(x) — fla(Y)) € G*(Y)(Y — a(Y)) forallx € Yand Y € I(X).
Then, setting r = 1, we define
G(Y) = G'(Y) = e = G*(Y)
where e is the m X m unit-matrix. From this it follows that
s(x, «(Y)) = (x — «Y)) — a(flx) — A«(Y)))
(e = G*(V)(Y — o(Y))
G(N(Y = «Y)).
The conditions of Definition 3.1 are thus satisfied. Letting therefore
S(Y) = G(Y)(Y - «(Y))

we obtain

o(Y)

p=12,.,r

m

H((Y)) + G(N(Y — «Y))
oY) — af((Y)) + (e = G*(V))(Y — «(Y)) (6.29)

which is therefore a centred form function for ¢. Depending on the choice
of G*(Y) as well as on the non-singular transform matrix a we obtain
different interval operators which are appropriate for the establishment of
properly convergent interval iteration procedures.

An interval iteration procedure for X generally consists of an interval
operator T: X — X and an initial interval Y, containing the fixed point §. A
sequence {Y;}i, of intervals is generated via Y;,.; = T(Y;) N Y;,i = 0,1,...,
where the intersection is formed in order that the sequence shall satisfy

Yo2Y,2Y,2 ....

An extensive discussion of such methods is found in Alefeld-Herzberger
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(1983), see also Alefeld-Herzberger (1970), Krawczyk (1980a, 1980b), and
Krawczyk-Selsmark (1980).

The speed of convergence of an iteration procedure is dependent on the
improvement gained in each step. Having used the centred form in
developing (6.29) we know that the convergence is favourable since the
centred form is quadratically convergent in many cases.

The use of the Newton-transform also makes it possible to make unified
existence statements for fixed points of interval operators (see Krawczyk,
1982).

We now outline some examples of interval iteration methods based on
the above idea.

Example 6.7 Let X € I, f: X — R™ and assume that a(x) = [f'(x)]™*
exists where f'(x) is the Jacobian matrix of f at x. Furthermore let L(Y) be
an inclusion of f(Y) for each Y € I(X). Then define

G*(Y) = a(a(Y)) L(Y).
Inserting this into (6.29) we obtain
O(Y) = «Y) = a(«(Y)) fle(Y))
+ (e~ a(«(Y)) L(Y) (v — «(Y)) (6.30)
This is the centred form function of ¢(x) = x — a(x)f(x) and it is known as
the Krawczyk operator. This operator has the advantage that only point
matrices need to be inverted. The corresponding interval iteration

procedure may be simplified by keeping a(x) constant (see Krawczyk,
1982).

Example 6.8 Let X € I and let f: X — R™ satisfy an interval Lipschitz
condition of the form

fX)—fzx)e LY)x —2z)foralYe I(X) andx,z€ Y

where L(Y) = [[i(Y), L,(Y)] is an m X m interval matrix (see Krawczyk,
1982). Assume that for each Y € I(X) a non-singular m X m matrix a(Y)
exists such that a~*(Y) € L(Y). Assume further that Ia(Y)l is the matrix the
components of which are the absolute values of the components of a(Y)
and define

a*(Y) = [la(v)| + a(V))2
a(Y) = [la(v)| - a(¥))2

then all |a(Y)| = a*(Y) + a~(Y) and a*(Y) and a~(Y) are non-negative
matrices. Naturally, L, /;, [, a*, a~, and a are operators and we may
therefore define new operators /, g, g;, &, and G on I(X) by
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(Y) € L(Y) arbitrary,

g = e — al, that means g(Y) = e — a(Y)I(Y),

gi=e—a‘h+all,

H=e—a'l +al,,

G = [g1, &l
We want to show that g,(Y) < g(Y) < g»(Y). The right-hand inequality
follows since

g(Y) = e —a(MUY) = e — [a*(Y) — a~(V]KY)

< e — a"(VL(Y) + a"(V)i(Y) = g(¥).

Similarly for the left-hand inequality.
The centred form function

O(Y) = oY) = a(«(Y)) + G(V)(Y — (1))

is then the interval operator described in Krawczyk—Selsmark (1980). Asin
Example 6.7 the matrix a(«(Y)) can be kept constant when defining the
corresponding interval iteration procedure.

6.7 REMAINDER AND INTERPOLATION FORMS

A very interesting concept was introduced by Cornelius-Lohner (1983). If
Xel,f: X— R, and Y € I(X) is given, and if f(Y) is to be approximated by
an outer approximation, then f is represented in the form

where g(Y) can be computed exactly — provided the rounding errors are
neglected. If S(Y) € [ is an inclusion for #(Y), then

KY) =3(Y) + 5(Y) (6.32)

is an inclusion for f(Y). If g is constructed using Hermite interpolation and
F: I(X) — I is considered to be an inclusion function for f over X then,
theoretically, any order k of convergence of F to f is possible. In practice,
however, k < 4, can be obtained with moderate effort and k = Sork =6
with more effort. An inclusion function F: I(X) — I for f is called
convergent (to f) of order k if

w[F(Y)] — w[f(Y)] = Ow(Y)*)  for all Y € I(X).

We now discuss these ideas following the paper of Cornelius—Lohner
(1983). This paper presents several realizations of possible procedures,
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explicit expressions for third-order approximations, connections with the
mean-value form, and finally, numerical examples.

Let Y € I(X) be fixed at first and let the continuous function f: X — R
have a representation of the form (6.31) with continuous functions g, r: X
— R. Let S(Y) € I(X) and S(Y) 2 #(Y). The function g can be interpreted
as an approximation of f where r is the corresponding remainder term. The
interval S(Y) is an estimation of this remainder term in the sense that

r(x) € S(Y) forxeY. (6.33)

The interval F(Y) defined by (6.32) is then called a remainder form of f on
Y. The corresponding assignment Y — F(Y) gives rise to a function F: I(X)
— I which is called a remainder form function (or abbreviated, a remainder
form) of f on X. The use of g, however, implies that we can choose only
very simple functions in practical applications, i.e. polynomials of degree
at most 5, or monotone functions.

Theorem 6.13 If F(Y) is a remainder form of f on Y, then it follows that
() fY) € KHY),
() [AY), F(Y)| < w[S(V)] < 2|s(Y)|.

Proof (i) From (6.31) and (6.33) it follows that
fx) = glx) + r(x) € g(Y) + ()

foranyxeY.

(ii) Since f and g are continuous and since Y is compact, there exist
points x,., x* € Y and y,, y* € Y, where f or g takes its minimum and its
maximum, that is

f(Y) = [f(x*)’ f(X*)]’

g(Y) = [80r4), 80)]-
setting S(Y) = [s, 1] we get

[f(v), F(v)| = [f(¥), 2(Y) + S(v)|

= max{[f(x,) - gv,) — 5|, [f(x*) — gO*) — 1}

Estimating the arguments separately yields

[fx.) — 804) = sl = fix.) = g0s) = s < fy,) — g(s) — s

< [g04) + 1] —8(y) — s =1t — s =w[S(Y)],
and similarly,

[fx*) — g*) — o] < w[S(V)],
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from which the final estimation, i.e.

/), Fn)| < wis(M] < 2|5()|
is obtained. The last inequality is justified by (1.6). o

It is important to use simple functions g for numerical applications of
Theorem 6.13 in order to be able to compute g(Y). Furthermore, the
remainder r should be small enough such that small values of w[S(Y)] are
obtained and thus a good approximation F(Y) to f(Y). Interpolation and
Taylor polynomials of low degree are well suited for this purpose. Both are
special cases of the Hermite interpolation polynomials.

Let integers s = 0, n = 0, and m,,...,m,, > 0 be given such that

s+1l=my+ ... +m, (6.34)

Furthermore, let xo,...,x, € Y be n + 1 distinct points and f be s + 1 times
differentiable in Y. Then p; shall denote the uniquely defined interpolation
polynomial of degree s satisfying the Hermite interpolation conditions

pO(x) = fP)  forj=0,1,..,m -1,
i=0,1,...,n
It is known that for any x € Y there exists a £ = E(x) € Y such that
1 n v
f@) = psx) + ———= @) I (x — x)™
(s + 1)! i=0

is a representation of f of the form (6.31). If F**V: I(X) — I is a bounded
inclusion function for fs+1 then the first interpolation form (function) V:
I(X)— Iforf according to the above assumptions is defined by

Vi(Y) = p(Y) +

s + 1). R [ = xm

If F**1) even satisfies a Lipschitz condition and if there exists a function
n: I(X) — R with

n(Y) € FE*D(Y)
then a continuous function ¢,: X — R is defined to each Y € I(X) by
ny) -
%H@)=mu)+( yll(—xW'

(The dependence on Y is given via n(Y), the x; and p,. The indication of
this dependence is, however, suppressed in the notation for the functions
gs+1.) Therefore, for each Y € I(X) there exists a representation of f of the
form (6.31) given by
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76) = o) + [e+® = (] I (x -z

s+
Depending on the Y that is chosen the second interpolation form of fon Y
is defined as the interval

YY) = Gora(Y) + [F0(Y) - a1 TT (¥ = xy™
(s + 1) i=0

The function U;: I(X) — I is then called the second interpolation form
function (abbreviated, second interpolation form) of f on X.

The following theorem shows that V and U, are inclusion functions for f
of orders + 1ors + 2.

Theorem 6.14 Let the above assumptions for the first and second
interpolation forms hold. Then, for any Y € I(X), we get

(i) AY) € Vi(Y),
V) € U(Y).

Furthermore, there exist constants o and B such that for any Y € I(X) we get

(i) w[Vy(Y)] — wf(Y)] < aw(Y)*+1
wlU(Y)] — wlf(Y)] < Bw(Y)**2.

Proof Since both V((Y) and U,(Y) are special cases of the remainder form
(6.32) it follows immediately from Theorem 6.13 that (i) must hold. Now
to the proof of (ii). In the case of V(Y) the term S(Y) has the form

S = (s + 1)

If K is an upper bound for the real number |F¢*)(Y)| for Y € I(X) (which
exists by assumption), then we set

4K
(s + 1)

Using (1.10), Theorem 6.13(ii), (1.6), (1.6), (1.3), and (6.34) in the order
given, we get the asserted estimation,

wlVy(Y)] - w[f(Y)] < 2|Vy(), /(Y)| < 4]s(V)|
|[Fe+D(y) H (Y = x)™|

Fen) [T (v -y

(s +1)’

- el - o

s o H w(Y —x)™ =« H w(Y)™ = OCW(Y)S'H
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In the case of Uy(Y) the term S(Y) has the form
1 n
— F(s+1) _ — X))
S = 5 0 =1L - x)

If K is a Lipschitz constant for F** (which exists by assumption) then we
set

_ 4
(s + 1)

B

We get the asserted estimation similarly to the case V(Y), where only the
estimation of |FC¢*(Y)| is to be replaced by

|[F*D(Y) — n(1)] < w[Fe*D(Y) - n(1)]
= w[FS*(Y)] < Kw(Y). o

Now we know that V is an inclusion function for f of order s + 1 and that
U, is an inclusion function of order s + 2. For getting higher than quadratic
convergence it is sufficient if V; is used with quadratic interpolation or with
a quadratic Taylor polynomial (s = 2) or to use U, with linear interpolation
or a linear Taylor polynomial (s = 1). Obviously in these cases the
computation of g(Y) is easy since g is a quadratic polynomial.

Remark 6.9 If 0 € FC*D(Y) then n(Y) = 0 should be chosen for
constructing U(Y). In this case g, reduces to p such that only p,(Y) has
to be computed.

Remark 6.10 The results can be improved in the same manner as for the
standard centred form, using the extended arithmetic when the power
products P(Y) = [[7-o (Y — x;)™ which occur in the definition of V; and U
are evaluated. There are two reasonable ways of using the extended
evaluation. For this purpose we introduce the functions

O(x) = (x — x)™ fori =0,...,n,

e = 16—

Then
P(Y) = 1T
Oor even
P(y) =TI(Y)

can be used instead of P(Y). Let V,(Y) or U,(Y) and V,(Y) or U,(Y) denote
the remainder forms which arise from V(Y) and U,(Y) by replacing the
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occurring term P(Y) by P(Y) or P(Y). By (2.15) it is then clear that for any
Y € I(X) we get

AY) = V(Y) = V(Y) S V(V),
) € U(Y) = U(Y) < U(Y).

Example 6.9 Determination of U\(Y) using Taylor expansion atc € Y(s =
1,n=0,x9=c. my=2).Let Y € I(X) and n = n(Y) € FP(Y) be given. In
the case  # 0 we write

fx) = fle) + f(e)x — ¢) + f'E)x — )12
= qx(x) + [f'(§) — nl(x — ¢)*2

where

g2(x) = fle) + [x = ¢ + f(e)ymP? w2 — f(c)’/(2n),
and obtain

Ui(Y) = gx(Y) + [FO(Y) — n)(Y - )2,

Ui(Y) = Uy(Y) = ¢(Y) + [FP(y) = m] [0,
The range G,(Y) can easily be determined. If n = 0, we set

42(x) = pi(x) = flc) + f(e)(x — o),

and g,(Y) can be determined at once and inserted in the previous formulas

for UI(Y) and Ul(Y) = UI(Y)

Example 6.10 Determination of U,(Y) using linear interpolation at c, d
YwhereY =[c,d](s=n=1,xg=c<x;=d,my=m;=1). Let Y € I(X)
and n = n(Y) € FP(Y) be given and let A = [f(d) — f(c)}/(d — c). Then, in
the case 1 # 0 we write

fx) = flo) + Alx = ¢) + f'(E)(x — d)(x — )2
fO)+ Ax—c)+x —dx—c)n2
+ ['(®) — nlx — d)(x — )2
92(x) + [f'(8) — l(x — d)(x — )2

Y — c|*2].

where

f(C)“z‘f(d) +2[(x— c-;-d . _ﬁ_>2_ ( i )2_ (d-;c)2]

is such that §,(Y) can be determined easily. We therefore obtain

q2(x) =
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Ui(Y) = UL(Y) = (V) + [FP(Y) — nl(Y = d)(Y - ¢)2,
(V) = 32(Y) + [FO(Y) = nl[-w(¥)*8, 0].

In the case of n = 0 the given rearrangement of f can be suppressed using
Remark 6.9 as in Example 6.9. This yields

32(x) = p1(x) = fle) + Alx = ¢)

and ¢,(Y) can be determined at once and inserted into the previous
formulas for Uy(Y) = U;(Y) and U,(Y).

Finally, we compare the mean value form with the second interpolation
form Uy, where both forms are quadratically convergent. Let Y € I(X), c €

Y, n € FI(Y), and FP(Y) € f(Y). Let
F(Y) = flc) + FO(Y)(Y - ¢)

be the mean value form as developed in Section 3.5 and let
Uo(Y) = @u(Y) + [FO(Y) = n](Y - ©)

where g1(x) = f(c) + n(x — ¢). (Uy(Y) is obtained by interpolating atce Y
using the constant py(x) = f(c).) Now, because of subdistributivity it
follows that

F(Y) = flc) + [FP(Y) = n + nl(Y — ¢)
€ flyn(Y = ©) + [FO(Y) = nl(Y = ¢) = Uy(Y).

This estimation shows that the mean value form is never worse than Uj.
The equality F(Y) = Uy(Y) can, however, be forced if n is chosen in a
suitable way. For example, if FY(Y) = [k, [] and

kif k > 0,
n={0ifk<0<]
1ifl <0,

then F(Y) = Uy(Y) as can be easily checked. This equality is also obtained
if n = (k + )/2. Nevertheless, when the quadratic convergence property is
needed then the mean value form is to be preferred to the interpolation
form U, because of its lower computational complexity.

Numerical results. We show some interesting results presented in
Cornelius-Lohner (1983). They compared the intervals U;(Y) of Examples
6.9 and 6.10 with the mean value form. The forms U;(Y) of Example 6.9
will be denoted by U7(Y) in the following tables and the notation for the
forms U,(Y) of Example 6.10 will be kept. The computations were done in
the programming language PASCAL-SC which is an extension of
PASCAL with a maximum accuracy arithmetic.
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These authors preferred to compare the data using the Hausdorff
metrics. This does not matter because of (1.10). The inclusions F®(Y) are
those intervals which are computed in PASCAL-SC (using the extended
power evaluation) when the interval Y is assigned to the argument of a
function declaration for f”.

, Table 6.1
foy =" 0y 01071, 1] fori=0,.7, 1Y) =2
x=5 fori =0,...,7
i w(Y) [fvy, Byl R/Y), Oy Ry, UT(Y)
0 2-10° 4-10° 8.107! 6-107!
1 2-107! 2-1072 4.107* 3.1074
2 2.1072 2-107* 31077 3.1077
3 2.1073 2:107¢ 4-10710 3-10710
4 2-107* 2-1078 2-10~1 1-1071
5 2:107° 2:30°10 21071 1-1071
6 2-107° 2:1071? 2-1071 1-1071
7 2-1077 1-10712 2.1071 1-1071
Table 6.2
fix) = Ji\,i/]g, Y, =2+107[-1,1] fori=0,..,7, n(Y)=2fori=0,..,7
i w(Y) fv), Fvyl /), Uy /YD), UT(v))
0 2-10° 51071 1-10° 9-107*
1 2:107! 2:1073 2-107* 2107
2 2-1072 2-1073 2-1077 2-1077
3 2-1073 2-1077 2-1071° 2.10710
4 2-107* 2:107° 5.1071 2:10~1
5 2107 21071 6.1071! 1-10~1
6 2-107° 1.1071 51071 1.10~1
7 2.1077 1-10~1 4.1071 1.1071
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| Table 6.3
fo) = 2L ¥, =% +107-1,1] fori=0,.7, n(¥)=% fori=0,..7
* APPENDIX
i w(Y)) lFry, Fov)| [y, Uuv)| [y, U7l
0 2-10° 7-10° 210! 210" 1
AT & i T 2. Each two continuous norms on
O R R I are equivalent
-10™ 1-10- 9-10~ 610~
4 2-1074 11078 110712 110712 Ic qu v
5 2-1075 1-1071° 110712 1-10712
6 2-107° 2-10712 110712 2-10712
7 2-1077 1-10712 1-10712 2-10712
Table 6.4 We show that continuous norms on I are equivalent. Thus I acts just like

finite-dimensional vector spaces. As far as we have investigated, it is not
possible to reduce this assertion to the norm equivalence in R™ since it has
not been possible to show that any norm of /™ may be expanded to a norm
on R?". The reader may feel that there are no connections between

f(x) =exp(x —sinx) — 1, Y;=-%+10"7-1,1] fori=0,..7,
nY)=-3% fori=0,..,7

i w(Y)) IA(Y), F(Y)] [fvy, Uy /Y, UT(v)] centred forms and theoretic norm properties of I'” such as the above. The
reason for including this appendix is that we have tried to keep the present
0 2'10‘1l 3-10° 2-10° 3-10° monograph as simple as possible. Because of the equivalence of the norms
% %ig_z Hg:i é%gj 810~ we can use the maximum norm in nearly all analytic respects without losing
3 2.10-3 1.10-6 6: 10-10 g ig_m the generality. The advantage of this norm is the close connection to the
4 2.10~4 1.10-8 1-10-12 2.10-122 Hausdorff metric and to the width of an interval and, finally, the
5 21073 1-1071© 1.10712 2.10712 computational simplicity. For example, the Krawczyk-Nickel theorem
6 2107 2:10712 110712 2:10712 (Theorem 4.2) can be presented in a far simpler form than in the original
7 2:1077 1-107% 1-107%2 2-10712 version.
Just as in analysis, two norms ” || and ” ”2 on I are called equivalent if
there are positive real numbers c and d such that
Table 6.5

c"X”l < ”X”z < d”XHl forall X e I'. (A1)

We keep in mind that the Hausdorff metric induces the maximum norm,
see (1.9) and that the convergence defined by the Hausdorff metric is

f(x) = (16x* — 24x + S) exp(—x), Y;=2.9+107[-1,1]
fori=0,..7, n(Y)=29 fori=0,.,7

i w(Y)) [f(Yi), F(Yi)l lf(Yi), L71(Y,-)| [f(Yi), U1T(Yi)| component-wme, see Section 2.5. Since the maximum norm on I is
continuous, the unit ball

0 2-10° 3-10! .10 10! = .

1 2-107! 11071 é-%g--” %-18-3 By = X el™ ”X” <1

2 2 10:2 9-10:: 6-10‘: 6-1076 is compact, that is, any sequence in B,, has a convergent subsequence.

3 % ig_ . g ig_ . ?ig: 9 g ig:il Furthermore, in the proof we require the fact that the maximum norm can

5 2107 9.1010 11071 2.10-11 be written as

6 2:107¢ 31071 1.107M 3.107! x| =|m +wX)2 forXel

7 21077 41071 1-1071 31071 1] = [m0) @ '

where m(X) denotes the midpoint and w(X) the width of X.
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Theorem A.1 All continuous norms are equivalent in I".

Proof It is shown that any continuous norm 4 on I is equivalent to the
maximum norm. For this purpose we need the following vectors e; and E;
of " (i = 1,...,m),

e;=(0,..,1,.,0) and E;=(0,...[-1,1],...,0),

where all coordinates with the exception of the ith are 0. Then any interval
X = (X1,...,Xn) € I'" may be represented as

X= i [m(X)e; + w(X;)E/2].

The existence of the positive number d of (A.1) is shown first when
corresponds to ” ”2 and “ ” to ” ”1 and where y; = max {y(e;), Y(E;)}:

Y0 < 5 DIm(hwe) + wXyw(EN2)

< i;[lm(Xi)| + w(X)/2]y;
= S lxlvi<lx S .

By the previous calculation, one can choose 2™, ; as the desired
constant d.

The existence of the positive number ¢ of (A.1) must now be shown, that
is, that there exists a ¢ > 0 such that for any X € I'" the inequality c||XH <
P(X) holds. This is proven via a contradiction where we assume that for
every positive real ¢, an interval exists such that c”X" > y(X). For every
natural number n we can then find an interval X, such that

X lin > w(X,). (A2)

Furthermore, ”X,,” > 0foralln. WesetY, = X,,/”Xn” such that ”Y,,” =
1, and such that (A.2) is equivalent to

”Y,,“/n >Y(Y,) for all natural numbers 7. (A.3)

Since (Y,),-o is a sequence in the compact ball B,,, a subsequence exists,
also denoted by (Y,),-o, that converges to an interval Y (in the sense of
the | - norm). since the norm v is also continuous in the space (I’",|| ”), we
have lim,_,.y(Y,) = Y(Y). From (A.3) we conclude y(Y) = 0, that is, Y
= 0. This is a contradiction to the fact that ||Y]| = 1 which follows from the
continuity of || || o

Bibliography

Alefeld, G. (1968). Intervallrechnung iiber den komplexen Zahlen und
einige Anwendungen. Dissertation, Universitit Karlsruhe.

— (1981). Bounding the slope of polynomial operators and some
applications. Computing, 26, pp. 227-237.

Alefeld, G. and Herzberger, J. (1970). Uber das Newton-Verfahren bei
nichtlinearen Gleichungssystemen, ZAMM, 50, pp. 773-774.

— — (1974). Einfuhrung in die Intervallrechung. Bibliographisches
Institut, Mannheim.

— — (1983). Introduction to Interval Computations. Academic Press, New
York.

Alefeld, G. and Rokne, J. (1981). On the evaluation of rational functions
in interval arithmetic, SIAM Journal on Numerical Analysis, 18, pp.
862-870.

Apostolatos, N. and Kulisch, U. (1967). Grundlagen einer Maschinenin-
tervallarithmetik. Computing, 2, pp. 89-104.

Asaithambi, N. S., Zuhe, S. and Moore, R. E. (1982). On computing the
range of values. Computing, 28, pp. 225-237.

Bernstein, S. (1912). Demonstration du théoréme de Weierstrass, fondée
sur le calcul des probabilites. Commun. Soc. Math. Kharkow, 2, pp.
1-2.

Bonnesen, T. and Fenchel, W. (1934). Theorie der konvexen Korper.
Springer-Verlag, Berlin.

Caprani, O., and Madsen, K. (1980). Mean value forms in interval
analysis. Computing, 25, pp. 147-154.

Cargo, G. T. and Shisha, O. (1966). The Bernstein form of a polynomial,
J. Res. Nat. Bur. Stand., 70B, pp. 79-81.

Cheney, E. W. (1966). Introduction to Approximation Theory, McGraw-
Hill, New York.

Chuba, W. and Miller, W. (1972). Quadratic convergence in interval
arithmetic, Part 1, BIT, 12, pp. 284-290.



160 Bibliography

Collatz, L. (1966). Functional Analysis and Numerical Mathematics.
Academic Press, New York.

Cornelius, H. and Lohner, R. (1983). Computing the range of values of
real functions with accuracy higher than second order. Manuscript,
Karlsruhe.

Crane, M. A. (1975). A bounding technique for polynomial functions.
SIAM Journal on Applied Mathematics, 29, pp. 751-754.

Di-Jan, G. and Yuo-Kang, F. (1983). Some interval tests on unconstrained
global optimization. Freiburger Intervall-Berichte Nr. 83/1, Freiburg.
Dixon, L. C. W., Gomulka, J. and Szegd, G. P. (1975). Towards a global

optimisation technique. In Dixon-Szeg6, (1975), pp. 29-54.

— and Szegd, G. P. (ed.) (1975). Towards global optimisation.
Proceedings of a workshop in Cagliari, 1974. North-Holland, Am-
sterdam.

— — (1978a). The global optimisation problem: an introduction. In
Dixon-Szego, (1978b), pp. 1-15.

— — (ed.) (1978b). Towards global optimisation 2, North-Holland,
Amsterdam.

Dussel, R. and Schmitt, B. (1970). Die Berechnung von Schranken fiir den
Wertebereich eines Polynoms in einem Intervall. Computing, 6, pp.
35-60.

Eggleston, H. G. (1966). Convexity. Cambridge University Press,
Cambridge.

Gargantini, I. and Henrici, P. (1972). Circular arithmetic and the
determination of polynomial zeros. Numer. Math., 18, pp. 305-320.
Goldstein, A. J. and Richman, P. L. (1973). A midpoint phenomenon. J.

ACM, 20, pp. 301-304.

— — (1975). A midpoint phenomenon, SIAM Journal on Applied
Mathematics, 29, pp. 751-754.

Grant, J. A. and Hitchins, G. D. (1973). The solution of polynomial
equations in interval arithmetic. Computer Journal, 16, pp. 69-72.

Gritzer, G. (1979). Universal Algebra. 2nd edition. Van Nostrand,
Princeton, N.J.

Hansen, E. R. (1968). On solving systems of equations using interval
arithmetic. Mathematics of Computation, 22, pp. 374-384.

— (ed.) (1969a). Topics in Interval Analysis. Oxford University Press.

— (1969b). The centered form. In Topics in Interval Analysis, ed. E.
Hansen, Oxford, pp. 102-105.

— (1978a). A globally convergent interval method for computing and
bounding real roots. BIT, 18, pp. 415-424.

— (1978b) Interval forms of Newton’s method. Computing, 20, pp.
153-163.

Bibliography 161

— (1979). Global optimisation using interval analysis: the one-dimensional
case. Journal of Optimization Theory and Applications, 29, pp. 331-344.

— (1980). Global optimisation using interval analysis — the multi-
dimensional case. Numerische Mathematik, 34, pp. 247-270.

Hansen, E. R. and Sengupta, S. (1981). Bounding solutions of systems of
equations using interval analysis. BIT, 21, pp. 203-211.

Herzberger, J. (1977). Zur Approximation des Wertebereich reeller
Funktionen durch Intervallausdriicke. In Grundlagen der Computer
Arithmetik, ed. G. Alefeld, Springer-Verlag, pp. 57-64.

— (1978). A note on a bounding technique for polynomial functions.
SIAM Journal on Applied Mathematics, 34, pp. 685-686.

Hitchins, G. D (1972). An interval arithmetic package and some
applications. Technical Report 10, Centre for Computer Studies,
University of Leeds, England.

Hu, Sze-Tsen (1966). Introduction to General Topology, Holden Day Inc.,
San Francisco.

Krawczyk, R. (1969). Newton-Algorithmen zur Bestimmung von Nullstel-
len mit Fehlerschranken. Computing, 4, pp. 187-201.

— (1980a). Interval extensions and interval iterations. Computing, 24, pp.
119-129.

— (1980b). Zur Konvergenz iterierter Mengen. Freiburger Intervall-
Berichte, 80/3, Freiburg.

— (1982). Zentrische Formen und Intervalloperatoren. Freiburger
Intervall-Berichte, 82/1, Freiburg.

— (1983). Intervallsteigungen fiir rationale Funktionen und zugeordnete
zentrische Formen. Freiburger Intervall-Berichte, 83/2, Freiburg.

Krawczyk, R. and Nickel, K. (1982). Die zentrische Form in der
Intervallarithmetik, ihre quadratische Konvergenz und ihre Inklusionsi-
sotonie. Computing, 28, pp. 117-132.

Krawczyk, R. and Selsmark, F. (1980). Order convergence and iterative
interval methods. Journal of Mathematical Analysis, 73, pp. 180-204.

Kulisch, U. and Miranker, W. L. (1981). Computer Arithmetic in Theory
and Practice, Academic Press, New York.

Lootsma, F. A. (ed.) (1972). Numerical methods for non-linear
optimization. Conference in Dundee 1971. Academic Press, New York.

Lorenz, C. G. (1953). Bernstein Polynomials, University of Toronto Press,
Toronto.

Marden, M. (1966). Geometry of Polynomials. American Mathematical
Society. Rhode Island.

Markov, S. M. (1977). A differential calculus for interval-valued functions
based on extended interval arithmetic. C. R. Acad. Bulgare Sci, 30, pp.
1377-1380.



162 Bibliography

McCormick, G. P. (1972). Attempts to calculate global solutions of
problems that may have local minima. Numerical Methods for
Non-linear Optimization, ed. F. A. Lootsma, Academic Press, pp.
209-221.

Mendelson, E. (1964). Introduction to Mathematical Logic. Van Nostrand,
Princeton, N.J.

Mihelcic, M. (1975). Eine Modifikation des Halbierungsverfahren zur
Bestimmung aller reellen Nullstellen einer Funktion mit Hilfe der
Intervall-Arithmetik, Angew. Inform, pp. 25-29.

Miller, W. (1972). Quadratic convergence in interval arithmetic, Part II.
BIT, 12, pp. 291-298.

— (1973a). More on quadratic convergence in interval arithmetic. BIT, 13,
pp. 76-83.

— (1973b). The error in interval arithmetic. IBM Research, RC 4338.

— (1975). The error in interval arithmetic. Proceedings of The
International Symposium, ed. K. Nickel, Springer-Verlag, pp. 246-250.

Miranda, C. (1941). Un’osservasione su un teorema di Brouver. Bol. Un.
Mat. Ital., Serie 11, 3, pp. 5-7.

Moore, R. E. (1962). Interval Arithmetic and Automatic Error Analysis in
Digital Computing, Ph.D. Thesis, Stanford University.

— (1966). Interval Analysis. Prentice-Hall, Englewood Cliffs, N.J.

— (1976). On computing the range of a rational function of n variables
over a bounded region. Computing, 16, pp. 1-15.

— (1979). Methods and applications of interval analysis, SIAM,
Philadelphia.

Nickel, K. (1975) (ed.). Interval Mathematics, Proceedings of the
International Symposium, Karlsruhe, 1975, Springer-Verlag, Berlin.
— (1976). Die vollautomatische Berechnung einer einfachen Nullstelle von
F(t) = 0 einschliesslich einer Fehlerabschiatzung, Computing, 2, pp.

233-245.

— (1971). On the Newton method in interval analysis. MRC Tech.
Summary Report, 1136, University of Wisconsin, Madison.

— (1977). Die Uberschitzung des Wertebereiches einer Funktion in der
Intervallrechnung mit Anwendungen auf lineare Gleichungssysteme.
Computing, 18, pp. 15-36.

— (1980) (ed.). Interval Mathematics 1980, Proceedings of the Internation-
al Symposium on Interval Mathematics, Freiburg, 1980. Academic
Press, New York.

— (1981). A globally convergent ball Newton method. SIAM Journal on
Numerical Analysis, 18, pp. 989-1003.

Ortega, J. M. and Rheinboldt, W. C. (1970). Iterative Solution of
Nonlinear Equations in Several Variables. Academic Press, New York.

Bibliography 163

Petkovic, L. D. (1983). On two applications of Taylor series in circular
complex arithmetic. Freiburger Intervallberichte, 83/2, Freiburg.

Qi, L. (1981). Interval boxes of solutions of nonlinear systems. Computing,
27, pp. 137-144.

Raith, M. (1980). Existence and uniqueness of inclusion isotonic centred
ball extensions. Computing, 24, pp. 195-205.

Raith, M. and Rokne, J. (1982). Inclusion-isotone centred ball extensions.
Manuscript.

Rall, L. B. (1981). Automatic Differentiation: Techniques and Applica-
tions. Springer, Berlin.

— (1983). Mean value and Taylor forms in interval analysis. SIAM Journal
on Math An., 14, pp. 223-238.

Ratschek, H. (1971). Die Subdistributivitit in der Intervallarithmetik. Z.
Angew. Math. Mech., 51, pp. 189-192.

— (1974). Mittelwertsatz fir Intervallfunktionen, ZAMM, 54, T229-230.

— (1975). Nichtumerische Aspekte der Intervallarithmetik, Interval
Mathematics, ed. K. Nickel, Springer-Verlag, pp. 48-74.

— (1977). Mittelwertzsatze fur Intervalifunktionen, Beitrige zur Numeris-
chen Mathmatik, 6, pp. 133-144.

— (1978). Zentrische Formen. ZAMM, 58, T434-436.

— (1980a). Centred forms. SIAM Journal on Numerical Analysis, 17, pp.
656-662.

— (1980b). Optimal approximations in interval analysis in Interval
Mathematics, 1980, ed. K. Nickel, Academic Press, pp. 181-202.

Ratschek, H. and Rokne, J. (1980a). About the centred form. SIAM
Journal on Numerical Analysis, 17, 3, pp. 333-337.

— — (1980b). Optimality of the centered form. Interval Mathematics 1980,
ed. K. Nickel, Academic Press, pp. 499-508.

— — (1981). Optimality of the centered form for polynomials. Journal of
Approximation Theory, 32, pp. 151-159.

Ratschek, H. and Schréder, G. (1971). Uber die Ableitung von
intervallwertigen Funktionen. Computing, 7, pp. 172-187.

— — (1981). Centered forms for functions in several variables. Journal of
Mathematical Analysis and Applications, 82, pp. 543-552.

Rausch, T. (1981). Zentrische Formen. Fortgeschrittenen-Praktikum fiir
Mathematiker. University of Miinchen.

Richman, P. L. (1969). Error control and the midpoint phenomenon. Bell
Telephone Laboratories MM-69-1374-29.

Ris, F. N. (1972). Interval Analysis and Applications to Linear Algebra.
D.Ph. Thesis, Oxford University, Oxford.

Rivlin, T. J. (1970). Bounds on a polynomial. J. Res. Nat. Bur. Stand, 74B,
pp. 47-54.



164 Bibliography

Rokne, J. (1977). Bounds for an interval polynomial. Computing, 18, pp.
225-240.

— (1978). Polynomial least square interval approximation. Computing, 20,
pp. 165-176.

— (1979a). A note on the Bernstein algorithm for bounds for interval
polynomials. Computing, 21, pp. 159-170.

— (1979b). The range of values of a complex polynomial over a complex
interval. Computing, 22, pp. 153-169.

— (1981). The centered form for interval polynomials. Computing, 27, pp.
339-348.

— (1982). Optimal computation of the Bernstein algorithm for the bound
of an interval polynomial. Computing, 28, pp. 239-246.

Rokne, J. and Grassmann, E. (1979). The range of values of a complex
polynomial over a circular complex interval. Computing, 23, pp.
139-169.

Rokne, J. and Wu, T. (1982a). The circular complex centered form.
Computing, 28, pp. 17-30.

— — (1983). A note on the circular complex centered form. Computing,
30, pp. 201-211.

Shubert, R. O. (1972). A sequential method seeking the global maximum
of a function, SIAM J. on Numerical Analysis, 9, pp. 379-388.

Skelboe, S. (1974). Computation of rational interval functions. BIT, 14,
pp. 87-95.

— (1979). True worst-case analysis of linear electrical circuits by interval
arithmetic. IEEE Transactions on circuits and systems, vol. CAS-26, pp.
874-879.

Spang, H. A. III (1962). A review of minimization techniques for
nonlinear functions. SIAM Rev., 4, pp. 343-365.

Spaniol, O. (1970). Die Distributivitit in der Intervallarithmetik.
Computing, 5, pp. 6-16.

Sunaga, T. (1958). Theory of an interval algebra and its application to
numerical analysis. RAAG Memoirs, 2, pp. 29-46.

Traub, J. F. and WozZniakowski, H. (1980). A General Theory of Optimal
Algorithms. Academic Press, New York.

Wilansky, A. (1970). Topology for Analysis, Ginn, Waltham.

Wilde, D. J. (1978). Globally Optimal Design, Wiley, New York.

Wolf, M. A. (1980). A modification of Krawczyk’s algorithm, SIAM J. on
Numer. Anal., 17, pp. 376-379.

List of Symbols

13
14
15
15
16
16
16
16
17
17
17
18
18
21
39
43
49



Index of Names

Alefeld, G. 13,16,17,19, 31, 61, 66, 76,
111,112, 142, 144, 146, 147, 159

Apostolatos, N. 24, 47,159

Asaithambi, N. S. 93,99, 102, 159

Bernstein, S. 133, 159
Bonnesen, T. 122,159

Caprani, O. 76, 81,159

Cargo, G. T. 130, 131, 132, 135, 136, 159
Cheney, E. W. 134,159

Chuba, W. 31,59, 66, 159

Collatz, L. 122,160

Cornelius, H. 11, 148, 154, 160

Crane, M. A. 160

Di-Jan, G. 144, 160
Dixon,L.C. W. 9,160
Dussel, R. 137, 141, 160

Eggelston, H. G. 160
Fenchel, W. 122,159

Gargantini, I. 117, 160
Goldstein, A.J. 30, 160
Gomulka,J. 9,160
Grant, J. A. 160
Gritzer, G. 23,160
Grassmann, E. 164

Hansen, E. R. 30, 31, 35, 66, 99, 141, 142,
143, 144, 160, 161

Henrici, P. 117,160

Herzberger,J. 13,16, 17,19, 31, 66, 76,
144, 146, 147, 159, 161

Hitchins, G. D. 160, 161

Hu, Sze-Tsen. 161

Krawczyk, R. 10, 19, 30, 31, 32, 37, 59, 61,
62,63, 64, 66,67,69,71,72,75,76,
84, 88, 116, 129, 130, 144, 145, 147,
148, 157, 161

Kulisch, U. 13,24, 47,159, 161

Lohner, R. 11,148, 154, 160
Lootsma,F. A. 9,.161
Lorenz, C. G. 130, 161

Madsen, K. 76, 81, 159

Marden, M. 107, 161

Markov, S. M. 25,161

McCormick, G.P. 9,162

Mendelson, E. 23, 162

Mihelcic, M. 162

Miller, W. 31,59, 66, 159, 162

Miranda, C. 66, 162

Miranker, W. L. 13,161

Moore, R.E. 8,12,13, 14,16, 17, 23, 24,
25, 26,29, 30, 31, 35, 44, 55, 56, 57,
60, 66, 68,75, 76, 78, 81,91, 93, 94,
96, 98, 99, 102, 142, 144, 159, 162

Nickel, K. 13,16, 19, 31, 63, 64, 66, 67, 69,
71,72,76,92, 138, 144, 157, 161, 162

Ortega, J. M. 145,162
Petkovic, L. D. 116, 163
Qi,L. 144,163

Raith, M. 72,76, 163

Rall,L.B. 56,76, 163

Ratschek, H. 15,19, 25, 30, 31, 40, 51, 53,
54,62,103, 110, 163

Rausch, T. 58,163

Rheinboldt, W. C. 145,162

Richman, P. L. 30, 160, 163

Index of Names

Ris, F.N. 15,163

Rivlin, T.J. 130, 133, 135, 136, 163

Rokne, J. 31,72,103, 110, 111, 112, 116,
130, 135, 159, 163, 164

Schmitt, B. 137, 141, 160

Schréder, G. 25, 53, 54, 163

Selsmark, F. 144, 147, 148

Sengupta, S. 144, 161

Shisha, O. 130, 131, 132, 135, 136, 159

Shubert, R. O. 143,144, 164

Skelboe, S. 57,76, 90,91, 93, 97,99, 101,
102, 161, 164

Spang, H. A. 9,164

Spaniot, O. 15, 164

Sunaga, T. 18,164
Szego, G.P. 9,160

Traub, J.F. 103,164
Wilansky, A. 14,26, 164
Wilde,D.J. 9,164
Wolf, M. A. 144,164

Wozniakowski, H. 103, 164
Wu, T. 31,116, 164

Yuo-Kang, F. 144,160

Zuhe, S. 93,99, 102, 159

Index of Subjects

167

absolute value 17
approximation 103
approximation, better 106
approximation, optimal 106

Bernstein approximation 133
Bernstein coefficients 131
Bernstein form 131
Bernstein functions 130
Bernstein polynomial 133

centred form 30, 65, 66, 119
centred form function 65
circular interval 116
computable from values 104
continuous 25

convergence 24

convergence of order k148
cyclic bisection algorithm 102

dependence on values 104
developing point 65
developing point function 65
diameter included 121

expression 22

expression, arithmetic 22
expression, defining 22
expression, underlying 22
extended power evaluation 38

function corresponding to u; 59
function procedure 59
function of a procedure 59

Hausdorff metric 18
Horner scheme, small 39
Horner scheme, evaluation 117

including approximation 103
inclusion function 65, 94
inclusion isotonicity 17,24
interpolation form 150, 151

interpolation form function 150, 151

interval expression 22
interval function procedure 60
interval operations 13, 14
interval slope 60

interval vector 15



168 Index of Subjects

Krawczyk-operator 147 )
Krawczyk’s centred form 59, 61, 75
Krawczyk’s circular centred form 130

linearly convergent 66
Lipschitz condition 25
Lipschitz constant 25

maximum norm 17

mean-value form 78, 81

metric 18

metric, chain inclusion isotone 18
metric, homogeneous 18
metric, translation invariant 18
modulus 17

midpoint 16

multi-index 49

natural interval extension 23
nested form 39

Newton transform 145
norm 17

norm, inclusion isotone 17

occurs only once 91

point intervals 14
power sum evaluation 117

quadratic convergence 32, 66

range 21

range function 24
refinement - 94

refinement, uniform 94
remainder form 149
remainder form function 149

simple power evaluation 38

Skelboe’s method 99

standard centred form 50

standard centred form of order k 33, 43
standard circular centred form function 119
subdistributive law 15,117

subdivision method 94

symmetric intervals 37

Taylor-form 77,78,79
Taylor-form function 77,79

width 16



