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Preface

This monograph is a set of course notes written for the 
�st Brazil�
ian Mathematics Colloquium held at IMPA in July �

�� It gives an
overview of the 	eld of self�validated numerics�computation models in
which approximate results are automatically provided with guaranteed
error bounds� We focus� in particular� on two such models� interval
arithmetic and a�ne arithmetic�

Interval arithmetic �IA� was developed in the �
���s by Ramon E�
Moore ����� IA is the simplest and most e�cient of all validated nu�
merics models� and� not surprisingly� the most widely known and used�
After two decades of relative neglect� IA has been enjoying a strong
and steady resurgence� driven largely by its successful use in all kinds
of practical applications� We are con	dent that many readers of this
monograph will 	nd IA to be a useful tool in their own work as well�

A�ne arithmetic �AA� is a more complex and expensive computation
model� designed to give tighter and more informative bounds than IA in
certain situations where the latter is known to perform poorly� The AA
model was proposed and developed recently by the authors �������� al�
though a similar model had been developed in �
�� by E� R� Hansen �����
Apart from its usefulness for certain special applications� AA is being
presented here as an example of the many topics for research that are
still unexplored in the 	eld of self�validated numerical methods�

We apologize to the reader for the length and verbosity of these notes
but� like Pascal�� we didn�t have the time to make them shorter�

��Je n�ai fait celle�ci plus longue que parce que je n�ai pas eu le loisir de la faire
plus courte�� �Blaise Pascal� Lettres Provinciales� XVI �	
��
�
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Chapter �

Introduction

��� Approximate computations

Many numerical computations� especially those concerned with mod�
eling physical phenomena� are inherently approximate� they will not
deliver the �true� exact values of the target quantities� but only some
values that are in some sense �near� the true ones�

Approximate numerical computation has been an essential tool of
science and technology for several centuries� The history of the 	eld is
actually as long as that of science itself� the ancient Babylonians were
already computing reciprocals and square roots as truncated sexagesimal
fractions ��
� �
�� One of Archimedes�s best�known endeavors was a
numerical approximation algorithm for �� The greatest mathematicians
of modern history� such as Newton and Gauss� were deeply concerned
with this 	eld� The 	rst electronic computers were expressly designed for
numerical computing� and that application is still an overriding concern
in the design of modern CPU chips�

����� Error analysis

The di�erence between a computed value and the �true� value of the
corresponding quantity is commonly called the error of that computed
value�

Some sources of error are external to the computation� the inputs
may have been contaminated by measurement error or missing data� or

�



� Introduction

the computation may be based on a simpli	ed mathematical model that
later proves to be inadequate�

Other sources of error are internal� due to the discrete nature of
digital computing� to resource limitations �on computing time� storage
capacity� or program complexity�� or to compatibility constraints �such
as hardware �oating�point formats and decimal input�output conver�
sion�� These factors usually force the original mathematical model to be
replaced by a discrete approximation� with 	nite steps� truncated series�
rounded arithmetic� etc�

The accuracy of numeric algorithms is notoriously hard to analyze�
In practice� it is often impossible or unfeasible to predict mathematically
the magnitude of the roundo� and truncation errors hidden in the output
of a numeric program�

In order to be truly useful� every approximate numerical procedure
must be accompanied by an accuracy speci�cation� a statement that
de	nes the magnitude of the errors in the output values �usually� as a
function of the input values and their errors�� The accuracy speci	cation
must be supported by an error analysis� a mathematical proof that the
output errors obey the speci	cations�

Unfortunately� even for relatively simple algorithms� a rigorous error
analysis is often prohibitively long� or di�cult� or both �
��� Moreover� a
useful accuracy speci	cation often requires that the inputs satisfy a host
of prerequisites�this matrix must be well�conditioned� that function
must have bounded derivatives� these formulas should not over�ow� etc�
In practice� these prerequisites are often impossible to guarantee� or even
to check�

As a consequence� numerical algorithms are often put to use without
accuracy speci	cations� much less a proper error analysis� Interpretation
of the results is left to the user� who must rely on his intuition� crude
tests� or pure luck�

This unfortunate state of a�airs has even led to prejudice against
approximate numerical computing in contemporary computer science�
despite its importance and evident success in applications� The 	eld is
generally perceived by outsiders as �sloppy� and �fuzzy�� and hence not
really precise and scienti	c� and hence not a respectable part computer
science�where� as in mathematics� there is no place for things that are
�

 correct��



��� Approximate computations �

A simple and common approach for estimating the error in a �oating�
point computation is to repeat it using more precision� and compare the
results� If the results agree in many decimal places� then the computa�
tion is assumed to be correct� at least in the common part� However�
this common practice can be seriously misleading� as the following sim�
ple example by Rump �
�� shows� Consider the evaluation of

f ! ������y� " x����x�y� � y� � �
�y� � 
� " ���y� " x��
y��

for x ! ����� and y ! ���
�� Note that x� y� and all coe�cients in f
are exactly representable in �oating�point �be it binary or decimal��
Rump �
�� reports that computing f in FORTRAN on a IBM S����
mainframe yield�

f ! ����
��� � � � using single precision�
f ! ����
���
������ � � � using double precision�
f ! ����
���
�������� � � � using extended precision�

Since these three values agree in the 	rst seven places� common practice
would accept the computation as correct� However� the true value is f !
����
��
���

 � � �� not even the sign is right in the computed results#
Similar results can be obtained with Maple��

x�������� y����	
��

� evaluate in floating point

f�������
�y���x�������x���y���y�������y������
�
�y���x����y��

f �� ������	�
�	

� evaluate in exact rational arithmetic

f������
��		�y���x�������x���y���y�������y������

��	�y���x����y��


����

f �� � �����

���
�

� show decimal equivalent

evalf�f��	��

������
�	




����� Self�validated numerics

In response to this problem� there have arisen several models for self�
validated computation �SVC� ���� also called automatic result veri�ca�
tion ����� in which the computer itself keeps track of the accuracy of

�Maple is a registered trademark of �

��� Ontario Inc�



� Introduction

computed quantities� as part of the process of computing them�� So� if
the magnitude of the error cannot be predicted� at least it can be known
a posteriori�

The simplest and most popular of these models is R� Moore�s interval
arithmetic ����� which we study at length in Chapter 
� There are
many other models� however� such as E� Hansen�s generalized interval
arithmetic ����� and the ellipsoid calculus of Chernousko� Kurzhanski�
and Ovseevich �	� �	�� In Chapter �� we describe our own model� similar
to Hansen�s� which we call a�ne arithmetic �����

A basic limitation of self�validated numerical models is that they can
only determine the output errors a posteriori� Still� this capability is
quite su�cient in certain applications� especially those where the errors
are mostly due to external causes� If the output errors� as computed by
the model� are deemed too large� then the response must involve some
external action�acquire more data� stop the process� alert a human
operator� etc�

In cases where the output errors are mainly due to internal approxi�
mations and rounding� a self�validated model makes it possible to auto�
matically redo or re	ne the computation� with increased precision� until
the output errors are acceptable� This approach has been turned into a
fundamental principle in lazy real arithmetic �����

Of course� there are many applications� such as real�time process
control� where one needs a priori guarantees on the accuracy and time�
liness of the results� In such cases� the self�validated approach is not
of much help� one still needs to perform a rigorous error analysis� prior
to implementation� in order to guarantee that the output errors will be
always acceptable�

��� Error models

For this monograph� we will start from a very general model of self�
validated computation� We assume that the original goal was to evaluate
z � f�x� for some mathematical function f �Rm � Rn� but we actually
had to implement a discrete computation Z � F �X�� where X and Z
are approximate values�discrete mathematical objects that carry only

�This would allow the correct result to be obtained in Rump�s example� using only
�oating�point arithmetic�



��� Error models �

partial information about the values of the corresponding continuous
quantities x and z�

There are many di�erent self�validated computation models that 	t
this pattern� They are distinguished by the nature of the approximate
values they use� probability distributions� intervals� boxes� ellipsoids�
polytopes� con	dence intervals� lazy digital expansions� interval bags�
and many more�

����� Probabilistic error models

In the natural sciences and engineering� it is customary to view approxi�
mate values in a statistical sense� the computed result Z is seen to de	ne
a probability distribution for the �unknown� true quantities z�� �� zn�

Typically� the errors are assumed to follow a Gaussian �normal� dis�
tribution� The computed result Z should then specify the mean and
variance of each true quantity zi� and possibly the full covariance ma�
trix for the zi� that is� the joint �Gaussian� probability distribution of
the vector �z�� �� zn��

In this framework� a self�validated computing model should automat�
ically compute the statistical parameters for the output quantities zi�
given those for the inputs xj�

Unfortunately� this model is limited to relatively simple situations�
where the measurement errors can be modeled by a Gaussian distri�
butions� and the computations use only linear formulas with negligible
roundo� errors� When these conditions do not hold� computing the prob�
ability distribution of the error� or even its mean and variance� appears
to be an intractable mathematical problem�

����� Range�based models

To avoid the apparent limitations of the probabilistic model� most self�
validated numerical models are based on range analysis� i�e�� use ranges�
rather than distributions� as approximate values�

Speci	cally� the approximate value Z de	nes a range $Z% for the
quantity z� i�e�� a set of real values that is guaranteed to contain the true
value of z � provided that the input quantities x lie in the range $X%
speci	ed by the input value X� We refer to this property as the funda�
mental invariant of range analysis �see Section ��
����
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In the simplest range analysis models� such as interval arithmetic�
each component Zi of the computed value de	nes a range of values $Zi%
for the corresponding real quantity zi� The output Z does not include
any constraint relating two or more quantities zi� in other words� the
range $Z% for the output vector z ! �z�� �� zn� is merely the Cartesian
products of those individual ranges� $Z% ! $Z�%��� $Zn%� All combinations
of z�� �� zn in the box Z����Zn are in principle allowed by this model�
In more sophisticated models� such as a�ne arithmetic and the el�

lipsoid calculus� the output Z includes also some information on par�
tial dependencies between the quantities zi and the inputs xj� Thus�
the computed result Z may give more information about the vector z
than one would get by considering its meaning for each zi indepen�
dently� Therefore� the Zi together de	ne a joint range for the vector
�z�� �� zn�x�� �� xm�� which is generally a proper subset of the Cartesian
product of the individual ranges�
Some models fall halfway between these two extremes� Hansens�s

generalized interval arithmetic ����� for example� records only correla�
tions between the output quantities zi and the inputs xj� but not among
the inputs� or among the outputs �see Section ���
��
For e�ciency reasons� each range�based SVCmodel restricts its ranges

to a speci	c family Rn�m of subsets of R
n�m� whose members can be

e�ciently represented� handled� and combined� boxes� ellipsoids� poly�
topes� etc�

����� The fundamental invariant of range analysis

Whatever the shape of the allowed ranges� all range�based SVC models
provide� for every function f �Rm � Rn� a range extension F �Rm �
Rn� with the following property� which we shall call the fundamental
invariant of range analysis�

If the input vector �x�� �� xm� lies in the range jointly deter�
mined by the given approximate values X�� �� Xm� then the
quantities �z�� �� zn� ! f�x�� �� xm� are guaranteed to lie in the
range jointly de�ned by the approximate values �Z�� �� Zn� !
F �X�� �� Xm��

Ideally� the joint range determined by the outputs Zi should be as tight
as possible� namely the set of all vectors f�x�� �� xm� such that xj � Xj �



��� Error models 	

In practice� however� a range�based numerical routine is allowed to err
on the conservative side� if that is necessary to keep the output ranges
representable� or desirable for e�ciency reasons� We shall see plenty of
examples in the following chapters�

����� Relative accuracy

As we shall see� a major problem in all forms of range�based computa�
tion is the excessive conservativism of the results�the computed ranges
are often much wider than necessary� Therefore� in order to e�ectively
compare di�erent algorithms and approaches� we must develop some
quantitative measure of this conservativism�

Let Z � F �X� be a range computation that purports to represent
the mathematical computation z � f�x�� where f �Rm � Rn� Its
relative accuracy is� by de	nition� the ratio between the size of the ideal
range Y ! f f�x� � x � $X% g and that of the computed range $Z%� By
�size� we mean the measure appropriate to the space in question� length
for one dimension� area for two� and so on�

Because of the fundamental invariant of range analysis� the relative
accuracy is therefore a number between zero �meaning that the output
range is in	nitely wider than the ideal range� and one �meaning that
the two ranges are essentially the same��

Note that if the input range has zero measure� then the relative
accuracy is likely to be zero� because of roundo� errors� Therefore� the
concept is useful only when X is large enough to make roundo� errors
irrelevant�

����� Con�dence�range models

The fundamental invariant stated above requires that the input values
lie in the range described by the Xi� This requirement is too strict
for scienti	c and engineering applications� where the input quantities
are obtained by physical measurement� and hence may be a�ected by
essentially unbounded error�

In order to use range analysis in such applications� we must replace
absolute guarantees by probability statements� That is� each approxi�
mate value Z speci	es a con�dence range for the corresponding quan�
tity z� a range of values $Z%� as before� and also a real number pZ � the
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probability or con�dence level of z lying in that range�

More generally� an ensemble of approximate values Y ! �Y�� �� Yk� for
quantities �y�� �� yk� speci	es a subset ofR

k� and an associated con	dence
level pY � the probability of the vector �y�� �� yk� lying in that set� Note
that this approach is quite di�erent from the Gaussian�error model� here�
no assumption is made about the shape or variance of the probability
distribution� except that its integral inside the range $Y % is at least pY �

In this con	dence�interval framework� an SVC model should tell us
how to compute the joint range and con	dence level for the outputs of
a formula� given the same data about the inputs� Again� the model
is allowed to err on the conservative side� when computing ranges and
probabilities�

Most of the ordinary �i�e�� non�probabilistic� range�based SVC mod�
els can be easily adapted to the con	dence�range interpretation� Specif�
ically� one should compute the ranges as in the non�probabilistic model�
and then evaluate the con	dence level according to the laws of proba�
bility� For example� if x lies in the interval $�� "�% with probability
��
�� and y lies in $� �% with probability ����� then x"y lies in $� �%
with probability at least ��
� " ���� � � ! ����� In general� we have
pf�x�y	 � px " py � ��

��� Floating�point number systems

A �oating�point number system is a scheme for representing real numbers
in discrete machines ����� To allow a wide range of real numbers to be
represented� �oating�point number systems encode a fraction part� called
mantissa� and a scale part� called exponent� More precisely� a �oating�
point number system has a base �� usually 
 or ��� and encodes real
numbers as ��adic fractions of the form�

����d� � � � dp�� �e ! �
�
d�
�
"

d�
��
" � � � " dp

�p

�
�e�

where the mantissa m ! ���d� � � � dp�� is written in base �� and e is
the exponent� A �oating�point number system is characterized by the
base �� the precision p� and the exponent range� emin 	 e 	 emax� Most
computers use base 
� whereas most hand calculators use base ���
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Figure ��� shows a �oating�point system with � ! 
� p ! �� emin !
��� and emax ! �� Note that �oating�point numbers are not uniformly
spaced� but instead display �logarithmic clustering��

Figure ���� Non�uniform distribution of �oating�point numbers�

There are two sources of errors when representing real numbers in
�oating�point� First� a �oating�point number system only represents a
	nite set of numbers� Thus� most real numbers will be either too large
in absolute value to be represented� resulting in over�ow� or too small in
absolute value� resulting in under�ow� Second� not every real number is
a ��adic fraction� and so most real numbers in the range of the �oating�
point number system will fall between two �oating�point numbers� and
one of them has to be chosen to represent it� This choice is called
rounding� and the error committed is called the roundo� error�

For example� decimal fractions such as ��� or ����� are very popular
as a step sizes in numerical computation� but have no exact represen�
tation in binary �oating�point systems� Thus� in binary �oating�point
arithmetic� ������ 
! � and ���������� 
! �� because of roundo� errors�
It would be much safer to use diadic fractions instead� such as ���
� or
�����
����
�� specially in long computations�

��� The IEEE 
oating�point standard

The IEEE �oating�point standard ��� is arguably one of the most sig�
ni	cant developments in numerical computing since the advent of FOR�
TRAN� Until the widespread adoption of the IEEE standard in the early
�

��s� every computer manufacturer� and often every computer model�
had its own �oating�point number system� with its own base� precision�
range� and its own semantics for rounding� commutativity� over�ow� un�
der�ow� division by zero� etc� Moreover� those rules were usually illogi�
cal and poorly documented� being generally the consequence of decisions
made by the hardware designers� who were more concerned with speed
and cost than with mathematical precision�
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The IEEE standard ended this era of confusion� The standard
postulates quite rigid formats for single�precision ��
�bit� and double�
precision ����bit� �oating�point formats� To be precise� there are two
IEEE �oating�point standards� ANSI�IEEE Std �����
�� and IEEE
Std �����
��� The 	rst one deals speci	cally with �
�bit and ���bit bi�
nary formats� whereas the second covers �oating�point systems of any
base and precision� Since most machines follow both standards� we can
safely view them as one�

The standard also ties down precisely the semantics of the four basic
arithmetic operations� and of certain common transcendental functions�
by requiring that they be as correct as logically possible� That is� hard�
ware conforming to the IEEE standard must interpret the operands as
rational numbers� compute the exact result� as in mathematics� and then
round it to the nearest representable number� in a speci	c direction�
Moreover� the standard provides control over rounding� a feature that
is essential to SVC �see Section ������� Finally� the standard speci	es
precisely the results of exceptional operations� such as division by zero�
over�ow� and under�ow� To this end� it reserves certain bit patterns to
denote two �in	nite� values �"� and ���� and a series of error codes
or �not�a�numbers� �NaN�� and extends the semantics of all operations
to accept and return these special values�

Essentially� the standard does not leave unspeci	ed a single signi	�
cant bit of the �oating�point model� Thanks to this unforgiving strict�
ness� every �oating�point number that can be represented in the IEEE
standard format can be stored in any standard�compliant machine� with�
out loss of precision� Moreover� any standard�compliant processor that
performs the same sequence of �oating�point operations on the same
data will return precisely the same result� down to the last bit� This
provided a much welcome portability of numerical programs and data�

The IEEE standard is so thorough� and 	lled such a need� that it
was quickly adopted by most computer manufacturers� down to the last
bit� Like every standard� this one has several technical �aws� which are
all the more irritating for having been cast in stone for decades to come�
Still� as in most other 	elds� a bad standard is better than no standard�

Besides all its practical contributions to portability� robustness� and
documentation� the IEEE standard has had an enormous psychological
impact on the programming community� Suddenly� it became worth�
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while to worry about roundo� errors in a precise way� It became pos�
sible� at least in principle� to design truly robust numerical algorithms�
and give rigorous proofs of their correctness� even in the presence of
under�ow and over�ow� Thus� the IEEE standard prepared the way for
self�validated computation�

����� Special 	oating�point values

As mentioned above� the IEEE �oating�point standard de	nes� in addi�
tion to ordinary �	nite� numbers� certain special values�

� the in�nities "� and ��� whose meaning and properties are for
the most part obvious�

� the not�a�number values� collectively denoted by NaN� which are
the conventional result of indeterminate operations like ���� � ���
and ����

� the negative zero &�� which by de	nition is the reciprocal of ��
�and vice�versa��

As we shall see� the in	nities "� and �� are very useful for self�
validated computation� since they allow us to represent the notion of
�no lower bound� and �no upper bound�� respectively�
The NaN values behave rather peculiarly in comparisons� a NaN is

neither greater than� equal to� nor less than any other value�including
itself# A NaN may signify either as �no value�� �more than one value��
or �any real value�� depending on the context� Since many SVC models
have other ways of representing these concepts� NaN values tend to be
little used�
We shall use the term ��oat� for any IEEE �oating�point value�

	nite� in	nite� or NaN� We shall denote by F the set of all 	nite �oats�
which we shall consider as a subset of the real line R� and by F� the set
of numeric �oats� F� ! F
f���"�g� Note that NaN does not belong
to either F or F��

����� Negative zero

One of the most controversial features of the IEEE standard is the ex�
istence of a negative zero� &� ! ������� While it is possible to concoct
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examples where this feature saves an instruction or two� in the vast ma�
jority of applications this value is an annoying distraction� and a possible
source of subtle bugs�

Unlike in	nite values� which merely extend the domain of arithmetic
operations without changing their semantics for ordinary numbers� the
introduction of negative zero actually a�ects the semantics of many op�
erations in non�obvious and mathematically inconsistent ways� For in�
stance� the square root of negative zero is de	ned to be negative zero�

Fortunately� negative zero behaves like ordinary zero in many re�
spects� In particular� in numeric comparisons negative zero turns out
to be equal to �and not less than� ordinary zero� Thus� we can usually
pretend that ordinary zero and minus zero are the same value� and we
shall adopt this viewpoint here� However� one must watch out for occa�
sional pitfalls� for instance� I�O routines will usually print negative zero
as ��� and its sign comes out as �� instead of "��

����� Rounding mode control

A feature of the IEEE standard that is highly relevant to SVC is its
provision for rounding control� A standard�compliant processor must
allow the programmer to specify the direction in which computed results
are rounded to representable numbers� As we shall see� this feature is
essential for the e�cient implementation of interval arithmetic and other
self�validated computation models�

In this monograph� we use the notation hEi for the value of expres�
sion E evaluated in IEEE �oating�point arithmetic� with the default
rounding mode ��to nearest or to even��� We also write �E� for a nu�
meric �oat �possibly "�� that is greater than or equal to the value of a
formula E � that is� the value of E rounded up to a representable number
�not necessarily the smallest one�� Similarly� we write �E� for the value
of E rounded down to a representable value�
In the special case when E consists of a single arithmetic operation�

�E� and �E� are by de	nition the result of computing E on an IEEE�
compliant processor with the rounding direction set as speci	ed� If E
contains two or more operations� then each must be rounded in the ap�
propriate direction so as to ensure that the 	nal result is rounded as
speci	ed� For example� when evaluating

x�x���x� " ��x�� the denomi�
nator must be rounded towards ��� whereas the numerator and the
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quotient must be rounded towards "��
Sometimes� the correct rounding mode to use when evaluating a sub�

expression depends on the values of other sub�expressions� For example�
in
x�x�y " ��x�� the result of y " � must be rounded up if x is positive�

and down if x is negative� We shall generally avoid such complicated
situations� and use external tests to ensure that each operation inside a
��� or ��� can be evaluated with a single� statically determined rounding
mode�
Unfortunately� the rounding�mode controls of most processors are

extremely inconvenient to use� so that changing the rounding mode is
expensive�typically a dozen machine instructions� To minimize such
changes� we can use the identities

��E� ! ��E� � ��E� ! ��E� �
These formulas work for all �oat values� because� according to the IEEE
standard� sign negation is involutory� exact� and never over�ows�

����� Single vs� double precision

When implementing an SVC model� one may have to choose between us�
ing single precision ��
�bit� or double precision ����bit�� Three decades
ago� the di�erence in speed and storage space dictated that most nu�
merical computing should be performed in single precision� with double
precision being used only when really necessary� Nowadays� storage is
rarely a limiting factor� and most �oating�point processors will be just
as fast on ���bit operations as on �
�bit ones� so the advantages of single
precision have all but disappeared� and double precision is increasingly
being seen as the default� �For instance� the original de	nition of the C
programming language stated that all �oating�point arithmetic was to
be done in double precision ���� p� �����
Moreover� many mathematical libraries and programming languages

will automatically convert arguments and results to the double�precision
format� Now� another questionable �feature� of IEEE �denormalized
numbers� has the unfortunate consequence of making conversion be�
tween single and double precision very expensive on certain machines�
because it has to be done by software� Therefore� it is quite possible �in
the authors� own experience#� for a numerical computation to become
much faster when converted from single to double precision�





Chapter �

Interval arithmetic

In this chapter� we describe interval arithmetic� the simplest and most
e�cient of all validated numerics models� We also discuss how to write
procedures for most elementary operations and functions�

��� Introduction

Interval arithmetic �IA�� also known as interval analysis� is a range�
based model for numerical computation where each real quantity x is
represented by an interval &x of �oating�point numbers� Those intervals
are added� subtracted� multiplied� etc�� in such a way that each com�
puted interval &x is guaranteed to contain the �unknown� value of the
corresponding real quantity x�

Interval arithmetic was invented in the �
���s by Ramon E� Moore
���� ���� then a Ph� D� student at Stanford University� Its prestige and
popularity among the numerical analysis community has been somewhat
of a roller�coaster ride� Interest in IA was quite high for a few years af�
ter Moore�s thesis� at which time it seem to have been oversold as a
panacea for all numerical computation problems� As the euphoria sub�
sided� a reaction set in� and for the next two decades IA was viewed very
negatively�to such an extent that authors who needed to use intervals
in their algorithms reportedly had to call them �segments� or �ranges�
in order to get their papers published�

However� in recent years there has been a strong and steady resur�
gence of interest in IA� Practitioners and researchers in the most varied

��
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	elds�from pure mathematics to computer graphics to economics�
have found that IA provides a simple and relatively e�cient solution
to computational problems that were intractable under the �classical�
approach� IA is now appreciated for its ability to manipulate imprecise
data� keep track automatically of truncation and round�o� errors� and
probe the behavior of functions e�ciently and reliably over whole sets
of arguments at once�

Successful applications of IA include� for example� robust root 	nders
for ray tracing ��� ���� domain enumeration for solid modeling� ���� ���

�� 
	� 
��� surface intersection ��	�� global optimization ������� ���
��� ��� 
�� 
�� 
��We will discuss some important applications of IA in
Chapter �� It is also noteworthy that interval arithmetic recently played
a key role in settling the double bubble conjecture ����� a longstanding
open problem in the theory of minimal surfaces�

This revival of IA was greatly helped by the publishing and universal
acceptance of the IEEE �oating�point standard ���� The standard man�
dated the implementation of directed rounding� which is indispensable
for practical implementations of IA� Moreover� adoption of the standard
by all major computer manufacturers encouraged the development of
portable IA packages ���� ����
�� Finally� the high visibility of the
standard undoubtedly made programmers more aware of the �oating�
point roundo� problem� and hence interested in self�validated numeric
computation�

Interval arithmetic and related techniques now have a dedicated jour�
nal �Reliable Computing� formerly Interval Computations� published by
Kluwer Academic Publishers�� a central web site containing a wealth of
information and links ��	�� and several established conferences�

��� Intervals

In interval arithmetic� each quantity x is represented by an interval
&x ! $&x�lo &x�hi % of real numbers� meaning that the �true� value of x is
known to satisfy &x�lo 	 x 	 &x�hi �
Those intervals are added� subtracted� multiplied� etc�� in such a way

that each computed interval is guaranteed to contain the �unknown�
value of the quantity it represents� Thus� for example� the sum and
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di�erence of two intervals &x and &y is computed as

&x" &y ! $&x�lo " &y�lo &x�hi " &y�hi %

&x� &y ! $&x�lo � &y�hi &x�hi � &y�lo%�

�These formulas ignore roundo� errors� over�ow� and other details� which
we address in Section 
����
The reader may check that these are the smallest intervals that con�

tain x" y and x� y� respectively� for all possible pairs x � &x and y � &y�
Analogous formulas can be devised for multiplication� division� square
root� and all common mathematical functions �see Section 
����

����� Precise de�nition of intervals

In the spirit of SVC� before proceeding any further we must de	ne very
precisely the representation and semantics of intervals in the IA model�
Accordingly� we de	ne a non�empty interval as a set of the form

$&x�lo &x�hi % ! f x � R � &x�lo 	 x 	 &x�hi g �

where &x�lo �the lower bound of the interval� is in F 
 f��g� and &x�hi
�the upper bound� is in F 
 f"�g�
We also de	ne the empty interval $ % as synonymous of the empty set�

The upper and lower bounds of $ % are not de	ned�
Note that every �nite �oat x can be represented as an interval $x

x%� Every other real number can be approximated by an interval $a b%�
where a and b are consecutive �oat values� possibly in	nite�
Note that the bounds of an interval are �oat values� possibly in	nite�

but its elements are drawn from the 	nite real numbers R� Thus� for
example� the interval $� "�% includes � and p
 and ���


� but not
"�� In particular� $�� "�% is the same as R� the set of all �	nite�
real numbers�
The obvious way to represent a non�empty interval &x in the com�

puter is by record with two �oat components� &x�lo and &x�hi � The empty
interval could then be represented by any such pair with &x�lo � &x�hi �
We shall use $"� ��%� speci	cally� because this choice simpli	es the
implementation in some cases�
Since�� and "� are not real numbers� the pairs with &x�lo ! &x�hi !

�� or &x�lo ! &x�hi ! "� would denote the empty set� too� However�
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it is advisable to outlaw these two pairs altogether� so that the common
test x ! $ % can be consistently implemented as &x�lo � &x�hi �
In summary� a pair �&x�lo� &x�hi� represents a non�empty interval if

&x�lo � F 
 f��g� &x�hi � F 
 f"�g� and &x�lo 	 &x�hi � or the empty
interval� if &x�lo � &x�hi � The pairs

$"� "�%� $�� ��%� $NaN NaN%� $a NaN%� $NaN a%�

are not valid intervals� for any �oat a�
We say that an interval &x straddles a real number z when &x�lo � z �

&x�hi � When &x�lo ! z or &x�hi ! z� and the interval is not empty� we say
that &x merely touches z�

��� Computing with IA

For every operation f�x� y� � � �� from reals to reals �such as sum� product�
square root� etc��� the interval arithmetic model de	nes a corresponding
interval extension &f�&x� &y� � � ��� This operation returns some interval�
preferably the smallest one�that contains all values of f�x� y� � � ��� where
the variables x� y� � � � range independently over the given intervals &x� &y� � � �
For elementary operations� implementing these interval extensions is

generally straightforward� we need only devise formulas for the maxi�
mum and minimum values of f when the arguments x� y� � � � vary inde�
pendently over speci	ed intervals� Often� a case analysis is required�
For certain functions� determining the exact maxima and minima

may be too di�cult� In such cases� it is acceptable to return any com�
putable interval that contains the theoretical range of the function� not
necessarily the smallest one� That is� we are allowed to increase the
upper bound� and decrease the lower bound� doing so does not violate
the fundamental invariant of range analysis �Section ��
����
Once we have implemented interval extensions for all elementary

operations and functions� interval extensions for a complicated function
can be computed by composing these primitive formulas in the same way
the primitive operations are composed to compute the function itself� In
other words� any algorithm for computing a function using primitive op�
erations can be readily �and automatically� interpreted as an algorithm
for computing an interval extension for the same function� �This is spe�
cially elegant to implement with programming languages that support
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operator overloading� such as Ada� C""� Fortran�
�� and Pascal�XSC�
but can be easily implemented in any programming language� either
manually or with the aid of a pre�compiler�� Thus� the class of functions
for which interval extensions can be easily �and automatically� com�
puted is much larger than the class of rational polynomial functions�
This proves the fundamental invariant of range analysis for IA�

����� Handling roundo
 errors

A common reason for widening the result interval is the need to rep�
resent the endpoints as �oating�point values� In order to preserve the
fundamental invariant� we must be careful to round each bound in the
proper direction� namely� the lower bound must be rounded towards
��� and the upper bound towards "��
This concern also applies to any intermediate values that may a�ect

the computed bounds� Such values must always be rounded in the most
conservative direction�the one which leads the resulting interval to be
widened� rather than narrowed� In particular� we can always replace the
input intervals by wider ones� �See Section 
����
 for an example where
this action is necessary��

����� Handling over	ow

In some operations� we must also worry about the possibility of over�ow
when computing the extrema of f in the given interval� Fortunately� in
IEEE�compliant �oating�point arithmetic� over�ow generally produces a
special in	nity value with the appropriate sign� so that we do not need
to handle those cases explicitly� Thus� if over�ow occurs� the resulting
interval will automatically extend to in	nity� in either or both directions�
and the fundamental invariant will be preserved�

However� the IEEE standard also speci	es that certain operations�
such as ��� or � � �� and ���� " �"��� result in the special �not�a�
number� value NaN� Recall that we decided �in Section 
�
��� to forbid
intervals with NaN endpoints� because of its ambiguous meaning and
bizarre properties� Therefore� whenever an operation might return NaN�
we must test for that event� and return either R ! $�� "�% or $ %�
as appropriate� The reason why we outlawed the intervals $"� "�%
and $�� ��% is precisely to reduce the need for such tests�
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����� Handling domain violations

When implementing an elementary function� such as square root and
logarithm� which is de	ned only for a proper subset of the real line� one
should simply ignore any part of the argument interval that is outside
domain of de	nition�

Thus� for example� the square root routine� when given $�� "�%�
should simply return $� 
%� It would not be appropriate to signal an
error in this case� because the argument interval is merely a conservative
estimate of the true range of the corresponding quantity� The fact that
the interval extends into the negative values does not imply that the
quantity may be negative�

This �soft� policy towards unde	ned values may seem to violate the
fundamental invariant of range analysis� After all� $� 
% does not
contain all possible values of

p
x when x ranges over $�� "�%� some of

those �values� are unde	ned �or imaginary�� However� if an algorithm
says to compute

p
x at some point� and expects a real result� then the

square�root routine must assume that the true value of x would always
be positive in any exact evaluation of the algorithm� If the true value of x
could be negative at that point� then the algorithm would be logically
incorrect� Now� the IA model cannot guarantee that the 	nal intervals
are correct if the exact algorithm is not correct �otherwise� $�� "�%
would be the only valid output#��

On the other hand� if the argument interval to an IA operation is
entirely outside the domain of de	nition of the corresponding function�
then something is clearly wrong with the program� In that case� the IA
routine should probably signal an error�

Another alternative in such cases is to use a �super�soft� policy� and
return the empty interval $ %� It is then the programmer�s responsibility
to test whether the result is $ %� and take action if necessary� In that
case� for consistency� every IA operation should return $ % whenever one
or more operands are $ %�

Early detection vs� soft failure

The choice between signalling an error and returning $ % is a special case
of a classical dilemma of software engineering� the tension between early
detection versus soft failure�
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The early detection policy requires that �exceptional� conditions�
such as end�of�	le or division by zero� be treated as immediate breaks
in the control �ow� which require explicit handling� One advantage of
this policy is that programming errors that derive from or cause such
conditions tend to be detected sooner� and hence are easier to debug� It
also has the merit of forcing the programmer to be aware and handle all
exceptional cases�

The soft failure policy� in contrast� implies that �exceptional� condi�
tions should be handled as �ordinarily� as possible� namely by encoding
them as distinguished values that can be returned and assigned like any
other value� This approach usually simpli	es the code that follows pro�
cedure calls� since it is not necessary to handle the exceptional results
explicitly� On the other hand� under this policy one often needs extra
tests at procedure entry to recognize and handle the exceptional values�

Software engineering experts seem still divided on this issue� The de�
signers of the IEEE standard avoided taking a stand on this matter� they
provided in	nities and NaNs� in accordance to the soft�failure approach�
but also allowed the programmer to specify whether the creation of such
values should cause an error trap� as required for early detection�

��� Speci�c operations

We now describe in detail how to compute interval extensions for the
elementary operations and functions�

We shall use a Pascal�like syntax� Iteration and branching will be
speci	ed with for� while� and if commands� with obvious semantics�
However� command grouping will be indicated by indentation alone�
without the begin � � � end brackets of Pascal� Comments appear in
italics guarded by �� Assignment statements will be written variable �
value� Variables will be declared by var name� Type� as in Pascal� but
declarations may appear at the beginning of any compound statement�
as in C or Algol ��� The type Float stands for any IEEE �oating�point
value except NaN� and Finite is Float n f���"�g�
For actual implementations of interval operations� see the public do�

main libraries ���� ����
��
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����� Negation

We begin with negation� because of its simplicity�

IA�neg�&x� Interval�� Interval �
� Computes �&x�
return $�&x�hi �&x�lo%

Note the reversal of the upper and lower bounds� Note also that
negation of intervals� unlike almost any other operation� is not a�ected
by roundo� or over�ow� Note� 	nally� that the code above works even
for the special intervals R and $ %�

����� Addition

The code for addition is straightforward� except that we must explicitly
return $ % if either argument is $ %�

IA�add�&x	 &y� Interval�� Interval �
� Computes &x" &y�
if &x ! $ % or &y ! $ % then

return $ %
else

return $�&x�lo " &y�lo� �&x�hi " &y�hi�%

The reader may want to check that this algorithm works even for
intervals with one or two in	nite bounds� Note that a 
! "� and
b 
! "� imply �a" b� 
! "�� even when a " b over�ows the 	nite
�oating�point range� and similarly for �a" b� and ��� Therefore� the
algorithm above cannot return the �forbidden� intervals $"� "�%
and $�� ��%� as long as they are not given as arguments�
One might think that the initial tests for $ % could be avoided if $ %

were consistently represented by $"� ��%� since the general formula
would then give

$ % " &y ! $�"�� " &y�lo ���� " &y�hi % ! $"� ��% ! $ %�
as desired� Unfortunately� this simpli	cation would fail when adding $ %
to R ! $�� "�%� because ���� " �"�� is NaN� So the tests seem
unavoidable�
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����� Translation

A common special case of addition is translation of an interval by a 	nite
�oat c �which may be regarded as an interval of zero width�� There is no
reasonable way to extend this operation for in	nite values of c� because
$a"� b"�% is $"� "�%� which is not a valid interval�

IA�shift�&x� Interval
 c� Finite�� Interval �
� Computes &x" c�
if &x ! $ % then

return $ %
else

return $�&x�lo " c� �&x�hi " c�%

����� Subtraction

To subtract two intervals� we merely add the 	rst to the negation of the
second� Combining the two operations into a single procedure� we get

IA�sub�&x	 &y� Interval�� Interval �
� Computes &x� &y�
if &x ! $ % or &y ! $ % then

return $ %
else

return $�&x�lo � &y�hi� �&x�hi � &y�lo�%

����� Scaling

Scaling an interval by a positive factor is straightforward� scaling by a
negative factor requires swapping the bounds� Scaling by �� of course�
should result in the degenerate interval $� �%� We must handle this case
explicitly� in case the interval has in	nite bounds� because � � � ! NaN

in IEEE arithmetic� As in the case of translation� there is no reasonable
way to de	ne scaling when c is in	nite�
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IA�scale�&x� Interval
 c� Finite�� Interval �
� Computes c � &x�
if &x ! $ % then

return $ %
else if c � � then

return $�c � &x�lo� �c � &x�hi�%
else if c � � then

return $�c � &x�hi� �c � &x�lo�%
else

return $� �%

����� Multiplication

For the multiplication routine� we need formulas for the maximum and
minimum of xy when the pair �x� y� ranges over a rectangle $&x�lo
&x�hi %� $&y�lo &y�hi %� The key observation here is that� for a 	xed value
of x� the product xy is linear �hence monotonic� in y� and vice�versa� It
follows that the extrema must occur at corners of the rectangle�
The simplest implementation is thus�

IA�mul�&x	 &y� Interval�� Interval �
� Computes &x � &y 	 naive version�
if &x ! $ % or &y ! $ % then

return $ %
else if &x ! $� �% or &y ! $� �% then

return $� �%
else

a� minf�&x�lo � &y�lo� � �&x�lo � &y�hi� � �&x�hi � &y�lo� � �&x�hi � &y�hi�g
b� max f�&x�lo � &y�lo� � �&x�lo � &y�hi� � �&x�hi � &y�lo� � �&x�hi � &y�hi�g
return $a b%

Note that we must handle separately the cases where one of the
operands is $� �%� in case the other one has in	nite bounds �which
would lead to NaN bounds in the result��
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This routine requires eight multiplications in all non�trivial cases�
However� we can reduce this to only two multiplications in most cases�
and four in only one case� by testing the signs of the operands in order
to determine which corners yield the maximum and minimum product�
There are nine main cases to consider� depending on whether each

interval is entirely non�negative� entirely non�positive� or straddles zero
�see Figure 
���� If either x or y has consistent sign� then the two
extremal corners are determined by the sign combinations alone� If
both intervals straddle zero� then the signs alone do not su�ce� we
must evaluate the product at all four corners� and compare the results�

Figure ���� The nine cases for multiplication �� 	 possible maximum
 � 	
possible minimum��
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IA�mul�&x	 &y� Interval�� Interval �
� Computes &x � &y�
if &x ! $ % or &y ! $ % then

return $ %
else if &x ! $� �% or &y ! $� �% then

return $� �%
else if &x�lo � � then

if &y�lo � � then

return $�&x�lo � &y�lo� �&x�hi � &y�hi�%
else if &y�hi 	 � then

return $�&x�hi � &y�lo� �&x�lo � &y�hi�%
else

return $�&x�hi � &y�hi� �&x�hi � &y�lo�%
else if &x�hi 	 � then

if &y�lo � � then

return $�&x�lo � &y�hi� �&x�hi � &y�lo�%
else if &y�hi 	 � then

return $�&x�hi � &y�hi� �&x�lo � &y�lo�%
else

return $�&x�lo � &y�hi� �&x�lo � &y�lo�%
else

if &y�lo � � then

return $�&x�lo � &y�hi� �&x�hi � &y�hi�%
else if &y�hi 	 � then

return $�&x�hi � &y�lo� �&x�lo � &y�lo�%
else

a� minf�&x�lo � &y�hi� � �&x�hi � &y�lo�g
b� max f�&x�lo � &y�lo� � �&x�hi � &y�hi�g
return $a b%

����� Reciprocal

The reciprocal function ��x is not de	ned for x ! �� Hence �as discussed
in Section 
������ the IA implementation must implicitly exclude that
argument value from the input interval &x�
The algorithm has two main cases� depending on whether the input

interval &x straddles zero or not� In the 	rst case� the reciprocal may
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assume arbitrarily large and arbitrarily small real values� hence the cor�
rect interval result must be R ! $�� "�%� In the second case� the
reciprocal is monotonic� so we only need to evaluate it at the interval
endpoints�
However� input intervals with zero bounds must be handled sepa�

rately� The IEEE standard de	nes ��� as "�� and ������ ! ��� but
we cannot trust that zero bounds in the argument will have the �right�
sign� due to the existence of negative zero�

IA�inv�&x� Interval�� Interval �
� Computes ��&x�
if &x ! $ % then

return $ %
else if &x�lo � � and &x�hi � � then

return $�� "�%
else if &x ! $� �% then

return $ %
else

if &x�hi ! � then a� �� else a� �y��&x�hi�y
if &x�lo ! � then b� "� else b� x���&x�lox�
return $a b%

It should be noted that
�y��&x�hi�y may be �� and

x���&x�lox� may
be "�� even when the denominators are 	nite� Fortunately� these pos�
sible over�ows will not a�ect the correctness of the result�

����
 Division

The division of &x by &y could be implemented in IA as the product of &x
by ��&y� However� we may gain a couple of bits of accuracy by coding
a special routine for division� For example� the latter should be able to
evaluate $� �%�$� �% ! $� �% without any roundo� error� whereas
the reciprocal of $� �% would introduce some rounding error�
In fact� if the bounds of &y are too close to zero� then their reciprocals

may over�ow� leading to an in	nite range for &x���&y�� even when the
quotient may still be 	nite�
Like multiplication and reciprocal� the division algorithm must be

broken down into several distinct cases� depending on the signs of the



�
 Interval arithmetic

operands� The code structure is a bit simpler than multiplication� how�
ever� because in the three cases where &y straddles zero the result is
simply the entire real line�

IA�div�&x	 &y� Interval�� Interval �
� Computes &x�&y�
if &x ! $ % or &y ! $ % or &y ! $� �% then

return $ %
else if &x ! $� �% then
return $� �%

else if &y�lo � � then

if &x�lo � � then

return $
�y&x�lo�&y�hi�y x�&x�hi�&y�lox�%

else if &x�hi 	 � then

return $
�y&x�lo�&y�lo�y x�&x�hi�&y�hix�%

else

return $
�y&x�lo�&y�lo�y x�&x�hi�&y�lox�%

else if &y�hi 	 � then

if &x�lo � � then

return $
�y&x�hi�&y�hi�y x�&x�lo�&y�lox�%

else if &x�hi 	 � then

return $
�y&x�hi�&y�lo�y x�&x�lo�&y�hix�%

else

return $
�y&x�hi�&y�hi�y x�&x�lo�&y�hix�%

else

return $�� "�%

����� Square root

The IA version of square root is extremely simple� because the function
is monotonic and is not liable to over�ow or under�ow for any 	nite
arguments� The only special precaution we must take is to remove the
negative part of the input range� if any �using the �super�soft� policy
described in Section 
������
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IA�sqrt�&x� Interval�� Interval �
� Computes

p
&x�

if &x ! $ % or &x�hi � � then

return $ %
else if &x�lo 	 � then

return $�
x��p&x�hix��%

else

return $
��yp&x�lo��y x��p&x�hix��%

������ Logarithm

The code for logarithm is quite similar to that of square root� except
that log is not de	ned at zero� and tends to �� at its right�

IA�log�&x� Interval�� Interval �
� Computes log &x�
if &x ! $ % or &x�hi 	 � then

return $ %
else if &x�lo 	 � then

return $�� x�log�&x�hi�x�%
else

return $
�ylog�&x�lo��y x�log�&x�hi�x�%

This code can be used for computing logarithms in any base� Note
that we do not need to handle the case &x�lo ! � separately� because
�log �� is �� in IEEE�compliant platforms�

������ Exponential

The exponential function exp�x� ! ex is also monotonic� and de	ned
everywhere�
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IA�exp�&x� Interval�� Interval �
� Computes exp &x�
if &x ! $ % then

return $ %
else

return $
�yexp�&x�lo��y x�exp�&x�hi�x�%

The �oating�point evaluation of expx will over�ow for values of x
above a few hundred� Ideally� these over�ows should not require spe�
cial handling in the code�

x�exp�&x�hi�x� should be "�� and �yexp�&x�lo��y
should be the maximum 	nite value� in which case the interval result
would be correct�

������ Sine and co�sine

There are several features of the trigonometric functions sin and cos
that require special attention� For one thing� they are non�monotonic�
therefore� when computing their extremal values in some interval� we
must consider their local maxima and minima� as well as the interval
endpoints�

The local extrema of cos occur at integer multiples of �� Thus�
after disposing of the empty case� our 	rst step is to scale the input
interval &x by ���� If the resulting range straddles an even integer� then
the interval &x contains a maximum� and we can set the upper bound
of the result to �� Symmetrically� if the scaled range straddles an odd
integer� then the lower bound is ��� If only one of these conditions
holds� then we must compare the values of cos at the endpoints of &x
in order to determine the other bound for the result� Finally� if the
scaled interval straddles no integers� then cos is monotonic �increasing
or decreasing� in the original interval &x� and the extremal values occur
at &x�lo and &x�hi �

Here� as always� we must take into account all roundo� errors� In
particular� since � is not exactly representable as a �oat value� we must
treat it as an interval $&��lo &��hi % of non�zero width� where &��lo and
&��hi are consecutive �oats�
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IA�cos�&x� Interval�� Interval �
� Computes cos &x�
if &x ! $ % then

return $ %
else

� Scale &x by ���

if &x�lo � � then a� �y&x�lo�&��hi�y else a� �y&x�lo�&��lo�y
if &x�hi � � then b� x�&x�hi�&��lox� else b� x�&x�hi�&��hix�
� Check for odd and even integers in $a b%

m� bac
n� dbe
if �n�m� � 
 then

� There are no extremal values in �&x�lo &x�hi�

if even�m� then

u� �cos &x�lo�
 v � �cos &x�hi�
else

u� �cos &x�hi�
 v � �cos &x�lo�
else if �n�m� ! 
 then

� At most one extremal value in �&x�lo &x�hi�

if even�m� then

u� ��
 v � max f�cos &x�lo� � �cos &x�hi�g
else

u� min f�cos &x�lo� � �cos &x�hi�g
 v � "�
else

� There seem to be maxima and minima in �&x�lo &x�hi�

u� ��
 v � "�

return $u v%

The notation bac means� as usual� the greatest integer not greater
than a� In order to avoid integer over�ow �which� in most machines� is
either fatal or hard to detect�� this quantity must be computed entirely
in �oating�point� with the floor function from the standard C math

library� or equivalent� That way� the operation m� bac will return the
correct result� without rounding� even if jaj is very large� or the exponent
of bac is greater than that of a� Similar remarks apply to dbe�
The logic behind this algorithm is somewhat subtle� Note that a

and b may be a�ected by roundo� errors� and so �n�m� ! 
 does not
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imply that the original interval &x actually straddles any local maxima
or minima� Nevertheless� we can safely assume that it does� and use the
parity of m to decide whether this presumed extremum is "� or ��� A
similar observation applies to the case �n�m� � 
� Here we are relying
on an important principle of interval arithmetic� in a correctly imple�
mented IA operation� replacing any argument &x by another interval &x�

that contains &x will not a�ect the validity of the result�
The code works even when &x is in	nite in one or both directions�

The code for sin is entirely analogous� except that the local extrema are
shifted by ��
� Thus� we must subtract ��� from a �rounding down� and
from b �rounding up��

������ Other elementary functions

The preceding examples should o�er su�cient guidance for the reader to
implement any other elementary function f in IA� assuming the availabil�
ity of a routine that computes f in �oating�point with directed rounding�

When such a routine is not available� however� the task becomes
much harder� Implementing� say� arctan x with directed�rounding and
last�bit accuracy requires far more work than most numerical program�
mers can spare�
Still� if one has an algorithm F �x� that computes f�x� with known

error bound ��x�� then one can simulate �crudely� the desired directed�
rounding procedure by computing

�yF �x�� ��x�
�y or x�F �x� " ��x�

x�� as
appropriate�

��� Utility operations

We will now describe some useful IA operations that are speci	c to
intervals� rather than mere interval extensions of ordinary operations�

����� Midpoint

The midpoint of an interval is a 	nite �oat value contained in the inter�
val� and as close as possible to its center �&x�lo " &x�hi��
� By de	nition�
the midpoint of a semi�in	nite interval is either �M or "M � where
M ! MaxFloat is the maximum 	nite �oating�point number� and the
midpoint of R is � by convention�
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Because of possible over�ow� we must divide each endpoint by 

before adding them� Because of possible under�ow in the division� we
must round each term in a di�erent direction�

IA�mid�&x� Interval�� Float �
� Computes the approximate midpoint of &x� Assumes &x 
! R�
if &x ! $ % or &x ! R then

return �

else if &x�lo ! &x�hi then

return &x�lo
else if &x�lo ! �� then

return �MaxFloat
else if &x�hi ! "� then

return "MaxFloat
else

return hx�&x�lo�
x� " �yhix�
�yi
The divisions by 
 are exact� except for numbers of very small mag�

nitude� when the quotient may be rounded by half a unit in the last bit�
At worst� the sum

x�&x�lo�
x� " �y&x�hi�
�y will di�er from the exact mid�
point by half a unit in the last bit� and therefore will lie in the original
interval &x�

The 	nal rounding of the sum may increase the error to ��� of the
last bit� so the returned result may not be the most accurate answer
possible� In any case� since rounding cannot cross over a representable
�oat� the result will still be inside &x�

����� Radius

The half�width or radius of an interval is half of the di�erence between
the upper and lower endpoints� rounded upwards� As special cases� the
half�width of unbounded intervals is "�� and that of $ % is zero�
The half�width of every bounded interval is representable as a 	nite

�oat� This property makes the half�width more useful than the total
width �&x�hi � &x�lo�� which may over�ow for some bounded intervals�
Another useful property of the half�width is that it is zero if and only if
the interval is empty� or contains a single point�
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In order to maximize the usefulness of the half�width r� we must
round it in such a way that the given interval &x is contained in the
interval $m � r m " r%� where m is the midpoint of &x �as computed
by IA�mid�� The simplest way to achieve this goal is to derive the half�
width from the midpoint�

IA�rad�&x� Interval�� Float �
� Computes the half�width of &x�
if &x ! $ % or &x�lo ! &x�hi then

return �

else

m� IA�mid�&x�
return max f�m� &x�lo� �&x�hi �m�g

Thanks to the rules of IEEE arithmetic� this code will return "�
whenever &x�lo ! �� or &x�hi ! "�� �Recall that $"� "�% and
$�� ��% are not valid intervals��
In practice� since IA�rad and IA�mid are often used together� it may

be convenient to combine them into a single procedure that returns both
parameters�

����� Meet �intersection�

The set�theoretical intersection� or meet� of two intervals &x and &y is an�
other interval �possibly empty� denoted by &x�&y or &x�&y� The intersection
is trivial to compute�

IA�meet�&x	 &y� Interval�� Interval �
� Returns &x � &y� i�e� &x � &y�
if &x ! $ % or &y ! $ % or &x�lo � &y�hi or &x�hi � &y�lo then

return $ %
else

return $max f&x�lo� &y�log min f&x�hi � &y�hig%

If the internal representation of $ % is any pair $a b% with a � b� then
the if test can be eliminated�the max �min formula will automatically
return $ % when appropriate�
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This operation is typically used when we obtain� by di�erent lines of
reasoning or computation� two ranges &x� and &x�� that are both known to
contain some quantity x� The interval &x��&x�� condenses that information
into a single interval�

����� Join �convex hull�

The union of two intervals &x and &y may not be a single interval� However�
we can easily compute their join� or convex hull� which is the smallest
interval &x � &y that contains both�

IA�join�&x	 &y� Interval�� Interval �
� Returns &x � &y�
if &x ! $ % then

return &y
else if &y ! $ %
return &x

else

return $min f&x�lo� &y�log max f&x�hi � &y�hig%

The tests for $ % can be omitted only if the empty interval is consis�
tently represented as $"� ��%� If pairs like $� �% are also allowed
to represent $ %� then they must be handled as special cases� as shown
above�
The join operation is often used when coding the interval version of

a conditional algorithm� If x is variable� then a test like

if x � �
then y � f�x� � � ��
else y � g�x� � � ��

can often be translated into

&u� &f�&x � $� "�%� � � ��
&v � &g�&x � $�� �%� � � ��
&y � &u � &v

where &f and &g are the interval extensions of f and g�
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Note� in this example� that the case x ! � is incorrectly included in
both branches� The 	rst statement should have been

&u� &f�&x � �� "�%��
but standard IA only allows for closed intervals� However� as discussed in
Section 
��� the computation &f must tolerate the widening of �� "�%
to $� "�%� even if f is unde	ned for x ! ��

��� The error explosion problem

The main weakness of IA is that it tends to be too conservative� the
computed interval for a quantity may be much wider than the exact
range of that quantity� often to the point of uselessness� This problem
is particularly severe in long computation chains� where the intervals
computed at one stage are inputs for the next stage� Unfortunately�
such �deep� computations are not uncommon in practical applications�
This over�conservatism is mainly due to the assumption that the

�unknown� values of the arguments to primitive operations may vary
independently over the given interval� If this assumption is not valid �
that is� if there are any mathematical constraints between those quan�
tities � then not all combinations of values in the given intervals will
be valid� In that case� the result interval computed by IA may be much
wider than the exact range of the result quantity�
As an extreme example� when we evaluate the expression x�x with

IA� given the interval &x ! $
 �% for x� we get $
�� ��
% ! $�� "�%
� instead of $� �%� which is the true range of the expression� The
IA subtraction routine cannot tell that the two given intervals actually
denote the same quantity� since they could also denote two independent
quantities that just happen to have the same range�
For a less extreme �and more typical� example� consider evaluating

x���� x�� where x is known to lie in the interval &x ! $� �%� Applying
the formulas of Section 
�� blindly� we get

��� &x ! $�� ��%� $� �% ! $� �%

&x��� � &x� ! $� �% � $� �% ! $�� ��%�

On the other hand� a trivial analysis shows that the true range of
x��� � x� is $
� 
�%� The relative accuracy of the IA computation is
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thus �
� � 
������ � ��� ! ����� meaning the resulting interval was 
�
times wider than what it should be�

The large discrepancy between the two intervals is due to the inverse
relation between the quantities x and ��� x� which is not known to the
interval multiplication algorithm� This problem a�ects all operations
with two or more arguments� if the corresponding quantities are not
independent� and are correlated in the �wrong� way� then the result
interval may be much wider than necessary�

����� Error explosion

The over�conservatism of IA is particularly bad in a long computation
chain� because the overall relative accuracy of the chain tends to be the
product of the relative accuracies of the individual stages� In such cases�
one often observes an �error explosion�� as the evaluation advances down
the chain� the relative accuracy of the computed intervals decreases at
an exponential rate� Thus� after a few such stages the intervals may
easily be too wide to be useful� by many orders of magnitude�

For an example of this phenomenon� consider the function g�x� !p
x� � x" ��
�

p
x� " ��
� Figure 
�
a shows the graph of g�x� �black

curve� and the result of evaluating g�&x� with standard IA� for �� consec�
utive equal intervals &x in $�
 "
%� Figure 
�
b shows the same data
for the second iterate h�x� ! g�g�x�� of the same function� Although the
iterates gk converge to a constant function� the intervals &gk�&x� computed
by standard IA diverge�

Figure ���� Error explosion in IA estimates for iterated functions�
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����� Error explosion and subdivision depth

When the IA evaluation of &f�&x� &y� � � �� produces an interval that is too
wide for the purpose at hand� we can often improve matters by parti�
tioning the argument range &x � &y � � � � into two or more sub�ranges�
evaluating f on each of these� and combining the results into a single
interval� However� this technique is not very e�ective against error ex�
plosion� because the relative accuracy of an IA operation is generally
independent of the width of the input intervals� �That is� IA has basi�
cally 	rst�order approximation error�� So� if the relative accuracy of a
computation is too small to be useful by a factor of ����� then we will
probably have to split the domain into ���� sub�intervals to obtain a
useful result�

��	 Avoiding error explosion

In order to avoid this error explosion problem� we should try to arrange
the computation in such a way as to avoid unfavorable correlations be�
tween the arguments of the IA operations� In particular� minimizing
the number of occurrences of a variable in a formula usually results in
tighter range estimates� if each variable occurs only once� then the range
estimates produced by IA are exact�

Another general technique is to lump several arithmetic operations
into a single �macro operation�� and write a special�purpose IA routine
for it� Since the routine can take into account the correlation between
shared sub�expressions� it may be able to compute a tighter range for
the result than which could be given by using IA at each step�

However� these remedies can only be applied to relatively simple
computations over restricted domains� When the expression to be com�
puted is determined only at run�time� or involves dozens of variables
and operations� avoiding bad correlations is almost impossible� In such
cases� one should consider using more sophisticated SVC models� such
as those described in Chapter ��

����� Powers

A trivial but important example of avoidable error explosion is the eval�
uation of powers z � xn� The naive IA implementation� based on re�
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peated multiplication� will show poor accuracy for intervals that straddle
zero� In particular� for &x ! $�
 "
%� the evaluation of z � x� in IA
as x � x will give &z ! $�� "�%� even though x� cannot be negative�
For this reason� IA libraries should always include special routines

for squares and other integer powers� Here is a typical example�

IA�sqr�&x� Interval�� Interval �
� Computes &x��
if &x ! $ % then

return $ %
else if &x�lo � � then

return $
��y&x�lo���y x��&x�hi�x��%

else if &x�hi 	 � then

return $
��y&x�hi���y x��&x�lo�x��%

else if &x�hi � �&x�lo then

return $�
x��&x�hi�x��%

else

return $�
x��&x�lo�x��%

����� B�ezier bounding for polynomials

Another important example is the evaluation of a polynomial h�x� over
an interval &x� A naive IA evaluation� either as a sum of powers or
through Horner�s rule� is likely to be a�ected by negative correlation
among its terms� We can obtain a tighter range for h�x� by computing
the B�ezier�Bernstein coe�cients ��
� of h over &x� and returning the
smallest interval that contains them all�

����� Alternating series

As another example� consider the problem of evaluating a series f�x� !P
�

i�
 aix
i� If the argument x or some of the coe�cients ai are negative�

then there will often be adverse correlation between the various terms� In
that case� the series computed with IA will have poor relative accuracy�
even if the series itself is strongly convergent�
However� if we happen to know that the terms have alternating signs

and non�increasing magnitude� then we can usually improve the relative
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accuracy by evaluating two terms at a time� and estimating the maxi�
mum range of the pair analytically�

As a concrete example� suppose we want to evaluate sinx by the
Taylor series

z �
�X
k�


����k x�k��

�
k " ��#
�
���

for &x ! $���
�� ������%� �This is merely an example of series manip�
ulation� and not necessarily the best way to compute sinx�� Evaluating
each term separately� we get

$"���
�� "������% "

$������� �������% "
$"������ "������% "

$������� ������% "

� � �

The sum of the 	rst three intervals is $������ ������%� and the sum
of the 	rst four is $�����
 ������%� Since the terms have alternating
signs� we know that the in	nite series lies between these two partial
sums� thus we can safely set z � $�����
 ������%�

Now� the true range of sinx in that interval is $������ ������%�
The relative accuracy is thus only ����

� If we continued adding more
terms� the total interval would not shrink any further�in fact� it would
slowly grow wider� because of accumulated roundo� error�

On the other hand� we can rewrite the series as

z !
�X
k�


�
x�k��

��k " ��#
� x�k��

��k " ��#

�

!
�X
k�


x�k��

��k " ��#

�
�� x�

��k " ����k " 
�

�
� �
�
�

If x lies in $� �%� then each term of this series is non�negative and
monotonically increasing with x� So� for argument ranges &x contained
in that interval� a tight range for each term will be

rk ! $
�yfk�&x�lo��y x�fk�&x�hi�x�%�
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where

fk�x� !
x�k��

��k " ��#

�
�� x�

��k " ����k " 
�

�
�

In our case� the 	rst few terms are

$"������ "������% "

$"������ "�����
% "

$"������ "������% "

$"������ "������% "

� � �

Since the original series �
��� is alternating� and x lies in $� �%� the
sum of all the terms with k � 
 in the series �
�
� lies between � and
��
# � ������� Thus� we can safely replace those terms by the interval
$������� "������%� and return z � $"������ "������%� The relative
accuracy is now ��


��
Unfortunately� these remedies are hardly applicable when the expres�

sion to be computed is determined only at run�time� or involves more
than a few variables and operations�
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A�ne arithmetic

In this chapter� we describe another method for range analysis� which we
call a�ne arithmetic �AA�� This model is similar to standard interval
arithmetic� to the extent that it automatically keeps track of rounding
and truncation errors for each computed quantity� In addition� AA keeps
track of correlations between those quantities�
Thanks to this extra information� AA is able to provide much tighter

bounds for the computed quantities� with errors that are approximately
quadratic in the uncertainty of the input variables� This advantage of
AA is especially noticeable in computations of great arithmetic depth
or subject to cancellation errors�
As one may expect� the AA model is more complex and expensive

than ordinary interval arithmetic� However� we believe that its higher
accuracy will be worth the extra cost in many applications� as indicated
by the examples given in Chapter ��

��� A�ne forms

In a�ne arithmetic � a partially unknown quantity x is represented by
an a�ne form 'x� which is a 	rst�degree polynomial�

'x ! x
 " x�	� " x�	� " � � �" xn	n�

The coe�cients xi are 	nite �oating�point numbers� and the 	i are
symbolic real variables whose values are unknown but assumed to lie in
the interval U ! $�� "�%� We call x
 the central value of the a�ne

��
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form 'x� the coe�cients xi are the partial deviations� and the 	i are the
noise symbols�

Each noise symbol 	i stands for an independent component of the
total uncertainty of the quantity x� the corresponding coe�cient xi gives
the magnitude of that component� The source of the uncertainty may be
either �external� �due to original measurement error� indeterminacy� or
numerical approximation a�ecting some input quantity�� or �internal�
�due to arithmetic roundo�� series truncation� function approximation�
and other numerical errors committed in the computation of 'x��

In particular� the internal sources of error include the need to cast
the results of non�linear operations as a�ne forms� As we shall see in
Section ���� this casting requires approximating a non�linear function of
the noise symbols 	i by an a�ne function� The error of this approxima�
tion will be represented in the result by a new noise symbol 	k�

����� The fundamental invariant of a�ne arithmetic

The semantics of a�ne forms is formalized by the fundamental invariant
of a�ne arithmetic�

At any stable instant in an AA computation� there is a single
assignment of values from U to each of the noise variables
in use at the time that makes the value of every a�ne form
equal to the value of the corresponding quantity in the ideal
computation�

By stable instant we mean any time when the algorithm is not perform�
ing an AA operation�

��� Joint range of a�ne forms

The key feature of the AA model is that the same noise symbol may
contribute to the uncertainty of two or more quantities �inputs� outputs�
or intermediate results� arising in the evaluation of an expression�

The sharing of a noise symbol 	i by two a�ne forms 'x and 'y in�
dicates some partial dependency between the underlying quantities x
and y� The magnitude and sign of the dependency is determined by the
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corresponding coe�cients xi and yi� Note that the signs of the coe��
cients are not signi	cant in themselves� but the relative sign of xi and yi
de	nes the direction of the correlation�
For example� suppose that the quantities x and y are represented by

the a�ne forms

'x ! �� " 
	� " �	� � �	�
'y ! 
� � �	� " �	� " �	��

From this data� we can tell that x lies in the interval &x ! $� ��%
and y lies in &y ! $�
 
�%� However� since they both include the same
noise variables 	� and 	� with non�zero coe�cients� they are not entirely
independent of each other� In fact� the pair �x� y� is constrained to lie
in the dark grey region of R� depicted in Figure ����
Obviously� this dependency information would be lost if we were to

replace 'x and 'y by the intervals &x and &y� Taken individually� these
intervals encode precisely the same ranges of values as the a�ne forms�
Taken jointly� however� they only tell us that the pair �x� y� lies in the
rectangle &x� &y ! $� ��%� $�
 
�%� shown in light grey in Figure ����
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Figure ���� Joint range of two partially dependent quantities in AA�

����� The shape of joint ranges

In Figure ���� observe that the joint range of x and y is a convex poly�
gon� symmetric around the central point �x
� y
�� Each pair of parallel
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sides corresponds to a noise variable 	i appearing in 'x or 'y� The coef�
	cients of 	i determine the length and direction of those two sides� the
corresponding plane vectors are �
xi� 
yi� and ��
xi��
yi�� The value
pairs �x� y� lying on those sides are obtained from the a�ne forms by
varying 	i over U while all other noise variables 	j are 	xed at �� or "��
in some speci	c pattern�

In general� if we have m a�ne forms depending on n noise symbols�
then the set of possible joint values for the corresponding m quantities
will be a center�symmetric convex polytope in Rm� That polytope is
the parallel projection on Rm of the hypercube Un by the a�ne map
consisting of the m a�ne forms�

Each k�dimensional face of this polytope corresponds to a subset E
of k noise variables appearing in the a�ne forms� The points on that
face are obtained by ranging the variables in E over Uk� while 	xing the
remaining variables at some speci	c combination of �� and "��

��� Special a�ne forms

As in IA� it is convenient to have special a�ne forms $ %� meaning �no
value�� and R� meaning �any real value��

Note that the set of values described by an ordinary a�ne form is
necessarily bounded �because all coe�cients are 	nite �oats�� and non�
empty �because the set always contains the center value�� Therefore�
the precise computer representations of $ % and R must be established by
convention� For details over possible representations� see Section �����

Note also that the special form R does not record any dependency
information� That is� if 'x ! 'y ! R� then we cannot infer any constraint
or relationship between quantities x and y� The range of the point �x� y��
as implied by those a�ne forms� is the whole plane R��

Prospective AA implementors may be tempted to allow in	nite �oats
as coe�cients� as in 'x ! �"� 	k� in order to represent unbounded quan�
tities within the general AA model� Unfortunately� such in	nite forms
cannot convey the relationship between� say� x and 
x� when x has un�
bounded range� Moreover� in order to avoid NaNs� the a�ne arithmetic
routines would have to test for such forms� and handle them separately�
Therefore� such in	nite forms would be merely equivalent representa�
tions of the single special value R� as de	ned above�
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����� Computer representation

Computer representations of a�ne forms will be discussed in Section �����
Until then� we will describe AA algorithms in a representation�independent
manner� based on the following conventions�

� We assume an unlimited supply of noise variables 	i� each identi	ed
by its index i �a positive integer��

� We denote by E�'x� the set of indices of all noise variables that
appear in the a�ne form 'x�

� We denote by xi the coe�cient of the noise variable 	i in the a�ne
form 'x� In particular� xi ! � if i �� E�'x��

� The central value of 'x will be denoted by x
�

� The procedure newsym�� is assumed to return the index of a �new�
noise variable� not used in any a�ne form computed so far�

� For any 	nite �oat value c� we denote by 'c its AA representation�
namely the a�ne form 'x with center value x
 ! c and E�'x� ! fg�

��� Conversions between IA and AA

Conversion between a�ne forms and ordinary intervals is often required�
especially in the input and output of numerical programs� Although
simple in principle� the conversions requires some care in the handling
of roundo� errors� Also� special intervals such as $ % and unbounded
intervals must be handled separately�

Because of the unavoidable roundo� errors and over�ows that may
occur in the conversion between intervals and a�ne forms� the two mod�
els are not exactly equivalent�

In particular� some 	nite a�ne forms must be converted to in	nite or
semi�in	nite intervals� Conversely� all semi�in	nite intervals� and some
	nite ones� must be converted to R�
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����� Conversion from AA to IA

If a quantity x is described by the a�ne form 'x ! x
"x�	�" � � �"xn	n�
then its value is guaranteed to be in the interval

$'x% ! $x
 � rad�'x� x
 " rad�'x�%�

where

rad�'x� !
nX

i��

jxij� �����

Note that $'x% is the smallest interval that contains all possible values
of 'x� assuming that each 	i ranges independently over the interval U !
$�� "�%�
Obviously� this conversion discards all knowledge of constraints be�

tween the computed quantities that was preserved in their a�ne forms�
The quantity rad�'x� de	ned by ����� plays an important role in arith�

metic operations �see Section ����� We call it the total deviation of 'x�

AA�rad�x� AA�Form�� Float �
� Computes rad�'x��
if x ! $ % then

return �
else if x ! R then

return "�
else

return
x�P fjxij � i � E�'x�g

x�
IA�from�AA�x� AA�Form�� Interval �
� Converts x to interval�
if x ! $ % then

return $ %
if x ! R then

return R
else

r � AA�rad�x�
return $�x
 � r� �x
 " r�%
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����� Conversion from IA to AA

Given an interval &x ! $a b% representing some quantity x in IA� an
equivalent a�ne form for the same quantity is given by 'x ! x
 " xk	k�
where x
 is the midpoint of the interval� and xk is its half�width�

x
 !
b" a



� and xk !

b� a



�

The noise symbol 	k represents the uncertainty in the value of x that
is implicit in its interval representation &x� Since the interval tells us
nothing about possible constraints between the value of x and that of
other variables� 	k must be distinct from all other noise symbols used so
far in the same computation�

AA�from�IA�&x� Interval�� AA�Form �
� Converts &x to a�ne form�
if &x ! $ % then

return $ %
if &x�lo ! �� or &x�hi ! "� then

return R
else

r � IA�rad�&x�
if r ! "� then return R
m� IA�mid�&x�
k � newsym��
return m" r	k

Note that the correctness of this code depends on IA�rad�&x� being
large enough to compensate any rounding of IA�mid�&x�� as explained
in Section 
���

��� Computing with AA

In order to evaluate a formula with AA� we must replace each elementary
operation on real quantities by a corresponding operation on their a�ne
forms� returning an a�ne form�
Let�s consider speci	cally a binary operation z � f�x� y�� The cor�

responding AA operation 'z � 'f�'x� 'y� is a procedure that computes an
a�ne form for z ! f�x� y� that is consistent with a�ne forms 'x� 'y�
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By de	nition�

x ! x
 " x�	�"��xn	n ���
�

y ! y
 " y�	�"�� yn	n �����

for some �unknown� values of 	�� �� 	n � Un� Therefore� the quantity z
is a function of the 	i� namely

z ! f�x� y�

! f�x
 " x�	�"��xn	n� y
 " y�	�"�� yn	n�� �����

The challenge now is to replace f�x� y� by an a�ne form

'z ! z
 " z�	�"�� zn	n
that preserves as much information as possible about the constraints
between x� y� and z that are implied by ���
(����� but without implying
any other constraints that cannot be deduced from the given data�

��� A�ne operations

If the operation f itself is an a�ne function of its arguments x and y�
then formula ����� can be expanded and rearranged into an a�ne combi�
nation of the noise symbols 	i� Except for roundo� errors and over�ows�
this a�ne combination describes all the information about the quanti�
ties x� y� and z that can be deduced from the given a�ne forms 'x and 'y�
and the operation f � In particular� for any 
� � � R�

'x� 'y ! �x
 � y
� " �x� � y��	� " � � �" �xn � yn�	n


'x ! �
x
� " �
x��	� " � � � " �
xn�	n
'x� � ! �x
 � �� " x�	� " � � � " xn	n�

Note that� according to the formulas above� the di�erence 'x � 'x
between an a�ne form and itself is identically zero� The subtraction
formula �knows� that� in this case� the operands are actually the same
quantity� and not just two quantities that happen to have the same range
of possible values� from the fact that they share the same noise symbols
with the same coe�cients�
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By the same token� linear identities such as �'x " 'y� � 'x ! 'y or
��'x�� 'x ! 
'x� which do not hold in IA� do hold in AA �except for
�oating�point roundo� errors�� More generally� computations that con�
sist only of a�ne operations with numeric coe�cients will have relative
accuracy near unity�

����� Negation

Negation is one of the few exact AA operations�

AA�neg�'x� AA�Form�� AA�Form �
� Computes �x�
if 'x ! $ % or 'x ! R then

return 'x
else

var 'z� AA�Form� '�
z
 � �x

for each i in E�'x� do

zi � �xi
return 'z

����� Handling roundo
 errors

For operations other than negation� we must take into account the
�oating�point roundo� errors that may occur when computing the coef�
	cients of the result�

One might think that �as in IA� it su�ces to round each coe�cient zi
in the �safe� direction� namely away from zero� However� in AA there
is no �safe� direction for rounding a partial deviation zi� If the noise
variable 	i occurs in some other a�ne form 'w� then any change in zi
� in either direction � would imply a di�erent correlation between the
quantities z and w� and would falsify the fundamental invariant of a�ne
arithmetic�

In order to preserve the fundamental invariant� whenever a computed
coe�cient zi di�ers from its correct value by some amount d� we must
account for this error by adding an extra term d	r� where 	r is a noise
symbol that does not occur in any other a�ne form�
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����� General a�ne operations

An AA operation must also handle the special forms $ % andR� Moreover�
if any coe�cient of the result over�ows� then the operation must return
R as the result�
All these cases are taken into account by the following code� which

computes the general a�ne operation in two variables� 
x"�y"�� The
routine also accepts an extra uncertainly coe�cient �� to be added to
the result� This uncertainty is combined with the rounding error term�

AA�affine�'x� 'y� AA�Form
 
� �� �� Finite
 �� Float��

AA�Form �
� Computes 
'x" �'y " � � ��
� Assumes � � ��
if 'x ! $ % or 'y ! $ % then

return $ %
else if 'x ! R or 'y ! R or � ! "� then

return R
else

var 'z� AA�Form� '�
z
 � h
x
 " �y
 " �i
if jz
j ! "� then return R
a� �
x
 " �y
 " ��
b� �
x
 " �y
 " ��
� � x�max fb� z
� z
 � agx�
for each i in E�'x� 
 E�'y� do

zi � h
xi " �yii
a� �
xi " �yi�
b� �
xi " �yi�
� � x�� "max fb� zi� zi � agx�

if � ! "� then return R
k � newsym��
 zk � �
return 'z

Note that we are allowed to round � away from zero only because
the noise variable 	k is not yet shared by any other a�ne form�
In practical implementations� it is worth having several versions of

this code� specialized for addition� subtraction� scaling and translation�
The inner loop can be signi	cantly simpli	ed in these cases�

Sergey P. Shary
В правой части оператора присваивания должна быть сумма выписанного выражения и входно параметра \delta. 
 
Тем самым будет учтена погрешность, накопленая на предыдущих вычислениях, которая является входным параметром \delta у функции.  
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It is quite annoying that we have to evaluate the coe�cient 
xi"�yi
three times� with di�erent rounding modes� only to obtain an upper
bound on its error� We can save two multiplications� at the cost of
losing one bit of precision� by computing just a and b� and then setting
z � a� � � x�� " �b� a�

x��
Here is a place where a trivial redesign of the �oating�point pro�

cessor interface would make a signi	cant di�erence in computing time�
For example� suppose the processor returned in a special register fperr
some upper bound to the roundo� error of the most recent operation
performed� Then we could simplify the body of the for loop above by

u� h
xii
 � � �� " fperr�
v � h�yii
 � � �� " fperr�
zi � hu" vi
 � � �� " fperr�

thus saving four multiplications and two additions per coe�cient�

��	 Non�a�ne operations

Let�s now consider the case of a non�a�ne operation z � f�x� y�� If x
and y are described by the a�ne forms 'x and 'y� then z is described by
the formula

z ! f�x
 " x�	�"�� xn	n� y
 " y�	�"�� yn	n�
! f��	�� �� 	n�� �����

where f� is a function from Un to R� If f� is not a�ne� then z cannot
be expressed exactly as an a�ne combination of the noise symbols 	i�
In that case� we must pick some a�ne function of the 	i�

fa�	�� �� 	n� ! z
 " z�	� " � � � " zn	n �����

that approximates f��	�� �� 	n� reasonably well over its domain U
n� and

then add to it an extra term zk	k to represent the error introduced by
this approximation� That is� we return

'z ! fa�	�� �� 	n� " zk	k

! z
 " z�	� " � � �" zn	n " zk	k�
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The term zk	k will represent the residual or approximation error �

e��	�� �� 	n� ! f��	�� �� 	n�� fa�	�� �� 	n��

The noise symbol 	k must be distinct from all other noise symbols that
already appeared in the same computation� and the coe�cient zk must
be an upper bound on the absolute magnitude of e�� that is�

jzkj � max f je��	�� �� 	n�j � 	�� �� 	n � U g �
Note that the substitution of zk	k for e

��	�� �� 	n� represents a loss of
information� from this point on� the noise symbol 	k will be implicitly
assumed to be independent from 	�� �� 	n� when in fact it is a function of
them� Any subsequent operation that takes 'z as input will not be aware
of this constraint between 	k and 	�� �� 	n� and therefore may return an
a�ne form that is less precise than necessary�
However� as we shall see� if the approximation fa is properly chosen�

then the error term zk will depend quadratically on the widths of the
ranges of the input variables 'x and 'y� so that its magnitude will decrease
�even in the relative sense� as those ranges become smaller�

����� Selecting the a�ne approximation

There are n"� degrees of freedom in the choice of the a�ne approxima�
tion fa� In order to keep the algorithms reasonably simple and e�cient�
we will consider only approximations fa that are themselves a�ne com�
binations of the input forms 'x and 'y� that is�

fa�	�� �� 	n� ! 
'x" �'y " �� �����

Thus� we have only three parameters to determine� instead of n" ��
For some operations f � the most accurate a�ne approximation to

f��	�� �� en� may not be of the form ������ However� the restriction
to ����� has relatively minor consequences� The reason is that� for
smooth functions f � the di�erence between the two optimal approxi�
mations� restricted and unrestricted� depends quadratically on the size
of the input ranges�
Moreover� for univariate functions f�x� the restriction is perfectly

harmless� because it can be shown that the best a�ne approximation
to f� is indeed of the form 
'x" ��
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����� The general algorithm

Once we have selected the approximation fa of the form ������ we can
use the general�purpose routine AA�affine of Section ����� to compute
the a�ne form fa�'x� 'y� ! 
'x " �'y " �� To this form� we then add the
extra term zk	k� which can be combined with the roundo� error incurred
by AA�affine�

In summary� the general binary operation z � f�x� y� can be imple�
mented as follows�

AA�Form AA�f�'x	 'y� AA�Form� �
� Computes f�'x� 'y��
h Choose 
� �� � i
h Find � � max f jf�'x� 'y�� �
'x" �'y " ��j � 	�� �� 	n � U g i
return AA�affine�'x	 'y	 
	 �	 �	 ��

Of course� this same approach can be used for operations with one ar�
gument� or more than two arguments�

��
 Optimal a�ne approximations

There are many goals we can aim for when choosing the a�ne approx�
imation ������ Accuracy is usually an important goal� but hardly the
only one� We will often have to settle for a less accurate solution in
exchange of e�ciency� code simplicity� or other practical criteria�

��
�� Accuracy measures

The accuracy of the result 'z can be quanti	ed in many ways� For in�
stance� we can measure its error by the magnitude of the extra coef�
	cient zk� This number measures the uncertainty in the true value of
quantity z that the a�ne form 'z allows but fails to relate to the argument
uncertainties 	�� �� 	n�

Alternatively� we can use the volume of the polytope Pxyz jointly

determined by the a�ne forms of 'x� 'y� and 'z ! 'f�'x� 'y�� This volume
measures the uncertainty in the location of the point �x� y� z��

Fortunately� it turns out that� for approximations of the form ������
the two error measures are equivalent� It is easy to see that� in this case�
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the polytope Pxyz is a prism with vertical axis and parallel oblique bases�
whose projection on the x(y plane is the joint polytope Pxy de	ned by 'x
and 'y� and whose height in the z direction is 
 jzkj� Therefore� the
volume of Pxyz is 
 jzkj times the volume of Pxy� Since the latter does
not depend on the approximation fa� minimizing the volume of Pxyz is
equivalent to minimizing jzkj�

��
�� Chebyshev �minimax� approximations

Approximations that minimize the maximum absolute error are the sub�
ject of Chebyshev approximation theory�

Speci	cally� let F be some space of functions� �polynomials� a�ne
forms� etc��� An element of F that minimizes the maximum absolute
di�erence from a given function f over some speci	ed domain ) is known
as a Chebyshev �or minimax � F�approximation to f over )��
Chebyshev approximation theory is a well�developed 	eld with many

non�trivial results and a vast literature� Fortunately for us� the sub�
theory of a�ne approximations is relatively simple and easy to under�
stand in geometric terms�

Univariate Chebyshev a�ne approximations

In particular� for univariate functions� the minimax a�ne approximation
is characterized by the following property �����

Theorem � Let f be a bounded and continuous function from some
closed and bounded interval I ! $a b% to R� Let h be the a�ne function
that best approximates f in I under the minimax error criterion� Then�
there exist three distinct points u�v�and w in I where the error f�x��h�x�
has maximum magnitude� and the sign of the error alternates when the
three points are considered in increasing order�

This theorem provides an algorithm for 	nding the optimum approx�
imation in many cases� via the following corollary�

�Minimum�error Chebyshev approximations are not to be confused with the trun�
cated expansions of f in the Chebyshev orthogonal polynomial basis ���� The latter
do not minimize the maximum error� although they usually come quite close to�
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Theorem � Let f be a bounded and twice di�erentiable function de�ned
on some interval I ! $a b%� whose second derivative f �� does not change
sign inside I� Let fa�x� ! 
x " � be its minimax a�ne approximation
in I� Then


� The coe�cient 
 is simply �f�b� � f�a����b � a�� the slope of the
line r�x� that interpolates the points �a� f�a�� and �b� f�b���

� The maximum absolute error will occur twice �with the same sign

at the endpoints a and b of the range� and once �with the opposite
sign
 at every interior point u of I where f ��u� ! 
�

� The independent term � is such that 
u"� ! �f�u�"r�u���
� and
the maximum absolute error is � ! jf�u�� r�u�j �
�

Note that this result gives us an algorithm for 	nding the optimum
coe�cients 
 and �� as long as we can solve the equation f ��u� ! 
�

Geometry of Chebyshev approximations

Recall that the goal of AA is to keep track of the relationships between
the quantities occurring in a computation� When we use a Chebyshev
minimum�error approximation in the computation of 'z � f�'x�� we are
in a sense trying to preserve as much information as we can about the
relationship of 'z and 'x� More precisely� consider the set P of all possible
pairs of values �x� z� that are consistent with the a�ne forms 'x and 'z�
that is�

P ! f �x� z� � x ! x
 " x�	�"��xn	n� z ! 
x" � " zk	k�

	�� �� 	n� 	k � U g�
The set P is a parallelogram with altitude &x�hi � &x�lo and base 
zk�

rotated 
�� �see Figure ��
�� Clearly� by minimizing the approximation
error �� we are minimizing the area of this parallelogram� which we
can view as a measure of how much information was lost about the
relationship between x and z�

��� Square root

To illustrate the use of Theorem 
� let�s examine in detail how the square
root operation z !

p
x is implemented in AA�
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a bu

Figure ���� Geometry of Chebyshev approximations�

����� The �exact� solution

As explained in Section ���� the 	rst step is to select a good a�ne
approximation for the non�a�ne function

p
'x !

p
x
 " x�	�"�� xn	n�

when the noise variables 	�� �� 	n range independently over U� Since
square root is an univariate function� it can be shown that the best
a�ne approximation �in the sense of minimizing the maximum absolute
error� has the form


'x" � ! 
�x
 " x�	�"��xn	n� " ��

In fact� the problem reduces to 	nding the best a�ne approximation

x " � to the univariate function

p
x� when x ranges over the interval

$'x% ! $a b%� See Figure ����
For the time being� let�s assume that a � �� Since px has negative

second derivative for all positive x� Theorem 
 applies� and tells us that

 is the slope of the line r�x� that goes through �a�

p
a� and �b�

p
b��

namely


 !

p
b�p

a

b� a
!

�p
b"

p
a
� �����

The point u where the graph of
p
x has slope 
 is the solution of

���

p
u� ! 
� namely

u !
�

�
�
!

a" b" 

p
a
p
b

�
� ���
�
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a bu

Figure ���� Chebyshev approximation for the square root function�

According to Theorem 
� the optimum independent term is

� !
f�u� " r�u�



� 
u !

p
a"

p
b

�
"
�




p
a
p
bp

a"
p
b

������

and the maximum error is

� !
f�u�� r�u�



!
�

�

�
p
b�p

a��p
a"

p
b

������

The maximum absolute error � occurs at the endpoints of the in�
terval� where the curve lies below the line 
x " �� and at the point
c ! �

p
a"

p
b����� where the curve lies above the line�

Therefore� the optimal a�ne form for z !
p
x is

z
 " z�	�"�� zn	n " zk	k�

where 	k is a new noise variable� and

z
 ! 
x
 " � ����
�

zi ! 
xi �i ! �� �� n� ������

zk ! � ������

����� Geometric interpretation

Geometrically� these computations determine the parallelogram P with
two vertical sides that encloses the graph of

p
x in the interval &x and has
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the smallest possible vertical extent �see Figure ����� Since the width
of &x is 	xed� that is also the enclosing parallelogram with minimum area�
The a�ne function 
x " � is the oblique axis of P � and the maximum
error � is half of P �s vertical extent�

The parallelogram P is merely the joint range of the pair �z� x�� as
implied by the a�ne forms 'x and 'z� Thus� by minimizing the maxi�
mum error� we are preserving as much information as we can about the
relationship of z !

p
x and x�

In contrast� consider evaluating &z !
p
&x with standard IA� assuming

that &x and 'x have the same range� The pairs of values �x� y� consistent
with these intervals cover the entire rectangle R ! &x� &z� whose area is
greater area than that of P �

����� Coping with roundo
 errors

Formulas ����(����� assume that we can compute 
� �� and � exactly�
In practice� the computation of 
 must be carried out in �oating point�
and so we will get only an approximation �
 to the optimum slope 
 �see
Figure �����

a bu

Figure ��
� Approximation to optimum slope�

Now� to compute �� we cannot simply substitute �
 for 
 in for�
mula ������� because the derivation of that formula used the fact that 

was the slope of the chord r�x�� Instead� we must compute conservative
estimates for the di�erence

p
x � �
x at the endpoints of I� and at the

point v of I where the slope of
p
x equals �
�
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da !
�ypa� �
a�y ������

dv !
x�pv � �
vx� ������

db !
��ypb� �
b��y � ������

Assuming �
 is close enough to 
 that v lies inside I� dv will be greater
than the other two values� and the di�erence

p
x � �
x� for any x � I�

will lie in the interval spanned by da� dv� and db� We may then take the
approximate midpoint of this range as the independent term ��� and its
approximate radius as the maximum error estimate �� �see Figure �����

The point v is �����
��� but we do not need to compute it explicitly�
Substituting symbolically �����
�� into equation ������� we get

dv !

r
�

��
�
� �
 �

��
�
!
�

��

�

Formulas ����
(����� must then be changed to use �
� ��� and �� in�
stead of 
� �� and �� Naturally� the computation of z
� z�� �� zn by these
formulas will be a�ected by roundo� errors� which must be estimated
and combined with ��� to obtain the error term zk�

Actually� the computations become a bit simpler if we work with
� ! ��
 instead of 
 itself� Here is the detailed code�

AA�sqrt�'x� AA�Form�� AA�Form �
� Computes

p
'x�

if 'x ! $ % or 'x ! R then

return 'x
&x� AA�to�IA�'x� � $� "�%
if &x ! $ % then return $ %
if &x�hi ! "� then return R
��� �� �� � Cheb�sqrt�&x�
return AA�invaffine�'x	 ��	 �	 ��

The routine AA�invaffine computes 'x�� " � � �� in a manner entirely
similar to AA�affine �Section �������

The code for Cheb�sqrt is



�� A�ne arithmetic

Cheb�sqrt�&x� Interval�� ��	 �	 �� Float� �
� Computes a Chebyshev approximation x�� " � � �
� to

p
x for x � &x�

� Assumes &x is non�empty and bounded� and &x�lo � ��
ra �

��yp&x�lo��y
rb �

x��p&x�hix��
� � �ra " rb�
da �

�yra��� ra���
�y

db �
�yrb��� rb���

�y
dmin � minfda� dbg
dmax �

x����x�
� � IA�mid�$dmin dmax%�
� � IA�rad�$dmin dmax%�
return ��� �� ��

There are several subtle points in this code� First� the interval
$a b%� over which the a�ne approximation is computed� is not the
range $&x�lo &x�hi % of 'x� but the slightly wider interval $r�a r�b %� That
is� a and b are de	ned retroactively as the �exact� squares of the �ap�
proximate� square roots ra and rb� This convention allows us to avoid

some square roots� For instance in the computation of db !
��ypb� b��

��y�
where we need

p
b rounded down� we can use rb in its place� because��ypb��y ! x��pbx�� ! rb� On the other hand� we must use �rb�� instead of

&x�hi for the second b in that formula�
The procedure also assumes that the value � lies between 
ra and 
rb�

which is true in the IEEE �oating�point standard� This condition en�
sures that the maximum of

p
x�x�� lies between ra and rb� and therefore

that the minimum is either at ra or rb� Actually� for maximum accuracy�
� should be rounded to the nearest Float� Rounding up �or down� is
more e�cient� however� and the precision loss is minimal�
Note that the implied range of 'x is clipped to the interval $� "�%�

As we observed in Section 
����� it is convenient to assume that any
intrusion of &x into the negative numbers may be due to sloppiness of
the range computation� and doesn�t imply that the real quantity x can
assume negative values�
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The handling of over�ows could be improved� As it is� the procedure
returns R if the computation of $'x% over�ows� which may happen if
some of the coe�cients xi are near the end of the 	nite Float range�
However� the square root of jx
j" jx�j"�� jxnj is always a 	nite value� so
the over�ow could be avoided with some care� Spurious over�ows may
also occur in the computation of

x�r � d�
x��

Note that the cost of this algorithm is essentially two square roots�
plus a few �oating�point operations for each xi�

����� Overshoot

The use of a Chebyshev approximation in the computation of
p
'x has

one signi	cant drawback� Note that the range of values for z that is
implied by the a�ne form 'z �that is� the vertical extent of the parallel�
ogram P in Figure ��
� is actually wider than the range that would be
computed using ordinary interval arithmetic# The explanation is that
the new noise variable 	k actually has a hidden �non�linear� dependency
on the other noise variables� such that the value of zk	k is negative when
the other terms approach the maximum value� If we were to take this
dependency into account� we would conclude that the maximum value
of 'z is indeed

p
b � but since we assume that the 	i are independent� we

must count zk	k as positive at the upper end of the interval�

This problem is particularly vexing when the range of x� as implied
by its a�ne form� is partially negative� If we compute 'z as described�
the implied range for z will contain some negative values�even though
the square root function is never negative�

So� the a�ne form based on Chebyshev approximation trades some
knowledge about the range of z for knowledge about the relationship
between z and x� If there is any merit to the AA approach� then in
complex computations the trade should generally be worthwhile� that
is� in subsequent operation we hope to gain enough by cancellation of
noise terms to compensate for the extra�wide interval�

In any case� recall that the coe�cient zk depends quadratically on
the width of the input interval� which is still a qualitative improvement
over the 	rst�order errors of ordinary interval arithmetic�
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���� The min�range approximation

As a matter of fact� we can produce a a�ne form 'z for
p
'x that implies

a tight range for z� if we settle for less than the optimal Chebyshev
approximation� We only need to choose the coe�cients 
 and � in such
a way that the joint range P of the forms 'x and 'z ! 
'x" � � � has the
same vertical extent as the piece of the graph of

p
x subtended by the

interval $a b% �see Figure �����

a b

Figure ���� Min�range approximation for the square root�

It is easy to see that the smallest such parallelogram has the top side
tangent to the graph� at the higher endpoint of the interval $a b%� The
parameters of this approximation are
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b



� � !

�
p
b�p

a��



p
b

�

We say that 
x " � � � is a min�range a�ne approximation to
p
x

in the interval $a b%�
Note that the set P is still a proper subset of the rectangle R ! $a

b%� $pa p
b%� so the resulting a�ne form 'z is strictly more informative

than the result of ordinary interval arithmetic� Moreover� the ratio of
the areas is

jP j
jRj !


�p
b�p

a
! ��

r
a

b
! ��

s
�� b� a

b
�

which goes to zero linearly as the relative width �b� a��b goes to zero�
In other words� the modi	ed AA approximation above still has higher
order of convergence than IA�
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Incidentally� the IA square root algorithm can be viewed as this
same idea taken to the extreme� where the parallelogram P is the whole
rectangle $a b% � $pa p

b% �see Figure ����� This corresponds to
approximating

p
x by a constant function in the interval $a b%� that

is� choosing


 ! �� � !

p
a"

p
b



� � !

p
b�p

a



�

With these choices� the returned a�ne form 'z ! 
'x"�"�	k contains
only the independent term � and the single noise term �	k� which is not
related to any other quantity� and this is essentially the a�ne form
interpretation of the ordinary interval $

p
a

p
b%�

a b

Figure ���� The IA approximation for square root�

There are other reasons that may justify the choice of a sub�optimal
a�ne approximation� such as avoiding over�ows� simplifying the algebra
or the handling of rounding errors� We will see some examples in the
following sections�

������ Handling roundo
 errors

The routine MinRange�sqrt below implements the min�range approxi�
mation formulas� with due care for roundo� errors� It is meant to be a
replacement for the routine Cheb�sqrt� called in AA�sqrt�
As in Cheb�sqrt� the approximation is actually computed for the

interval I ! $r�a r�b %� which contains &x� Since ��� 	 �
p
x�� for all

x � I� the di�erence
p
x� x�� is minimum at x ! r�a and maximum at

x ! r�b � The correctness of the result then follows�
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MinRange�sqrt�&x� Interval�� ��	 �	 �� Float� �
� Computes an a�ne approximation x�� " � � �
� to

p
x for x � &x� minimizing the output range�

� Assumes &x is non�empty and bounded� and &x�lo � ��
ra �

��yp&x�lo��y
rb �

x��p&x�hix��
�� � �
rb�
dmin �

�yra��� ra����
�y

dmax �
x�rb��� rb����

x�
�� � IA�mid�$dmin dmax%�
�� � IA�rad�$dmin dmax%�
return ��� �� ��

���� Exponential

The exponential function f�x� ! exp�x� ! ex in AA is quite similar
to square root� The key step is computing an a�ne approximation
fa�x� ! 
x" � � � to exp�x� in the interval &x ! $'x%�

������ The Chebyshev approximation

Since the second derivative of exp is everywhere positive� the Chebyshev
approximation is parallel to the chord� i�e��


 !
eb � ea

b� a
�

We cannot compute the exact value of 
� but only some approxima�
tion �
� In any case� as long as �
 lies between ea and eb� the di�erence
ex � �
x will be maximum at either x ! a or x ! b� and minimum at
x ! u ! log �
� the abscissa where ex has slope �
� If �
 � eb� then the
di�erence ex � �
x will be maximum at either x ! a and minimum at
x ! b� See Figure ���a� Either way� from these extremal di�erences we
can compute � and �� as in the square root formulas�

The complete procedure is�
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AA�exp�'x� AA�Form�� AA�Form �
� Computes exp�'x��
if 'x ! $ % or 'x ! R then

return 'x
&x� AA�to�IA�'x�
if &x ! $ % then return $ %
if &x�hi ! "� then return R
�
� �� �� � Cheb�exp�&x�
return AA�affine�'x	 
	 �	 ��

where Cheb�exp is

Cheb�exp�&x� Interval�� �
	 �	 �� Float� �
� Computes a Chebyshev approximation 
x" � � �
� to exp�x� for x � &x�
� Assumes &x is non�empty and bounded from above�
eb �

x�exp�&x�hi�x�
w � �&x�hi � &x�lo�
if w ! "� then

ea � �

� �

else

ea �
�yexp�&x�lo��y


� x��eb � ea��w
x�

if 
 ! � then

dmin � ea
dmax � eb

else if 
 � eb then

dmin �
�yexp�&x�hi�� 
&x�hi

�y
dmax �

x�exp�&x�lo�� 
&x�lo
x�

else

da �
x�exp�&x�lo�� 
&x�lo

x�
db � �eb � 
&x�hi�
dmin �

�y
��� log
��y
dmax � max fda� dbg

� � IA�mid�$dmin dmax%�
� � IA�rad�$dmin dmax%�
return �
� �� ��
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a bu a b

Figure ���� Chebyshev �left� and min�range �right� approximation for exp�

������ The min�range approximation

The Chebyshev approximation is somewhat tricky and expensive to
compute� and is plagued by large undershoots when the interval is
moderately wide� In particular� it extends into the negative range for
rad�'x� � �� The reason is obvious if one looks at a plot of y ! ex over
such a wide range�

In practice� therefore� one may prefer to use the min�range approxi�
mation �see Section ������ which is easier to compute and has no over�
or undershoot� This approximation preserves less information on the
dependency between x and ex� but this loss is signi	cant only for wide
intervals� where the dependency is mostly non�linear anyway� For small
intervals� the min�range approximation still has quadratic error�

In the min�range approximation� the slope 
 is chosen as the deriva�
tive of ex at the lowest end of the argument interval $a b%� that
is� ea� See Figure ���b� The coe�cients � and � are then computed
as in Cheb�exp�
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MinRange�exp�&x� Interval�� �
	 �	 �� Float� �
� Computes a min�range a�ne approximation 
x" � � �
� to exp�x� for x � &x� Assumes &x is non�empty and bounded�
ea �

�yexp�&x�lo��y
eb �

x�exp�&x�hi�x�

� ea
if 
 ! � then

dmax � eb
dmin � �

else

dmax � �eb � 
&x�hi�
dmin � �ea � 
&x�lo�

� � IA�mid�$dmin dmax%�
� � IA�rad�$dmin dmax%�
return �
� �� ��

���� Reciprocal

For the reciprocal f�x� ! ��x in AA� we proceed pretty much as for the
square root� except that over�ow and undershoot are a major concern�
For these reasons� and for the sake of code simplicity� it seems best to use
the min�range approximation� instead of the Chebyshev one �Figure �����

a b a bu

Figure ���� Min�range �left� and Chebyshev �right� approximation for ��x�

If the interval $'x% ! $a b% includes zero� then the reciprocal may
have arbitrarily large and�or arbitrarily small values� so the only valid
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result is R� If the interval is entirely positive �a � ��� then the slope of
the min�range approximation is the derivative of ��x at x ! b� namely

 ! ���b�� We must round ��b� downwards� in order to prevent over�
�ow� The case of negative argument range �b � �� is similar�

AA�inv�'x� AA�Form�� AA�Form �
� Computes ��'x�
if 'x ! $ % or 'x ! R then

return 'x
&x� AA�to�IA�'x�
if &x ! $ % then return $ %
if &x�lo 	 � and &x�hi � � then return R
�
� �� �� � MinRange�inv�&x�
return AA�affine�'x� 
� �� ��

where MinRange�inv is

MinRange�inv�&x� Interval�� �
� �� �� Float� �
� Computes a min�range approximation 
x" � � �
� to ��x for x � &x�
� Assumes &x is non�empty and zero�free�
a� minfj&x�loj � j&x�hi jg
b� maxfj&x�loj � j&x�hi jg

� ��y��b��y
dmax �

x���a� 
a
x�

dmin �
�y��b� 
b

�y
� � IA�mid�$dmin dmax%�
if &x�lo � � then � � ��
� � IA�rad�$dmin dmax%�
return �
� �� ��

���� Multiplication

Let�s now consider the multiplication of a�ne forms� that is� the evalua�
tion of z ! f�x� y� ! xy� given the a�ne forms 'x and 'y for the operands
x and y�
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The product of the a�ne forms is� of course� a quadratic polynomial
f��	�� �� 	n� on the noise symbols�

f��	�� �� 	n� ! 'x � 'y

! �x
 "
nX

i��

xi	i� � �y
 "
nX

i��

yi	i�

! x
y
 "
nX
i��

�x
yi " y
xi� 	i " �
nX

i��

xi	i� � �
nX

i��

yi	i��

It is not hard to see that the best a�ne approximation to f��	�� �� 	n�
consists of the a�ne terms from the expansion above

A�	�� �� 	n� ! x
y
 "
nX

i��

�x
yi " y
xi�	i�

plus the best a�ne approximation to the last term

Q�	�� �� 	n� ! �
nX

i��

xi	i� � �
nX

i��

yi	i� !
nX
i��

nX
j��

xiyj 	i	j �

Observe that Q is a center�symmetric function� in the sense that
Q��	�� ���	n� ! Q�	�� �� 	n�� Moreover� its domain U

n is also center�
symmetric� that is� �	�� �� 	n� � Un i� ��	�� ���	n� � Un� From these
properties� it follows easily that the best �Chebyshev� a�ne approxima�
tion to Q over Un is itself a center�symmetric a�ne function � that is
to say� a constant function�

More precisely� if a and b are the minimum and maximum values
of Q�	�� �� 	n� over U

n� then the best a�ne approximation to the latter
is the constant function �a " b��
� and its maximum error is �b � a��
�
Thus� we should return

'z ! A�	�� �� 	n� "
a" b



"
b� a



	k�

where 	k is a �new� noise symbol�

Computing the extremal values a and b of Q in U is not trivial� The
best algorithm known to the authors runs in O�m logm� time� where m
is the number of nonzero noise terms in 'x and 'y�
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Fortunately� the exact bounds are not necessary� We can use instead
the trivial range estimate &Q ! � rad�'x� rad�'y�� That is� we can return

'z ! x
y
 "
nX

i��

�x
yi " y
xi�	i " rad�'x� rad�'y�	k � ������

It can be shown that the error of this approximation is at most four times
the error of the best a�ne approximation� The worst case happens when
the joint range of 'x and 'y is a square rotated ��� with respect to the
axes� that is� when 'x ! x
" 'u"'v and 'y ! y
" 'u� 'v� where 'u and 'v are
a�ne forms with the same range $�r "r%� but disjoint noise symbols�
In that case� the residual Q is 'u�� 'v�� and its true range is $�r� "r�%�
On the other hand� since rad�'x� ! rad�'y� ! 
r� the trivial estimate will
be &Q ! $��r� "�r�%�

The reader may have noticed that the trivial estimate &Q is precisely
the range of Q as it would be computed by standard IA� without taking
into account any correlations between the two factors� But then� how
could the result of formula ������ be more accurate that the ordinary IA
product of $'x% and $'y% * The answer is that formula ������ uses standard
IA only to estimate the quadratic residual� The formula still allows
negatively correlated terms to cancel out in the linear part� whereas in
standard IA even the linear part may be overestimated�

Indeed� even though it may be four times wider than the optimum�
the trivial estimate &Q ! � rad�'x� rad�'y� is still quadratic in the total
width of the input intervals $'x% and $'y%� which is enough to make the AA
multiplication asymptotically more accurate than standard IA� as the
input ranges get smaller�

������ Multiplication example

To illustrate these formulas� let�s evaluate the expression

z ! ��� " x" r� � ���� x" s�

for x � $�
 "
%� r � $�� "�%� and s � $�� "�%� Converting the
ordinary intervals to a�ne forms� we get

x ! � " 
	�� r ! � " �	� s ! � " �	��
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Therefore

�� " x" r ! �� " 
	� " �	�

��� x" s ! ��� 
	� " �	�
z ! ��� " x" r� � ���� x" s�

! ��� " ��	� " ��	� " �
	� " �	����
	� " �	���

In the quadratic term� each factor �considered independently� has
the range $�� "�%� Therefore� a quick estimate for the range of that
term is

&Q ! $��� � �� "�� � ��% ! $�
 "
%�

Using this estimate� we obtain for z the a�ne form

'z ! ��� " ��	� " ��	� " 
	��

The range of z implied by this a�ne form above is

$��� � 

 ��� " 

% ! $�� �

%�

A more precise analysis reveals that the true range of the quadratic
term &Q above� assuming the input noise symbols 	�� �� e� are independent�
is actually $�
 �%� and that of the product z is $�� �
�%� The relative
accuracy of this AA computation is therefore ��
� � ������

 � ��� !
����� For comparison� standard IA would return

$� ��% � $� ��% ! $�
 ��
%�

whose relative accuracy is ���
 � �
����

 � ��� ! ���
� In words� the
IA interval is more than twice as wide as it should be� whereas the AA
result is only �� wider�

Observe that� in this example� the uncertainty associated to the noise
symbol 	�� which is shared by both operands� happened to cancel out
to 	rst order in the 	nal result� This cancellation does not occur in the
IA computation� which is the main reason for the larger uncertainty in
the IA result�
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������ The multiplication routine

As usual� the implementation must also estimate the roundo� errors and
add them to the term zk� Here is the complete code�

AA�mul�'x	 'y� AA�Form�� AA�Form �
� Computes 'x � 'y�
if 'x ! $ % or 'y ! $ % then

return $ %
else if 'x ! R or 'y ! R then

return R
else

var &p� Interval

rx � AA�rad�'x�
ry � AA�rad�'y�
� � x�rxryx�
&p� IA�mul�$x
 x
%	 $y
 y
%�

� y

� � x

� � �IA�mid�&p�
� � �� " IA�rad�&p��
return AA�affine�'x	 'y	 
	 �	 �	 ��

Note that the form 
'x"�'y includes two instances of the term x
y
�
one of which is canceled by the term �� Implementors should consider
expanding the call to AA�affine in�line and optimizing the computation
of z
 to be just ��

���� Division

Division of a�ne forms is harder than multiplication� To begin with�
division by quantities that may wander close to zero �that is� whose
uncertainty is comparable to their average magnitude� is inherently in�
accurate and unstable� a modest slop in the computation of the divisor
may cause its range to overlap zero� in which case the division cannot
be carried out�
That being said� there are many ways to compute an acceptable a�ne

form 'z for the quotient 'x�'y� The simplest is to rewrite 'x�'y as a product



���
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'x � ���'y�� This two�step approach does have quadratic convergence�
because any 	rst order correlations between 'x and 'y are preserved by
the AA reciprocal routine�

AA�div�'x	 'y� AA�Form�� AA�Form �
� Computes 'x�'y�
return AA�mul�'x	 AA�inv�'y��

���� The mixed AA�IA model

The overshoot �and undershoot� problem that we observed in the anal�
ysis of

p
x and exp�x� show that AA�s goal of recording the correlation

between quantities leads sometimes to range estimates for individual
variables that are worse than those produced by standard IA� This prob�
lem is more likely to happen in simple computations� where uncertainty
cancellation does not have a chance to occur�

We have already seen one way of coping with this problem� namely
using min�range approximations instead of Chebyshev ones� This solu�
tion does cure the overshoot problem� but loses some of the correlation
information� For example� the min�range approximation to sinx over
$���
 ��
% is � � �� which contains no hint of the fact that sinx is
monotonically increasing in that interval�

Another solution to the overshoot problem� which actually improves
the overall accuracy of computations� is to combine the AA and IA rep�
resentations in a single model� That is� the representation '&x of a quan�
tity x consists of both an ordinary interval &x and an a�ne form 'x� The
purpose of the former is to provide tight ranges for individual variables
in simple operations� while the latter is optimized to record correlations
between quantities� The joint range implied by representations '&x� '&y� � � �
is then the intersection of the joint range of 'x� 'y� � � � �a center�symmetric
convex polytope� and the box &x� &y � � � ��
There is more to thismixed AA�IA model �AAIA� than just perform�

ing the same computation in AA and IA and intersecting the resulting
ranges� The two models can and should interact synergistically at each
step� with each model using the other�s information to improve its own
accuracy�
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Speci	cally� the AAIA procedure that implements '&z � '&f�'&x� '&y� will
use the IA ranges of the arguments &x and &y when selecting the a�ne
approximation 
'x " �'y " � � � for f � and use it to compute the AA
component 'z � 'f�'x� 'y� of the result� The procedure will then compute
the IA component as &z � &f�&x� &y� � $'z%�
Since the IA ranges &x and &y generally tighter than the AA�implied

ranges $'x% and $'y%� the a�ne approximation chosen by the AAIA proce�
dure is likely to be tighter �in the sense of having a smaller error term ��
than its pure�AA counterpart� Conversely� whenever the correlation in�
formation results in an accurate AA form� the interval &z will be tighter
than its pure�IA counterpart�

Thus� the mixed AA�IA model can often produce better results than
running the IA and AA computations in parallel� and may produce
usable results even in cases where both pure models fail due to error
explosion�

���� Comparing AA and IA

Numerical experiments seems to con	rm our claim that AA is in general
substantially more precise than standard IA� and less prone to error
explosion�

Obviously� AA is more complex �and expensive� than IA� However�
we believe that its higher accuracy will be worth the extra cost in many
	elds where IA�s �error explosion� may be a problem� such as computer
graphics� We shall see some examples in Chapter ��

������ Example� iterated functions

For instance� consider the function

g�x� !
q
x� � x" ��
�

q
x� " ��
 �

which we used in Section 
���� to illustrate the error explosion problem�
Figure ��
 shows the result of evaluating g and its iterate h�x� ! g�g�x��
with AA� over �� equal intervals in $�
 "
%� This picture should be
compared to Figure 
�
� which shows the results of standard IA over the
same intervals�
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Figure ���� Avoiding error explosion in iterated functions with AA�

������ Cancellation of uncertainty

The main reason why AA is usually more accurate than IA is the can�
cellation phenomenon described in Section ����� which tends to make
the range of computed quantities smaller than the corresponding inter�
vals computed by standard IA� Indeed� except for roundo� errors� any
computation chain that involves only a�ne operations will be evaluated
by AA with relative accuracy � � that is� the range of the computed
a�ne form will be the true range of the corresponding quantity�

������ Cancellation of internal errors

Another feature of AA is that the a�ne form of each computed quan�
tity keeps track of how much of its uncertainty is attributable to the
linearization and roundo� errors committed at each previous step� sep�
arately� Thus� these linearization errors themselves may cancel out in
later operations� instead of always adding up �as they usually do in IA��
For example� let 'x ! x
 " x�	� and 'y ! y
 " y�	�� and consider the

following AA computation�

'u� 'x�'y� 'v �
p
'u� 'z � 'u� 'v�

The 	rst step will compute an a�ne form 'u ! u
 " u�	� " u�	� " u�	��
where the term u�	� represents the linearization and roundo� errors of
the division� Similarly� the second step will compute 'v ! v
 " v�	� "
v�	� " v�	� " v�	�� where v�	� represents the linearization and round�
o� errors of the square root� Note the term v�	�� which records the
uncertainty in v that was inherited from the previous division step� In
the last step� this term will be subtracted from u�	�� meaning that the
error committed in the division does not a�ect 'z as much as it a�ects 'u�
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Needless to say� in standard IA the errors corresponding to v� and u�
would be added� instead of subtracted�

������ Quadratic convergence

Since the AA model keeps track of the 	rst�order dependency between
variables� the loss of information in an AA computation�as measured by
the �new� error coe�cients zk�will in general depend quadratically on
the size of the input intervals� Therefore� as the ranges of the operands
get smaller� the error term zk	k will become less important�not only
in absolute terms� but also relative to the other terms�

That is� in AA the relative accuracy of each operation �Section ��
���
will be inversely proportional to the width of the input intervals� Thus�
in a long computation chain� halving the input intervals will not just
halve the output ones� but will also make all steps of the chain more
accurate� and therefore improve the accuracy of the result by a factor
that is roughly exponential in the length of the chain�

One should keep in mind� however� that quadratic convergence ap�
plies only to the a�ne approximation errors� and not to arithmetic
roundo� errors� which are proportional to the magnitude of the quanti�
ties� irrespective of their uncertainties� The relative roundo� errors are
small �about ����
 for double precision coe�cients�� but they do de	ne
a lower limit to the size of input intervals� Once roundo� errors begin to
dominate the uncertainty of the result� reducing the width of the inputs
�e�g�� by domain subdivision� will not be of much help�

������ When to use AA

Since AA errors are quadratic� whereas IA errors are linear� there is usu�
ally a critical width for the input intervals beyond which AA is not ac�
curate enough to be worth its added expense� Therefore� in applications
such as global optimization and zero 	nding� which depend on recursive
domain exploration� one should ideally use the faster IA model at 	rst�
and switch to AA once the subregions have become small enough�

The problem with this idea is that the critical width cannot be ef�
fectively determined beforehand� Therefore� in practice one will simply
try computing the range with IA� and redo the test with AA if IA was
inconclusive�
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���	 Implementation issues

To test the practicality and usefulness of AA� we have implemented the
basic operations �"� �� �� �� p � in C for the Sun SPARCstation� We
describe below some choices that we made in our prototype implemen�
tation �

�� but which are not part of the AA model proper�

������ Representation of a�ne forms

In our prototype implementation of AA� we represent an a�ne form 'x
depending on m noise symbols by an array of 
m"
 consecutive �
�bit
words� The 	rst two words contain the central value x
 and the num�
ber m� then come the m terms� each consisting of a partial deviation xi�
and the corresponding index i � an integer value that uniquely identi�
	es the noise symbol 	i� All real quantities are encoded as IEEE �
�bit
�oating�point numbers�

The noise symbol indices need to be stored because a�ne forms are
quite sparse� although a long�running program may create billions of
independent noise symbols� each a�ne form will typically depend only
on a small subset of them� Therefore� it is imperative that we store for
each a�ne form 'x only the terms xi	i that are not zero�

Thus� in general� each a�ne form that occurs in a computation will
have a di�erent number of terms� with a di�erent set of noise symbol
indices� Two a�ne forms are dependent only when they include terms
with the same index�

Algorithms that operate on two or more a�ne forms� such as the
addition and multiplication routines described above� typically need to
match corresponding terms from the given operands� while computing
the terms of the result� In order to speed up this matching� we make
sure that the terms of every a�ne form are always sorted in increasing
order of their noise symbol indices�

������ Memory and index management

A�ne forms are typically stored in a special storage pool SA� which is
managed like a stack� In general� a routine that performs AA compu�
tations should reset the SA top�of�stack pointer� right before exiting� to
the value it had on entry� This action implicitly discards all a�ne forms
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computed during the routine�s execution� and recycles their storage� Of
course� if the routine is supposed to return any of these a�ne forms�
then it must copy them to the new top�of�stack position� and adjust the
pointer accordingly�

As mentioned above� new noise symbols are constantly being created
while the program runs� Practically every time we compute a new a�ne
form� we need to introduce a brand new noise symbol� to represent the
linearization and roundo� errors committed in that operation� The noise
symbols do not consume any storage by themselves� but each requires
a distinct index� For this purpose� we use a global counter that keeps
track of the highest index in use at any moment�

To avoid running out of indices after 
�� AA operations� an �in�
dustrial strength� implementation of AA should to manage the noise
symbol namespace too as a stack� when exiting from a procedure� one
should reset the noise symbol counter to the value it had upon entry�
This action implicitly �discards� all the noise symbols created during
the procedure� and allows their indices to be �recycled�� If the proce�
dure returns an a�ne form as its result� then any new noise symbols
that occur in the latter must be renumbered while the result is copied
to its proper location�

������ Space and time cost

Consider the AA evaluation of an expression �or a sequence of chained
expressions� with m operations� where the input values are a�ne forms
that depend on a certain set of n noise symbols 	�� �� 	n� Each operation
will contribute one more noise symbol to this set� representing the lin�
earization and roundo� errors of that step� Therefore� each computed
value will depend at most on n " m noise symbols� Since the cost of
any basic AA operation is proportional to the size of the operands� the
whole expression can be evaluated in O�m�n"m�� time and space�

���
 Optimization techniques

High computational cost is the main obstacle to the use of AA in prac�
tical applications� especially those with modest precision requirements�
Implementors of AA libraries should therefore be sensitive to e�ciency
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issues� We will now describe some helpful optimization techniques for
AA programs�

���
�� Condensing noise variables

On long computations� with m� n� most terms in each a�ne form will
be recording errors due to previous operations� In general� it is not worth
keeping track of all those errors separately� For the sake of e�ciency�
it is desirable to insert at selected points extra code to �condense� the
a�ne forms�

The idea is to replace two or more terms zi	i� zj	j � � � � by a single
term zk	k� where zk ! jzij " jzj j " � � �� and 	k is a brand�new noise
symbol� This operation reduces the size of the a�ne form 'z� possibly at
the cost of losing correlation information�

No information will be lost if the noise variables 	i� 	j � � � � are
exclusive to 'z� that is� they do not appear in any other a�ne form
that is still alive� �A value is alive at some point if it may be used
further on�� Also� the loss of information is likely to be minimal if the
condensed coe�cients jzij� jzj j� � � � are small compared to the other
noise coe�cients of 'z� The condensation might make a di�erence only if
the larger coe�cients happened to cancel out later on� Hence� we may
condense all terms of 'z form which are smaller than some fraction of $'z%�

For example� suppose the computation is a loop where only two
variables 'x and 'y are carried from one iteration to the next� Suppose
'x and 'y begin as simple a�ne forms� each depending on a single noise
variable� At the end of the 	rst iteration� the joint range of those two
variables will be a center�symmetric polygon D whose complexity is at
worst 
�m" 
�� where m is the number of operations performed in the
body of the loop� If we just went on� each iteration would add another

m terms to those forms�

We can solve this problem by condensing all noise variables at the
end of each iteration� That is� we replace 'x and 'y by the new forms

'x ! x
 " xi	i " xj	j

'y ! y
 " yi	i " yj	j�

where 	i� 	j are two brand new noise symbols� The joint range of these
new forms is a parallelogram P with sides parallel to �xi� yi� and �xj � yj��
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The new coe�cients xi� xj� yi� yj should be chosen so that this parallel�
ogram contains the original domain D� preserving that AA invariant�

The parallelogram of minimum area enclosing the convex polygon D
can be computed in O�m logm� steps� and its area is at most ��� times
the area D� Thus� at a modest cost in time and accuracy� we can keep
the size of the a�ne forms bounded by O�m�� inde	nitely�

Depending on the context� it may be important to know how the
	nal result correlates with the input quantities� In that case� we should
condense only �internal� noise variables �i�e�� those that were created
during the computation itself�� but preserve the �external� ones �i�e��
those that were present in the input forms��

This technique begs the question� how many terms do we really need
to keep in the a�ne forms* Suppose that� at some point of the compu�
tation� there are k a�ne forms that are still �alive� �i�e�� that may be
used later�� In principle� at that point we could replace all those forms
by a new set of k a�ne forms� depending exclusively on k new noise
variables� in such a way that the volume of the joint range increases
only by a constant factor �that depends on k��

Unfortunately� this result is not very useful� since computing the
smallest k�dimensional paralelotope that contains the old joint range is
a di�cult problem when k � ��

���
�� Static storage allocation

Another promising optimization is the �compilation� of AA algorithms
into an ordinary programming language� like C�

Many applications of AA� such as those described in Chapter �� can
be coded as procedures that take ordinary intervals as parameters� con�
vert them to a�ne forms� and evaluate a linear �non�looping� chain of
expressions on those values� In such cases� the compiler could predict
statically the set of noise symbols a�ecting each computed a�ne form�
The compiler could then allocate the a�ne forms statically� on the or�
dinary procedure�call stack� using a separate simple variable for each
coe�cient� The noise symbol indices would then be super�uous� In this
context� the AA arithmetic operations that loop over the terms �such
as AA�affine and its variants� would be expanded in�line� avoiding the
overhead of merging the term lists�
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���
�� Shared sub�expressions

In actual programs� it is common for the same sub�formula to appear
as an operand of two or more operations� With ordinary �oating�point�
or with standard IA� evaluating such shared sub�expressions more than
once is merely a waste of time� With AA� however� multiple evalua�
tions may also make the results less accurate� The reason is that each
evaluation of a shared sub�formula represents the linearization errors of
the latter by a di�erent set of noise symbols� preventing those errors
from canceling out in later steps� Therefore� when coding expressions
like �x� � y����x� " y�� for AA evaluation� it is doubly important to
identify common sub�expressions like x� and y�� and compute each of
them only once� Symbolic manipulations programs can identify common
sub�expressions and make coding much easier� For example� in Maple
we have�

C��x���y�����x���y����optimized��

t� � x�x�

t� � y�y�

t� � t��y�

t� � �t��t����t��t���

���� Hansen�s Generalized Interval Arithmetic

A�ne arithmetic can be viewed as a simpli	cation of generalized in�
terval arithmetic �GIA�� a computation model proposed in �
�� by
E� R� Hansen ����� �For a fuller discussion about GIA� including ap�
plications� see �
����

In its original formulation� GIA addresses speci	cally the problem of
computing one or more functions from a 	xed set of n quantities x�� �� xn�
which are given as ordinary intervals &x�� �� &xn� Every quantity z that is
derived from these variables� including the function result� is represented
as a list �z of n" � intervals &�
� &��� �� &�n� with the understanding that

z � &�
 " &��x� " &��x� " � � � &�nxn�

Note that the xi in this formula are unknown quantities� so the formula
is kept unevaluated�just as a�ne forms of AA� From this representation
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we can obtain a range for z� namely

&z ! &�
 " &��&x� " &��&x� " � � � &�n&xn�

where the formula is evaluated as in standard IA�
This model is obviously similar to AA� not only in its representation�

but also on its main virtue�namely� that in principle it can model a�ne
dependencies between quantities� with error that shrinks quadratically
with the size of the input intervals�

������ Conceptual di
erences

However� GIA and AA are not mathematically equivalent� and neither
is a special case of the other� In general� conversion from one represen�
tation to the other entails loss of information� The di�erence is evident
when one considers the joint range of two quantities u and v when they
are described in either model�
As we have seen� in AA the joint range is always a center�symmetric

convex polygon in the u(v plane� In a computation with n input vari�
ables and m steps� the joint range may have up to 
�n "m� sides� In
GIA� the joint range may be a non�convex polygon� whose complexity
is proportional to n alone� Consider� for example� the GIA forms

�u ! $� �% " $� �%&x

�v ! $� �% " $� �%&x�

where x is the only input variable� If x ranges over $�� "�%� then the
value pairs �u� v� that are allowed by these forms is the bowtie�shaped
region shown in Figure �����

Moreover� the fact that the GIA coe�cients are intervals� rather than
numbers� implies that uncertainty cancellation will not be as complete
as it can be in the AA model� For example� if �u is the form given above�
then the GIA evaluation of �u� �u will produce

$� �% " $�
 "
%x" $� �%y�

whereas the analogous AA computation returns exactly zero� For the
same token� we can expect that error explosion will occur in GIA more
often than in AA�
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Figure ����� Joint range in GIA�

Finally� by lumping all internal errors into the independent interval &�

�or� in the coe�cients &��� �� &�n�� the GIA model prevents those errors from
canceling out�

������ Practical di
erences

GIA and AA di�er also in a number of practical details that a�ect
their e�ciency and �exibility� First� in the GIA representation� each
coe�cient takes twice as much space as in AA� and the extra space does
not seem to translate into increased accuracy�

Another di�erence is that the number of terms in a GIA form is
	xed� and their order is tied to the order of the function arguments�
This choice forces one to handle and operate on all n terms� even when
the quantity at hand depends on a small subset of the input variables�

Moreover� the GIA representation is implicitly tied to a speci	c set
of variables� which limits the scope of GIA forms to the body of a single
function �or to a set of functions with the same arguments�� a feature
that hinders the composition of complex functions from simpler ones�

For example� suppose that the function f�x� y� is de	ned in terms
of some previously de	ned function g�u� v� w�� The values of u� v� and
w computed by f with GIA will be expressed as GIA forms with three
coe�cients over the variables x and y� whereas the values handled in�
ternally by g are four�term GIA forms over u� v� and w� Therefore� the
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call to g from f will require some non�trivial conversion between the two
types of GIA forms� usually with loss of information�
A�ne arithmetic is more �exible in this regard� In the implementa�

tion originally proposed by Comba and Stol	 ����� and detailed in Sec�
tion ����� the �names� of the noise variables are recorded in the a�ne
form� and their scope is the entire program� As a consequence� a�ne
forms can be passed across function boundaries without conversion or
loss of information� An example of application where this issue is quite
relevant is the ray�tracing of implicit surfaces� described in Section ����



Chapter �

Some applications

In this chapter� we describe some applications of interval arithmetic to
problems in numerical analysis� computer graphics� geometric model�
ing� and global optimization� We also show that a�ne arithmetic can
produce better results than IA ��������

��� Zeros of functions

Solving equations is a fundamental problem in mathematics�� The sim�
plest kind of equation is f�x� ! �� de	ned by a real function f � )� R
of a single variable x� A solution �also called a root� is of course any
number �x � ) such that f��x� ! �� We also say that �x is a zero of f �
Sometimes� 	nding any one zero of f is su�cient� Sometimes� all zeros
are required�

There exist explicit formulas for computing all zeros of polynomial
functions of degree at most �� The formula for degree � is trivial� The
formula for degree 
 is the well known quadratic formula� The formulas
for degrees � and �� based on the famous Cardano solution of the cubic�
are less well known� and not frequently used� because they may require
complex arithmetic� even when all roots are real�

No formulas exist for solving polynomial equations of higher degree
or transcendental equations� Thus� in general� we must resort to numer�
ical approximation methods� Moreover� we should keep in mind that

�It can be argued that mathematics advances by continuously rede�ning what
�equation� and �solution� mean�

��
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it is very probable that the zeros of f will have no exact �oating�point
representation� even if we know in theory how to compute them exactly�
For example� the trivial equation �x� � ! � has no exact �oating�point
solution in base 
 �or ���� So� approximate solutions are all we can
obtain with a computer�

What does it mean to solve an equation f�x� ! � approximately*
Two natural interpretations are�

�� Find a number close to a root� More precisely� given � � �� 	nd
'x � ) such that j'x � �xj � �� for some exact root �x of f � Clearly�
the whole point is to 	nd such 'x without knowing �x�


� Find a root of an equation that is close to the original equation�
More precisely� given 
 � �� 	nd 'x � ) such that jf�'x�j � 
� In
this case� 'x is a solution of the equation f�x��f�'x� ! �� which may
be thought as a �perturbation� of the original equation� because
f�'x� is small�

Both de	nitions of approximate solution are useful� sometimes even
in combination� the adequate de	nition depends on the application� In
any case� both de	nitions make sense in the �oating�point world� pro�
vided that the tolerances � and 
 are not too small�

There are many classical numerical methods for 	nding zeros of func�
tions� However� to a certain extent� their success depends on having
previously isolated a root� Once a root has been isolated� these methods
usually converge quickly� Thus� the hard part in solving equations is
isolating the roots�
One way to isolate a root is to 	nd a small interval $a� b% � ) such

that f�a� and f�b� have di�erent signs� In this case� we say that $a� b% is
a bracketing interval for f � By the Intermediate Value Theorem� if f is
continuous in a bracketing interval $a� b%� then f must have at least one
zero in $a� b%�

����� Bisection

A simple algorithm that is guaranteed to 	nd a root of f in a bracketing
interval $a� b% is bisection� This algorithm successively divides a bracket�
ing interval at its midpoint into two parts� choosing the half that is still
a bracketing interval�
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bisect�a� b� fa� fb � R�� R �
� Finds a zero of f in a bracketing interval $a� b%�
c� �a" b��

if �b� a��
 	 � then return c
fc � f�c�
if fafc � � then

return bisect�a� c� fa� fc�
else

return bisect�c� b� fc� fb�

Starting with a call to bisect�a� b� f�a�� f�b��� this algorithm com�
putes a sequence of nested bracketing intervals� each interval half as
wide as its predecessor� Thus� bisection always converges to a root of f �
�This observation can be used as the basis of a constructive proof of the
Intermediate Value Theorem��

There are many things that may go wrong when we try to implement
the bisection algorithm in �oating point� For one thing� if a and b are
	nite but large� then the formula �a " b��
 may return "�� Also� if
�b � a��
 is not rounded properly �i�e�� upwards�� then the result may
not be within distance � of a root� We can avoid these problems by
using IA�mid and IA�rad to compute these quantities �see Section 
����

Another possible problem is that the product fafc may under�ow to
zero even when fa � � and fc � �� If this happens� then the procedure
will take the wrong branch� and the result may be arbitrarily far from
any root� Thus� instead of multiplying the values� we must work with
the signs only�

A subtler problem is that bisect may go into in	nite recursion if c
gets rounded to a or b while �b � a��
 is still greater than �� If IA�mid
has been properly coded� then this can happen only when a and b are
consecutive Float values� In that case� the user has chosen too small a
tolerance� and there is no way to get any closer to the bracketed root�
or to tell which of a and b is closer to it� We should then give up and
return either a or b�

Incorporating these changes into the basic algorithm� we get
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FP�bisect�a� b� Finite
 �� Finite�� Finite �
� Given a �nite non�empty interval $a b% and � � f���"�g�
� such that �f�a� 	 � and �f�b� � ��
� returns a value c that is either within distance � of a root of f �
� or is one of the two representable Floats closest to such root�
c� IA�mid�$a b%�
if c ! a or c ! b or IA�rad�$a b%� 	 � then return c
fc � �f�c�
if fc � � then

return FP�bisect�a� c� ��
else if fc � � then

return FP�bisect�c� b� ��
else

return c

The search begins with a call to FP�bisect�a� b� sign�f�b����

Bisection is slow� only one bit of precision is obtained at each itera�
tion� Thus� it needs dlog��ja� bj���e steps to reach tolerance ��
The well�known iterative method of Newton� if properly used� will

have faster convergence �doubling the number of bits at each step�� How�
ever� Newton�s method is not guaranteed to converge in all cases� Even
when the mathematical function f satis	es all the conditions for conver�
gence� the rounding errors in its �oating�point implementation �f may
cause Newton�s method to loop or diverge� In Section ������ we will see
how to achieve convergence rates similar to Newton�s while retaining the
robustness of bisection�

����� Interval bisection

Bisection is one example of a guaranteed method� not a common situa�
tion in numerical methods� However� bisection has limitations� it needs
to start with a bracketing interval� and it only 	nds one root in the
interval� even if there are many roots�

A more serious limitation is that bisect does not 	nd a root of the
intended function f � but rather a root of its �oating�point implementa�
tion �f � Even if the values of f and �f are very close� their roots may be
arbitrarily di�erent�
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As long as we are con	ned to the realm limited�precision arithmetic�
there is no satisfactory solution to this problem� The inevitable roundo�
errors can always turn a near�root into a true root� or vice�versa� How�
ever� if we have an interval implementation &f of f � then we can use it
to discard parts of the domain &x that are guaranteed not to contain any
roots of f �
The idea is to evaluate &z � &f�&x�� for various sub�intervals &x� of )�

starting with ) itself� If &z does not contain the value zero� then &x� cannot
contain a root of f � and can be discarded� Otherwise the sub�interval is
split into two halves� which are recursively tested� This process continues
until the intervals are smaller than a speci	ed tolerance �� or cannot be
subdivided any further�
In the end� we are left with a subset x� of )� consisting of zero or

more intervals� that is guaranteed to contain all the roots of f in )�
even if ) is not bracketing for f � Moreover� the intervals that make
up x� are small or indivisible� and� when tested with &f � their signs turn
out ambiguous� We will say that x� is an approximate root set of the
original function f �

IA�roots�&x� Interval�� stream of Interval �
� Given a �nite interval &x� outputs a sequence of sub�intervals
� that are either indivisible or have radius at most ��
� and constitute an approximate root set of f �
if � � &f�&x� then

c� IA�mid�&x�
if c ! &x�lo or c ! &x�hi or IA�rad�&x� 	 � then

output &x
else

output IA�roots�$&x�lo c%�
output IA�roots�$c &x�hi %�

For many applications� the approximate root set x� computed by IA�roots
is an acceptable surrogate for the true set of roots of f � In a sense� this
improved bisection algorithm is able to 	nd all roots of f inside any
given interval� Obviously� the accuracy �and usefulness� of x� is limited
by the accuracy of &f and by our computation budget�
Since IA�roots explores the left half before the right half� it 	nds all

roots in order� from left to right� as they occur in &x� If only the smallest
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root is required� then the method can be modi	ed to stop as soon as a
root is found� This variant is useful in applications such as ray tracing�
when one is interested in 	nding the 	rst intersection of a ray with a
surface �see Section ����� or spectral analysis of matrices� when one is
usually interested only in the 	rst few eigenvalues�
Note that IA�roots may report two or more intervals for each root

�or near�root� of f � The reason is that the range estimator &f is liable
to return an ambiguous sign for intervals that are close to a root but do
not straddle it� Therefore� we may want to pipe the output of IA�roots
through a 	lter that merges any consecutive abutting intervals� This step
does not guarantee that each root of f will be represented by exactly
one interval� but it may reduce the caller�s overhead�

����� Using a�ne arithmetic

If the ranges computed by &f are much wider than the true range of f
in &x� then IA�roots may become quite slow� since it will be forced to
split the intervals more 	nely in order to resolve sign ambiguities� It
may also output a large number of intervals for each root� and also
many intervals that contain no root�
As we observed in Section 
��� this problem is particularly likely

when f is a complicated function with correlated sub�expressions� When
this �interval explosion� may be a problem� we may consider adapting
IA�roots to use a�ne arithmetic instead of standard IA�
The trivial approach is to use AA only inside the range estimator &f �

that is� we compute &z � &f�&x� by converting &x to an a�ne form 'x� then
evaluating 'z � 'f�'x� in the AA model �or the mixed AA�IA model�� and
returning &z ! $'z%�
However� if we are going to use AA� then we might as well take

advantage of the extra information it provides� Speci	cally� we should
replace IA�roots by a similar routine AA�roots that evaluates 'z � 'f�'x�
itself� and then uses the information contained in the a�ne form 'z to
choose the split point c�
The routine AA�roots begins by converting the interval &x to the

a�ne form x
 " x�	�� The result of 'z � 'f�'x� will be

'z ! z
 " z�	� " z�	� " � � �" zn	n�

We may then conclude that the graph of f in &x is contained in the
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parallelogram P with center �x
� z
� and horizontal projection &x� whose
top and bottom sides have slope z��x�� and whose left and right sides are
vertical and have length 
�� where � ! jz�j" jz�j" � � �" jznj� It follows�
then� that any roots of f in &x must be con	ned to the sub�interval &x�

where the parallelogram P intersects the x�axis� Thus� we can replace &x
by &x� before splitting the interval in half� Here is the detailed code�

AA�roots�&x� Interval�� stream of Interval �
� Given a �nite interval &x� outputs a sequence of sub�intervals
� that are either indivisible or have radius at most ��
� and constitute an approximate root set of f �
var k � newsym��

var 'x� AA�Form� IA�mid�&x�" IA�rad�&x�	k
var 'z� AA�Form� 'f�'x�
&x� &x � AA�rootAux�'x� 'z� k�
if &x 
! $ % then
c� IA�mid�&x�
if c ! &x�lo or c ! &x�hi or IA�rad�&x� 	 � then

output &x
else

output AA�roots�$&x�lo c%�
output AA�roots�$c &x�hi %�

The routine AA�rootAux computes the intersection of P and the x�axis�

AA�rootAux�'x� 'z� AA�Form
 k� Index�� Interval �
� Given a�ne forms 'x ! x
 " xk	k and 'z�
� returns an interval &x� containing the intersection
� of the x�axis with the joint range of 'x and 'z�
var �� x�P fjzij � i � E�'z� n f k gg

x�
var &z � $�z
 � �� �z
 " ��%
var &u� IA�div�$�xk �xk%� $zk zk%�
return IA�shift�&u� x
�

For smooth functions� AA�roots will exhibit quadratic convergence
�doubling the number of bits at each step� until the interval &x becomes
so small that roundo� errors start to dominate� In any case� convergence
will be at least linear �one bit gained per iteration�� as in IA�roots�
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��� Level sets

Many applications deal with scalar 	elds h� )� R� where ) is a subset
of Rd� For example� h may be temperature� pressure or height� Of
special interest are the subsets of ) where h is constant� called the level
sets of h� i�e�� the sets h���c� ! fx � ) � h�x� ! cg� for c � R� A picture
showing how the level sets of h are distributed and how their geometry
changes as c varies contains a great deal of qualitative information about
the behavior of h �Figure ����� Such contour maps are widely used
in scienti	c applications� Familiar examples are temperature charts in
weather maps and level curves in altitude maps�
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Figure 
��� Contour map of a scalar �eld�

����� Enumeration

Consider the computation of an approximation of a single level set C�
Without loss of generality� we may take C ! h������ the level set at level
zero� because the level set at level c of h is the level set at level zero of
h�c� For concreteness� we shall consider only the two�dimensional case�
i�e�� d ! 
� However� the discussion below can be modi	ed for arbitrary
dimension�

The zero set C is the set of solutions of the equation h�x� ! �� Since
we are now dealing with an equation in several unknowns� the set C
does not need to be a single point� or even 	nite� In general� C is a
curve� but it can be almost anything�� We also say that C is an implicit

�Every closed set in Rd is the zero set of a C� function�
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curve� de	ned by the equation h�x� ! �� Implicit curves and surfaces
are important in geometric modeling�
A simple and general technique for computing an approximation of

a level curve C in ) is enumeration�

�� decompose ) into small cells�


� identify which cells intersect C�

�� approximate C within each intersecting cell�

The simplest cellular decompositions used in step � are regular grids
of squares or triangles �Figure ��
�� Such decompositions are often used
in practice because their topology and geometry are well understood� If
the cells are su�ciently small� then C can be approximated by linear
segments in step ��

Figure 
��� Simple cellular decompositions�

Step 
� the enumeration of the intersecting cells� is usually the most
expensive step in this method� In the simplest schema� the cells that
intersect C are identi	ed by sampling� The function h is evaluated at the
vertices of each cell� if the signs of those values are not identical� then the
cell necessarily intersects C �again� this follows from the Intermediate
Value Theorem� if h is continuous�� The points where C intersects the
boundary of the cell can be found by bisection� or by simple linear
interpolation� if the cell is small�
Obviously� the converse does not hold� when all the values of h at

the vertices have the same sign� we cannot conclude that the cell does
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not intersect C� This is a form of aliasing in the sampling related to
the size of the cell� Therefore� cell sizes must be carefully chosen to
avoid missing features due to undersampling �Figure ����� On the other
hand� choosing very small cells can be expensive� a uniform cellular
decomposition of ) having n cubes along each main direction has nd

cubes� but only O�nd��� cubes will intersect C� Thus� choosing a smaller
cell size to avoid aliasing in the sampling will greatly increase the number
of cells to be scanned� and also increase the fraction of �useless� tests�
Therefore� the approximation of level curves with uniform enumeration
is simple but not e�cient�

Figure 
��� Missing features due to undersampling�

����� Adaptive enumeration

To 	nd the cells intersecting a level curve C without visiting all cells
in a cellular decomposition of )� we need a way to discard� quickly
and reliably� large portions of ) that cannot contain pieces of C� Point
sampling can only prove the presence of C in some region of )� to reduce
the number of cells scanned� we need a test procedure that can also prove
the absence of C in a region�

Range analysis can provide such a test� If we have an interval version
&h of h� then we can enumerate the cells intersecting C by an adaptive
procedure� which is essentially a two�dimensional version of IA�roots
�see Section ����
�� We explore ) recursively� starting with ) itself as the
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initial cell� If a cell is proved to be empty� then it is ignored� otherwise�
it is subdivided into smaller cells� which are then explored recursively�
until the cells are small enough to approximate C ���� 
�� 
��
��

For rectangular decompositions� a simple way to divide a cell into
subcells is to bisect it orthogonally to its widest direction� or cyclically
bisect along one of the coordinate directions at each step� resulting in a

�d tree decomposition of )� Another popular variant divides the cells
into four equal parts� resulting in a quadtree decomposition of )�

The meaning of �small enough� depends on the application� For
rendering� it might mean �smaller than a pixel�� For other applications�
such as modeling� it may depend on some other numerical criterion� For
instance� testing how closely h can be approximated by a linear function
inside the cell allows polygonal approximations to adapt to the curvature
of C�

Note that the test procedure is not required to be complete� in the
sense that it may fail to prove either the presence or the absence of C
in a given cell� In particular� a cell that is declared �small enough� may
still have unknown status� Each application must decide what to do
with those �indeterminate� cells� discard them� treat them just like the
cells that do intersect C� or handle them in some special way� Point
sampling may be useful at this stage to help identify some intersecting
cells�

To test whether a cell K � ) intersects C� we evaluate &h�&x� &y��
where &x and &y are the projections of K onto the coordinate axes� The
interval thus computed is guaranteed to contain all values of h for points
inside K� If this interval does not contain zero� then K cannot contain
zeros of h� Of course� the converse does not hold�if the interval contains
zero� we cannot conclude that h vanishes somewhere in K�

An adaptive enumeration method based on IA is�
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IA�roots ��K� Cell�� stream of Cell �
� Enumerates a set of sub�cells of cell K
� that are either small or indivisible� and
� which constitute an approximate solution of h�x� y� ! � in K�
if � � &h�K� then

if is small�K� then

output K
else

�K�� �� Kn�� IA�divide ��K�
if n ! � then

output K
else

for i in f��� ng do

output IA�roots ��Ki�

����� Examples

Figure ���a shows a full enumeration of the cubic curve de	ned implicitly
by y��x�"x ! �� in the square ) ! $�
 
%� $�
 
%� using a �����
grid� Intersecting cells were identi	ed by sampling and appear in grey
�note how few they are� only �� out of 
���� The points where the curve
crosses cell edges �marked with white dots� were computed by simple
linear interpolation� and have been joined into a polygonal approxima�
tion for the curve� Note that a level curve can have several connected
components� Figure ���b shows an adaptive enumeration based on IA of
the same curve� but now using a �
� �
 grid� Note that large portions
of ) were discarded at early stages�
Figure ��� shows adaptive enumerations� using 
�d trees� of the quar�

tic curve de	ned by h�x� y� ! x�" y�"xy� �xy���
� ��� in the square
) ! $�
 
%� $�
 
%� Note how AA was able to be compute a much
better approximation than IA� because of the many correlations in h�

��� Ray tracing

Interval analysis has also been used for reliable ray�tracing of surfaces ���
���� speci	cally� to determine all intersections between an implicit sur�
face h�x� y� z� ! � and a line segment pq �the �ray���
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Figure 
�
� Full enumeration �left� and hierarchical enumeration using IA
�right��

Figure 
��� Adaptive enumeration of quartic with IA �left� and AA �right��
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This problem is equivalent to that of 	nding the roots of the univari�
ate function

f�t� ! h��� � t�xp " txq� ��� t�yp " tyq� ��� t�zp " tzq�

in the interval $� �%� A robust and reasonably e�cient algorithm for
the latter combines interval analysis with Newton�s root�	nding method�
We evaluate &u ! &f�&t� using IA� for the whole interval &t ! $� �%� If the
resulting interval &u is strictly positive or strictly negative� then we know
that the ray pq does not intersect the surface� Otherwise� we evaluate the
derivative &v ! f ��&t�� in that interval� also using IA� From the intervals
&u and &v� we can compute a sub�interval &t� of &t that must contain all the
roots of f in &t� If &t� is less than half as wide as &t� then we repeat the
search in &t�� recursively� Otherwise� we split &t� in two equal parts� and
repeat the search recursively in each half� The recursion stops when the
interval &t is small enough for the application�

The order of convergence of this algorithm is somewhere between
linear and quadratic� depending on the accuracy of the computed inter�
vals &u and &v� However� evaluating &f�&t� in the IA model is equivalent
to evaluating &h�&x� &y� &z� on the intervals &x ! $xp xq%� &y ! $yp yq%�
&z ! $zp zq% � that is� evaluating h on the axis�aligned bounding box
of the segment pq� instead of only along the segment itself� Once again�
the problem arises because the IA routines have no way of knowing that
the arguments x� y� and z of h�x� y� z� are highly correlated�

Obviously� the bounding box of the segment pq may intersect the
surface even when the segment itself does not� Even assuming that
&h�&x� &y� &z� will be computed accurately �which� as we saw� is unlikely to
happen with standard IA�� this fact alone will surely lead to slow con�
vergence� and to many evaluations of &f on ray segments that eventually
turn out not to contain any roots�

Replacing standard IA by AA will generally improve the performance
of this algorithm� Even without any algebraic manipulation� AA will
automatically notice that the a�ne forms 'x� 'y� and 'z are strongly cor�
related� and will use this fact to produce tighter bounds for f�t��

Moreover� as the interval $'t% decreases� the deviation of the computed
a�ne form 'u should be increasingly dominated by the single error term
uj	j whose noise symbol 	j is that of the input interval 't� �Recall that
if f is moderately well behaved� then the other partial deviations of 'u
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should decrease quadratically with the size of $'t%�� But in that case the
coe�cient uj is a good estimate of the derivative of f in the interval� and
we can use it to guess the position of the root for the next iteration� In
other words� AA allows us to carry out Newton�s root�	nding algorithm
without explicitly computing the derivative of f �

��� Global optimization

Another important and di�cult problem is global optimization� that is�
the computation of the global maximum or minimum of a function over
its domain� There are two main variants for this problem� unconstrained
optimization� which is over the entire domain� and constrained optimiza�
tion� which is only in a subregion of the domain� usually de	ned implic�
itly by non�linear equations and inequations�

We shall consider the box�constrained global minimization problem�
given a d�dimensional box ) � Rd �that is� the Cartesian product of d
real intervals�� and a continuous objective function f � ) � R� 	nd its
global minimum f� ! min f f�x� � x � ) g� and the set of all global min�
imizers )��f� ! f x� � ) � f�x�� ! f� g� Actually� we shall consider the
approximate numerical version of this problem� instead of 	nding all
minimizers )��f�� we seek only to identify some subset b) of ) that is
guaranteed to contain )�� The goal then becomes to make the measure
of b) as small as possible� for a given computation budget�
There are many methods for 	ndind local minima� but it would seem

that 	nding a global minimum with a computer is a hopeless task� In�
deed� this is probably correct� if we are restricted to computing the
values of f at a 	nite set of sample points in )� because f may oscil�
late arbitrarily between these sample points� Nevertheless� combining
general branch�and�bound techniques with range analysis can provide
robust algorithms for global optimization� because range estimates can
be used to discard large subregions of ) that cannot contain a global
minimum�

����� Branch�and�bound methods for global optimization

Branch�and�bound is a general numerical technique for solving global
minimization problems� A branch�and�bound algorithm generally alter�
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nates between two main steps� branching� which is a recursive subdivi�
sion of the domain )� and bounding� which is the computation of lower
and upper bounds for the global minimum of f in a subregion of )� By
keeping track of the current best upper bound for the global minimum
of f � one can discard subregions that cannot contain a global minimizer�
i�e�� subregions where the lower bound for f is greater than the current
upper bound for the global minimum f�� Subregions that cannot be dis�
carded in this way are kept in a list L to be further processed� Thus� at
any time� the set b) ! 
L is a valid solution to the global minimization
problem� such as de	ned above� The algorithm stops when the current
solution b) is adequate for the application �based on the sizes of the
boxes in L� on the estimated range for f�� or on some other criterion��
This algorithm converges provided that� the function f is continuous�

the branching step is such that the width of the widest box in L tends
to zero� and the range estimates for f�+� shrink to a single value as the
diameter of + goes to zero�

The basic branch�and�bound algorithm� outlined above� admits end�
less variations� depending on how the branching and bounding steps are
implemented ��
� ��� ��� 
�� 
��� The simplest branching method is to
bisect the current box orthogonally to its widest direction ����� Alterna�
tively� one can cyclically bisect along one of the coordinate directions at
each step ����� �This similar to enumeration techniques for level sets��

The correctness of general branch�and�bound methods requires range
estimates that are guaranteed to contain the values of f in a subregion +
of )� On the other hand� the e�ciency of such methods depends on the
quality of those estimates� One usually trades quality for speed when
computing estimates� however� tight estimates� even if more expensive
to compute� sometimes provide overall faster algorithms�

����� Example

Consider the Goldstein�Price function�

f�x� y� ! $� " �x" y " �����
� ��x" �x� � ��y � �xy " �y��% �
$�� " �
x� �y����� � �
x" �
x� " ��y � ��xy " 
�y��%�

The global minimum of f in the box ) ! $�
 "
% � $�
 "
% is
f� ! � ! f�������
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This is an easy function for local optimization� but which is very
di�cult for a branch�and�bound IA algorithm� The dependency problem
generates a large number of boxes and causes it to partition the region
much more 	nely than is required for AA� as shown in Figure ���� In this
	gure� boxes shown in white have been eliminated� and boxes shown in
grey remain at termination� and are thus guaranteed to contain all global
minimizer for f in )� Intuitively� a �good� algorithm should generate a
picture with few� large white boxes� and few� small grey boxes� This is
interpreted as its ability to both quickly discard large subregions of )
and locate all global minimizers very precisely�

Figure 
��� Domain decompositions for minimizing the Goldstein�Price func�
tion with IA �left� and AA �right��

��� Surface intersection

Parametric surfaces are the most popular primitives used in computer
aided geometric design �CAGD�� They are easy to approximate and ren�
der� and there is a huge literature on special classes of surfaces suitable
for shape design� such as B�ezier and splines surfaces� for which special
algorithms exist �
�� However� using parametric surfaces for modeling
solids in CSG systems requires e�cient and robust methods for comput�
ing surface intersection� mainly for trimming surfaces into patches that
can be sewn together to bound complex shapes�
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����� Methods for computing surface intersections

Several methods have been proposed for solving the important problem
of computing the intersection of two parametric surfaces� These meth�
ods can be classi	ed into two major classes� continuation methods and
decomposition methods�

Continuation methods� also called marching methods� use a local ap�
proach to the surface intersection problem� Starting from a point known
to be on both surfaces� these methods build an approximation for the
intersection curve by marching along the curve� successively computing
a new point based on the previous point �or points� �
�� Continua�
tion methods must use numerical approximations not only for marching
along the curve� but also for 	nding starting points� Since the intersec�
tion curve may have several connected components� a starting point is
needed on each component� Moreover� care must be taken for handling
closed components correctly� In some applications� such as trimming� in�
tersection curves computed with continuation methods must be mapped
back to the parameter domains to de	ne trimming curves� This may be
a di�cult inverse problem�

Decomposition methods� on the other hand� use a more global ap�
proach to the problem� A simple decomposition method is to build
polygonal approximations for both surfaces and then intersect the cor�
responding polyhedral surfaces� Although it is easy to build polygonal
approximations for parametric surfaces� such approximations need to be
very 	ne to provide a good approximation for the intersection� A naive
polygonal approximation is obtained by simply subdividing the parame�
ter domain uniformly into many small rectangles� However� intersecting
such 	ne polygonal approximation is itself a di�cult task� Even if we do
not care about geometric degeneracies ��
� 

�� this is a high complexity
task� If there are n rectangles along each main direction in parameter
space� then there are n� faces in each polyhedron� A naive algorithm
that computes the intersection of the two polyhedra by testing every
possible pair of faces has to consider n� cases� most of which do not
contribute to the intersection� This algorithm is not practical because
it is very expensive to re	ne an approximation�

Since decomposition methods work directly on parameter domains�
no inverse problem needs to be solved to 	nd trimming curves� On
the other hand� decomposition methods compute trimming curves in a
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piecewise� unstructured way� the pieces must be somehow glued together
into complete curves�

Adaptive decomposition methods avoid the cost of uniform decom�
positions by subdividing the domain until the surface is approximately
planar� In that way� the associated polygonal approximation is adapted
to the local curvature of the surface� being 	ner in regions of high cur�
vature and coarser in regions of low curvature� where the surface is
almost �at� Such methods are generally restricted to speci	c types of
surfaces� whose nature can be exploited to derive e�cient tests for local
�atness ��
��

����� A decomposition method based on interval analysis

The decomposition method proposed by Gleicher and Kass ��	� takes
a global approach for subdividing the domains� using range analysis�
Given a rectangle in each domain� use IA to compute an estimate for
the range of values taken by the corresponding parametric function on
each rectangle� This estimate is a bounding box for a surface patch�
i�e�� a rectangular box in �d space� aligned with the coordinate axes�
and guaranteed to contain the piece of the surface corresponding to the
given rectangle in parameter space� If two bounding boxes do not in�
tersect� then the corresponding surfaces patches cannot intersect� If the
bounding boxes do intersect� then the surfaces patches may intersect�
In this case� the corresponding rectangles in the domains are subdivided
into four equal pieces� and the process is repeated until either the sur�
faces patches are proved disjoint or a user de	ned tolerance is reached�
the patches are then assumed to intersect� In this way� a quadtree de�
composition is built for each domain�

For e�ciency� Gleicher and Kass keep track of all pairs of patches
that might intersect� each leaf node in one quadtree contains a list of
leaf nodes in the other quadtree that it overlaps� This list is re	ned and
distributed to its children when a node is subdivided�

����� Examples

We show two examples of how the Gleicher�Kass algorithm for surface
intersection can be improved by using AA instead of IA� specially for
surfaces that are common in CAGD�
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Lofted parabolas

Consider a cubic patch obtained by lofting a parabola to another parabola�
More precisely� take three points a
� a�� a� in R�� and consider the
quadratic B�ezier curve de	ned by these points�


�u� ! a
��� u�� " 
a�u��� u� " a�u
�� u � $�� �%�

Take three other points b
� b�� b� in R
�� and the B�ezier parabola de	ned

by them�

��u� ! b
��� u�� " 
b�u��� u� " b�u
�� u � $�� �%�

Now� sweep 
 to � linearly to obtain a surface�

f�u� v� ! ��� v�
�u� " v��u�� u� v � $�� �%�

Lofting is a common operation in CAGD�
Because the parametrization f contains several occurrences of u and

� � u� and of v and � � v� the terms are strongly correlated� and we
expect AA to provide tighter bounds for f than IA� This expectation is
met� Figure ��� shows the domain decompositions built with IA and AA
for computing the intersection of the two lofted parabolas shown in Fig�
ure ���� using six levels of recursive subdivision� Note how AA exploits
correlations to give much tighter approximations for the intersection�
quickly discarding large parts of both domains�

Figure 
��� Two intersecting lofted parabolas�
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Figure 
��� Domain decompositions computed with IA �top� and AA �bottom�
for intersecting the two skew parabolic cylinders shown in Figure 
���
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Bicubic patches

Consider now bicubic patches� the most common surface patches in
CAGD� A bicubic patch is a tensor product B�ezier surface� de	ned by a
mesh of sixteen control points aij � R� �i� j ! ������

f�u� v� !
�X

i�


�X
j�


aijB
�
i �u�B

�
j �v��

where u� v � $�� �% and Bn
i is the i�th Bernstein polynomial of degree n�

Bn
i �t� !

�
n

i

�
ti��� t�n�i�

�Lofted parabolas are also tensor product B�ezier surfaces��
Figure ���� shows the domain decompositions built with IA and AA

for computing the intersection of the two bicubic patches shown in Fig�
ure ��
� Because tensor product parametrizations contain many occur�
rences of strongly correlated terms� we expect AA to provide tighter
bounds than IA� Again� this expectation is met� An extra subdivision
step with AA is su�cient to show that the intersection curve is not a loop
�Figure ������ Figure ���
 shows the trimming curves corresponding to
the intersection curve�

Figure 
��� Two intersecting bicubic patches�



Figure 
���� Domain decompositions computed with IA �top� and AA �bottom�
for intersecting the two bicubic patches shown in Figure 
���



Figure 
���� Extra subdivision step with AA shows that intersection curve is
not a loop�

Figure 
���� Trimming curves for the intersecting bicubic patches�
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