
Computer Methods for Design Automation

by

Christian Bliek

Burgerlijk Elektro-Werktuigbouwkundig Ingenieur
Katholieke Universiteit Leuven

Belgium, June 1986

Submitted to the Department of Ocean Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 1992

0 Massachusetts Institute of Technology 1992. All rights reserved.

Author
Department'i'coan Engineering

Jul, 1992

Certified by
Professor C'ryssostomos Chryssostomidis

Thetis Supervisor

Accepted by .. -.....
:..g sarmichael

Chairman, Departmental Committee on Graduate Students
Department of Ocean Engineering

ARCHIVES
MASSACHUSETTS INSTITUTE

OF TECHNFnI nry

JUL 2 2 1992
LIBRARIES

Computer Methods for Design Automation
by

Christian Bliek

Submitted to the Department of Ocean Engineering
on July 6, 1992, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract
Design automation requires reliable methods for solving the equations describing the perfor-
mance of the engineering system. While progress has been made to provide good algorithms
for polynomial systems, we propose new techniques for the solution of general nonlinear al-
gebraic systems. Moreover, the interval arithmetic approach we have chosen also guarantees
numerical reliability.

In this thesis we present a number of new algorithms that improve both the quality and
the efficiency of existing interval arithmetic techniques for enclosing the solution of nonlin-
ear algebraic equations. More specifically, we propose an exact algorithm for the solution
of midpoint preconditioned linear interval equations. We extend existing techniques for au-
tomatic compilation of fast partial derivatives to include interval slopes and have conceived
a number of graph algorithms to improve their efficiency for general computational graphs.
Furthermore, we have devised variable precision techniques to automatically control the
required precision based on interval width. Finally, we have unified a number of enclosure
languages using denotational semantics.

Since design computations can be performed with conservatively bounded models in-
stead of point models, this approach also allows us to develop a framework in which the
hierarchical design process can take place and to address the consistency problem asso-
ciated with incremental refinements. In addition, conservative enclosures are particularly
useful when computations are made in a distributed fashion, at different speeds and when
communication delays are unpredictable.

We believe that since numerical set computations for engineering design fills a void be-
tween traditional numerical analysis and discrete mathematics, it promises to be'an exciting
new area of research.

Thesis Supervisor: Chryssostomos Chryssostomidis
Title: Professor of Ocean Engineering

2

ak Doudou

3

Acknowledgments

Many people contributed to the work presented in this thesis.
My advisor, Professor Chryssostomidis gave me the opportunity to come to MIT and

supported me throughout the years. He allowed me to explore new areas of research and
has helped to broaden my background considerably.

Members of thesis committee, Nicholas Patrikalakis and Warren Seering gave valuable
feedback and shared their enthusiasm.

Mike Drooker, my office mates and fellow students have provided for years of stimulating
discussions, encouragement and friendship.

I thank my parents, who provided me with a stimulating environment to grow and learn,
and my brother for showing me the way. Thanks to my friends, near and far, for standing
by me.

Most of all, I would like to thank my wife Frangoise for her patience and endurance, she
made it all worthwhile.

This work was supported, in part, by the Office of Naval Research under the contracts
N00014-87-K-0462, N00014-89-J-1187 and N00014-91-J-1014.

4

Contents

1 Introduction
1.1 Motivation

1.1.1 Design Automation
1.1.2 Shortcomings

1.2 Thesis
1.3 Overview

2 Design
2.1 Introduction
2.2 Towards a Theory of Design

2.2.1 Functional Requirements and Hierarchy
2.2.2 Design and Modeling
2.2.3 Design and Set Theory

2.3 A Framework for Design
2.3.1 Bounded Models
2.3.2 Design Graphs
2.3.3 Concurrency in Design
2.3.4 A Language for Design

2.4 Previous work on Design Automation
2.4.1 Design Theory
2.4.2 Modeling
2.4.3 Computation in Design

2.5 The Design Society

3 Interval Arithmetic
3.1 Motivation
3.2 Basics

3.2.1 Definitions
3.2.2 Operators
3.2.3 Properties

3.3 Enclosures for the Range of a Function .
3.3.1 Definitions
3.3.2 Interval Evaluation
3.3.3 Centered Forms
3.3.4 Interval Differentiation.

5

10
.... 10
. 10
. 10
. 11
. 11

12............ 12
.12
. 13
. 13

. 14
* 15
. 15
. 18
.20
.21

. 23
. 23
.25
.26
.29

31
...... .31
...... .31
...... .32
...... .33
...... .33
...... .34
...... .34
...... .35
..... ... 37
...... .39

I

O

...
.

. . . .

................ I. ma 41
3.3.6 Higher Order Taylor Forms
3.3.7 Interval Slopes

3.4 Interval Matrices
3.4.1 Definition
3.4.2 Operators
3.4.3 Properties.
3.4.4 Inverse.

3.5 Linear Interval Equations
3.5.1 Definition
3.5.2 Krawczyk's method
3.5.3 Gauss-Seidel Iteration
3.5.4 Gauss Elimination
3.5.5 Other Methods

3.6 Solution of Norlinear Equations
3.6.1 Newton Interval Method
3.6.2 Krawczyk's Operator
3.6.3 Hansen-Sengupta Operator
3.6.4 Gauss-Newton Operator
3.6.5 Other Newton Operators
3.6.6 Interval Slopes Operator

3.7 Existence and Uniqueness Tests
3.8 Initial Domains

4 On Solving Midpoint Preconditioned
4.1 Introduction

Linear Interval Equations

4.2 Geometric Interpretation of the Solution of Linear Interval Equations
4.2.1 Introduction
4.2.2 Gauss-Seidel Method
4.2.3 Gauss Elimination Method

4.3 Modified Gauss Elimination Solution
4.4 An O(N 3) Algorithm for the Exact Solution
4.5 General Solution of Midpoint Preconditioned Interval Equations . . .

5 Fast Evaluation of Partial Derivatives
5.1 Introduction
5.2 Backward Evaluation Algorithm

5.2.1 Evaluation of Interval Partial Derivatives
5.2.2 The Chain Rule for Interval Slopes
5.2.3 Evaluation of Interval Slopes

5.3 Partial Derivatives of Computational Graphs
5.3.1 Solution Methods for Sparse Matrices
5.3.2 Node Condensation on Directed Acyclic Graphs
5.3.3 Lower Bounds for Condensation
5.3.4 Exact Algorithms for Optimal Condensation . .

6

................. 42

.43

.45
................ 45

.46

.46............... . 46............... . 47

. 47

... 48

...50

. 51

.. 52...... 53

... 53

..56
.58

. 58
................ 59.........59
.60
.60

62
62
62
62
63
63
64
67
71

77
77
77
77
81

82
85
85
86
92
95

3.3.5 Imlmnai .

.

.

. . I

.

5.3.5 Heuristic Algorithms for Optimal Condensation. .

6 Variable Precision in Interval Compu
6.1 Introduction.
6.2 Multiple Precision
6.3 Variable Interval Precision
6.4 Controlled Precision.........

7 Design Computations
7.1 Introduction.
7.2 Bounded Models in Design
7.3 Hierarchical Computations
7.4 Concurrency in Design

7.4.1 Actor Model of Computation
7.4.2 Design Networks

7.5 The Design Society

tations 104
. 104
. 105
. 108
...................... 110

114
..................... 114
...................... 114
...................... 119
. 121
. 121
. 123
. 132

8 Conclusion
8.1 Summary
8.2 Contribution
8.3 Future Research

134
134
134
135

A Exact Solution of Midpoint Preconditioned Equations
A.1 Derivation of Exact Lower Bounds

137
. . . 137

B Variable Interval Precision
B.1 Constants for Variable Interval Precision

140
140

7

98

......................

List of Figures

2.1 Approximation by Conservative Bounded Model
2.2 Definition of Interior (I), Boundary (B) and Exterior (E) Sets
2.3 Semantic and Procedural Consistency
2.4 Precomputation of Interval Bounds
2.5 Partially Overlapping Decompositions

3.1 Range of 1 - 5x + x3/3 over X = [2,3]
3.2 Geometric interpretation of the centered forms for the

ple 3.1
3.3 Exact solution of interval equations (3.12)
3.4 Krawczyk's solution X, of equations (3.12)
3.5 Interval extension of Newton's method
3.6 Interval Newton approximation for example 3.19 . .
3.7 Geometric interpretation of the Krawczyk's operator
3.8 Krawczyk's approximation for example 3.19
3.9 Bisections for example 3.24

function fi of exam-

4.1 Midpoint Preconditioning of Linear Interval Equations .
4.2 Geometric Interpretation of Gauss Seidel Solution of equations
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

.(3.12) ..
Geometric Interpretation of Gauss Elimination Solution of equations (3.12)
Exact Solution Algorithm for Equations (4.1)
Exact Solution Algorithm for Equations (4.18)
Three dimensional solution of Midpoint Preconditioned System
General Solution of 3 Dimensional Interval Equations
Intersection of the Exact Solution with a Hyperplane

Evaluation of a Computational Graph
The Chain Rule for Partial Derivatives
The Backward Evaluation Algorithm
Execution of the backward evaluation algorithm on example 5.1
Interval and Center Evaluation
Backward Evaluation of Slopes
Execution of the backward slope evaluation algorithm on example 5.3 . .
Mapping from Computational to Derivative Graphs
Computational Graph of example 5.5
Derivative Graph of example 5.5

8

16
16
17
18
19

35

38
48
50
53
55
56
57
61

63
64

65
68
70
71

73
74

78
79
79
80
83
83
84
87
88
89

5.11 Node Condensation .. . 90
5.12 Layered Graph of example 5.7 . 91
5.13 Tree Graph of example 5.8 . 92
5.14 Minimum Degree and Maximum Flow 93
5.15 Flow Graph of example 5.9 94
5.16 Optimal Partial order of example 5.6 97
5.17 Optimal layered order of example 5.21 102

7.1 Symmetric tubular two bar truss . 115
7.2 Beam Selection by Enclosure 117
7.3 Graphic interpretation of Equations (7.8) 119
7,'.4 Hierarchical Definition of Functional Requirements based on Sensitivity . . 119
7.5 Hierarchical Modeling Relations 120
7.6 Procedural Consistency 121
7.7 Representation of Actors 122
7.8 Computational graph of Example 7.4 123
7.9 Parallelism Profile of Example 7.4 124
7.10 Topological Changes of the Computational Graph of of Example 7.5 . . . 125
7.11 Parallelism Profile of Example 7.5 . 125
7.12 Center Shifting for Concurrent Interval Computations 126
7.13 Computational Graph for Example 7.6 126
7.14 Parallelism Profile of Example 7.6 127
7.15 Parallelism Profile of Example 7.7 with Bounded Parallelism 127
7.16 Parallelism Profile of Example 7.7 with a Unit Delay and Unbounded Par-

allelism 128
7.17 Parallelism Profile of Example 7.7 with Unit Delays and Bounded Parallelism128
7.18 Parallelism Profile of Example 7.8 129
7.19 Parallelism Profile of Example 7.9 130
7.20 Parallelism Profile of Hierarchical Computations (Example 7.10) 131
7.21 Parallelism Profile of a Parametric Changes in Example 7.11 132
7.22 Modeling Agencies 133

9

Chapter 1

Introduction

1.1 Motivation

1.1.1 Design Automation

The design of large-scale complex systems usually requires the participation of a large
number of people. It typically proceeds as follows. A handful of people, e.g. the project
manager, chief engineer and a few experts lay down initial concepts and dimensions. They
tend to rely on back of the envelope type calculations or sometimes on personal computers
and spread sheets for working through this very first design stage. This initial design
solution is refined by the design engineers. Drafting people finally detail and enter the
entire model into the computer. Once the necessary detail is available, some preliminary
analysis is done. It is only very late in the design cycle that CAD software is used and
extensive analysis, such as finite element analysis, is used to check the performance of the
design.

1.1.2 Shortcomings

When designing complex systems, usually about 70% of the cost is committed during the
early design stages. This means that the most important decisions are made at the very
beginning of the d&sign cycle, when there is very little precise information concerning the
unfolding of the remaining part of the design process. The people which have to make these
decisions essentially rely on experience and intuition. Once these important decisions are
made, it becomes very costly to reevaluate them, since substantial changes in the overall
system would have to be made. To avoid major redesign efforts, corrections and fixes are
made all along the design process, resulting in workable but usually suboptimal solutions.
Ironically most of the computer resources are used during the later design stages. They are
essentially used to create CAD models of the designed structure and to perform complicated
numerical analysis.

10

1.2 Thesis

Although some aspects of the design process have been automated in an incremental fashion,
we believe that further progress in this area requires us to rethink some of the basic premises.

To take advantage of the flexibility and the speed of available computer power requires
integration of the entire design process in the machine. On the one hand, this can provide
more and better information to support decision making so that it can be more effective.
On the other hand when unanticipated problems or costs surface at a later design stage
substantial changes can be made without incurring the large extra costs.

We believe that the key issues in conceiving such a system are reliability and robustness.
Indeed, while designers often rely on numerical omputations, they will always check the
results to ensure their validity. Furthermore, current implementations do not allow for late
coming information and their performance degrades drastically in the face of inconsistencies.
In this thesis we therefore study fully reliable computational methods that allow for late
coming information and for the detection of inconsistencies. Finally, it should be noted
that while the current technology allows for very fast computations, the algorithmic time
complexity remains an important issue.

We are convinced that this type of system will not only reduce the number of people
involved in the design cycle, but that it will speed up the design process and improve the
overall quality of the designed product.

1.3 Overview

In chapter 2 we discuss the problem of design in more depth and propose a general frame-
work for design automation. Some basic aspects of interval arithmetic, which allows for
full reliability of numerical algorithms, are reviewed in chapter 3. In this chapter we also
describe a novel approach for specification of the denotational semantics of enclosure pro-
gramming languages. In chapter 4 we describe a new algorithm for the solution of linear
interval systems. This algorithm is a significant improvement of traditional linear interval
solvers. A number of new results relating to computational graphs are proposed in chap-
ter 5. In particular, we discuss the problem of optimal computation of partial derivatives
and interval slopes, and propose a method for computing upperbounds on the dimension-
ality of the solution of computational graphs. The following chapter, chapter 6, contains
a number of new methods that allow for automatic control of the required precision of
interval computations, including the use of variable precision. In chapter 7 we put these
techniques in perspective and discuss their importance to the design problem. This includes
the computation of solution sets, the hierarchical aspect of design and its relation to the
consistency problem. We conclude this chapter with the presentation of an approach for
reliable and robust concurrent computations. Finally, in chapter 8, we sum up and discuss
a number of further research topics in this new area of research.

For the reader interested only in the contributions in the field of interval arithmetic, we
recommend to quickly go over chapter 3 and read chapters 4, 5 and 6. If one wants to focus
only on the design aspects. we would suggest to read chapters 2 and 7.

11

Chapter 2

Design

2.1 Introduction
We believe that the general problem of design is of a combinatorial nature. As a result,
except for a few of special cases, one can only approach this problem in a heuristic fashion.
It is probably for this reason that design is often not considered an exact science.

Combinatorial explosion is typically avoided by incrementally adding problem specifica-
tions as the design process proceeds. It is therefore important to carefully distinguish the
givens from the unknowns. In our view, problem specification can only be done by the de-
signer. In addition, we will assume that models associated with the design space are given.
The task of capturing requirements and modeling information can however considerably be
facilitated by high level tools. Furthermore, we believe that the selection and solution of the
appropriate models can to a large extent be automated. Our ultimate goal can therefore
only be to devise tools that allow us to represent the available information effectively and
to automatically select the set of design models that satisfy the imposed requirements, not
to replace the designer.

We believe that further automation of the design process requires a careful study of the
interaction of the representation problem and the tractability of automatic model selection
methods. In this thesis we study a number of key issues related to automatic solution
techniques for design.

In section 2.2 we define our approach of the design problem more precisely. In section 2.3
we propose a framework for design and identify the issues that need to be addressed. We
then contrast our approach with existing ones and review some of the previous work in the
area of design automation in section 2.4. Finally, in section 2.5 we use the Design Society
metaphor to put this framework into perspective.

2.2 Towards a Theory of Design
In this section we present our interpretation of esign. It also provides an abstract setting
for the framework proposed in the next section.

12

2.2.1 Functional Requirements and Hierarchy

Design can be seen as the process of mapping functional requirements into a description
of a realization of those requirements. By definition, functional requirements are functions
or properties that the design needs to provide. This mapping process generally involves
search to find the particular realizations that provide the required functions. A realization
is unambiguously described by design variables.

The design process is hierarchical. First, a general solution is found by imposing the
most important functional requirements. Then, more refined solutions can be obtained
by imposing additional requirements. This mnapping process from functional requirements
to design variables continues level by level until sufficient detail is reached. The resulting
model relates the functional requirements to the realization of those requirements and is
called a design model. Although one ofter refers to this hierarchical approach as a design
principle, it really only is a heuristic to control the complexity of the search space. Indeed,
the designer attempts to focus the search of the solution space by identifying the dominant
characteristics of the design model first.

Both design variables and functional requirements contain information concerning the
design model. The fundamental difference between them is in the way they are used.
Functional requirements correspond to those pieces of information that describe the problem
specification, while the design variables are chosen in order to satisfy them. In a different
design situation some of the functional requirements can become design variables while some
design variables can be qualified as functional requirements. Note also that by definition the
designer cannot require that design variables behave in a certain way, otherwise he would
need to express this as additional functional requirements.

Our definition of design doesn't necessarily exclude manufacturing. Indeed, some of the
design variables could in fact be associated with manufacturing processes and the functional
requirements can in principle be mapped directly into process variables. This is however
not how it is done traditionally. Instead, the mapping between functional requirements and
design variables, i.e. the design process, is augmented with a second mapping from design
variables to process variables, i.e. the manufacturing process. Fortunately, this extension is
of the same nature as the design process itself, and can be supported by the same framework.

2.2.2 Design and Modeling

As described above, design is a requirement driven top-down selection process. However,
the incremental specification of the functional requirements can only be meaningful in an
appropriate modeling context. The design process therefore requires access to modeling
information.

Models are valid representations of possible realizations and are described by model
variables. Typical engineering models are beams, engines, resistors, while height, width,
power, resistance are model variables. Models cannot only be created by definition of
variables, equations and computations, but also by composition or enumeration of more
specific ones. Furthermore they can inherit information of more general models. Design
is the selection of sets of realizations in the solution space and therefore requires model
selection operators. This includes the specification of parameters, objective functions, model
types or names of previous designs.

13

The representation of models and their organization should be conceived so as to fa-
cilitate the selection process. To this end models should contain as much information as
possible concerning the feasible realizations while avoiding combinatorial enumeration. Fur-
thermore, design models can be refined by incorporating new information about the design
solutions in an incremental fashion.

Establishing the relations between model variables, involves modeling knowledge, i.e.
understanding of how a realization provides certain functions. Models can be created by
modelers, can come in the form of predefined packages and even as manufacturers catalogs.
The formulation of new functional requirements, based on more general design models,
on the other hand, requires design knowledge, i.e. an insight as to what functions the
design needs to provide to serve its purpose. Both modeling and design, usually rely on
problem decomposition to break up bigger problems into smaller ones. Indeed, design
requires understanding of how important requirements can be decomposed, while modeling
is concerned with defining the right pieces of the model and putting them together.

The design process can also be viewed as model instantiation. In the case of paramet-
ric design, this process is straightforward as only parametric computations of prespecified
models are required. Furthermore, in this case design knowledge can often be encoded, so
that new functional requirements are automatically defined based on information provided
by the design model. This implies that for parametric design, the design process can almost
entirely be automated. In most cases however, the design process can be computationally
intensive, since due to combinatorial complexity it usually is not possible to precompute all
candidate solutions at modeling time.

As further scientific progress is made, one can improve existing models and incorporate
new models. The automatic generation of entirely new models from novel combinations of
functional requirements, which is at the heart of the engineering discipline, does however
remains an open challenge.

2.2.3 Design and Set Theory

In a set theoretical sense, all possible realizations represent a set. The size of this solution
set is incrementally reduced as the design process proceeds. Sets of solutions are represented
by models and functional requirements select desired models from the current solution set.

The set theoretical interpretation of design allows for a very simple definition of hierar-
chy. Indeed, a model is a refinement of another if it is a subset of that model. Note that
by this definition the introduction of additional modeling variables automatically consti-
tutes a refinement. It should be emphasised that, as dictated by the subset relation, model
hierarchies are only partially ordered. Finally, as with any hierarchy, one can implicitly
incorporate an inheritance mechanism and only represent additional information.

Any operator that cuts down the solution space can represent a functional requirement.
The boolean And operator for example, represents an intersection with another model that
has certain desired properties. Optimization can also be viewed as a selection process
retaining only the solutions from the current design model that are optimal w.r.t. a design
objective. Observe that an optimum solution can be a set, it does not necessarily have to be
a singleton. Note also that different optimization requirements can be compatible as long
as one optimum doesn't preclude the other. This trivially holds for uncoupled optimization

14

problems for example, with disjunct optimization domains.
Algebraic equations can also be considered as selection operators for they require a

certain relation to hold between different quantities. They can each be viewed as an inter-
section with all possible solutions satisfying the equation, i.e. the hyperspace defined by the
equation. The same consideration holds for equations defining solution strips. These equa-
tions, such as for example algebraic equations with interval coefficients, are called interval
equations.

When no solutions remain, one obtains the empty set. This means that the models
currently available do not contain a realization that can satisfy all functional requirements.
Either new models have to be created that provide the desired functionality or the require-
ments have to be relaxed.

Different methods can be used to represent solution sets. Non-manifold boundary mod-
eling techniques for example, can explicitly represent general point sets, whether continuous
or discrete. The complexity of the representation can however be reduced if one considers
special cases, such as manifold boundary models or convex point sets. In this thesis we will
focus on interval representations, which are in fact a special case of convex point sets and
represent the set of values a variable can take.

Discrete point sets can simply be represented by enumeration. This can include types,
corresponding to a classification of models based on specific attributes, as well as ordered
or unordered lists, corresponding to a set of models.

2.3 A Framework for Design

In the sections below, we describe the key elements that need to be integrated in a framework
for design and point to the issues that will be resolved in later chapters.

2.3.1 Bounded Models

As indicated in the previous section, we are concerned with sets of solutions. We there-
fore propose to develop appropriate representations and computational methods to work
with bounded models. In addition, to provide for fully reliable computations for design
automation, these techniques need to control both approximation errors, such as discretiza-
tion errors, and rounding errors. This approach should be contrasted with the traditional
estimation models, where computations are performed with a representative point solu-
tion. Not only do approximate estimation models provide no information concerning the
size of the solution sets, the accuracy of the corresponding design computations cannot be
automatically verified.

We will say that an approximate bounded model is conservative if it encloses the solution
set (see figure 2.1). As a consequence, we can no longer simply classify the elements of the
domain based on whether or not they are solutions. The overestimation introduced by the
conservative nature of the computations requires us to consider three types of sets. The
exterior set contains no solutions. whereas all elements of the interior set are solutions.
The boundary set contains elements with unknown classification. This is illustrated in
figure 2.2. In this work, we will focus on conservative models which approximate the solution
set by including both the interior and the boundary set. Note that while approximate

15

Figure 2.1: Approximation by Conservative Bounded Model

Figure 2.2: Definition of Interior (I), Boundary (B) and Exterior (E) Sets

bounded models enclose all possible realizations that satisfy the functional requirements,
not all elements will be solutions. To efficiently prune the search space however, whether
with numerical solution algorithms or branch and bound type techniques, it is desired
that the overestimation remain small. Indeed, tighter bounds lead to faster elimination of
unsatisfactory or suboptimal solutions. On the other hand, sometimes overestimation is
introduced to reduce the complexity of the solution algorithms. Conservative enclosures of
discrete point sets are a case in point.

As the size of the solution set is reduced, more general models of the hierarchy can be
refined allowing for the computation of tighter bounds, so that more accurate models can be
used in the selection process. It is important that no additional solutions are introduced in
this process. Indeed, if the refined solution set is a subset of the original one, all statements
concerning the enclosing solution set hold for the refined set as well. In that case, we say
that a refinement is consistent. Since we are working with conservative models, we need
to distinguish between semantic and procedural consistency. Semantic consistency refers
to the consistency of the exact solution set, i.e. without overestimation. Consistency of
approximate models on the other hand is called procedural consistency. Both concepts are
illustrated in figure 2.3. Note that the latter definition can also be used for obtaining better
approximations when the exact solution remains unchanged.

While semantic consistency preserves the meaning of models, procedural consistency
ensures that the associated decision process remains valid. As illustrated in figure 2.3, the
two concepts are not identical and cannot freely be interchanged. In particular, if a solution
technique is conservative but not procedurally consistent, a refinement can be procedurally
consistent only if it is enclosed by all approximations used in the solution process.

As indicated earlier, optimization problems can be associated with functional require-
ments. Similar techniques can therefore be used to conservatively bound the corresponding
solution sets and the same definitions of consistency can be used. Observe that if the value

16

Figure 2.3: Semantic and Procedural Consistency

of the objective function is to be used in the computation, refined definitions should be en-
closed by the original one. One of the main advantages of the model refinement technique
is that the hierarchical aspects of the design process can be maintained. This is of crucial
importance for controlling the complexity of the solution process.

It should be noted that model improvement is fundamentally different from model refine-
ment. While the latter refers to incorporation of information during the design process, the
former relates to the definition of new models that supersede older ones. In fact, improved
models can be discovered and learned during the design process, so that future performance
will be increased.

While bounded models can be represented in different ways, we have chosen to use
interval arithmetic for a number of reasons. It provides a natural setting for computations
with bounded sets and allows for automatic control of rounding errors. In addition, a large
number of techniques have been developed for interval computations. The most important
reason however is that the complexity of the algorithms remains polynomial.

We have decided to focus on nonlinear algebraic problems in particular, as the cor-
responding techniques can be extended to cover a large number of design situations. A
brief review of interval arithmetic techniques related to the solution of nonlinear algebraic
equations is presented in chapter 3. General nonlinear interval arithmetic solvers conserva-
tively approximate nonlinear systems by linear ones and use linear interval solvers on the
resulting system of equations. We have made contributions in both areas. In chapter 5
new algorithms are presented for more efficient computation of nonlinear approximations,
while in chapter 4 we describe new linear interval solution algorithms that produce better
enclosures then the existing ones.

We would like to indicate that for frequently used models or functions tight bounds can
be precomputed. One can for example use techniques based on turning and border points
(see figure 2.4) similar to the ones proposed by [36, 138]. In addition, efficient computation
strategies can be precompiled. In our opinion this library-like approach, which explicitly
incorporates modeling knowledge, will prove very valuable in practice.

Computations with sets of models that include ranges of operations can also be per-
formed in the context of interval arithmetic. In this case, one imposes requirements on the
size of the interior set. This type of computation therefore necessitates the use of conserva-
tive interior bounds. While very little work has been done on this subject, we believe that
most interval techniques can simply extended to handle this case. A preliminary discussion
of the inner solution of linear interval equations can already be found in [46], while the
applicability of bounding interval endpoints is mentioned in [260].

17

Figure 2.4: Precomputation of Interval Bounds

Appropriate computational models can automatically be selected based on the size of
the solution set. Indeed, the width of an interval is usually a good indicator of the required
accuracy. In chapter 6 we present a number of novel techniques for variable accuracy
interval computations that are based on this idea. These techniques can also be extended
to include interval range computations. In this case, the required accuracy should however
be controlled by the size of the boundary set.

Finally, the reader is referred to chapter 7 for a discussion of consistency in interval
arithmetic computations and practical examples.

2.3.2 Design Graphs

Graphs are a powerful, flexible and efficient way of representing structured information
and are in our opinion particularly well suited for representing the dependencies prominent
in engineering models. The two most important types of modeling dependencies are the
relation between model variables and the hierarchical dependency of different design models.
Models are typically associated with nodes, arcs with dependencies. For simplicity the
models representing variables will be referred to as variable nodes.

The selection of modeling graphs based on the functional requirements can be done by
activation algorithms. For computational graphs associated with equations or functions for
example, these algorithms will automatically determine a partial order required for their
solution [218]. In this thesis, we focus on reliable solution techniques for strongly coupled
components of nonlinear computational graphs.

In general, design graphs can represent distributed computational systems. Moreover
nodes can be associated with a variety of different models, as long as they satisfy a number
of conditions associated with the nonlinear solution algorithms. For the basic nonlinear
interval solvers, described in chapter 3, it is typically required that models provide a con-
servative linear approximation. More sophisticated methods, such as the ones introduced in
chapter 6, can specify the required accuracy and request that the model provide nonlinear
solution bounds. It should be emphasised that except for the above interface conditions,
the actual computation of this information is internal to the model, in fact it can even be
performed by a dedicated processor. In addition, this approach allows for the use of model
libraries, which can include frequently used engineering models such as beams, resistors,
etc., and manufacturers catalogs, providing product specific information.

While some models are valid throughout the entire domain, others are valid only over
a limited domain. In our framework, this information can simply be represented by in-
heritance of the corresponding bounded model. Furthermore, activation algorithms can

18

automatically select valid models based on the current solution domain.
The hierarchical structure of the design process is solely determined by the functional

requirements. The corresponding partial order can therefore only be associated with design
models and is not predetermined. Indeed, the inheritance mechanisms used in section 2.3.4
are semantic ones. A hierarchic level is a set of design models that can determine the
corresponding value of the design variables, given the value of the functional requirements.
The selection of more specific design models typically requires the introduction of new
variable nodes. In this case'a refinement of the more general models can for example be
obtained by node condensation (see chapter 5), so that the complexity of the resulting
model remains unchanged. For composed models it sometimes is necessary to introduce
variable nodes describing more then one submodel, hereby leading to a partially overlapping
decomposition [242]. This situation is illustrated in figure 2.5. Rectangles represent models
(e.g. equations), circles variables nodes. The original decomposition, required for model

Figure 2.5: Partially Overlapping Decompositions

refinement, can however be reestablished by condensing these particular nodes.
Graph representations also encompass a large number of engineering discretizations.

In fact, numerical solution packages use graph algorithms to exploit the sparsity of the
associated matrices. We believe that it is therefore beneficial to directly represent the
discretization information with graphs and use efficient node condensation techniques for
their solution. In our framework, mesh refinement corresponds with automatic definition of
functional requirements based on the governing equations, while finite element condensation
techniques represent model refinements. Note also that the mesh refinement process can be
controlled by the variable accuracy techniques.

Graphs that are not active and their associated semantic networks represent different
views of a design model and provide the designer with information deduced from the current
design solution (cfr. slices in [242]). Indeed, although the designer is by definition only
interested in the functional requirements, he needs to be well informed about the design
model so that he can impose appropriate additional functional requirements. While the
information emerging from the different views is important, it is not directly controlling the
design process, unless new functional requirements are added to do so. Since the nature of
the solution usually is not know a priory, specific information requests can however only be
made interactively.

19

4--*

2.3.3 Concurrency in Design

Problem subdivision, which s essential in engineering design forms the basis for specializa-
tion. In addition, it allows for the concurrent solution of the corresponding subproblems,
where concurrency refers o parallelism with unbounded resources. We therefore believe that
systems for design automation can be organized as a network of simple minded agents, en-
coding knowledge in a modular way and allowing for concurrency. Furthermore, parallelism
is needed to overcome the fundamental speed limitations of current computer technology.

It should be emphasized that concurrent architectures and algorithms are conceptually
very different as compared to their sequential counterparts. In fact, it is generally acknowl-
edged that difficult problems have parallel decompositions hat yield easier subtasks than
serial decompositions. Techniques for automatic discovery of parallel subtasks on the other
hand, have enjoyed only limited success due to the associated complexity issues. It is the-
refore important to incorporate concurrency information so that it is directly available for
organizing parallel computation.

Unfortunately, distributed concurrent systems require mechanisms to coordinate local
computations and ensure global consistency. Indeed, while local behavior can be assumed
to be consistent and sequential (cfr. microtheories in [95]), there is no global knowledge
nor time in a concurrent system [96]. In fact, organizations of concurrent decision making
agents can show unstable or even chaotic behavior [105].

Computation with bounded models, as proposed in this framework and illustrated in
chapter 7, significantly reduces the consistency problem in concurrent systems. Indeed, as
decisions are based on solution sets, they also are valid for any subset. Consistency as
defined here, therefore allows for asynchronous communications, as well as late arriving and
changing information. As compared to the traditional point wise notion of consistency, the
coordination mechanisms required by our approach do not constrain the performance of the
system as much. Furthermore, global behavior can conveniently be controlled by the use of
conservative enclosures.

However, as indicated earlier, inconsistencies can arise in model refinement. In addi-
tion, empty solution sets can prompt the designer for redefinitions or parameter changes.
Fortunately, these consistency issues are of a topological nature and can be resolved al-
gorithmically. We refer the reader to [144] for a general treatment of strict consistency
contracts in concurrent languages. A practical implementation of these contracts requires
that conventions about different communication mechanisms be made. The corresponding
protocols can be viewed as a generalization of the continuation idea. Commands correspond
to a single message, while evaluation protocols consist of both a request and a reply part.
Protocols for general distributed control mechanisms, include a specification of the message
set and their partial order.

Concurrent computations come to an end when local agents detect no further change and
no additional decisions can be made. At this state of quiescence called design equilibrium,
consistency contracts ensure that the design model reflects current functional requirements.
A discussion of the termination problem for asynchronous distributed iterative algorithms
can be found in [19]. Note that except for the partial order of the design models selected by
the functional requirenents. the sequence in which operations are performed is immaterial
to the actual solution. External changes can therefore take place at any time and models

20

can dynamically forward queries as soon as model refinements have been made.
Automated design systems require mechanisms to control the cost of computation, in-

cluding communication and processor time, and both real and virtual memory usage. These
more complicated contracts can make explicit tradeoffs between speed, optimality and mod-
eling bounds hereby allowing the designer to impose additional functional requirements
before equilibrium is reached.

2.3.4 A Language for Design

To be effective, a design system should be able to capture design as well as modeling
information in a clear and unambiguous manner. Furthermore, communication should
be done at an appropriate level. In our opinion both requirements entail the creation
of a high level language for design that allows us to incorporate as much information as
possible concerning the designers knowledge and intent. Indeed, the availability of this
information can significantly reduce unnecessary complexity of solution algorithms and is
therefore essential for further automation.

A language for design should support both design and modeling constructs. We have al-
ready indicated that modeling operators are sometimes used during the design process while
modeling can involve selection. Although it is often artificial to distinguish both processes,
modeling usually is associated with the expression of definitions, while the application of
these definitions and the associate computational process corresponds with design.

One of the most powerful mechanism for expressing information in high level languages
is inheritance. Indeed, hierarchical semantic networks and the associated inheritance mech-
anism can implicitly associate existing information with new definitions. Semantic inheri-
tance and its compact notation can be used for the definition of models as well as relations.
While for models this implies the implicit definition of a large number of modeling variables
and relations associated with the parent models:

(Define Name
(Model {ParentModel*}

(VariableBinding*)
Body))

application of Lambda expressions can automatically create a large number of arcs relating
its model arguments. The following simple resistor model:

(Define Resistor

(Model {}
((current Real)
(resistance Real)

(voltage Real))

((* current resistance) voltage)))

can be used in series by application of:
(Define Connect-in-Series
(Lambda (Resistorl Resistor2) {Resistor}

(- current (current of Resistorl) (current of Resistor2))
(= resistance (+ (resistance of Resistorl) (resistance of Resistor2)))
(= voltage (+ (voltage of Resistorl) (voltage of Resistor2)))))

Variables defined b semantic inheritance can simply be accessed by name. Model vari-
ables associated with components, on the other hand require the use of accessor constructs.

21

In the above example the left hand variables could be referenced by semantic inheritance of
the Resistor model, while the variables of the component resistors had to be accessed. In
addition, name spaces can be associated with top level inheritance to reduce the complexity
of the selection process, hereby providing design specific contexts. Types, which reflect
general information associated with models, are themselves first class models. This implies
not only that types can be inherited but also that they can form a hierarchy. The current
variable of Resistor for example, inherits the model Real, representing the set of all real
numbers. Real itself could inherit from the type Complex.

We want to reiterate that this inheritance mechanism is of a semantic nature. It facil-
itates the creation of models and the expression of functional requirements, but does not
necessarily reflect the hierarchy associated with design models. In the example above one
could for example express functional requirements relating to the components before the
ones associated with the series resistor.

Boolean operations unify the variables of their arguments. If, for example, we define:
(Define Heating-Element

(Model Resistor}

((power Real))

(- (current voltage) power)))

the statement:
(And Heating-Element Series-Resistor)

will automatically identify the variables current, resistance and voltage of both models.
This type of identification mechanism is important, for it reduces the number of trivial
identities and therefore the complexity of the solution process. The boolean operator Or
also allows us to enumerate models:

(Define resistance (Or lkQ 1kQ))

The selection of the solution set by optimization can be expressed by:
(OptiAize Objective Model)

resulting in the subset of Model that minimizes Objective.
A concise specification of the meaning of language expressions, requires the definition

of a semantic domain. Whereas denotational semantics (see chapter 3) uses a A-calculus
denotation, we propose to use graph denotations for the semantic specification of con-
current languages. The semantics of a design language will therefore be expressed as a
mapping between syntax and design graphs. As with traditional denotational semantics,
this representation is independent of specific parallel computer architectures or network im-
plementations. The topological computational structure will however be directly available
to the compiler. In this regard, we would like to indicate that as design graphs will be
more structured then computational graphs associated with general purpose languages, the
allocation of computational networks on specific architecture can be done more efficiently.

The practical value of graph denotations is dependent on the combinatorial complexity of
the associated solution algorithms. As a consequence basic graph denotational components
for design will reflect the state of the art in design automation. As this thesis contains an
number of contributions in the area of automatic solution techniques, it will allow for more
powerful language constructs.

Observe that the design language does not concern itself with message passing. but

22

rather with the construction of appropriate graphs and automatic creation of protocols.
Practical implementations will however need to control the interaction of concurrent com-
putational systems with the sequential designer, requiring integration of language editors,
command shells and system managers. This approach would also allow for the incremental
definition of inconsistency handlers that are invoked upon the detection of inconsistencies.
These user defined handlers incorporate design knowledge by automatic respecification of
functional requirements.

2.4 Previous work on Design Automation

2.4.1 Design Theory

In Synthesis of Form, one of the early works in the area of design thec:y and methodology,
Alexander [8] defines the design problem as a match between context, i.e. functional re-
quirements, and form, i.e. the subject of design. In the analytical part of the design process,
requirements are analyzed for possible interactions and a minimum information exchange
principle is used to attempt to decouple subsystems and devise a hierarchy of requirements.
Then, in the synthesis part, constructive diagrams are created to incorporate both require-
ments and form aspects. By composition and fusion of these diagrams, called hypotheses,
form is synthesized in a bottom up fashion. Throughout this process, binary decision vari-
ables are used to indicate fit or misfit between context and form, i.e. if the hypothesis are
satisfied.

In our opinion, one can in general not define functional requirements independently of
the physical solution. Indeed, a different approach is proposed by Mandel and Chryssosto-
midis. In [151], they describe a hierarchical method for designing complex systems using
the principle of subdivision. As opposed to [8], functional requirements are specified in
a top down fashion based on a high level description of the design solution. New design
information is then incorporated through the hierarchical use of iterative techniques. In
this thesis can be viewed as a continuation of this work, with a specific emphasis on the
robustness and consistency problem arizing in the automation of the hierarchical solution
process.

Suh, in Principles of Design [240]. has attempted to provide a scientific basis for design
by developing fundamental design axioms. The independence axiom dictates that one should
maintain the independence of the functional requirements, hereby avoiding coupled design
situations. This allows the designer to satisfy the functional requirements without having
to make compromises. Finally, by the information axiom, of all the design solutions that
satisfy the independence axiom, the one with the least information content is defined as the
best one.

Although the guidelines offered by this approach are very valuable, we believe that
for many practical problems it is usually not possible to maintain the independence of
the functional requirements. Nor is it, in our opinion, practical to eliminate some of the
functional requirements, or to come up with a different physical solution in order to obtain
independence, as would be required by the axiomatic approach. The techniques proposed
in this thesis therefore focus on coupled design problems, and can be viewed as a rational
approach for making engineering compromises in coupled design situations.

23

It is generally acknowledged, that optimization is not used to its full potential in the
design process. In [244], Taguchi indicates that design techniques based on optimization lead
to better and more integrated products. He therefore developed a quality loss minimization
framework for design and in order to obtain robust products, defines sensitivity to noise
factors as the objective to be minimized. As pointed out by Suh [240], both approaches
do not necessarily contradict each other. Indeed, minimization of the information content
associated with the functional requirements also promotes simple and robust solutions.
However, this imposed criterion often is not compatible with the wishes of the designer and
in fact generally precludes a minimum cost design. While we agree that optimization is an
integral part of the design process, it is in our opinion not appropriate to prescribe objective
functions and hereby to define what good design is. We believe that this should be left to
the designer to decide. Note however, that in our framework, it is still possible to define
these particular objectives explicitly.

A general theory of design is presented by Yoshikawa in [272, 250]. Design is defined as
a mapping from the attribute space to the function space, both of which are defined over
the entity concept set. Using three basic axioms, the axiom of recognition, the axiom of
correspondence and the axiom of operation, it follows that with ideal knowledge the speci-
fication of function directly leads to a design solution. With real knowledge however, it is
possible to make design a convergent process, but nor the uniqueness, nor the existence of
the solution is guaranteed. This abstract set theoretical view of design should be contrasted
to the practical approach presented in this work. Whereas the general design theory focuses
on the difference between real and ideal knowledge and pays very little attention to com-
plexity issues, our goal is to devise tractable set algorithms that operate in real knowledge
in order to find conservative design solutions.

In recent years researchers have becoming increasingly aware of the need for a sound
theoretical basis for design automation. Since a general overview of research in this area is
given in the papers by Finger and Dixon [60, 61], we will only review a number of recent
contributions.

Painter, in [178], identifies energy as the common denominator in mechanical systems
and proposes a unifying framework for design based on bond graph representations, which
are independent of geometry. This representation, and the corresponding transformations
have in fact recently been used in the area of artificial intelligence for further automation
of the synthesis process [254]. An interesting extension of the energy based approach to
include geometry is discussed in [220].

Kott and May [125] propose to classify design problems, either as decomposable or as
monolithic and suggest that, depending on the type of problem, a different model of the
design process should be used. They do however acknowledge that no design problem will
be exclusively decomposable, or exclusively monolithic. In our opinion both types of design
problems should be allowed in the same framework, where the solution of monolithic or
coupled problems typically dictates interface conditions for the subsequent decomposition
into decoupled problems.

Other researchers have attempted to cast the design process into explicit iterations
between synthesis and analysis [102]. In fact, most domain specific design programs are
based on this methodology. In this generate and test approach, analysis has obtained the
status of performance checking while other techniques are used to propose design changes.

24

It is our opinion that one should solve the design equations directly so that the above
iterations are kept implicit. In fact, the design for analysis [241] approach suggests that
designers should only be allowed to use models which can be analyzed in an automated
fashion. A number of systematic approaches of exploring the solution space are reviewed
by [245]. In this context it should be noted that while our approach allows for discrete
enumeration by using enclosures, we will not address the general combinatorial problem
associated with discrete point sets.

2.4.2 Modeling

In one of the early control-mathematical theories on hierarchical systems [158], Mesarovic
studies multilevel goal-seeking and optimizing systems. Analysis of the conditions under
which this type of systems can be decomposed and coordinated in a hierarchical structure
lead to the definition of the interaction decoupling, interaction balance, and interaction
prediction coordination principles. It is interesting to note that since in our framework
coordination is determined by copmervative approximation of possible interactions, it is in
fact a combination of all three coordination techniques. The more restrictive case of linear
systems will not be discussed here. We refer the reader to the literature review presented
chapter 5 or to [48] for a general overview.

A number of techniques have been suggested to identify measures of importance. Saaty
[211] in particular, proposes to use pairwise comparisons in conjunction with a eigenvalue
formulation to obtain weights which reflect the priorities of different parts of the hierarchy.
These weights can subsequently be used to analyze the consistency of the comparisons
and to guide conflict resolution. Unfortunately, this technique assumes that the pairwise
preferences are given and can therefore not be used in an automated fashion.

Hierarchies based on inclusion of operators and metrics were already defined by Manheim
in [152] to solve the highway location problem. However, the actual solution is found by a
best first search combined with a decision process based on Bayesian probability theory.

Inheritance mechanisms have been used extensively in the field of artificial intelligence
[59] as a representation for problem solving systems, see [247] for a recent overview. More
recently a formal approach was proposed to represent product model information [54].
Although, this approach is not directly based on set inclusion, it forms in our opinion
an important contribution towards extending automation beyond parametric design.

Sussman points out that most engineering systems can only be partioned in almost hi-
erarchical decompositions. Furthermore, these decompositions are not unique. He therefore
proposes, not only to consider different levels of detail, but also different views or slices
[242]. In fact, multiple views of the same model can be used to solve difficult problems.
Indeed, exchange of information between different slices allows for the solution of problems
which appear hard or impossible in one slice using information derived in another. The
solution techniques proposed here do not require redundant information to solve Sussman's
hard problems. In our framework views are therefore only used to deduce information
concerning the design model and to allow the designer to impose additional functional
requirements. Design graphs can in fact be viewed as metamodels [249] to integrate the
background theories behind the different views.

Graphs are a natural choice to represent the interdependencies in complex engineering

25

design. In [56], it is proposed to use a quality loss criterion to control loss of design freedom
in associated decision process. As we use bounded models instead of estimation models,
our framework allows for maximum design freedom compatible with previous decisions. An
architecture for integrating engineering idealizations in a unified framework is proposed by
[124]. However, the use of approximate point models frequently leads to significant errors
resulting in wrong decisions [243]. Furthermore, unlike the conservative error control used
in this thesis, traditional error estimation provides no guarantee concerning the accuracy of
the results, which ultimately need to be verified manually. In this context, it should be noted
that the robust numerical methods proposed here considerably extend the applicability of
truth maintenance systems [50].

Modeling and database techniques for creating, manipulating and analyzing models of
the designed structure are used extensively and have drawn considerable attention of the
research community. For recent contributions on the topological aspects of mixed dimen-
sional modeling systems, we refer the reader to [261, 208, 83, 28]. An overview of the
current state of the art in geometry processing can be found in [14] while some of the
outstanding geometric issues in Computer Aided Design are presented in [37]. Geometry
has also extensively been used in the area of automatic analysis, the medial axis tech-
niques [82] in particular, have proven to be very promising. More recently, researchers have
attempted to integrate current geometric capabilities in so called geometric reasoning sys-
tems [268, 197, 269]. While this research furthers our understanding of geometric modeling
and analysis, it does, in our opinion, not provide an appropriate organizational framework
needed for design automation.

2.4.3 Computation in Design

The computational aspects of the design process encompass a large number of different areas,
including optimization, numerical analysis, computer science, and artificial intelligence.
Rather then being exhaustive, we will therefore only review the literature relevant to our
framework for design.

Only very few general design methods are based on global optimization techniques [244],
whereas they have been used extensively in the area of VLSI design [121]. In our opinion,
one of the reasons for the limited success of optimization techniques is that general design
problems, as opposed to VLSI design, are usually very coupled [200]. Other shortcomings
of mechanical design automation are cited in [66]. The area of optimization for design has
however enjoyed increased attention in recent years.

For an overview of well known general optimization algorithms we refer the reader to
[74], while the specific aspects of translating design problems into constrained optimization
problems can be found in [198]. In addition, a number of powerful methods have been
developed for shape optimization based on discretization techniques, see for example [256]
or [187] for the specific case of elliptic systems. Unfortunately, little work has been done
to incorporate optimization techniques in practical computer languages as is proposed in
[147].

Papalambros and Wilde suggest that a large number of engineering optimization prob-
lems can be solved using monotonicity analysis [181]. They derive rigorous analytic formulas
for a large number of design optimization problems and are able to show how it can justify

26

engineering design practice. For problems which to not exhibit monotonic behavior, this ap-
proach can be combined with numerical analysis techniques [91]. Approximate optimization
algorithms need however often to be combined with multistart methods to increase their
reliability [109]. A graphic interpretation of problem of attraction basins for optimization is
given [35]. While optimization problems are not directly addressed in this thesis, it should
be noted that one can simply use the nonlinear solvers of chapter 3 for their solution and
that the efficient techniques of chapter 5 can be extended to obtain second order derivatives.

Many designers argue that one really wants to optimize different criteria at the same
time. Multiobjective optimization methods, however, make implicit assumptions on the
relative importance of the various objectives. We believe that this should be left for the
designer to decide under the form of functional requirements.

Combinatorial explosion in large scale design optimization problems can be handled
effectively using hierarchical decomposition by relating subproblem objectives to the original
optimization problem [114]. A number of numerical techniques for automatic decomposition
techniques are described in [22]. Design however is an incremental process and care should
be taken to adapt the objective function as more information becomes available. While
some methods do indeed allow for incremental changes in the optimization process [42, 75],
they do in our opinion not provide the reliability required for design automation. Instead
we propose to rely on procedural consistency for incremental selection of the design model.

In general one can view nonlinear algebraic equations as constraints. This approach is
suggested by Sussman [242] who uses constraints as fundamental building blocks and con-
straint propagation as basic model of computation. In addition, his constraints language
allows for propagation in almost hierarchical systems. To overcome the limitations of the
basic propagation algorithm, Serrano extends this work by incorporating numerical solution
algorithms to solve strongly connected components and by including techniques for han-
dling inequality constraints [218, 219]. Other hierarchical approaches related to constraint
satisfaction have been proposed, see for example [257, 199]. As indicated earlier, one of
the contributions of this thesis is to address the robustness problems associated with these
numerical solution algorithms.

Some researchers view design as exploring constraints [79] and use constraints to rep-
resent design knowledge [80]. Indeed, in many ways models can be viewed as constraints.
In this context, we would like to emphasize the importance of automatic differentiation
methods. The additional information they derive is not only required for nonlinear solu-
tion techniques, but can also be used for the automatic incorporation of changes and to
provide an indication as to the relative importance of the variables involved. Constraints
can also be used as a computational model for combinatorial problems. A good account of
constraint satisfaction and optimization methods for this type of problems can be found in
[255]. Finally, it should be noted that particular solution techniques can be selected based
on the type of constraints [31].

Constraint propagation techniques were recently extended to include intervals which can
represent sets of artifacts [259]. Unfortunately, as the associated iterations terminate quite
rapidly [212], these techniques do not allow for the computation of very tight bounds. More
importantly, interval propagation algorithms are limited to directed acyclic graphs and can
therefore not handle strongly connected components. Since these methods can be viewed as
interval evaluation, one can in fact use the more sophisticated enclosure methods described

27

in chapter 3. Finally, the labeling of intervals, used to better describe the constraints
associated with the set, can, as we have indicated earlier, significantly be simplified.

Fuzzy set calculus [267] extends interval propagation by associating preferences to in-
dividual solutions. Unfortunately, this technique cannot handle coupled systems, moreover
the computation of the associated preferences is of combinatorial complexity. In our view,
designer preferences concerning particular solutions should explicitly be expressed as func-
tional requirements. While the probabilistic approach [93, 225] is much more powerful and
probabilistic analysis is needed to model stochastic uncertainty, it is in our opinion inappro-
priate for modeling the imprecision uncertainty associated with the selection of alternatives
in design.

A very appealing idea is to use continuously decreasing Lyapunov [148] functions for
stabilizing nonlinear design systems, including large organizations of intelligent agents [237].
Unfortunately, we were not able to find any literature on applications of this method in the
area of design and therefore refer the reader to [17], who uses the dynamic systems metaphor
to provide a general framework for design.

Freeman [64] was one of the first to address the problem of design automation from
the artificial intelligence perspective. He uses automatic reasoning techniques to connect
structures providing certain functions with the ones requiring them. Models therefore di-
rectly represent design knowledge, hereby allowing for automatic specification of functional
requirements. The knowledge representation and reasoning techniques used in expert sys-
tems are in fact very similar, see for example [120]. As indicated earlier, explicit association
of design knowledge with models and the corresponding inferences are however bound to
be highly problem specific. A more powerful approach was presented by Brown [32], who
extends the expert systems technology by providing specific contexts for design knowledge
and uses a hierarchical control structure to coordinate a number of simple design experts.
Observe that the techniques of chapter 5 can be used to automatically provide these ex-
perts with required derivative information. In fact, some of the design expert reasoning
techniques are a simplification of approximate nonlinear solution operators.

In addition, researchers in the field of qualitative reasoning are attempting to apply
some of their findings to the field of design [62]. In our framework qualitative knowledge
is represented by heuristic models, which typically do not have very tight bounds. It was
indicated earlier that the use of these models is not compromising the validity of the results
as long as more refined models are procedurally consistent.

Frameworks for expert system cooperation [76, 73] and environments to support team
based design [262, 235] often use so called blackboard architectures [57]. This very popular
centralized representation mechanism has in fact been proposed as a fundamental tool for
design automation [49]. Any form of centralized control or representation does however form
a computational bottleneck in a distributed concurrent problem solving architecture [145].
Indeed, the growing area of distributed problem solving really focuses on coordination of
participating agents to achieve global coherence. Early distributed problem solving systems
[123] are based on concurrent Planner-like architectures with fine grain parallelism. More
elaborate meta-level control schemes to achieve global coherence have been suggested by [39]
and [145] who introduces functionally accurate cooperative distributed systems to deal error-
recovery and robustness. A general paradigm for task-sharing based on contract nets and
negotiation is proposed by [231, 45]. For more recent work we refer to [52] who introduces

28

a special issue on this subject.
This type distributed problem solving architectures is however relatively coarse grained

and typically organized around nodes of a physical network [146]. Moreover, the function-
ality of the nodes can be compared to human expertise. Since, we are only moderately
successful in mimicking human intelligence, let alone in a social context [33], we have pro-
posed to organize systems for design automation as networks of simple computer agents.
Furthermore, we believe that to be practical, problem solving architectures should leave
implementation aspects to hardware dependent compilers.

A different approach for distributed intelligent systems is based on Petri Nets [185].
While experimental results comparing hierarchical and other decision making architectures
using this computational model can be found in [113], further results concerning organi-
zation and coordination of distributed decision makers are presented in [182]. We like to
point to [209] in particular who discusses the design of simulation languages with multiple
modularities based on this approach. In fact, some protocols required for distributed design
systems based have already been established based on Petri Nets [58].

2.5 The Design Society

Design is a social process [33] and from CEO to pecnle in the workshop, a large number of
people participate in the design process [21]. We therefore propose to use the Design Society
metaphor to view systems for design automation as large organizations of simple agents that
cooperate coherently to solve design problems. The word society is borrowed from [159]
who suggests that human intelligence can best be explained.in terms of a society of simple
agents. As opposed to human agents these simple agents do not understand how other
agents work, they only know how to exploit them. The focus is therefore on integration of
different types of knowledge to create a system that appears to be smart.

A design society is made up of large number of different computer agents that solve
simple routine subproblems which were previously solved by individual engineers. These
agents are organized in a hierarchical manner and are working concurrently to achieve
the same goal. Indeed, in The Architecture of Complezity [228, 229] Simon points out
that among possible systems of a given size and complexity, hierarchical systems are the
most likely to appear through evolutionary processes and require much less information
transmission among their parts than do other types of systems. The short run behavior
of subproblem agencies is therefore approximately independent of other agencies, whereas
their long run behavior depends on them only in an aggregate way.

Design agents are influenced by their superiors, colleagues and by their subordinates.
The respective influences are determined by the designers requirements and depending on
the particular design philosophy, a design society will show more resemblance to a cen-
tralized bureaucracy then to a democracy. Furthermore, by charging for processor time,
communication cost and memory requirements, explicit compromises can be made between
performance and limited resources.

The model selection process based on designers requirements corresponds to activation
of Minsky's K-lines and can for example be implemented using the bucket brigade algorithm
[75] or activation spreading mechanism [150]. Model refinements and the corresponding level
shifts operate very much in the same fashion as the Subsumption Architecture [29].

29

Throughout the design process design agents cooperate with each other by sharing
results concerning bounded models. We therefore propose that the design model will be
organized around agents of the design society and will be represented in a distributed
fashion. Indeed, since they are the originators of information they also are the best keepers
of it. The meaning of a design model is therefore defined through the agencies making up the
model, for only they can answer queries and analyze dependencies. Furthermore depending
on which agency is queried, different views of the same design can be obtained. Indeed, in
our opinion, only a small fraction of knowledge is static, and intelligence really has to be
associated with processes [30]. We therefore postulate that intelligent design behavior can
emerge from interaction simple minded agents and agencies in a natural fashion [100].

We have decided to use the term behavior because of the basic adaptation capabilities
of agents in the design society, for automatic solution techniques and incremental specifi-
cation make design a dynamic rather then a static process. Furthermore, we believe that
only a hybrid symbolical-numerical approach [251] can overcome the robustness problems
associated with rule based systems [43, 44]. We therefore expect that inconsistency and
indeterminacy will cause the performance of the design society to deteriorate gracefully,
instead of causing total failure.

The design society also can be used as a metaphor for devising collaborative work
platforms. Indeed, a large number of people can interact with local computer agents who are
in communication with other agencies over a large network [180]. This approach therefore
allows for the use of different languages and compilers as long as the interface to other
agencies remains the same. Furthermore, the authority to make design changes can be
granted only to a specific agency that can reject individual requests for changes based
on consistency considerations. Specialists can be provided different views on the design
model by drawing information from appropriate agencies. We could also make a distinction
between designers and modelers. Designers decide the requirements of the product, while
modelers input new technology and know-how. In this context, partly automated modeling
techniques can be allowed, where part of the communication is handled by computer agents,
while other messages are forwarded to engineers.

Although it is highly desirable to pick the better alternative, it is usually not possible
to find the best one. Indeed, the hierarchical aspects of our framework are of a heuristic
nature and bounded models therefore enclose only satisfying solutions [230]. Finally, in
Administrative Behavior [227], Simon studies rational decision making in organizations and
suggests that two rational agents provided with the same information, can rationally only
reach the same decision. He concludes that behavior is therefore not determined by ratio-
nality but rather by the limits of rationality. In this thesis we therefore set out to study
computational methods for reasoning with information bounds.

30

Chapter 3

Interval Arithmetic

3.1 Motivation

We are concerned with the automation of the design of complex structures. In this context
interval arithmetic is an excellent computational tool for two reasons. First, full automa-
tion requires the 100% reliability provided by interval arithmetic, and second the inclusion
monotonicity properties are extremely useful for solving the consistency problems associ-
ated with the hierarchical design methodology. In addition, it allows for concurrency in a
natural fashion, as performance degrades gracefully with excessive interval widths.

We believe that robust solution methods for nonlinear algebraic equations are essential
in design automation, and in the present chapter we are therefore investigating this problem.

Although some very reliable techniques have recently been developed for the solution
of polynomial equations [138, 184], these methods are currently limited to 2-dimensional
problems and do not apply in the case of general nonlinear equations. Classical numerical
algorithms are applicable [41, 252], but they do not guarantee that all the solutions will
be found, nor is there any guarantee of their accuracy. Moreover, user action is sometimes
required in case of singularities or inappropriate starting points.

Instead of using point approximations to the solution, feasible domains can be described
by intervals. In the literature, computations involving intervals have been have been referred
to as Interval Arithmetic. Interval computations, when performed conservatively, are 100%
reliable. Numerical solution methods based on these techniques can therefore lead to further
automation.

3.2 Basics

Interval arithmetic can be traced back to Young's arithmetic for calculation with sets of
numbers, developed in 1931 [273], and later to Dwyer, who considered the special case
of closed intervals [53]. The first practical applications, however, date back to Moore in
1959 [160]. And since the mid 1960 interval arithmetic has been an area of active research
[86, 162]. There exists a large literature on interval techniques, it covers subjects such
as inclusions of the ranges of functions [193], linear interval equations [6], inclusion of
zeros complex rational polynomials [186], and optimization [67, 194]. More recently various

31

interval arithmetic packages became available for general use [140, 165].
In this section we give definitions and explain the basic principles of interval arithmetic.

We have attempted to use simple notation and terminology consistent with the literature
[7, 164, 171, 193, 194].

3.2.1 Definitions

An interval X E I is a set of numbers z E R defined by:

X = {x X < < X} (3.1)

I is the set of intervals and R is the set of real numbers. Capital letters denote interval
quantities, whereas lowercase letters correspond to numbers. Subscripts are used to indicate
entities related to an interval. X stands for the lower bound of X and Xu, for the upper
bound. When we explicitly refer to the bounds of an interval we will use the following
notation:

X = [X , XU]

The traditional definition of the midpoint of an interval is:

X + Xu
Xc= 2

2

although, for implementation purposes it sometimes is defined as the median of the floating
point enumerations between XI and Xu. When an interval is centered around its midpoint,
we have:

AX= X-X,
which is a symmetric interval. The interior of an interval corresponds with:

i(X) = Of I Xt < z < X,}

O indicates the convex hull operation to ensure that the result can be represented with
intervals. Finally, width is defined as interval norm:

(X)= X -Xi

and distance as interval metric [162, 169]:

d(X, Y) = max{llq - XI, IY - XIl}

Note that we use the following convention when referring to absolute values of intervals
[168]:

(X) = min{ I x eX}
IX = max{IxlI I E X}

32

3.2.2 Operators

Interval arithmetic operations are defined by applying the corresponding algebraic operators
to the elements of the interval operands, hereby generating a new interval:

XoY = O{z oy E X,yE Y (3.2)

For the usual algebraic operators o E {+,-, ,/}. Based on this definition we can derive
the following explicit expressions:

[X, X] + [, Y.] = [X + , X + Y]
[XI, X.]- [, Yu] = [X - Yu, X -]
[XI, X.] [, Y.] = [min(XIYI, XY., XU1, XUY), max(XIYI, XtiY, XYi, XY)]
[Xl, X,]/[I, U] = [Xi, Xu] [/Yu, /Y1]

(3.3)
As is the case with the multiplication of numbers, we will usually omit the notation.

The definition of set operations on intervals is straightforward, interval intersection and
union, for example are defined as follows:

XnY = {zlzEXandzEY}
XUY = {z|zEXorzEY}

The result of the set operations are not necessarily intervals, an intersection can be the
empty set .

The transition to machine interval arithmetic is made by conservative rounding of the
bounds, so that X C XM and by ensuring that all machine operations satisfy the inclusion
principle:

E X = 0 YE (Y)M

Practical aspects of implementing interval arithmetic on a computer are discussed in [141].

3.2.3 Properties

Most properties of algebraic operators carry over to their interval definition, such as com-
mutativitv:

X+Y = Y+X
XY = YX

and associativity:

X+(IY+z) = (X+Y')+Z
X(YZ) = (XY)Z

33

Distributivity however, is not satisfied in general, but we do have the following subdistribu-
tivity property:

X(Y + Z) C XY + XZ

An interval function F(X) is said to be inclusion monotone if:

X C Y * F(X) C F(Y) (3.4)

For an interval operator o it corresponds to:

X'CX } X' Y' XoY

One easily verifies that the explicit expressions (3.3) for o E {+,-,-,/} satisfy the above
relation.

3.3 Enclosures for the Range of a Function

The challenge of interval arithmetic is to find bounds that are as tight as possible. This
problem really is fundamental in that any pointwise dependency of variables is lost when
interval representations are used.

Methods to compute an inclusion of the range of functions and their derivatives, can
be found in the literature [162, 193]. The simplest method is to use interval evaluation,
replacing all variables by their intervals and arithmetic operations by the equivalent inter-
val operations. This can be used for functions as well as for their derivatives after explicit
differentiation. Better inclusions are obtained with centered forms. They are often used in
conjunction with the more efficient recursive differentiation or Taylor expansion techniques.
Recently, Neumaier defined the concept of inclusion algebra [171] to unify different recursive
interval techniques. We have chosen to formally define these recursive systems using Deno-
tational Semantics [214, 239]. This approach allows us to define a more complete language,
including procedures and higher level constructs.

3.3.1 Definitions

The range of a function is defined as:

f(X) = O{f(x) x E X}

Note that we use a different notation for the range as for an interval enclosure function of
that range:

f(X) C F(X)

Example 3.1

As illustrated in figure 3.1, fi(z) = 1 - 5x + x3/3 has range fi(X) = [1 - 10//3, -5] over
X = [2,3]

34

x

Figure 3.1: Range of 1 - 53 + 33 /3 over X = [2, 3]

An interval function F: I -- I is Lipschitz continuous over X if:

VX',X" C X, 3L E R: d(F(X'), F(X")) < Ld(X', X") (3-5)

the real number L is called the Lipschitz constant. An interval enclosure function over X
is of order a > 0 when:

VX' C X, 3A E R : d(f(X'), F(X')) < Aw(X')

The definitions for multivariable functions are very similar. The scalar quantities simply
need to be replaced by vector interval quantities, see section 3.4 below.

Example 3.2

The range of f 2 (x, y) = e/(X 2+Y 2) over X = 1,2] and Y = [2, 4] is f 2 (X, Y) = [1.051, 1.222]

3.3.2 Interval Evaluation

Enclosures of arithmetic expressions can be simply be computed by interval evaluation [162],
i.e. by replacing all quantities by their interval equivalents.
Example 3.3

The interval evaluation of fl(z) of example 3.1 is computed by:

E(fi(X),X) = 1 - 5X + 1/3XXX (3.6)
= [-11.334, 0]

35

over X = [2, 3]. Note the conservative rounding of the lower bound -34/3 to -11.334.
To define this interval evaluator with denotational semantics, we need the following

domains:

v E Expressible-Value = { Interval + Procedure }
u E Value-Environment = Identifier ~- Expressible-Value

the valuation functions are:

C : Constant e- Expressible-Value

£: Expression '- Value-Environment 4 Expressible-Value

C maps constants into expressible values in the obvious way and C is defined as follows:

Eic] Au.Cjc]

(II Au.uJIj

([(+ El E2)] Au.(1£Elu + £[E2Ju)

,61(- E, E2)] Au.(.[EDu - EE 2 1u)

£[(E, E, 2)] - Au.(Ej]u [E 2]u)£Cf(/ E1 £2)]] - AU.(t[EiIlu/CjE2]]u)
CJ[(laabda (I) E)]]i- Au.Av.CIJE]](bindv[I]Ju)

The auxiliary function used to bind an identifier in the environment is:

bind = Av.AI.Au.)AI'.(I = I') v uI'

Example 3.4

For expression (3.6) of example 3.3 the interval evaluator would be used as follows:

'[(+ (- 1 (* 5)) (* 1/3 (* x (x x))))](bindjx]j[2, 3]uo) = [-11.334,0]

where u0 stands for the initial environment.

Notethat this type of recursive evaluation can be done in many different orders and the
question arises as to the optimality of one evaluation strategy w.r.t. another, for example:

X(1 - X) C - x

because of subdistributivity. Theoretically, the best computable enclosure is the intersection
of all possible equivalent computations. This issue is similar to ordering floating point
operations. Various strategies for obtaining optimal accuracy are discussed in [122, 193].

Based on these definition we can also introduce curried arguments:

36

CI(lambda (I I*) E)]j - [(laabda (1)(laabda (1*) E))J

£[(Eo E, E*)] -. C((Eo E) E*)]

and define the let-form as a syntactic sugar:

C[aet ((E) B) Eo)] ((ada () (let (B*) Eo)) E)|

This evaluator can be complemented with natural interval extensions of elementary func-
tions:

£:r: Function '- Procedure

The exponential function for example, could be included by the following definitions:

([(exp E)] e-- Au.tyljexpj(t[E]u)

&Ir[exp] - Av.[ev', eu]

Let us illustrate these extensions with an example.

Example 3.5

The computation of f2 (z, y) of example 3.2 is expressed as follows:

£ (let ((square (lambda (v) (v))))
(exp (1 (+ (square x) (square y)))))

(bind jIx][1, 2](bind [y][2, 4]uo)) = [1.051, 1.222]

which is the exact value of the range.

If the extensions are Lipschitz continuous, it can be shown that extended interval eval-
uation is also Lipschitz continuous [160, 164]. The enclosures produced by this interval
evaluation are of order 1 and therefore of lesser quality. Nevertheless, they are essential for
more sophisticated methods. Also, when w(X) is large, interval evaluation often produces
more effective bounds than centered forms. In fact, their quadratic convergence implies
that the width of the enclosure can grow quadratically.

3.3.3 Centered Forms

The centered form of a function f(z) with center c is an expression of the type:

C(f, X, c) = f(c) + G(X - c)(X - c)

and was originally introduced by Moore in [162]. This form is of interest because it is of
order 2 when G is Lipschitz continuous [137]. Centered forms of rational polynomials were
studied by Ratschek and Rokne in [193]. The general Taylor form [162, 191, 192] is defined
by:

k::~If (j (C)F(k) (X XCkTk(f,X,c) = f(c) + f()(X - c)y + ()(- c)k
3=1 k!

The special case k = 1 is called the Afean Value form:

Tl(f, X, c) = f(c) + F'(X)(X - c)

37

If F'(X) is Lipschitz continuous this form has quadratic convergence.

Example 3.6

When applied to f 1 (x) as defined in example 3.1:

T,(fl, [2, 3], 5/2) = [-8.292, -4.291]

The value of the interval derivative F'(X) was obtained by interval evaluation of f'(z) over
X. A geometric interpretation of the enclosure produced by the mean value form is given
in figure 3.2. The shaded area represents the feasible domain for the given F'(X).

I
4 .1

X

4 S

Figure 3.2: Geometric interpretation of the centered forms for the function fi of example 3.1

Another very useful Taylor form is the second order one:

F(X)(c)
T2 (f,X,c) = f(c) + f'(c)(X - c) + (X -C) 2

for it can be shown that the boundedness of F"(X) is sufficient to ensure second order
convergence. Note that the computation of (X - c)" can be done exactly by using an
interval extension of the power function.

Example 3.7

The second order Taylor form improves on the bound of example 3.6, indeed:

T2 (fi,[2, 3],5/2) = [-6.917, -4.916]
C T(fl, [2,3],5/2)

This is illustrated in figure 3.2. again F"(X) is computed by interval evaluation of f"(x)
over X.

38

The convergence of the higher order Taylor forms remains of order 2. The inclusion they
provide however, is usually increasingly better. If, for example, the higher order derivatives
are enclosed by the mean value form, we have:

Tk (f,X,c) C Tk-l(f,X,c)

Example 3.8

If we use:

E(f;', [2,3]) = [4,6]
Tl(fi,[2,3],5/2) = [-1.75,4.25]

in the computation of the following enclosures:

T,(f,[2,3],5/2) = [-8.417,-4.166]
T2(f, [2,3],5/2) = [-6.917, -4.916]

we have:

T2 (f1 ,[2, 3],5/2) C T1(fl,[2, 3],5/2)

Again, these definitions can simply by extended to multivariate functions by using in-
terval vectors defined in section 3.4.

3.3.4 Interval Differentiation

Very often, as is the case in the mean value form, it is required to evaluate the range of
derivatives. The process of computing the derivative and at the same time evaluating the
range of this derivative time is called interval differentiation. A good account of recur-
sive interval differentiation is given by Rall [190]. To formally define a recursive interval
differentiator, we introduce some additional semantic domains:

d E Expressible-Differential

g E Differential-Environment = Identifier P- Expressible-Differential

the valuation function is:

D: Expression '- Value-Environment i- Differential-Environment
Expressible-Differential

D2[C] Au.Ag.zero

D[I Au.Ag.g[I]

DV(+ El E2)] - Au.Ag.(D[E1 ug + Dj[E2]ug)

DE)(- El E2)] " Au.Ag.(D[[Ejug- D[E 2]ug)

39

D(* E E2)]J Au.Ag.(Df[Ei]ug * CIE2 u + EE]u * IE2jjug)

D1J/ E, 2)! Au.Ag.(VDEJug -. 6I(' E, E2)]u [DE2 jug)/CjE 2ju

VD(iambda (I) E) I Au.Ag.Av.Ad.lj[E](bind v[IJu)(bind dJig)

ID[(E, E2)! -* Au.Ag.DI[E,]ug(£[E2]u)(D[E2]u9)

Example 3.9

As in example 3.4, the first interval derivative is simply obtained by:

ID[(+ (- (* s x)) (* /3 (x (. x x))))](bind[x][2,3]uo)(bindjx][l]do)= [-1,4]

u0 is again the initial value environment and do is the initial derivative environment. As we
noted earlier, interval evaluation sometimes produces better enclosures than more sophis-
ticated methods. Indeed, in this example recursive differentiation is better than the mean
value form computed in example 3.8:

D(f1, [2, 3]) = E(fi, [2, 3])
C T1(f, [2,3], 5/2)

Introduction of elementary functions proceeds as with the interval evaluator:

EI[(exp E)j '- Au.Ag.D[exp(C[E]u)(D[Ejug)

Dy[rexp] '- Av.Ad.[evl, e"] d

Example 3.10

If we go back to example 3.5 we now have:

'D[(let ((square (lambda (v) (* v v))))
(exp(/ 1 (+ (square x) (square y)))))

(bind [x][1, 2](bind [y]J[2, 4]uo))(bind x][1](bind yj[0]do)) = [-0.196, -0.005]

'D[(let ((square (lambda v) (* v v))))
(exp (/ 1 (+ (square x) (square y)))))

(bind [x][1, 2](bind [y][2, 4]uo))(bind [x][](bind [y][1]do)) = [-0.391, -0.011]

which can be used in the multivariate mean value form:

T l (f2 , ([1, 2] [2, 4])T, ([3/2] [3])T) = [0.604, 1.582]

40

3.3.5 Implementation

We illustrate the above semantic concepts with Scheme code of a similar evaluator. For
efficiency both interval evaluation and differentiation are performed at the same time:

(define general-eval (expression environment)

(cond ((number? expression)

(number-eval expression))

((variable? expression)

(variable-eval expression environment))

((primitive? expression)

(primitive-eval expression environment))

((lambda? expression)

(lambda-eval expression environment))

(t
(application-eval expression environment))))

(define number-eval (expression)

(let ((value-interval (point-interval expression))

(derivative-interval (point-interval)))

(make-tuple value-interval derivative-interval)))

(define variable-eval (expression environment)

(lookup expression environment))

(define primitive-eval (expression environment)

(let* ((operator (primitive-operator expression))

(operandl (primitive-operandl expression))
(operand2 (primitive-operand2 expression))
(tuplel (general-eval operandl environment))
(tuple2 (general-eval operand2 environment)))

(valuel (tuple-value tuplel))

(value2 (tuple-value tuple2))

(derivativel (tuple-derivative tuplel))

(derivative2 (tuple-derivative tuple2)))

(cond ((+? operator) (+tuple valuel value2 derivativel derivative2)

((-? operator) (-tuple valuel value2 derivativel derivative2))

((*? operator) (*tuple valuel value2 derivativel derivative2))

((/? operator) (/tuple valuel value2 derivativel derivative2))))

(define lambda-eval (expression environment)
(let ((identifier (lambda-identifier expression))

(body (lambda-body expression)))

(lambda (tuple)

(general-eval body (bind identifier tuple environment)))))

(define application-eval (expression environment)

(let ((operator (application-operator expression))

(operand (application-operand expression)))

((general-eval operator environment)
(general-eval operand environment))))

The primitive operations are defined as follows:
(define +tuple (valuel value2 derivativel derivative2)
(make-tuple (i+ valuel value2) (i+ derivativel derivative2)))

(define -tuple (valuel value2 derivativel derivative2)

(make-tuple (i- valuel value2) (i- derivativel derivative2)))

41

(define *tuple (valuel value2 derivatives derivative2)

(make-tuple (i* value1 value2)

(i+ (is derivatives value2) (i* valuel derivative2))))

(define /tuple (valuel value2 derivativel derivative2)

(let ((valuel/value2 (i/ valuel value2)))

(make-tuple value 1/value2

(i/ (i- derivativel (i* valuel/value2 derivative2)) value2))))

Where i+, i- i and i/ are the arithmetic interval operators. To be complete we include
a simple implementation of the auxiliary functions:

(define bind (identifier tuple environment)
(lambda (other-identifier)

(if (equal other-identifier identifier) tuple (environment identifier))))

(define lookup (identifier environment)
(environment identifier))

3.3.6 Higher Order Taylor Forms

In the same spirit as the interval differentiator, higher order Taylor coefficients, needed for
the computation of enclosures with higher order, can be computed recursively [162, 164, 191].
Using denotational semantics we can formally define this computation as follows:

x, y E Variable-Set

t E Taylor-Environment = Identifier '- Variable-Set -+ Expressible-Taylor-Coefficient

f E Coefficient-Environment = Variable-Set - Ezpressible-Taylor-Coefficient

with valuation function:

T : Expression '- Taylor-Environment -* Variable-Set -, Expressible-Taylor-Coefficient

Tic] At-Ax.(x = ,) - C[c] zero

T['D At. x.t[Ijx

T[(+ E, E2)J - At.Ax.(T[E]tx + T[E2]tx)

Tj[(- E, E2)] -+ At.Ax.(TJ[E]tx- T[E2]tx)

TjL(El E2)j Avt.Ax. F'n o T Eljt(x)i * |[E2]t(xt\(x)i)

'[(/ E, E2)] At. Ax.(TE,]tx - E'l~ T[E21t(x)-T[(/ E E2)]t(x\(x)i))/T[E2]t0

Tf[(labda (I) E)j] -+ At.Ax.Af.Ay.T[E](bind f[I]t)y

T[(El E2)1 ~-At.Ax.(T[E,]tx)(T[E2jt)x

In the above summations, all subsets (x)i of x are enumerated starting with the empty set
for Y?=0 and with singletons in the case of l.

Example 3.11

To obtain the interval Taylor coefficient used in example 3.7 we simply evaluate:

42

TI[(+ (- 1 (* s x)) (1/3 (x (x x))))](bind[x]J[2,3](bind x]J[lx[1]to)){[x[x]} =
[2, 3]

with initial environment to.
An enclosure for the Taylor coefficients of the exponential function, for example, would

be:

TI[(exp E)] A- At.Ax.1Ty[exp](TfEj]t)x

Tyexp] . Af.y.(y = ¢) [e(f), e(f)] il/ n f(y) e f(y\(y)i)

The index i refers to the first element of y. The following example illustrates the use of
the above extension.

Example 3.12

Referring again to the expression of example 3.5, the 2nd order Taylor coefficients are:

Tr[(let ((square (lambda v) (* v v))))
(exp (/ 1 (+ (square x) (square y)))))

(bind [x][1, 2](bind [xD[xJ[1]

(bind Iy]0[2 , 4](bind [y][y][1]to)))){{I44xi)} = [-0.047, 0.160]

Tr[(let ((square (lambda (v) (* v))))
(exp (/ I (+ (square x) (square y)))))]

(bind [x]i[l, 2](bind 1[xx[1]
(bind y]D[2, 4](bind [yy][j1l]to)))){[xJ[ry} = [0.002, 0.688]

TI (let ((square (lambda v) (* v v))))
(exp (/ 1 (+ (square x) (square y)))))

(bind ixe[l, 2](bind Rx~[l[1]
(bind [y]0[2, 4](bind [y[y][]to)))){fyIyy]} = [-0.040, 0.676]

which gives us the following second order enclosure:

T2(f 2, ([1, 2] [2, 4])T, ([3/2] [3])T) = [0.633, 2.218]

which in this case is of lesser quality then the mean value bound.

3.3.7 Interval Slopes

Krawczyk [127] found that if interval slopes S(f, X, c), defined by:

f(x) - f(c) E S(f,X,c)(x - c)

instead of derivatives are used to develop the centered form:

R(f, X, c) = f(c) + S(f, X, c)(X - c)

better enclosures are produced than with the mean value form. As is the case for derivatives.
interal slopes can be computed recursively. It can be shown [171] that for the slopes

43

computed by the slope evaluator described below:

wv(S(f,X,c)) - tw(D(f,X)) + O(w(X)2) (3.7)
2

In addition, the slopes S(f, X, c) are Lipschitz continuous so that Krawczyk's centered form
is also of order 2.

For Krawczyk's interval slopes evaluator, we define the following semantic domains:

p E Expressible-Value

t Ezpressible-Slope

c E Center-Environment = Identifier '- Ezpressible- Value

s E Slope-Environment = Identifier 4 Ezpressible-Slope

The valuation functions is:

S Expression ~- Value-Environment P- Center-Environment
Slope-Environment i- Expressible-Slope

S$c] Au.Ac.As.zero

S[Ij Au-Ac-Ass[Ij

SE(E E2)] Au.Ac.As.(S[Ei]ucs+ S[E2]ucs)

Si(- E E2)] AuAcAs.(SjEIucs - S[E21UCS)

Si(* E E2)] Au.Ac.As.(j£E]u Sf[E2ucs + S[Ea]ucs 6[E2]c)

Sf(E E2) Au.Ac.As.(SjE]Jucs -,C[(/ E E2)jc. S[E2]uCs)/I6[E2]U

Sj[(iabda (I E)] - Au.Ac.As.Av.Ap.At.SjE](bind v[l]u)(bind p[I]c)(bind t[I]s)

SE(E1 E2) - Au.Ac.As.S[El]ucs(£[E2]u)(&j[E2]c)(S[E2]Ucs)

Example 3.13

We apply this recursive evaluator to expression (3.6) of example 3.3:

S[(+ (- (* s x)) (* 1/3 (* x '(* x x))))]

(bind [x][2, 3]uo)(bind [x][5/2]co)(bind [x][1]so) = [0.083, 2.584]

uo, co and so are the initial value, center and slope environments. With this interval slope
Krawczyk's centered form gives us the following enclosure:

R(f 1 , [2,3],5/2) = [-7.584, -5]

which is better than T (fl, [2. 3]. 5/2) of example 3.6.

In this case the exponentiation function would be defined as follows:

44

Si(.xp E)] i- AXu.c.s.sriexpl(c6IElu)(cE]c)(SE]ucs)

Sy.[expl -; Av.Ap.At.[evl, e.]. t

Example 3.14

The slope for the expression of example 3.10 would be:

Sit (let ((square (laabda (v) (* v O))))
(exp (/ 1 (+ (square x) (square y)))))

(bind [x][1 , 2](bind [y][2, 4]uo))
(bind [ix][3/2](bind [y][3]co))

(bind jx][l](bind[y[O]so)) = [-0.076, -0.011]

S[(let ((square (laabda (v) (* v O))))
(exp (/ I (+ (square) (square y))))) D

(bind Ix][1 , 2](bind [y][2 , 4]uo))
(bind Ix][3/2](bind Iy][3]co))

(bind [x][0](bind [y][1]so)) = [-0.152, -0.023]

which is better then the enclosure produced by the differentiator. The Krawczyk centered
form accordingly improves the bound of the mean-value form given in example 3.10:

R(f 2 , ([1, 2] [2, 4])T, ([3/2] [3])T) = [0.902, 1.283]

3.4 Interval Matrices
3.4.1 Definition

A multidimensional interval array simply is a multidimensional array with interval compo-
nents. For example, an interval vector X E In is a set of vectors x E Rn with:

X = {x xi Xi, i = 1,.. .,n}

It represents an N-dimensional box aligned with the coordinate axes. Similarly, an interval
matrix A E ImXn is a set of real matrices a E RnXx n defined as:

A = {a aij E Aij, i= 1,...,m, j = 1,...,n}

Many quantities related to intervals can simply be extended to the multidimensional case
by componentwise application of the corresponding interval definition. For example, if we
use the componentwise notation A = (Aij) for A E Imxn, we have:

(Aij), = (Aiq')
(Aij) = (Aiju)
(ALj)c = (Aijc)

45

The definitions of width and distance do however need to be adapted to deal with multiple
dimensions:

w((Ai)) = 1(w(Aij))lloo
d((Alij), (A2i)) = II(d(Alij, A2ij))loo

We use the row sum norm of a matrix defined as:

n
?1

11AIIo = max E Aijl}

3.4.2 Operators

Operations on multidimensional arrays are defined the same way as in definition (3.2). For
example if A E I X n and B E In Xp we define:

A o B = O{a o b a A,b E B} (3.8)

with o E {+,-,-}. Explicit expressions for these operators are:

(Aij) + (Bij) = (Aij + Bij)
(Aij)- (Bij) = (Aij - Bij)
(Aij) (Bij) = (E=I AikBkj)

Note that for the interval representation of a matrix multiplication, as defined in equa-
tion (3.8), in general we do not have strict equality, but rather:

{a. b a E A,b E B} C A B (3.9)

3.4.3 Properties

The commutativity of + and is maintained when applied to higher dimensional vectors,
as is subdistributivity. But although + is associative, · in general is not. However, in case
w(P) = 0, i.e. P is a point matrix, we have:

(PA)B C P(AB)
A(BP) C (AB)P

Finally, one can show that the higher dimensional operators as defined in equation (3.8)
also are inclusion monotone.

3.4.4 Inverse

The inverse of a regular square interval matrix is defined as:

A - = O{a- 1 a E A}

46

An interval matrix is regular if it contains no singular point matrices. Verifying the regularity
of interval matrices is, in general, very difficult. Some regularity tests can be found in [171].
For certain classes of matrices the problem becomes more tractable. In particular, the
verification of regularity of A' 1A, i.e. strong regularity, can be done by checking for strict
diagonal dominance. The latter holds if:

IA- 1'A - Iloo < 1 (3.10)

Note that (A'lA)c = I.

3.5 Linear Interval Equations

3.5.1 Definition

The solution X, E I of AX = B with A E I Xn and B E I is defined as:

.,o {x : a = b la E A,b E B} (3.11)

When A is regular this corresponds to:

Xo = O{a-lb a E A,b E B} C A-lB

It is a remarkable fact that no strict equality is obtained in the above expression. If in
addition the solution is restricted to a given interval X, we use the following notation:

Z(A,B,X) = X, n X

The solution of interval equations is inclusion monotone, in the sense that:

A' C A } X C XB'CB

For a square system of N interval equations, there can be up to O(22N) linear point
systems bounding the exact solution. So, the difficulty is to find tight bounds for the
solution of this equation while avoiding combinatorial explosion. This problem is relatively
well understood, and a thorough treatment of possible solution methods can be found in
[171].

Example 3.15

To illustrate the complexity of interval equations we borrow the following simple example
from [86]:

[2, 3]X + [0, 1]X = [0,120] (312
[1, 2]X1 + [2,3]X 2 = [60, 240]

The exact solution is represented by the shaded area in figure 3.3, the corresponding interval
solution is:

X = [-120, 90] x [-60,240]

47

Figure 3.3: Exact solution of interval equations (3.12)

Solution methods can be simplified by preconditioning the system with the midpoint
inverse [90, 130, 157, 168] and use the solution Xp of (A7'A)X = A 4lB instead, with
X C Xp. The overestimation occurring by this simplification is quantified by:

w(X~) (P) < < P_(Xo)

for IA. A-IKoo < 3 < 1 [171]. Unfortunately this implies that considerable overestimation
is possible when #3 1.

3.5.2 Krawczyk's method

Krawczyk's operator [126] is defined by:

K(A, B, X) = (B - (A - I)X) n X (3.13)

It has the property:
X, X ~ X, C (A,B, X)

For simplicity we will assume here that X C X. The enclosures produced by Krawczyk's
operator on simple initial enclosures have the quadratic approximation property if A is
regular, i.e. if both w(A) and w(B) are of O(c) then d(K(A, B, X), X,) is of order O(E2).

When A is strongly regular we can apply Krawczyk's operator on the following crude
bound:

X, C Xo = (A)-IIBI[-1, 1] (3.14)

48

to obtain Krawczyk's direct inverse solution:

Xd = B + (A)-llA- IIIBI[-1, 1] (3.15)

(A) is the comparison matrix [177], with:

(A)i = (Aii)
(A)i = -AjI for i j

So that Krawczyk's direct inverse solution requires only the inversion of one point matrix.
Krawczyk's iteration is obtained by repeated application of the operator:

x(,') x(A,B,X('))

and in the limit one obtains:
X,,= lim X(') (3.16)

1-400c--oo

When:

IA-IlIIoo _ < < 1
the quality of the above bounds can be quantified by:

W(X) < (X.) < (X^d) < p8(X°)

for every initial enclosure X(°) of iteration (3.16) [171]. This indicates that both solutions
are very good for small /3. Furthermore if Xd C X (°) it can be shown that X, = X,,d.
Although Krawczyk's iteration can yield better results than the direct inverse solution, the
latter is usually preferred since it is more efficient.

Example 3.16

For the linear interval equations (3.12) of example 3.15, after preconditioning with the
midpoint inverse, we find:

X = [-140.455, 167.728]
ld [-163.637, 267.273])

and indeed:

([-140.455, 167.728]
[-163.637, 267.273]

This solution corresponds to the following system of equations:

2.5X1 + 0.5X2 = [-217.5, 337.5]
1.5XI + 2.5X2 = [-157.5, 457.5]

and is illustrated in figure 3.4. For this example /3 = IIA 1A - Ioo = 0.364 so that
the overestimation bound (1 + 3)/(1 - 3) = 6.334 is rather conservative as compared to
w(X,)/w(X,) = 1.468.

49

I,

.2

Figure 3.4: Krawczyk's solution X,, of equations (3.12)

3.5.3 Gauss-Seidel Iteration

The Gauss-Seidel method can be extended to interval arithmetic [201]. For A and B E I
we first define the one dimensional solution operator over domain X E I:

y(A,B,X) = O{ E X : ax = b a E A,b E B}

The corresponding explicit formula is [89]:

B/A n X if O A
(A B X O{z z E X and (< B/AI or > B/Au)} if B > OE A
a ,,XO)- {xI E Xand(x<Bd/A. orx > B./AI)} if B < OEA

X if OEA,B

The multidimensional solution operator for A E IX n and B E I n can now be defined as:

7i(A,B,X) = y(Aii,B Bi- AikYk - AikXk, Xi) (3.17)
k<i k>i

Note that even when A is singular this operator can possibly improve the estimate. In
addition, it can be proven that the Gauss-Seidel iterates always are better than Krawczyk's
iterates [171]:

7y(A,B,X) C K(A,B,X) (3.18)

The Gauss-Seidel iteration consequently also has the quadratic approximation property.
More importantly, this statement is true for a larger class of Krawczyk like iterations [171].
In particular, it shows that, as opposed to non interval equations, no improvement can be

50

-M _=

obtained by the use of so called overrelaxation techniques.
The limit of the Gauss-Seidel iteration:

X(4+1) 7(A, B, X())

is denoted as:
X = im XS

When A is strongly regular X is of similar quality as X, [171] but in view of (3.18) the
Gauss-Seidel method is always preferred.

Example 3.17

The Gauss-Seidel solution X. of the same preconditioned system of example 3.16 is:

= [-130.228, 167.728]
[-104.416, 267.273])

Clearly we have X, C X,,.

The speed of convergence can be improved if the forward sweep (3.17) is followed by
a backward sweep [2]. This is a fairly inexpensive improvement as some quantities do not
need to be recomputed.

Finally, when X(') C i(X (°)) and assuming that midpoint inverse preconditioning is
used, it can be shown that A is strongly regular. Furthermore, Neumaier in [171] found
that for these matrices, X., can be obtained in one step. As was the case for Krawczyk's
direct solution (3.15), application of the Gauss-Seidel operator on initial bound (3.14) yields
following explicit result:

bi + ((Aii)Xoi - Bi)[-1, 1]
=zd- ~ Aii

The iterative solution process can therefore be replaced by this direct solution as soon as
strong regularity is detected. On the other hand, the strong regularity result also implies
that if the matrix is not strongly regular and K(A, B, X) $ X, at least one of the bounds
will not be improved.

3.5.4 Gauss Elimination

Systems of linear interval equations can also be solved by Gauss elimination. Indeed, the
Gauss elimination solution e(a,b) can be applied on definition (3.11):

X, = O{e(a,b) I a E A,b E B}

If we simply carry out the elimination step:

A(j-l) A(j-l)
Lij Aij /Ajj
A(j) a(-. .(-) (3.19)
~ik = 'ik - Lj jkB? -B j-) rR-)

51

for i and k > j and the backsubstitution step:

X -)X A-X (3.20)
-ji

in interval arithmetic, by inclusion monotonicity we have:

X, XI

As shown above, if the solution is restricted to a given domain X, component wise intersec-
tion can be performed in the backsubstitution step. The corresponding solution operator is
denoted by:

X = (A,B,X)

The Gaussian elimination algorithm can only be used when 0 A(' -1), furthermore
33 I

it can sometimes give unacceptably bad results [2011. However, when midpoint inverse
preconditioning is used and A is strongly regular, it can be shown that Gauss elimination
always can be carried out [3]. In addition, we have the following important result [171]:

X C X?
IXcI = IX-y

This means that under the above conditions, one endpoint of each of the components of Xc
agrees with X, whereas the other endpoint may be sharper.
Example 3.18

If we apply the Gauss elimination algorithm to equations of example 3.16, we obtain:

X, = [-130.228,167.728]
[-60.000,267.273]

which is an improvement over X.

It is therefore always recommended to use midpoint inverse preconditioning in con-
junction with Gauss elimination, in which case Gauss elimination is the preferred solution.
Unfortunately it can only be guaranteed that the algorithm can be carried out when the
matrix is strongly regular.

3.5.5 Other Methods

In [6] Alefeld focuses on the 'Single Step Method with Intersection after Every Component'

(SIC). Gauss-Seidel iterates are very similar to SIC iterates, but in addition X('+) is solved
for in every step. They will therefore always produce sharper results. Note that the sym-
metric version of SIC finds its counterpart in the application of Gauss-Seidel in forward and
in backward sweeps.

An interval version of the Gauss-Jordan method was proposed by Hansen in [85, 90].
This method is however less efficient then Gauss elimination and the generalization of (3.18)

52

by [171] proves that it never produces bounds that are sharper than Gauss-Seidel.
A different approach was adopted by Hansen in [86]. The proposed method uses the

signs of x,/8aij and i9xr/8bi to determine which interval bounds of Aij and Bi correspond
with the bounds of X,. This method is however computationally expensive and relies on
other solution methods when the signs of the partial derivatives can not be determined.

More recently, methods have been proposed to find the exact solution X,. In [203, 204],
Rohn shows that if /3 = IIAc1A - IIoo < 1 and A is inverse stable, i.e. 0 0 (A-l)jj, this
can be done in O(N3) operations. When < 1 becomes larger, the complexity increases
to O(N 4). Finally, when A is not strongly regular and f/ > 1 the worst case complexity is
often exponential in N.

3.6 Solution of Nonlinear Equations

Most of the solution techniques for solving nonlinear algebraic equations are obtained by
extending classical numerical algorithms. A good overview of these techniques can be found
in [266].

3.6.1 Newton Interval Method

One of the most effective techniques is to extend Newton's method with intervals [5, 7].
Figure 3.5 illustrates the 1-dimensional case. The classical Newton method is locally ap-

Figure 3.5: Interval extension of Newton's method

proximates the function near the current estimate x(t):

f(X) f(X(1)) + f(z())(x - x()) (3.21)

here superscripts indicate iteration numbers. The solution of f(z) = 0 is then approximated
with the solution of this linear equation, which is used as next iterate:

x(1+) = x(t) f(x ()) (3.22)
f'(x())

53

X0+1)

The interval extension of this method uses the mean value form instead of approxima-
tion (3.21):

f(X) 5 f(X ()) + f'(X(Z)) (X - X()) (3.23)

to obtain an enclosure of the function range, and uses the corresponding interval solution
as next iterate to bound the solution domain:

X(! + 1) = X () f((X)) (3.24)f,(x(o))

Starting from the function value at the midpoint of the interval, the bounds on the deriva-
tives limit the function to lie within the shaded area. This means that any solution has
to belong to the intersection of this area with the zero-axis, which becomes the solution
interval for the next iteration. As mentioned earlier, in the case of finite precision compu-
tations, the last significant digit is always rounded conservatively, i.e. downwards for the
lower bound and upwards for the upper bound.

For a system of nonlinear equations X E In and the interval derivative in equation (3.23)
is replaced by an interval Jacobian J(X) E InXn:

f(XC)) + J(X(')) (X - Xc()) 0 (3.25)

As was originally discussed in [161], a solution to this interval equation can be used as next
iterate. The Newton operator uses the exact solution of (3.25) and is defined as:

N(f,X) = Xc - (J(X),f(Xc), AX) (3.26)

the corresponding Newton iterates are therefore obtained by:

X(1+1) = N(f,X())

The quadratic convergence of these iterates:

3Q E R : w(X (ml)) < Qw(X(1)) 2

is well known, and already dates back to Bartle [15].
We illustrate the approximation introduced by the Newton operator with a simple ex-

ample.

Example 3.19

The system of equations:
· ?+x~-1 = 0

1 2 ~~~~~~~~~~~(3.2 7)(xI -1) 2 + X2 1- 0 (3.27)

has two solutions (1/2 v/3/ 2)T and (1/2 - // 2)T. With initial-domain:

X(O) = ([0.2, 0-8]
[0.6,0.9]

54

equation (3.25) gives the following linear interval approximation:

[0.4, 1.6]AX1 + [1.2, 1.8]AX2
[-1.6, -0.4]AX 1 + [1.2, 1.8]AX2

= [0.1875]
= [0.1875]

This is illustrated in figure 3.6. The shaded areas represent the feasible domains for each

Figure 3.6: Interval Newton approximation for example 3.19

of the functions, and their intersection corresponds with the exact solution of
first Newton iterate is:

X(1)= ([0406, 0.594]
[0.854, 0.900]

(3.28). The

Note that for this first iteration the exact solution of (3.28) is not contained in X(°).
To achieve a 10 digit accuracy, the remaining Newton iterates are:

iteration X
0 [+0.2v0 +0.8vO]
1 £+0.4v0 +0.6v0]
2 [+0.499v0 +0.501v0J
3 [+0.4999999v0 +0.5000001v0]
4 (+0.4999999999v0 +0.5000000001vO]

[+0.6v0
[+0.85v0

[+0.8658vC
[+0.86602538v0

[+0.8660254037v0

Y
+0. 9v0]
+0.90vOl
+0.8664vO]
+0.86602544vO]
+0.8660254038vO]

Linear interval equation (3.25) can be solved using the solution methods discussed in
section 3.5. In particular, if for each iterate the solution of (3.25) is approximated by a
single application of a linear operator, we obtain the following solution operators.

55

(3.28)

3.6.2 Krawczyk's Operator

Application of Krawczyk's linear operator (3.13) to solve (3.25) leads to the corresponding
nonlinear krawczyk operator:

K(f, X) = XC - r.(J(X), f(XC), AX) (3.29)

Krawczyk's operator was originally proposed in [126].
Figure 3.7 shows the geometric interpretation of the corresponding 1-dimensional New-

ton interval method. Instead of finding the exact solution, Krawczyk's operator intersects

XMo

Figure 3.7: Geometric interpretation of the Krawczyk's operator

more conservative, but less complicated boundaries. Indeed, for a system of equations, the
complexity of the preconditioned Krawczyk operator is only O(N 3), as the matrix to be
inverted is not an intervai matrix.

Repeated application of Krawczyk's operator leads to the iterates:

X(1+l) = K(f,X(t))

Exariple 3.20

If we apply Krawczyk's operator on the same initial box of example 3.19, we obtain the
following equations:

AX 1 + 1.5AX2
-AX 1 + 1.5AX 2

= [-0.038, 0.413]
= [-0.038, 0.413] (3.30)

with solution:

X() = ([0.275, 0.725]
[0.725, 0.900]

This is illustrated in Figure 3.8.
The following iterates are:

56

)

Figure 3.8: Krawczyk's approximation for example 3.19

[+0.2vO
[+0. 2v0
[+0.3vO
[+0.4vO

[+0.47v0
[+0.497v0

[+0.49997v0
[+0.499999997v0

[+0.4999999999v0

+0. 8vO]

+0. 8vO]
+0.7vO]
+0.6vO0
+0.53v0]
+0.503v0]
+0.50003v0]
+0.500000003v0]
+0.500000000 1vO]

[+0.6v0
[+0.7v0
[+O.7vO
[+0.8v0

[+0.85v0
[+0.864v0

[+0.86601v0
[+0.866025402v0

[+0.8660254037v0

Y
+0. 9vO
+0.9vOl
+0.9vO0
+0.9vOl
+0.89v0]
+0.868v0]
+0.86605v0]
+0. 866025406vO]
+0.8660254038vO]

Moore [163] proposed a small modification to Krawczyk's iterative solution and proved
superlinear convergence with fixed interval Jacobian. For variable Jacobians we have
quadratic convergence, as shown in [166]. Alefeld [7] discovered that Gauss elimination
could replace the inversion of the preconditioning matrix by modifying (3.29):

A(f, X) = Xc- e(J(X)c, f(X) + AJ(X)AX, AX) (3.31)

Although this Alefeld Operator is more efficient, Gauss elimination is performed with an
interval right hand side. Therefore, by subdistributivity, this modification can produce
wider intervals than (3.29):

K(f, X) C A(f, X)

Note also that in (3.31) intersection with the original domain AX can be performed during
the backsubstitution step.

57

iteration
0

1
2
3
4
5
6
7
8

3.6.3 Hansen-Sengupta Operator

The Hansen-Sengupta operator is the non-linear version of the Gauss-Seidel operator for
linear systems [89]:

H(f, X) = Xc- 7 (J(X), f(Xc), AX) (3.32)

Since linear Gauss-Seidel iterates are better than Krawczyk iterates (3.18), we have:

H(f,X) C K(f,X)

The Hansen-Sengupta operator is therefore always preferred to Krawczyk's operator, as the
following example shows.

Example 3.21

In the same conditions as example 3.20 the first Hansen-Sengupta iterate:

X(l) [0.387, 0.613]
[0.816, 0.900]

is better as the first Krawczyk iterate and the convergence is faster:

iteration X Y
0 [+0.2v +0.0.8vO [+0.6vO +0.9vO]
1 [+0.3v0 +0.7v0] [+0.81v0 +0.90v0]
2 [+0.49v0 +0.51v0] [+0.864v0 +0.869v0]
3 [+0.49998v0 +0.50002v0] [+0.866024v0 +0.866028v0]
4 [+0. 4999999999v0 +0.5000000001v0]O [+0.8660254037v0 +0.8660254038vO]

A symmetric version of the Hansen-Sengupta operator is proposed in [222].

3.6.4 Gauss-Newton Operator

In [217], Schwandt first introduced an operator that uses Gauss elimination to solve (3.25),
the Gauss-Newton operator

G(f,X) = Xc - E(J(X),f(Xc), AX) (3.33)

Alefeld proves its quadratic convergence and discusses the conditions under which the Gauss-
Newton iterates converge [5].

Example 3.22

If we apply the Gauss-Newton operator on equations (3.27), we obtain:

X(l) = ([0.387, 0.613]

[0.833, 0.900]

and

58

iteration X Y
0 [+0.2v0 +0.8v03 [+0.6vO +0.9vO3
1 [+0.3vO +0.7vO [+0.83v0 +0.90vO0
2 [+0.4998v0 +0.5002vO] (+0.8659vO +0.8662vO]
3 [+0.49999999v0 +0.50000001vO] (+0.86602539v0 +0.86602541v0]
4 (+0.4999999999v0 +0.5000000001YO] [+0.8660254037v0 +0.8660254038v03

which is an improvement over the Hansen-Sengupta operator.

3.6.5 Other Newton Operators

Various hybrid approaches are possible, see for example [88] for a good combination of
Gauss-Seidel iterations with Gauss elimination.

Shearer and Wolfe improve the convergence of Krawczyk's method by performing a
number of inner iterations with the same interval Jacobian at each step [265]. In [224] they
describe a method where the number of inner iterations are dermined automatically and
apply it to the Alefeld operator. Inner iterations for the Hansen-Sengupta operator are
discussed [221].

Neumaier in [169] shows how quadratic convergence can be maintained with a fixed
interval Jacobian, when point Newton iterates are performed on the center.

Another class of Newton operators relies on inclusion of the inverse Jacobian. These op-
erators are discussed in [6]. A very elegant operator is found in [6][Chapter 20]. Here iterates
for inclusion of the inverse Jacobian are performed at the same time as the corresponding
Newton iterates, while maintaining quadratic convergence.

3.6.6 Interval Slopes Operater

Krawczyk's interval slopes can be used to bound the range of functions. Similarly to New-
ton's method this set of equations can be inverted to obtain a bound on the solution [87, 134]:

f(X(z)) + S(f, X(), X ()) (X - X(l)) = 0 (3.34)

As interval slopes produce sharper enclosures then derivatives (3.7), better solution bounds
are obtained. The iterates are however not necessarily enclosed by the corresponding New-
ton iterates, as the following example shows:

Example 3.23

Using Krawczyk's slope evaluator described in section 3.3.7 and the Gauss-Newton operator
we obtained the following results for (3.27):

X()= ([0.468, 0.532])
[0.859, 0.896]

iteration X Y
0 [+0.2vO +0.8vO] [+0.6vO0 +0.9vO
1 [+0.46v0 +0.54vO] [+0.85v0 +0.90vO0
2 [+0.4997v0 +0.5003vO] [+0.8659v0 +0.8663vO]
3 [+0.49999998v0 +0.50000002vO] [+0.86602539v0 +0.86602542vO]
4 [+0. 4999999999v0 +0.5000000001vO] [+0. 8660254037v0 +0.8660254038v0]

59

These iterates are clearly better then the corresponding Newton iterates.
A drawback of this approach is that the slopes inclusions depend on the center of

the interval equation (3.34). It is therefore not possible to improve the convergence by
corresponding point iterations for the center. Furthermore the uniqueness result associated
with Newton's method does not apply for interval slopes, as is discussed below.

3.7 Existence and Uniqueness Tests

If f is Lipschitz continuous, the interval operators I(f, X) discussed above are conservative:

x E X, f(z) = 0 z E I(f,X) (3.35)

and as a direct consequence, we have:

I(f,X)nX = Vx E X : f(z) 0 (3.36)

which allows us to check for the existence of solution in a given domain. Furthermore it
can be shown that if there are no solutions in X either (3.36) will hold after a finite number
of iterations or I(f, X) = X = f(X) = 0. This property is called Strong Convergence.
Uniqueness of a solution can be determined by:

I(f,X) C i(X) =* 3! E X : f(z) = 0 (3.37)

For Newton's operator the existence test is due to Moore [162], whereas the uniqueness
test was discovered by Nickel [172]. The strong convergence result is due to Neumaier
[169]. Similar results hold for Krawczyk's operator [116, 126, 128, 163]. In case of the
Hansen-Sengupta operator existence was proven by Hansen [89], uniqueness by Moore [167]
and Qi [189], and strong convergence by Alefeld [4]. Existence and uniqueness tests for
the symmetric Hansen-Sengupta operator are given by Shearer and Wolfe [223]. As these
operators produce increasingly better enclosures these tests are also increasinlgy sharper.
Similar results hold for the slope solution operator [170]. Unfortunately the uniqueness
result is not valid, instead we have:

I(f, X) C i(X) 3x E X : (x) = 0 (3.38)

3.8 Initial Domains

The convergence properties of the interval Newton method described above are only valid
asymptotically. Indeed, in general there is no guarantee that the sequence of intervals
generated by the Krawczyk's operator (3.29) will converge at all.

This implies that any practical implementation requires methods to find appropriate
initial domains. This problem is very similar to the one of finding good starting points for
iterative solution techniques. In order to ensure 100% reliability, it is however required that
that all possible solution domains are found. The classic approach is to recursively bisect
the original domain in the direction corresponding with the largest interval [118, 166], while
attempting to eliminate these newly created subdomains. Testing if a domain could contain

60

a solution usually is done using an interval function evaluation, i.e. 0 E F(X()), or by using
one of the above existence tests. Unfortunately, the subdivision technique can very quickly
generate an exponential number of candidate domains when the starting domain is large.

This problem has received only very little attention in the literature. It is only recently
that researchers actively started investigating optimal subdivision strategies. Their ap-
proach is to bisect in the direction that maximizes the chance of eliminating new candidate
domains [195]. Although the fundamental complexity of the global solution of nonlinear al-
gebraic equations can not be reduced, results to date indicate that significant improvements
can be made over existing subdivision techniques.

Example 3.24

To illustrate the amount of work involved we apply this approach to equation (3.27) with:

and eatvleof()ad()ThbicinarilsrtgX(°) = (-2 u s
[-2, 2]

and exact values of f(X) and J(X). The bisections are illustrated in figure 3.9 '"e used

Figure 3.9: Bisections for example 3.24

the Gauss-Seidel operator and resorted to bisection when width reduction was smaller than
90%. The shaded areas indicate the converging Gauss-Seidel iterations.

The initial domains for typical design problems however, are usually not very large. We
therefore have decided on the one hand to improve accuracy and speed of interval enclosure
methods, and on the other to address the consistency problem.

61

Chapter 4

On Solving Midpoint
Preconditioned Linear Interval
Equations

4.1 Introduction

In this chapter we present a number of new results on the solution of midpoint precondi-
tioned linear interval equations. A geometric interpretation of the midpoint precondition-
ing operation and the different solution algorithms is presented in section 4.2. In section
4.3 we propose a modification of the Gauss elimination solution technique. This method
never fails, uses current domain information and always produces better enclosures then
the Gauss-Seidel method. In section 4.4, we describe an O(N 3) algorithm to find exact
solutions in case of regular matrices. This algorithm is modified in section 4.5 to find good
enclosures when an initial domain is considered, including the case of singular matrices.

4.2 Geometric Interpretation of the Solution of Linear In-
terval Equations

4.2.1 Introduction

To give a geometric interpretation of both the Gauss-Seidel and Gauss elimination meth-
ods, we will again use example 3.15 borrowed from [86]. After midpoint preconditioning
equations (3.12) become:

[0.7272, 1.2728]X1 + [-0.2728, 0.2728]X2 = [-21.819, 49.091] (4.1)
[-0.3637,0.3637]XI + [0.6363, 1.3637]X2 = [-5.4546, 109.091]

The effect of this operation is shown in figure 4.1. As is the case here, when BC ~ 0 some
overestimation can occur. However, when BC = 0 no accuracy will be lost by this operation.
So. as far as solving linear interval equations is concerned, it therefore pays to find a good
center.

62

Figure 4.1: Midpoint Preconditioning of Linear Interval Equations

4.2.2 Gauss-Seidel Method

For equation (3.12), with initial domain:

X(O) _ [-200, 200])
[-200, 300]

the Gauss-Seidel method is illustrated in figure 4.2. Using X2 = [-200, 300] the first
equation is solved for X 1, resulting in X1 = [-142.5, 180.0]. With these bounds one then
solves the second equation for X2. The Gauss-Seidel solution therefore is:

-X(1) = [-142.5, 180.0]

[-111.429, 274.286]

Since we have applied the Gauss-Seidel operator only once, these results are not as good as
the Gauss-Seidel fixed point solution X.

Note that the geometric interpretation presented in this section is also valid for linear
interval systems, which are not midpoint preconditioned.

4.2.3 Gauss Elimination Method

The geometric interpretation of the Gauss elimination method is depicted in figure 4.3.
Elimination of the first variable corresponds to a projection of the solution set onto the
corresponding subspace. This -for now unknown- projection is then used in the second
equation to solve for the remaining variable X2. This variable is then backsubstituted in
the first equation to find -X1. The overestimation occurred by elimination is associated with

63

Figure 4.2: Geometric Interpretation of Gauss Seidel Solution of equations (3.12)

the projection operation.
For equation (3.12) the Gauss elimination method produces:

X [-130.228, 167.728]
[-60.000, 267.273]

It is now clear why Gauss elimination produces better results then Gauss-Seidel on midpoint
preconditioned systems, i.e. Xc C Xy.

The geometric interpretation presented in this section does not apply for linear interval
systems which are not midpoint preconditioned. The special structure of midpoint precon-
ditioned systems indeed ensures that the correspondence between the worst case interval
bounds is not lost, which is not the case for general linear interval systems.

4.3 Modified Gauss Elimination Solution

Gauss elimination is superior to Gauss-Seidel in case of midpoint preconditioned matrices
[171][T.hm 4.5.11]. However, it can not be carried out on a singular matrix, in which case a
zero diagonal interval element is encountered. Furthermore, it does not make good use of
the initial domain. For these reasons the midpoint preconditioned Gauss-Seidel operator is
usually preferred.

To overcome these shortcomings we propose the following modification to the Gauss
elimination scheme. Before a variable is eliminated, the Gauss-Seidel interval of that vari-
able is computed. If this interval is within the corresponding domain interval, the current
equation is used to eliminate the variable in the remaining equations. Otherwise, the
Gauss-Seidel interval is used to eliminate (i.e. substitute for) that variable. This modified

64

Figure 4.3: Geometric Interpretation of Gauss Elimination Solution of equations (3.12)

elimination scheme is recursively applied to the remaining equations.
This modification allows for zero interval pivots, since in that case one will automatically

resort to the Gauss-Seidel solution. In fact, when the initial domain is small enough, this
algorithm will use Gauss-Seidel for each variable and therefore be equivalent the Gauss-
Seidel operator. On the other hand when the initial domain is large, no Gauss-Seidel
interval will ever be used and the algorithm simply performs Gauss elimination.

We now show that application of the Gauss-Seidel operator on the resulting system
always produces better results than on the original system. To do this we first show that
this holds after elimination of only one variable.

Let us first introduce some notation. Consider the following linear system of interval
equations:

n

E AijX = B i i= 1,...,n (4.2)
j=l

The Gauss-Seidel solution of this system is:

Y = 7y(Aii, Bi- E AijYj - AijXj, Xi) (4.3)
j<i j>i

After elimination of X1 the Gauss-Seidel solution is the same as in (4.3) for i = 1 and for
i, j > 1 we have:

Yci) =(A"), BA) Ai,)Yr(1) _ A)Xj.)
i (' (4.4)

J~t.i>i

65

where:

Al = Aj A Aj (4.5)

B) = B AilB (4.6)
All

Without loss of generality, we can assume that Y C X1. Otherwise the proposed algorithm
would simply perform one Gauss-Seidel step, and the solution of both systems would be
identical.

First, we need the following two lemmas. They are not new and similar results can be
found in the literature [171].

Lemma 1 Let A', A", B, X E I then y(A' + A", B, X) C 7(A', B- A"X, X)
Proof: If x E X, (a'+ a")x = b then a'x = b - a"x E (B - A"X)

Lemma 2 Let A', A", X I and A' = A' = 0 then (A' + A")X = A'X + A"X
Proof: (A'+ A")X = I(A'+ A")IIXI[-1, 1] = IA'IXI[-1, 1] + A"IIXI[-1, 1] = A'X +

A"X

We now have the following theorem:

Theorem 1 For a midpoint preconditioned system, using definitions (4.3) and (4.4) if
Yz C X we have Yi(l) C Yi..

Proof: For i = 1, Y1) and Y1 are the same and so:

, (,) C Y (4.7)

For i,j > 1 by applying lemma 1 to definition (4.3) and using (4.5) we have:

YM~~~ ~~~~) 1) AiO)X.AlAl i ~~(l), iC 'y(Aii, B?') -)Y - A ij) + AiA)) (4.8)
j<i j>i 11

By subdistributivity and using (4.5) and (4.6):

Yi(l) C (Aii, B -E AijlYJ') - 1j AijXj - (AlIBI _ E A~iAi j A1 zA,, * ACX)r,41, _ Al All.i<i . i>i A n <i Al .>i A
(4.9)

By constru;tion we know that y(1) C Xj, so using lemma 2, we can write:

B, - 1:AlXj}.() C 7(Aii, Bi - Aijl' (1) - AX j - Ail) (4.10).7<'All Xi) (410)
j<i j>i A

But by assumption:
B1 -E AljXj

51~A=lA~

66

furthermore for j < i we can induce that:

so that:
Yi() C 7y(Aii, Bi - Aij - AijXj- AlY l ,Xi) = Yi (4.11)

j<i j>i
O

Recursive application of the theorem on A() and B 1) shows that application of the
Gauss-Seidel operator on the eliminated system is better as compared to the original one:

y.(n) C i

By inclusion monotonicity this inequality still holds when both a forward and a backward
sweep of the Gauss-Seidel operator is performed. As a consequence the proposed modified
Gauss operator, is better then the symmetric Gauss-Seidel operator.

Due to the proposed modification, it is not needed to perform the intersection with the
original domain at backsubstitution time. The additional cost incurred by this modification

is at most , which is less than N 2 of a simple Gauss-Seidel sweep.2'
The algorithm is not always better then Gauss elimination as the selection of a Gauss-

Seidel solution is not guaranteed, but rather likely, to be better. So there are cases where
the sequential application of the Gauss-Seidel operator and the Gauss elimination operator
produces a better result. The converse is also true as the elimination projections can be
better when information of the initial domain is used. This gain can help reduce the
exponential complexity associated with the bisection process for the solution of nonlinear
equations.

4.4 An O(N3) Algorithm for the Exact Solution
As illustrated in figure 4.4 the exact solution for a midpoint preconditioned system of linear
interval equations (4.1) can be seen as the intersection of the point sets corresponding to
n interval equations. In this section, we ignore any initial domain information and assume
that the interval matrix is regular. Both assumptions will be relaxed in the next section.
Without loss of generality we also assume that Bic > 0. Indeed if it is not the case we
simply redefine Xi = -Xi and multiply the i-th equation by -1.

Furthermore, as the matrix A is midpoint preconditioned, the solution set of the i-th
equation is symmetric w.r.t. the origin in the j-th coordinate direction j ; i. The bounding
surfaces of the i-th equation corresponding to B1 and B, bound the lower, respectively upper
values of xi. Since by assumption Bi, > 0 the values of xi on the upper surface are positive
and in absolute values they are larger then the corresponding xi on the lower bounding
surface. Furthermore, the xi increase with increasing IxjJ. X. therefore corresponds with
the vertex v and can be found as the intersection of the n upper surfaces:

(A)v= Bu,

67

Figure 4.4: Exact Solution Algorithm for Equations (4.1)

The lower values of zi are bounded by the lower bounding surface. In addition they de-
crease with increasing xjI. Xi, can therefore be obtained at c[i], the intersection of the lower
bounding surface corresponding with Bit and the upper bounding surfaces corresponding
to Bj. for j i.

Going back to figure 4.4 we now know that the vertex v produces Xu, and so:

v = (A)-'B,, (4.12)

To compute the location of each of the remaining corners c[i] of the hypercube-like solution,
we will follow the edges of this hypercube until we reach the opposite surface. The initial
directions correspond to the vectors e[i] emanating from v, which are the columns of (A) - '.
We then reach the mirror points m[i] where m[i]i = 0:

m[i] = v - e[i]
e[fi

Let us assume for now that the lower bounding surface is entirely below the origin, so that
we can follow the image of the ray past the mirror point until we reach c[i]. Using the
mirrored direction:

eib= f -e[i]j for i = j
e[i]j for i # j

c[i] can be computed as the intersection of the edge with the surface:

(A)*c[i]- Bil = 0 13
c[ij - (m[i] + e3[i]s') = 0(*)4i] - mi]+ '[i],') = 0

68

where (A)' is the adjoint comparison matrix, with:

m
(A)' = (Aii)
(A) = AqIj for i j

Since c[i] produces the lower bound in the of i-th coordinate, we are interested only in c[i]ji:

X = [i]

Using equations (4.13) we obtain:
Xil = i

where:
ai = 2Bice[i]i - vi

The derivation of this result is presented in appendix A.1.
For equations (4.1) we have:

(A)_' = 1.75
1=

X,. = (A)-B,. = (
so that:

(4.14)

(4.15)

(4.16)
0.75)

2

167.728
267.273

and:

XI=((-21.818 + 49.091)1.75 - 167.728
(-5.455 + 109.091)2 - 267.273

As the following example shows, the lower bounding surfaces are not necessarily below
the origin. A change of B in equation (3.12):

[2, 3]X 1 + [0, 1]X 2

[1,2]X, +[2,3]X 2

= [0, 120]
= [200,240]

produces the following midpoint preconditioned system:

[0.7272, 1.2728]X1 + [-0.2728, 0.2728]X2
[-0.3637, 0.3637]X1 + [0.6363, 1.3637]X2

= [-21.819, 36.364]
= [58.182,109.091]

which is shown in figure 4.5. In this case we encounter c[2] before m[2].
happens when:

(A)?m[i] - Bil < 0

which, using definition (4.15) corresponds to the condition:

ai > 0

(4.18)

This situation

(4.19)

as is shown in the appendix A.1. Not only do we need to use the original direction e[i] but
the equation of the bounding surface also is different. In this case the corner c[i] described

69

)({-120
-60 }

(4.17)

Figure 4.5: Exact Solution Algorithm for Equations (4.18)

IAlic[i] - Bil = 0
c[i]-(m[i] + e[i]s) = 0

We obtain:

Xi = [i]i = ai
2e[i]i- 1

as shown in appendix A.1.
We illustrate these computations for equations (4.18).

Xu = (A)-Bu = (145.4545
254.5454

and:

= (-21.818 + 36.364)1.75 - 145.45
(58.1818 + 109.091)2- 254.545

while al < 0, a2 > 0 so that:

-120
80

4-1

(-120)
80)

-120
26.666

The complexity of this algorithm is (O(N3) corresponding to the inversion of (A). Indeed the
computation of all the lower bounds requires (O(N), and is very fast. Figure 4.6 illustrates
this method on a three dimensional problem.

Note that up to now we have assumed Bi > 0. For the general case we would have to

70

by:

(4.20)

Figure 4.6: Three dimensional solution of Midpoint Preconditioned System

make a simple change to the above results. We now have:

X = = (A). lBuI

Defining:
Qt = 2Bice[i]i- vt

we have:
ai rfor a < ~ --

for a > 0
2e[i]i - 1

and finally:
Xi = sgn(Bic)X~

4.5 General Solution of Midpoint Preconditioned Interval
Equations

The results of the preceding section can be modified to take advantage of initial domains
and to deal with singular interval matrices. Unfortunately, at the time of writing it remains
an open question whether the exact intersection of the initial domain with the solution can
be computed in polynomial time. So in the algorithm described below, some overestimation
can occur if the interval solution domain intersects the initial domain. Indeed, as was the
case in section 4.3, the complexity of this problem doesn't allow us to select the best solution
method at each step. Again, we have opted to improve on the Gauss-Seidel operator, while
still obtaining the exact solution for large initial domains.

71

We start out by taking advantage of information concerning the initial domain only,
i.e. we will assume for now that A is not singular. This implies that we can perform
LU-decomposition on (A) so that the linear equation for v becomes:

(A)v = LUv = B (4.21)

In this equation we have adopted a more general notation By for the bounds of B which
determine v. Using forward substitution equation (4.21) can be written as:

Uv = RB + C (4.22)

where R = L - 1 also a lower triangular matrix. For reasons given below, we have included
the constant vector C E R n , which is zero initially. As before we can, without loss of
generality, make the assumption that Bic > 0O. We now are in a position to determine the
exact bounds on the n-th variable of the solution of the linear system. Indeed, we see from
equation (4.22) that:

ann

furthermore:
RnB + Cn (4.23)n= FIn(4.23)

Unn

This allows us to compute a, using equation (4.15):

an= 2Bnce[n] n-
-- 1 (2BncRnn - RnB, -Cn)

Unn

and so:
acn for an < O

Xni= an for an > 0 (4.24)
2e[n]n 1

We now have to decide whether to use information provided by the initial domain
or by the n-th equation for the bounds on Xn in order to obtain the tightest solution.
Unfortunately, this cannot always be decided perfectly, so that some overestimation can
occur. We will return to this selection criterion later.

When the bounds on the exact solution are determined by the n-th equation, we simply
project the solution on the corresponding subspace using backward substitution, where Bnv
is either equal to BnilI or to Bnu:

U?) = uj
RQ) Ri Uin Rn

Unn

Ci~) = C - U C + (Ri. - U)Bnv
Un, Unn

for i. j < n.
If on the other hand the bounds of the initial domain constrain the exact solution, we

72

proceed to use a fixed domain bound Xf instead of the current equation to eliminate Xn:

~1)

C. J

= ij

= Rij,
= Ci -Ui.Xnf

for i, j < n.
In both cases the original system is reduced to the following system of dimension n - 1:

U(l)v(') = R(')Bl) + C() (4.25)

where the n-th variable has been eliminated, i.e.:

V(1) = V

Biv(1) -= Biv

where i < n.
We now apply this algorithm recursively to equation (4.25) until the solution has been

bounded in all dimensions. Geometrically this can be interpreted as follows. When the n-
th variable is eliminated by backsubstitution, one simply projects the exact solution of the
linear interval system on the corresponding subspace. This is equivalent to the algorithm
described in section 4.4 except for the occasional use of IBn1[. The case where the variable
is directly substituted for, is pictured in figure 4.7. Here the hypercube like solution is

Figure 4.7: General Solution of 3 Dimensional Interval Equations

intersected with a hyperplane perpendicular to the n-th coordinate axis, located at Xnf.
The solution in the corresponding subspace is therefore of a different shape then the one

73

C[-'

obtained by projection (see also figure 4.8).
Let us now deal with de selection criterion and the determination of the bounds of the

n-th variable. We denote the bounds of Xn determined by equations (4.23) and (4.24) by
X,, and the bounds of the initial domain Xnb. Clearly, when:

Xna E Xnb (4.26)

it is better to use the exact solution, i.e. to use:

X = Xn, n Xnb

and perform backsubstitution using:

B = Bnu

like before. If relation (4.26) does not hold, our decision will depend on the position of
the intersecting hyperplane. As Xnf moves from Xni to Xn,, different solution shapes
arise. This is illustrated in figure 4.8. The picture on the left shows a projection of the

Figure 4.8: Intersection of the Exact Solution with a Hyperplane

hypercube like solution along coordinate X1, the projection of this solution along coordinate
X3 and the shape of the intersection itself are shown on the right. Because the shape of the
projection is not the same as the shape of intersection, partial overlap can occur. To obtain
the exact solution we would need to use information of both shapes in further calculations.
Unfortunately such a combined shape is not exactly representable within the framework of
interval arithmetic, and would lead to exponential complexity.

As we indicated earlier, we set out to obtain a solution that is consistently better than
the Gauss-Seidel solution. So in cases of partial overlap, we need to use the inner solution,

74

corresponding with the shape of the intersection obtained by direct substitution rather than
the outer solution corresponding with the projection obtained by backsubstitution.

With this in mind, one can verify that if:

Xnb CXno

we should use:
X = Xnb

and perform direct substitution with:

X.f = IXnbl

This leaves with the situation where:

X., E Xnb

Hiere we will use:

X = [Xn.,, Xnbu]

but we need to consider four different cases as far as the subspace solution is concerned.
First, when:

Xno.l > 0

any intersection will contain the exact solution and we need to perform a direct substitution
with:

X. f = Xbu

When:
Xnbi > IXnyl1

an overlap situation is possible, this is the case illustrated in figure 4.8. We have to use:

Xnf = Xnbu

and perform direct substitution. If it is the case that:

IXnbuJ [., lXnl]

where we have defined 3n as:

| (L 1 for Bn < o
On, (A}nn

Bnl for B > 0
IAI..

we have no choice but to perform direct substitution with:

xnf = xal'1

due to possible overlap with the projection of the opposite face of our hypercube like solu-

75

tion. Finally we are left with:
IXnbul < n

in which case we can safely perform backsubstitution using:

B = IB.l

hereby projecting the face of the hypercube corresponding to B 1l.
The overestimation incurred by this method is due partly to the possible overestimation

of the solution shape at each step, indeed depending on the bounds in the other directions it
is still possible that the elimination operation produces better bounds then the substitution
operation and vice versa. But also to the nature of the projection operation since the
vertices of the exact solution might not belong to the projected solution.

After this analysis it is clear that the performance of Gauss-Seidel and modified Gauss
elimination are not comparable, i.e. there are cases where one will be better then the other
and vice versa. Due to the complexity of the exact solution, we tend to believe that there is
no O(N 3) time algorithm that is consistently better than either of them. We could however
conceive an O(N 3) algorithm that can be expected to yield best results on average. Instead
of choosing direct or backward substitution, we could indeed generate an interval.enclosure
which minimizes the area of the solution in the current subspace.

Until now we have assumed that A is not singular. Indeed, it does not make sense to
perform an LU-decomposition on (A) when A is singular; some Lii would become negative.
When during the LU-decomposition process negative pivots are encountered, we can simply
use direct substitution for that variable, and reduce the dimension of the system by one.
In this case the vector C will not be necessarily be zero at the beginning of our solution
algorithm.

Geometrically, a negative pivot means that the corresponding equation does not bound
the solution in that direction, so that the bounds of the initial domain need to be used.

76

Chapter 5

Fast Evaluation of Partial
Derivatives

5.1 Introduction

Solving nonlinear systems requires evaluation of partial derivatives at every iteration and for
every domain generated by the bisection strategy. We therefore believe that incorporation
of efficient evaluation strategies in the compilation of partial derivatives can contribute
significantly towards the reduction of the overall solution time.

We would like to note that the material proposed in this chapter is not restricted to
arithmetic expressions. All algorithms apply without modification when more general op-
erators replace the arithmetic ones, as long as local derivative information is available. In
fact, they can be particularly useful for computational graphs involving vector and matrix
operations.

The automatic computation of partial derivatives is usually done in a recursive fashion.
As discussed in section 5.2 the backward approach can be more efficient. The problem
of finding optimal evaluation strategies for partial derivatives on computational graphs is
addressed in section 5.3.

5.2 Backward Evaluation Algorithm

In section 5.2.1 we describe the backward evaluation algorithm and how it can be used for
interval differentiation. In section 5.2.2 we present the chain rule for interval slopes and use
it to for backward evaluation in section 5.2.3.

5.2.1 Evaluation of Interval Partial Derivatives

As proposed in [190] automatic computation of partial derivatives is usually done recursively.
This bottom up approach unfortunately has a complexity of O(nF) where n is the number of
arguments and F is the complexity of one function evaluation. The forward computation of
partial derivatives is not as efficient as it could be, indeed it involves incremental operations
on vectors. and many of these operations would need to be performed only once per step.
This consideration led researchers to the more efficient backward, top down, computation

77

of partial derivatives [232], a strategy very similar to the backpropagation algorithm in
neural networks [210]. The complexity of evaluating both the function value and the partial
derivatives reduces to CF, where the constant factor C = 3 as shown by Baur and Strassen
[16]. Note that this result assumes that all operators are at most binary. Iri [108] analyzes
this algorithm from the perspective of graph theory, and shows how the value of C depends
on the different measures of complexity. A comparison between the different approaches
together with some practical applications of this technique can be found in [77, 78].

Let us first introduce some terminology and notation. A directed graph G is a pair
(N, A), where N is a finite set of nodes and A a finite set of arcs. An arc from to y
is an ordered pair (x, y). The notation a(x) is used to indicate arcs incident to node x,
a+(x) for the arcs leaving node x. Accordingly, the in-degree of z is Ia~(z)I, the out-degree
Ia'(z)I. The maximum in-degree of G is denoted by la-I, maximum out-degree by Ia-I.
Neighbors of x in the negative direction are denoted by N(x), by NG+(z) in the positive
direction. Similarly, R-(z) is the set of nodes reachable from z in the negative direction,
R(x) in the positive direction. Finally, the sign will be dropped when we want to indicate
the union of both positive and negative contributions, for example RG(z) = RG(x)U R+(x).

We will limit ourselves here to non-recursive computations, and therefore define com-
putational graphs, such as arithmetic expressions, as directed acyclic graphs where nodes
correspond to operators o and arcs to data dependencies. Variables are associated with the
result of each operator as well as with the inputs. Although strictly speaking there is a
difference between the two, it is not needed to make that distinction here.

Evaluation of an computational graph is done through a bottom up traversal, starting
from the independent variables the arcs are followed in the positive direction and arithmetic
operations are performed as their arguments become available. This is illustrated in figure
5.1. For interval evaluation, all operators can simply be replaced by their interval arithmetic

U V

Figure 5.1: Evaluation of a Computational Graph

counterparts:
(Eo~,) o (U o V)

Using the chain rule of partial derivatives, backward evaluation can be expressed as
follows:

=Z9f Of ,(5.1)
wENG()

78

The summation is performed over the nodes which directly depend on z, i.e. N+(x). This
is illustrated in figure 5.2. First the partial derivatives of the function value f with respect

I

I
I
I

I
I

/4 %
I

I

I
I I

I
a

I
I

i %
%

Figure 5.2: The Chain Rule for Partial Derivatives

to each node tw are multiplied by the partial derivative of that node w.r.t. to its input .
The resulting contributions are then accumulated to yield the partial derivative of f w.r.t.
to node a.

Equation (5.1) forms the basis of the backpropagation algorithm, which is illustrated in
figure 5.3. Partial derivative contributions (o) of all E TG (u o v) are added when

U v

Figure 5.3: The Backward Evaluation Algorithm

node u o v is reached. Backpropagation over that node corresponds with multiplication of
the current value Oufov with the partial derivatives uoV and OuOV. The partial derivatives

79

I

for o E {+, -, *,/} are:

U-vau-

U*V

u
otsUt)

= 1

= 1

-= V

= 1/v

t+v
U-vaivU*V

= 1
= -1
= U

= -u/v2

Note that it is not needed to perform two divisions when backpropagating over a division
node. As shown in [108] for example, one can perform local surgery on the computational
graph to avoid unnecessary operations.

The backward evaluation algorithm requires that the values at the nodes be known.
Evaluation of interval partial derivatives therefore consists of two parts. First, a forward
evaluation is performed to initialize all nodes, including the initialization of the function
node with the interval value of the function. This step is then followed by backward evalu-
ation of the partial derivatives from the function node f, starting with:

05= [1]af tl

towards the independent variables. At this point, the partial derivative of the function
w.r.t. each particular variable is available at the corresponding node.

Example 5.1

The execution of this algorithm on the expression (((x y) (+ y z))) with X = [2, 3],
Y = [4, 5] and Z = [10] is illustrated in figure 5.4. First interval evaluation is performed, as
shown on the left. It is followed by backward evaluation of the partial derivatives, depicted
on the right.

[2, 3]

x

Figure 5.4: Execution of the backward evaluation algorithm on example 5.1

Finally, we would like to observe that syntactic transformation of the compiled ex-
pressions can be used to avoid unnecessary multiplications or summations involving the

80

constants 0 and 1, and single element summations.

Example 5.2

Compilation of the function:
(lambda (x y z) (+ (* (* x y) (+ y z))))

including the optimizing syntactic transformation, could for example produce the following
lambda-expression:

(lambda (x y z)
(let, ((v (x y))

(v2 (+ y z))
(v3 (* vi v2))

(f (v3 x))
(dfx-v (v2 y))

(dfx (+ dfx-vl 1))

(dfy-v1 (* v2 x))

(dfy (+ dy-v v)))
(list f dfx dy vi)))

which return a list of the function value and partial derivatives with respect to its arguments.

5.2.2 The Chain Rule for Interval Slopes

As the original definition by Krawczyk [134, 170] and the inclusion algebra of [171] suggests,
slopes are to be computed recursively. In this section we establish an equivalent to the
chain rule of partial derivatives for interval slopes. This allows us to use the more efficient
backward evaluation strategy described in the previous section for their computation.

Recall that the slope S(f, X, c) of a function f over an interval X and center c is defined
such that:

f(z) - f(c) = Sf,x,c)(x - c)
E S(f, X, c)(- c)

To simplify some of the notation below we will write S(f, X, c) = Sfi, leaving the dependence
on c implicit.

We now show that in general, taking into account the above definitions, we can write:

(u o v) - (o Vc) E S°O(u - Uc) + S°v"(v V) (5.2)

where o E {+,-,,/}. The validity of equation (5.2) is shown by explicitly computing
(u o v) - (Uc o Vc) for the primitive operators.

For the addition we simply have:

(u + v) - (U + VK) = (- U,) + (v - V.)

which means that S~+ " = 1 and Su+ = 1.
The slope computation for the subtraction is very similar:

(u- v) - (Uc - Vc) = (- Uc) - (v -)

81

Here Sr v = 1 and S` = -1.
For the multiplication, unlike Krawczyk's slopes evaluator, we introduce a symmetric

slope:

uv-UuVc = u.c (v- V) + 2 (uUc)

2 2

In this case S v = V + V and Suv = U + U
2 2

And finally for division, we have:

v -*(u -V (-v-V))

E 1 (u-U~)- (v- V)~~~~~~~~V V V,

The partial slope functions for the division are Sulv = and S =
Having established the validity of equation (5.2) we proceed to establish the chain rule

for interval slopes:

(u o v) -(Uc o V) E Sov(u - U) + So(V - V)
U°VS,=(2c) + SUP"SV(- c)

= V

E SUovSX. - c) + SuOVSv (. - c)E"' '"PSX "V °X

So by definition:
S ° = SV S + SU XS (5.3)

which is the equivalent to the chain rule of partial differentiation.
The rule applies for elementary functions in exactly the same way. For example, for

square roots we find:

v7- E +(f-F,)

so that SF = v- 1+ /

5.2.3 Evaluation of Interval Slopes

We are now in a position to discuss the backward evaluation of interval slopes. As was
the case with the computation of partial derivatives, we divide the computation up in two
parts. During forward evaluation, illustrated in figure 5.5, we now not only compute the
range U o V, but also the centers U o V, including the computation of the function range
and function center. This is followed by the backward evaluation of interval slopes, based
on:

sf= S (5.4)

YENG (x)

82

U V

Figure 5.5: Interval and Center Evaluation

which is the slope equivalent of equation (5.2). The resulting backpropagation algorithm is
shown in figure 5.6. The initial value to be propagated from the function node is:

U V

Figure 5.6: Backward Evaluation of Slopes

SF = [1]

After completion of the algorithm the nodes corresponding to the independent variables
will contain the interval slope of the function w.r.t. to that particular variable.

The resulting algorithm also has a complexity of O(F), assuming that all operators are
at most binary. Although the constant will be larger, in addition to the interval slopes
both center and interval values of the function are computed. In fact, the operation counts
are similar to the backward evaluation of interval partial derivatives, including the interval
evaluation of the function, combined with a separate evaluation for the center.

83

Example 5.3

In figure 5.7 we illustrate the execution of the algorithm on the same expression as in
example 5.1. Center and interval evaluation are shown on the left, the backward evaluation
of the interval slopes is illustrated on the right.

[2,3]

x

Figure 5.7: Execution of the backward slope evaluation algorithm on example 5.3

Example 5.4

Compilation of the function of example 5.2 now produces:
(lambda (x xc y yc z zc)

(let* ((vl (* x y))
(vlc (* xc yc))
(v2 (+ y z))
(v2c (+ yc zc))
(v3 (* vl v2))
(v3c (* vic v2c))
(f (+ v3 x))
(4c (+ v3c xc))
(sfvl ((+ v2 v2c) 2))
(sfv2 (/ (+ v vc) 2))
(svlx (/ (+ y yc) 2))
(svly (/ (+ x xc) 2))
(sfx-vl (* sfv1 svix))
(sfy-vl (* sfv sy))
(sfx (+ sfx-vl 1))
(sfy (+ sfy-vl sfv2)))

(list fc f sfx sy sfv2)))

which return a list of the function center, function value and interval slopes with respect to
its arguments.

In this case additional syntactic transformation can sometimes be performed. Indeed,
in addition to the traditional optimizations of multiplications with narrow intervals, some

84

operations on their centerpoint can be redundant.
Note also that when slopes are evaluated in a backward fashion, it is not possible to

improve the range by intermediate intersections with the slope centered form, as was the
case in the recursive evaluation. This is because the required slope information is not
available when the range is computed, and in fact never will be computed explicitly.

5.3 Partial Derivatives of Computational Graphs
Backward evaluation can provide a significant speedup for the computation of a single
function with many independent variables. As more functions are computed by a single
computational graph the speedup decreases, because each function requires its backward
evaluation of derivatives. When many functions are provided by a common computational
graph, but there is only one variable, forward evaluation is generally more efficient than
backward evaluation. Indeed, in this case the situation is reversed! In this section we set
out to find optimal evaluation strategies for partial derivatives.

In section 5.3.1 we discuss how this problem is related the solution of sparse linear
systems. We then proceed to present a node condensation model for the computation
of partial derivatives in section 5.3.2. In section 5.3.3 we describe a technique to compute
lower bounds on multiplication counts and in section 5.3.4 we propose algorithms for finding
the optimal condensation order. Finally, in section 5.3.5 we present a number of heuristic
algorithms for determining good condensation orders.

5.3.1 Solution Methods for Sparse Matrices

The computation of partial derivatives for the solution of nonlinear systems can be simplified
by introducing intermediate variables for each operator. When the operators are of bounded
degree the corresponding jacobian is sparse. The increase in the dimension can be offset
by the taking advantage of the sparsity of the matrix. As this problem has been studied
extensively in the literature, we first review some of the existing techniques.

In [183] Parter uses a vertex condensation model for undirected graphs to analyze vari-
able elimination in sparse linear systems. He discusses various types of matrices and shows
that for matrices representing trees, a condensation order can be found that preserves the
sparseness of the matrix, i.e. no non zero elements are introduced. Rose in [205] extends
this result to triangulated graphs. Unsymmetric sparse matrices can be represented us-
ing directed graphs, see for example [92]. Tarjan [246] discusses Gaussian elimination on
directed graphs in a more general setting. He considers the problem of finding minimum
fill condensation orders for directed graphs and introduces the concept perfect graphs, for
which an optimal ordering exist. Finally in [207] it is shown that for general directed graphs
the problem of finding a minimum fill ordering is NP-complete. Furthermore, it is suggested
(without proof) that the even the problem of finding an ordering whose fill-in is within a
constant factor of the minimum is NP-complete, i.e. that the minimum fill-in problem would
be NP-complete in the strong sense.

As a result, researchers have focused on heuristic algorithms for finding good conden-
sation orders. In the well known Markowitz strategy [156], for example, the a(k) pivot is

chosen that minimizes (rk) - 1)(c(k) - 1) where rk) and C(k) indicate the number of nonzeroI I t I~~~~~~~~~~~~~~~~~~~~~.

85

entries in the i-th row and j-th column at the k-th elimination step. For reasons of numer-
ical stability this strategy is usually modified so that the selection of very small pivots is
avoided [176]. Application of the Markowitz strategy to symmetric matrices is called the
minimum degree algorithm [248, 206]. An alternative, more expensive method consists of
eliminating the vertex that introduces the least amount of new edges. This is the so called
minimum deficiency strategy [156, 248].

A practical implementation of some heuristic algorithms based on the concept of reach-
able sets of undirected graphs was introduced by George [71]. Marking of eliminated ver-
tices and searching for the reachable ones can be avoided by grouping eliminated vertices
in supernodes. The resulting graphs, also called quotient graphs, were used to devise very
efficient sparse matrix solvers [70]. This concept can also be used in conjunction with level
structures for matrix partioning, leading to the notion of quotient trees [72].

Optimal evaluation of partial derivatives corresponds with node condensation on di-
rected acyclic graphs. It is therefore a special case of the more general vertex elimination
problem considered in the literature. Moreover, preconditioning of large interval matrices
can be very expensive, see for example [119]. We are therefore not concerned with solv-
ing the larger system, but rather with the elimination of the intermediate variables. This
problem has not received much attention and is usually handled simply by constraining the
renumbering of the variables [51]. Note also that we are interested in optimizing the com-
putational efficiency, and will do so mainly by considering the number of multiplications
required for the elimination of intermediate variables. Although this problem is similar
to the minimum fill problem of sparse matrix solvers, both problems are not equivalent.
Efficiency does not always correspond minimum fill and vice versa [51].

Finally, sparse matrix techniques are usually devised for solving systems with a large
number of variables, and as a consequence the complexity of the ordering algorithm itself
is very important. Since the number of intermediate variables typically is much smaller in
computational graphs, and, as noted in the introduction, the payoff of reduced computation
time can be significant, we believe that more complicated polynomial time algorithms can
be investigated.

To our knowledge the problem of optimal node condensation on directed acyclic graphs
has not yet been addressed.

5.3.2 Node Condensation on Directed Acyclic Graphs

To analyze the optimal computation of partial derivatives we introduce the concept of
derivative graphs. Where previously, nodes corresponded with arithmetic operators, they
are now associated with intermediate variables. This mapping is illustrated in figure 5.8.
In addition we label each arc (x, y) with the local partial derivative, Oz or Sy of y w.r.t. x,
here denoted by by. Mathematically, derivative graphs express the relation:

dy= ydx (5.5)

x~EN3(y)

Nodes with zero in-degree are called the input nodes A'(G), nodes with zero out-degree
function nodes .T(G). The remaining nodes U(G) = N - X(G) - F(G) are called the
intermediate nodes. The dimension d of the graph is equal to the number of intermediate

86

u v

Figure 5.8: Mapping from Computational to Derivative Graphs

nodes IU(G)I.
Iri [108] observes that there is an overhead associated with the computation of the

required partial derivatives. We would like to note that this is true only for the division
operator. Furthermore, the values of the local partial derivatives are not needed explicitly,
only their product, as it appears in the chain rule, has to be computed. In case of binary
operators, the overhead can therefore be avoided by proper syntactic transformation of the
compiled expressions.

The situation is different for n-ary arithmetic operators. The computation each of the
n partial derivatives of an n-ary multiplication operator, for example, involves a product
of n - 1 of its arguments. A more efficient approach would be to replace this operator by
a balanced tree of n - 1 binary multiplication operators. This transformed computational
graph now contains O(IaIN) nodes. In fact, using techniques similar to the ones used
in [16, 108], one can easily verify that, even for the general case, the complexity increases
to O(Ia-IF). Alternatively, one could consider n-ary arithmetic operators as supernodes,
similar to Speelpenning's funnels [232], containing n - 1 binary operators and compute
both the function value and partial derivatives using the backward evaluation strategy (see
section 5.2). In order to avoid the combinatorial problem of optimally transforming n-
ary operators in binary ones, and to allow for general, non-arithmetic operators, we will
hencefort h only consider the problem of finding optimal evaluation strategies for derivative
graphs.

Example 5.5

The following lambda-expression defines three functions in terms of three independent vari-
ables:

87

u v

(lambda (xl x2 x3)
(let* ((vl (x x2))

(v2 (x x2 x3))
(v3 (+ x x2 x3))
(v4 (+ v1 x2 v2 v3))
(v5 (sin 3))
(v6 (* v4 3 vS))
(v7 (x2 v3 v5))
(v8 (* v3 v5))
(f1 (exp v6))
(f2 (+ v6 v7))
(f3 (+ 7 8)))

(list fl f2 f3)))
The associated computational and derivative graphs are shown in figures 5.9 and 5.10 re-

spectively. The input nodes of the derivative graph are {zlxi, X2, z3}, {vl, v2, v3 , v4 , Vs5, v6 , V7, Vs}

are the intermediate nodes and {fl, f2, f3} the function nodes.

I

Figure 5.9: Computational Graph of example 5.5

In some cases and as demonstrated in example 5.5, many arcs of the derivative graphs
can have unit labels. Although this behavior is typically associated with almost linear
arithmetic expressions, it can be taken into account. First, as indicated in section 5.2,
unnecessary multiplications can be avoided. Moreover, this information can be incorporated
in the optimization problem simply by modifying the multiplication count to leave out the
trivial operations.

Condensation is the process of removing a node from a graph, and replacing its arcs
with new arcs connecting its negative to its positive neighbors, unless they already are part
of the graph. The label of a new arc is the product of the labels of the arcs of the eliminated
path. For an existing arc its label is incremented by the same product. The condensation
process is illustrated in figure 5.11. Algebraically, condensation of node u corresponds to

88

Figure 5.10: Derivative Graph of example 5.5

the elimination of du from the set of equations (5.5) for y E NG+(u). Here we often will take
the cost C(u, G) of condensing a node to be the number of required multiplications:

M(u,G) = a-(u)I * Iao(u)I (5.6)

However, for most algorithms presented below, there is no additional difficulty in considering
the required additions as well. The arcs created by the condensation of an internal node
u E U(G) are called the deficiency of u:

D(u, G) = {(x, y) ¢ A I (x, u), (u, y) E A}

Condensation of u in graph G yields to following condensation graph:

G/{u} = (N - u}, (A U D(u, G)) - aG(u)) (5.7)

A useful property of node condensation is that the condensation graph is independent of the
condensation order. We refer the reader to [207][Thm 1] for a more formal statement. As
a result we will generalize definition (5.7) and call G/U the condensation-graph associated
with the condensation of node set U.

The labels of G/U(G) are the partial derivatives of F(G) w.r.t. X(G). The computation
of partial derivatives therefore can be viewed as condensation of U(G) in the derivative graph

89

a
I I
I I

I. I % I
I I %. I

Figure 5.11: Node Condensation

G. If v : {1,2,.. ., d} - N, then the cost of the computation can be expressed as:

d

C,,(U(G), G) = C(v(i), G/ U{v(i)})
.=1 j<i

This leaves us with the problem of determining an optimal condensation order, formally
defined as:

va = minCj,(U(G),G)
A/

One particular type of ordering we will consider, is called layered order. Layers 1i are
obtained by incrementally removing all the inputs from the graph:

li = X(G- U lj)
j<i

(5.8)

A chain L of a graph is itself a graph, where each node represents a layer and is connected
only to the node representing the subsequent layer. The internal length of the chain c =
IU(L)I is equal to the length of the critical path of U(G). Note that c represents the minimum
required condensation steps with unbounded parallelism. The width w of a graph is the
maximum number of nodes in a layer:

w = max ij
1<i<c

A property of directed acyclic graphs (N,A) is that nodes ni E N can be topologically
sorted, i.e. they can be ordered such that (ni, nj) E A i < j. In the algorithms below we
will assume that the numbering of the nodes is compatible with in-order numbering of L.
As we will see, the ordering of the nodes within each layer is not important.

Note that the forward evaluation of partial derivatives corresponds with an in-order (v+)

90

4

condensation, while backward evaluation (see section 5.2) corresponds with reverse-order
(v-) condensation.
Example 5.6

Forward evaluation of the derivative graph of example 5.5 (see figure 5.10) correspond with
the condensation order.

v + = (, v2, 3 , V4 , V5s, 6, V7, Vs8)

The associated condensationi cost M>+ (U(G), G) is 44. For reverse evaluation we have:

Y- = (V8 , V7, V6 , V5 , V4 , V3 , V2 , V)

with M>+ ((G), G) = 42. An optimal condensation order is:

!' = (I, V2 , V4 , V5 , V8, V7 , V3 , V6)

the minimum cost for computing G/U(G) is M,,.(U(G),G) = 31.

Example 5.7

In a layered graph the nodes are organized in layers. Each node, except for the function
nodes, is connected to all the nodes of the next layer. One can easily verify that this
corresponds with definition (5.8). The U(G) of the layered graph shown in figure 5.12 has
a critical path length c = 3. Here we have M,+ (U(G), G) = 40. The backward evaluation

Figure 5.12: Layered Graph of example 5.7

strategy results in M,-(U(G),G) = 44, while M,. (U(G),G) = 36 when the middle layer is
condensed last.

We found that for layered graphs, optimal condensation orders are compatible with
layered orders, although we were not able to formally verify this claim. Surprisingly, the
most expensive condensation orders turned out not to be layered.

Since layered condensation of layered graphs corresponds with chain multiplication of
matrices, the optimal condensation problem would then correspond to the matrix chain
multiplication problem. For a chain of m this problem can be solved using dynamic pro-

91

gramming in O(m 3) time, see for example [40]. If more sophisticated techniques are used
this result can even be improved to O(mlogm) [103].

Example 5.8

For trees, layered order corresponds with height order, and the length of the critical path
is equal to the height of the tree. The U(G) of the tree in figure 5.13 has a critical path
length c = 2. For trees reverse-order condensation is optimal. Indeed, condensation of any

Figure 5.13: Tree Graph of example 5.8

node other than the root of the tree, increases the in-degree of its parent. For this example
we have M,(U(G),G) = M,-(U(G),G)= 12 and M,,+(U(G),G) = 16. Note that similar
statements can be made if the direction of the arcs is reversed.

5.3.3 Lower Bounds for Condensation

In this section we will present a technique to compute lower bounds on the number of
multiplications required for condensation. We would like to mention that there are some
results on lower bounds for gaussian elimination of sparse matrices associated with finite
elements or finite difference equations. Indeed, as the associated undirected graphs satisfy
an isoperimetric inequality, lower bounds can be computed using so the called element
model [55]. Here we consider general directed acyclic graphs, where these bounds can not
be used. We therefore develop a model for the computation of exact lower bounds.

The number of multiplications required to condense node u is equal to the in-degree
times the out-degree (see equation (5.6)). A lower bound can thus be found by:

M'(u, G)= min I a/U(U) * Ia+/U(U)I
UCU(G)-{ u}

However, only condensation of the reachable nodes of u can alter its degree. More specifi-
cally, a-(u)[depends only condensation in R-(u), Ia+(u)I on condensation in Rl(u). The
left part of figure 5.14 illustrates the situation for R+(u). Furthermore, as G is acyclic,
R-(u) n R+(u) = 0. So, the problem of minimizing the number of multiplications is decou-
pled and Ia-(u)I can be minimized over R-(u), a+(u)I over R+(u):

Af(u, G) = min IaG/UV_(u) * min ac/U+(U)
U-CR-(u) U+CR (U)

92

J
I

I %
I %

I
I

Figure 5.14: Minimum Degree and Maximum Flow

Except for the sign there is no fundamental difference between the positive and negative
direction. To simplify the discussion, we will therefore focus only on the minimization of
the out-degree. As condensation is path preserving, we know that:

V E RG(u) * R/{V}(u) = RG(u) - {v}

The minimum out-degree of a node is therefore equal to the minimum number of nodes
that need to be removed to disconnect u in the subgraph G+ induced by {u} U R(u).
By transforming G+ this problem can readily be re-casted as a maximum flow problem,
as shown in figure 5.14. All nodes of R+(u) are split in two, connected by new arcs with
unit capacity. Existing arcs have infinite capacity. The source s corresponds to u and all
function nodes F(G +) are connected to a supersink t. By the max-flow-min-cut theorem,
the maximum flow through the network is equal to the capacity of the minimum cut, by
construction equal to the minimum number of nodes that need to be removed to disconnect
U.

A lower bound for condensation of a set of nodes U can now simply be obtained by
summation of the lower bounds of the individual nodes:

M,,(U, G) = M*(u,G)
uEU

As the maximum flow is O(w), we can simply use the Ford-Fulkerson algorithm [63] to
find the maximum flow in O(wIAj) time. Using this technique a lower bound on the number
of multiplications to condense U(G) can therefore be found in O(wd[AI). Improvements
might be possible since there is partial overlap in the maximum flow computations for each
of the nodes. Indeed, a flow path through the network can be decomposed and used for in-
and out-degree minimization of each node on that path. Unfortunately, we don't believe
that the computation of lower bounds based on maximum flow can readily be extended to

93

include additions or tu leave out trivial multiplications.
In the algorithms below we will sometimes only allow for a subset U C U(G) to be

condensed. In that case the bordering elements in the positive direction are included as
outputs for computation of the minimum out-degree, bordering elements in the negative
direction is inputs for the minimum in-degree.

Finally, we would like to indicate that this approach can be used to determine a lower
bound on the dimensionality of the solution set associated with a computational graph. To
see this, let us define the minimum width w* of a graph G to be the minimum number
of nodes to be removed to disconnect X(G) from Y(G). As before, the minimum width
problem can be recast as a maximum flow problem and be computed using the Ford-
Fulkerson algorithm. The following example illustrates the required transformation.
Example 5.9

To compute w* of the derivative graph of example 5.5 (figure 5.10) every node in G is split
and connected by an arc of unit capacity. A supersource s is connected to all input nodes
X(G), while all output nodes .(G) are connected to a supersink t. The resulting flow graph
is shown in figure 5.15. For this example the maximum flow is 3, corresponding with the

Figure 5.15: Flow Graph of example 5.9

minirmum number of nodes that need to be removed to disconnect X(G) from Y(G).

The minimum width is an upper bound on the rank of the differential of the map from
X(G) to F(G). Indeed, by definition of the minimum width Y(G) can be written in terms
of w* variables. The rank of the differential can therefore not be bigger then w*. This
implies that if the solution set is not empty, n - w* is a lower bound on its dimensionality.
We illustrate this point with an example.

94

Example 5.10

Removal of arc (2, V7) from the derivative graph of example 5.5 (figure 5.10) reduces the
maximum flow to 2. Indeed, in this case one can write {fi, f2, f3} in terms of {V 3 , V4 }:

(lambda (3 4)
(let* ((vS (sin v3))

(v6 (* v4 v3 v5))
(v7 (* v3 v5))
(v8 (* v3 v5))
(f1 (exp W6))
(f2 (+ v6 v7))
(f3 (+ 7 v8)))

(list fit f2 3)))

As the rank of the differential is at most 2, the dimensionality of the solution is at least 1,
provided there is a solution.

This method provides an a priori criterion to determine whether a system of nonlinear
equations is singular. As there are many ways to define the same set of equations, the quality
of this criterion depends on the correspondence between the computational graph and the
functions they represent. In the context of design (see chapter 2), it should however prove
extremely useful. Indeed, here general computational graphs are intended to capture the
essence of the functionality. It also nicely complements symbolic or numerical approaches
to analyze strong connected components in constraint management [218].

5.3.4 Exact Algorithms for Optimal Condensation

The apparent difficulty of finding exact polynomial algorithms, and the similarity to the
NP-complete minimum fill problem suggests that finding optimal condensation orders on
directed acyclic graphs might be NP-complete as well. However, as many NP-complete
problems of constant tree width can be solved in polynomial time, we would not want to
jump to that conclusion without a formal proof.

Nevertheless, non-polynomial algorithms can be effective for small problems, or for off
line optimization on frequently used computational graphs. In this section we therefore
present two exact algorithms for optimal condensation.

Dynamic Condensation

Dynamic programming can be used to solve the optimal condensation problem. We call the
corresponding method dynamic condensation. Since the condensation graph is independent
of the condensation order, the problem has an optimal substructure property. Indeed, an
optimal condensation order can be associated with each subset U C U(G). If we recursively
consider to condense each node last:

C,.(U,G) = min C. (U - {u},G) + C(u,G/U - {u})
uEU

the solution associated with each set U can be memoized, hereby avoiding the enumeration
of all possible condensation orders. Furthermore, if U is not connected we can consider its
connected components independently, i.e. the connected components of the corresponding
graph G' induced by U. Indeed, the cost of condensing a node u only depends on RG(u) If

95

we denote a k node connected component of G of by Qk, we can use the following procedure.
For k= 1,...,d and for all Qk C U(G):

C,(QG,G) = min C,, (Q - {u},G)+ C(u,G/Qk -{u})
,,EQ

To apply this procedure recursively, one needs to add the contributions of each of the
connected components Qk of Qk - {u}. Note that as k' < k, C,.(Qk,G) has already
been memoized and can be looked up. Based on the numbering discussed earlier, we can
represent the connected components as sorted lists, so that memoization can be done using
hash tables. The algorithm terminates after all connected components have been processed.
If G is connected, Q = U(G) and the solution can be found by lookup. Otherwise, the
contributions of all connected components of U(G) have to be added.

The number of possible subsets of U(G), equal to 2d - 1, is an upper bound on the
number of connected components. As every node of each component is considered last, the
worst case complexity of dynamic condensation is O(d2d). For total graphs, where each
node is connected to all subsequent nodes, this bound is tight. For sparse graphs it is
however very conservative. In fact, we believe that for particular types of graphs, better
bounds can be found.

Example 5.11

Let us illustrate this method on the derivative graph of example 5.5 shown in figure 5.10.
We first consider all connected components Q1, i.e. every node on its own. For example, v5

has a multiplication count of 3, V7 of 6 and v of 2. We then continue with the connected
components of twoelements, i.e. Q2. Consider for example {v5 , V7}. If V5 is condensed last
we have 6+4 = 10 multiplications, whereas condensing V7 last yields 3 + 4 = 7. The optimal
order v for this connected component is thus (5 , v7) and Mv.({vs, v7},G) = 7. Similarly
for {v5, v8}, condensing v5 last will need 2 ., 3 = 5 multiplications, vs last 3 + 1 = 4. Here
v' is (v5,vs) and M, ({v5,vs},G) = 4. Observe that {v7,v8} will not be considered, as it
is not connected. Let us see how the algorithm works on {v5 , V7, vs}. If V7 is condensed
last, we already know that the optimal cost for condensing {v5, v8} is 4. We therefore count
4 + 4 = 8 multiplications, which happens to be equal to 7 + 1 = 8 when vs is condensed
last. Now, condensing v5 last, results in two connected components {V7} and {v8s}. So here
we have 6 + 2 + 3 = 11. An optimal condensation sequence for this connecte i component
is therefore (5 , V7 , Vs) with Me.({vs, V7, vs}, G) = 8.

To find an optimal solution (see example 5.6) for Q = U(G), the dynamic condensation
algorithm considered 85 connected components. Note that this is much less then 28- 1 =
255.

In many cases there is more then one optimal order. Indeed, only the relative order each
node u w.r.t. RG(U) is of importance. So v* really only corresponds with a partial order.
This implies that while the problem optimizes sequential operations, some parallelism can
be available.

Example 5.12

We illustrate this point by considering the optimal sequence of example 5.6. As v2 ' RG(vl)

their relative order is not important. However, 4 e RG(V1) and v4 E RG(v2). The relative

96

order of vl and v2 therefore needs to be preserved. The optimal partial order is illustrated
in figure 5.16, here the arrows indicate the precedence relation. Observe that the minimum

Figure 5.16: Optimal Partial order of example 5.6

number of condensation steps is 4, whereas c = 3, demonstrating the natural compromise
between sequential and parallel optimization.

Constraint Condensation

Constraint condensation uses additional information to attempt to reduce the number of
connected components to be considered in dynamic condensation. The first observation is
that it is not needed to consider all u E U last. Indeed, as indicated earlier, if v 0 RG(U),
the relative order of u and v is not important and we can for example enumerate them in
ascending order. To minimize C,. (U(G) - V, G) order reversal is required only if:

u E U RG(V)
vEV

The second observation is that lower bounds (see section 5.3.3) can be used in a branch and
bound strategy to prune the search space. As upper bounds we can for example take the
cost associated with a heuristic cheapest first strategy (see section 5.3.5 below). In addition
we can explore the search space by considering the cheapest node first, as in a best first
branch and bound strategy. Since this corresponds with our upper bound, the search space
is constrained only by the lower bound:

C (U,G) > C,,(U - {u},G) + C(u,G/U- {u})

where C. (Q, G) can replace C,(Q, G) as the computation proceeds.
Example 5.13

As we did in example 5.11, let us consider again the condensation of {V5, V7, Vs} of the deriva-
tive graph shown in figure 5.10. The cheapest first strategy, would produce (8, V5 , v7). So,
in our best first strategy, we begin by considering to condense V7 last, costing 4 multiplica-
tions, preceded by v5, since v5 E RG(V7), costing an additional 3 multiplications. v5 in turn
will be preceded by v8 with 2 multiplications. So this order has a multiplication count of 9.
Then v8, respecting ascending order, will precede v7 with 1 multiplication, itself preceded
by v5 as 5 E RG(V8), for an additional 3 multiplications. The optimal solution for the

97

set {V5 , V8} is therefore (V5 , V8) with a cost of 4 and can now be memoized. So the cost
associated with (V5, V8 , V7) is 8 multiplications. We then proceed to consider to condense v5
last for 3 multiplications. At this point two connected components remain v7} and {v8}.
However, condensation of {v7 } now has lower bound of 6, already adding up to at least
3 + 6 = 9 multiplications, which is higher then 8 multiplications we found before. As a
result we will not even consider {vs} and abandon this order. Remains then to consider
v8 last for 1 multiplication. The lower bound to condense {V5 , V7} is 7, so that again we
already know that we can not improve on (5, V8, V7) with 8 multiplications.

For {vl , v2, v3, v4, v 5, v6, v7, 8} = U(G), constraint condensation found the optimal so-
lution by considering only 17 connected components.

Although often only very few connected components are considered, more work is done
for each one. In fact, the worst case complexity of constraint condensation, O(wd 2IAI2d) is
higher then the complexity of dynamic condensation.
Example 5.14

Dynamic condensation of the tree of example 5.8 analyzed 12 connected components and
in this case constraint condensation considered all 12 as well. For the layered graph of
example 5.7 390 connected components were considered by dynamic condensation, while
constraint condensation only considered 11.

5.3.5 Heuristic Algorithms for Optimal Condensation

As was noted earlier, chances are that the optimal condensation problem on directed acyclic
graphs is NP-complete. So, as for sparse matrix solvers, unless P = NP, we have to resort
to heuristic algorithms. In this section we describe a number of polynomial time algorithms
that usually find a good condensation order.

Local Strategies

A simple heuristic, often used on undirected graphs is the Markowitz strategy. Although
we have indicated in section 5.3.1 that minimization of the fill-in is not equivalent to mini-
mization of the multiplication count, the local minimization done by Markowitz strategy is
approximately equivalent. In this section we generalize the idea of local minimization and
apply it to directed acyclic graphs.

All local strategies follow the pattern:

min H(u, G) (5.9)
UEU(G)

to select the next node u to condense and are recursively applied to the resulting conden-
sation graph G/{u}. They differ only by the heuristic H(u, G) used. We have considered a
number of different heuristics. The cheapest first strategy uses:

H(u, G) = C(u,G)

and has a complexity of 0(d). A different approach is to select the node with cost the

98

closest to its lower bound. For this best buy strategy we have:

H(u, G) = C(u, G) - C*(u, G)

When cost is taken to be the number of required multications, we can simply use the results
of section 5.3.3:

H(u, G) = M(u, G) - M*(u, G)

The corresponding time complexity is O(wdlAl). Finally, the minimum deficiency strategy
often used in sparse matrix solvers has the heuristic:

H(u, G) = D(u, G)

and runs in 0(d) time.

Example 5.15

Consider again the derivative graph (figure 5.10) of example 5.5. The cheapest first strategy
would first choose either vl or v8 since both of them have a cost of 2 multiplications.
We break the ties say by choosing ascending order and select to condense vl first. After
condensation vs still is the cheapest node and we condense it next. We then choose v2 at 3
multiplications by breaking the tie with v5. Now however, the cost of v4 is 3 so we choose
it next, and so on. The resulting order is:

V = (V 1 , V8 , V2 , V4, V5, V7, V6, V3)

with M,,(U(G), G) = 34. The best buy first strategy proceeds in a similar fashion, we find:

V = (V 1 , V2, V4, V, V8 , V7, V3, V6)

Here, Mv(U(G), G) = 31. By comparison the cost associated with the minimum deficiency
ordering is 38 again indicating that minimum fill-in and minimum cost are not the same.

In general, we found that the best buy strategy is not necessarily better then the simpler
cheapest first strategy. Also, as the following example indicates, neither of them works well
on trees.

Example 5.16

Both cheapest first and best buy condensation of the tree of example 5.8 resulted in 16
multiplications, instead of 12. On the layered graph of example 5.7 however both of them
found an optimal order.

Look Ahead Strategies

Formal analyses of local strategies for sparse matrix solvers, carried out on limited problem
classes, revealed that tie breaking algorithms can have a strong influence on the results [51].
Based on this observation, and our experience with the local strategies of section 5.3.5, we
propose a number of more powerful techniques that fall under the category of look ahead
strategies [255]. Not only do they take each node u into consideration, they also take
advantage of the corresponding condensation graph G/{u}. In general they conform to the

99

following pattern:
min C(u, G) + Ht(U(G) - {u}, G/{u}) (5.10)

UEU(G)

Again, various heuristics can be used on the condensation graph. A fairly simple estimate
of the remaining cost of the condensation graph is to add the cost of each node:

H,(U, G) = C(u,G)
uEU

This count ahead strategy has a complexity of O(d2). Alternatively, we can use the cheapest
first strategy on the condensation graph. This leads to the following, recursive definition:

H1(U, G) = min C(u, G) + Hv(U - {u}, G/{u})
uEU

again with a O(d2) time complexity. Let us call this the cheapest ahead strategy. Finally,
we can asses how the lower bounds on the multiplication count will be affected by the
condensation of each node:

H (U, G) = M (U, G)

The running time for this bound ahead strategy is O(wd21AI).
In general we have found that all three of them performed very well, although the bound

ahead strategy, for a higher cost, would be tend to be a little more consistent. In addition,
for trees bound ahead will always find an optimal sequence.

Example 5.17

For the graph of example 5.5, both the count ahead and cheapest ahead strategy found
orders with 32 multiplications, whereas bound ahead did find an optimal order with 31
multiplications.

Example 5.18

All three strategies found an optimal order both for the tree of example 5.8 and for the
layered graph of example 5.7.

Although we have experimented with combinations of the above heuristics, for example
by averaging lower and upper bounds on the remaining cost, we found that it generally did
not pay off.

Binary and Layered Condensation

The basic idea of the binary condensation strategy, is that while it is expensive to enumerate
all d! = O(2 dl °gd) orders, 2 d of them can be enumerated in O(d) time. This can be done,
for example by constructing a binary tree where each node indicates whether the left
subtree precedes the right subtree, and the leaves are associated with the nodes. For node
condensation this corresponds to recursively split sets of nodes in half and consider whether
or not to condense one half before the other. So here, as the amount of work is proportional
to the number of nodes in the set, this condensation strategy will have a time complexity
of O(dlogd). As we indicated before, the numbering of the nodes is compatible with in-
order layered order. This will limit the number of trivial exchanges performed in the binary

100

condensation strategy.
Example 5.19

Let us illustrate this strategy on example 5.5. We first split U(G) into two halves:

U = {VI, V2 , V3 , V4 }

U2 = {V 5 , V6 , V7, V8 }

The problem is then split into two subproblems, one where we recursively consider to
optimally condense U1 first, then U2 and vice versa. For this example binary condensation
found a condensation order with a multiplication count of 32.

Example 5.20

For both the tree of example 5.8 and the layered graph of example 5.7 binary condensation
found an optimal order.

As illustrated in example 5.19, the recursive division sometimes splits nodes belonging
to the same layer, hence performing trivial exchanges. We now introduce a technique, called
layered condensation, designed to take advantage of the layered structure. This concept is
akin to the level structure methods for quotient graphs [69] or to the optimal multiplication
of factors considered in [232].

Layered condensation considers only layered orders, i.e. only to condense nodes one layer
at a time. As a consequence, it is equivalent to condensation of the chain L associated with
G with C(l,L) = Cv+ (I,G), where we arbitrarily have chosen in-order condensation within
each layer. This problem can readily be solved by dynamic condensation with a complexity
O(wc3), which can be reduced to O(wc logc) as mentioned in example 5.7. Observe that
as the definition of layers in equation (5.8) is not unique, other definitions can produce
different results.

Layered condensation finds v for trees and as mentioned in example 5.7 for layered
graphs. In general we have found it to work very well on layered-like graphs, less so on
dense and unstructured ones.

Example 5.21

The layers of example 5.5 are:
1 = {Vl,V2 ,V3 }

2 = {V4 , V5}

3 = {V6 , V7, V8 }

We therefore consider to condense respectively 11, 12 and 13 last and apply the same technique
to the remaining layers. Note that in fact some arcs can cross layers, e.g. (3 , v 6). So,

when 12 is considered to be condensed last the ordering of {1l} w.r.t. {13} does make a
difference. Although this can easily be resolved by only considering in-order condensation,
in our implementation we have chosen to check which order effectively produced the lowest
number of multiplications. The layered order found by layered condensation is:

V = (V 4 , V5, V, V2, V3, V6, V7, V8)

with MA,(U(G), G) = 35.

101

We would like to note that this method only considers condensation orders with mini-
mum critical path length, i.e. it attempts to optimize the number of operations, while not
compromising on parallel execution time.

Example 5.22

Figure 5.17 illustrates the partial order associated with the layered order of example 5.21.
Observe that the minimum number of condensation steps is indeed c = 3.

Figure 5.17: Optimal layered order of example 5.21

Local Search

A different approach to the solution of the optimal condensation problem is to incrementally
improve a given ordering. The resulting ordering, while not guaranteed to be a minimum
ordering, is a minimal ordering [207].

2-opt condensation recursively considers to invert two nodes in a condensation order.
More specifically, it considers to invert a node u with its next neighbor v E NG(U) in the
current graph G. If this results in a lower cost the inversion is performed, otherwise one
proceeds with the following node. When the last node is reached, the process is repeated.
The algorithm terminates when the multiplication count cannot further be reduced. Typ-
ically, this type of algorithm is used on an ordering obtained by a simple heuristic. For
simplicity, we have chosen the use the cheapest first ordering as initial ordering.

Example 5.23

The cheapest first ordering as discussed in example 5.15 can first be improved by inverting
v 5 and v8 :

V = (V 1 , V2 , V 4 , V5 , V8 , V7, V6 , V3)

reducing M,(U(G), G) to 33. Note that we have used the fact that unless v E NG(U) their
mutual order is not important. The multiplication count is further reduced by inversion of
v4 and v6 to the minimal ordering:

v = (V 1 , V2 , Vr, V8, V7, V6 , V4 , V3)

with M,(U(G), G) = 32.
Although, 2-opt condensation can be implemented fairly efficiently, it potentially can

take a long time to terminate. Indeed, if the multiplication count reduces only by one each

102

iteration, an upper bound on the number of iterations is C(Mv(U(G),G)). In some cases
this can be excessive. Fortunately, lower bounds on the multiplication count can be used
to control this process.

Other Strategies

A very simple strategy is to sort the nodes by increasing cost. This strategy, which chooses
the most expensive node last, ignores topological changes associated with the condensation
process. Although, in some cases this can lead to rather inefficient condensation orders,
often it does produce good results.

When parts of graphs are trees, one could choose to condense them first by reverse-
order condensation, resorting to other techniques afterwards. This, in fact corresponds to
grouping trees into supernodes (see section 5.3.2).

103

Chapter 6

Variable Precision in Interval
Computations

6.1 Introduction

Variable precision representations are particularly well suited to be used in conjunction
with interval arithmetic techniques. Indeed, a wide interval usually does not require a very
accurate representation. Solution techniques for nonlinear equations for example, need only
to represent the significant digits. These can be determined by comparing upper and lower
interval bounds.

At first the gains may seem insignificant, but variable precision is very useful when
rational arithmetic is used. Indeed, it allows us to control the growth of the rational number
representation by upward and downward rounding at the required accuracy. Furthermore,
although for arithmetic expressions it is possible to do all intermediate computations in full
precision, this is no longer possible for extended arithmetic expressions, which can include
transcendental functions. Variable precision, still allows us to achieve arbitrary accuracy,
while using finite representations.

Algorithms for the solution of linear systems to arbitrary precision can be found in [20,
47]. A comparison of traditional, interval arithmetic and variable precision implementations
of numerical methods is presented in [110]. It does however appear that the availability
of high-accuracy floating point processors, has reduced the need for multiple precision in
numerical computations and in recent years very little publications have appeared on this
subject.

The main reason for addressing this issue here however, is that fc .n more general op-
erators, associated with more complicated models, it allows for automatic control of the
modeling accuracy. In this case selecting the appropriate model can indeed be of crucial
importance. The basic idea is to use as much precision as needed to maintain quadratic
convergence of the nonlinear solver. This approach has for example been applied in con-
junction with discretizations of nonlinear operator equations, where it is called the Mesh-
Independence Principle [9, 11].

In this chapter we present a formal approach to the problem of controlling the precision of
interval bounds for the solution of nonlinear algebraic equations. Multiple precision methods

104

where the machine precision is increased at each iteration are presented in section 6.2.
Variable precision on the other hand uses as much precision as needed based on the width
on the interval, this is discussed in section 6.3. Finally, in section 6.4 we combine both
approaches in a controlled precision method.

6.2 Multiple Precision
While traditional floating point arithmetic always uses a fixed machine precision, with multi-
ple precision arithmetic the machine precision can be changed as the computation proceeds.
The use of multiple precision arithmetic in numerical computations has been investigated
from a theoretical point of view in [23, 25], while practical implementation aspects are pre-
sented in [24, 107]. Complete multiple precision packages are available and are described in
[27, 26, 215, 106]. The multiple precision approach is to incrementally increase the machine
precision as more accuracy is needed. For the solution of nonlinear equations, for example,
the precision can simply be doubled after each iterate of a quadratically convergent nonlin-
ear solution operator. Using multiple precision methods, Brent [25] showed that if it takes
w(m) time to evaluate f(i)(x) with an absolute error O(2-m), a simple zero 0 of f(x)
can be evaluated to precision m in E)(w(m)) time, with an asymptotic constant of 1.

A m-digit finite interval representation with base b would be obtained by defining P, =
bPf with pj = r + 1 - m and and r = [logb IXl ,,lJ:

~xO IL° xi [~p, I, FXpU P.] (6.1)

The relative machine accuracy is defined to be M = b-m, m is the machine precision.
Observe that

d(X, X°) < (IXI + 1)EM

assuming the smallest machine representable number is smaller then Em.
Example 6.1

The 3 digit fixed precision representation of X = [1.2345, 1.2356] with b = 10 is:

X ° = [1.23, 1.24]

the? corresponding relative accuracy EM = 10-2.

Here, and in the discussion below we assume that elementary binary operators of an
implementation obey:

f°(X) = (g(X) o h(X))°

Similarly, for unary operators E we assume:

0(g(X)) =(o(g()))

Let us now investigate how interval arithmetic computations are affected by the relative
machine accuracy f a. Based on Lipschitz continuity of arithmetic expressions, Moore [160]

105

showed that:
3 lf and Ef E R : d(f(X), f°(X)) < If CEM (6.2)

provided that EM < Ef . Where f°(X) denotes the interval value of the arithmetic expression
evaluated with relative accuracy eM.

Example 6.2

To illustrate the above result, we computed the solution to equations (3.12) of example 3.15
using a midpoint preconditioned Gauss-Seidel operator. If exact arithmetic is used we find:

y(A, B X) ([-405, 442.5])
7(A, B X) =[-261.428571, 424.285715]

where only 9 digits have been shown. If computations are performed with 2-digit precision,
the solution is:

7°(A, B, X) = [-440, 480]
([-330 500])

with 4-digit precision:

'y*(A, B, X) - [-405.4, 442.9]
/('B'X) = [-262.1, 425.1]

Finally, with 8-digit precision we have:

y(A B.X= ([-405.00004,442.50004]
10(A'BX) [-261.42864, 424.285795]

hereby verifying that doubling the machine precision approximately doubles the accuracy of
the interval bounds.

On the other hand a fixed machine precision places limitations on the obtainable ac-
curacy. Solutions of nonlinear equations, for example, might not be exactly machine rep-
resentable. This implies that one cannot expect to achieve a better relative accuracy then
EM. Let us illustrate this point with and example.

Example 6.3

Consider the Hansen-Sengupta operator to solve equations (3.27) of example 3.19. If exact
arithmetic is used, the following iterates are obtained:

iteration X Y
0 [+0.2v0 +0.8v0] [+0.6vO +0.9vO0
1 [+0.3vO +0.7vO] [+0.81vO +0.90vO0
2 [+0.495v0 +0.505v0] [+0.865v0 +0.868vO]
3 [+0.499998v0 +0.500002vO] [+0. 8660253v0 +0.8660256vO]
4 [+0.4999999999v0 +0.500000000 lvO] [+0. 8660254037v0 +0.8660254038vO]

up to 10-digit accuracy. If now we use only 2-digit precision, we have:

iteration X Y

0 [+0.2v0 +0.8vO] [+0. 6vO +0.9v0]
1 [+0.3vO +0.7vO] [+0.7vO +0.9vO]
2 [+0.4v0 +0.6vO] [+0.85v0 +0.89v0]
3 [+0.4vO +0.6vO] [+0.85v0 +0.88vO]

106

Here, termination occurred when two subsequent iterates were identical, and indeed at most
two digits are accurate. Finally, if we double the machine precision to 4:

iteration X Y
0 [+0.2vO +0.8vO] [+0.6v0 +0.9vO]
1 [+0.3v0 +0.7v0] [+0.81v0 +0.90vOl
2 [+0.495v0 +0.505v0] [+0.865v0 +0.868v0]
3 [+0.499v0 +0.501v0] [+0.8655v0 +0.8662vO]
4 [+0.4998vO +0.5002vO] [+0.8659v0 +0.8662vO]

the accuracy of corresponding results doubles as well.

Let us now, based on the proof presented in [171], modify this theorem slightly for the
case of multiple precision

Theorem 2 If an arithmetic epression f is Lipschitz at X, 3 Af and If such that:

d(f(X), f°(X)) < f w(X)'

for relative machine accuracy EM < 1°w(X)0 with 10° < Af and a > 1.
Proof: Since EM < l°w(X), this is certainly true for variables:

d(X, X °) < (IX! + 1)Afw(X)°

and a similar inequality can be written for constants, as well as for the midpoint operator.
Assume now that the theorem holds for two subexpressions g and h:

d(g(X), g°(X)) < igw(X)
d(h(X), h°(X)) < h(X)

Since f is Lipschitz at X we know that g(X) o h°(X) is defined for sufficiently small 10°,
say ° < Af. By Lipschitz continuity of the arithmetic operator o we have:

d(f(X), g(X) o h°(X)) < lgohow(X)a

where the Lipschitz constant igooho is slightly bigger then goh due to the rounding. Fur-
thermore, with fixed precision:

d(g°(X) o h°(X), f(X)) < (g°(X) o h°(X)l + 1)Afw(X)"

so that by the triangle inequality:

If = goho + (g°(X) o h(X)I + 1)Af

The proof for elementary unary operators is almost the same.

All linear solution operators A(X) discussed in 3 are Lipschitz continuous arithmetic
expressions if the midpoint preconditioned Lipschitz matrix is regular. In fact, their con-
vergence implies that their Lipschitz constant IA is smaller then 1. When used as nonlinear
solution operators (X) with a variable Lipschitz matrix, e.g. J(X), the convergence is
quadratic:

w(-(X)) < qw(X) 2 (6.3)

107

The above theorem implies that if the accuracy is controlled by w(X) 2 quadratic convergence
is maintained. Indeed, if:

d('P(X), TP(X)) < lw(X) 2

we have:
tw(%i(X)) < (qp + 21%)w(X)2 (6.4)

by letting eM = l(X) 2. Note that if qpw(X) < 1, can be chosen small enough to
ensure (qQ, + 21)w(X) < 1.

The above result is the interval equivalent of the multiple precision approach used in
conjunction with classical numerical solution methods. In fact, interval width provides
a very effective measure for controlling the precision, unlike the often used convergence
estimates.
Example 6.4

We illustrate this method on the same iteration as in example 6.3. We have taken AP = 10-1.
We obtain the following iterates:

iteration digits X Y
0 2 [+0.2vO +0.8vO] [+0.6vO +0.9vO]
1 2 [+0.3vO +0.7vO0 [+0.7v0 +0.9vO
2 3 [+0.48v0 +0.52v03 [+0.86v0 +0.88vO]
3 5 [+0.4998v0 +0.5002v0] [+0.86601v0 +0.86609vO]
4 9 [+0.49999999v0 +0.50000001v0] [+0.866025398v0 +0.866025407vO]
5 17 [+0. 4999999999v0 +0.500000000 lvO] [+0. 8660254037v0 +0.8660254038v03

up to 10-digit accuracy. Observe, that initially the precision does not need to be doubled
due to the slower convergence.

For traditional implementations, which usually provide single and double precision, this
method can be used to automatically increase the precision when it becomes necessary.
Finally, depending on the order of convergence, which can be different then 2, and how the
computation cost depends on the accuracy, the constant a can be adjusted to reduce the
overall computation time.

6.3 Variable Interval Precision

It is however not necessary to perform all the arithmetic with the same precision at each
iteration. The number of significand digits of interval bounds can be estimated in a straight-
forward fashion, see for example [115] for a simple significance rule.

We would like to indicate that this type of variable precision representations is not
suited for all types of interval computations. In particular, it should not be used if the
accuracy of the bounds is not related to the width of the interval. This occurs for example
in optimization where typically only one of the function bounds is refined.

A variable interval representation is obtained by defining P = bpv with p, = logb AMw(X)J
so that the following operation:

X- = [LX-JP. F P] (6.5)

108

retains only the significant digits of X while still allowing for arbitrary precision. When
w(X) = 0, we define X = X. The machine Lipschitz constant 0 < AM < 1 has been
introduced to control the loss of significance. Let us define L-logb AMj to be the number
of guard digits, see [115] for a similar definition.

Example 6.5

Let us take the same interval as example 6.1 to illustrate the variable interval representation.
If we use a machine Lipschitz constant of 1 and b = 10 we have:

X°= i1.234, 1.236]

Here the number of guard digits is zero.

Example 6.6

Computation of the Gauss-Seidel solution of example 6.2 using variable interval precision
with A = 10-1 gives:

y7°(A, B,) = [-310, 470]
([-310, 470])

as compared to the variable precision rounding of the exact result:

(y(A, B X)) = [-270, 430]
([-270, 430])

One can easily verify that the variable precision representation defined in equation (6.5)
satisfies:

d(X, X °) < AMw(X) (6.6)

and equivalently:
w(X °) < (1 + 2AM)w(X) (6.7)

Theorem 3 If the arithmetic expression f is Lipschitz at X, 3 Af and If such that:

d(f(X), f(X)) < If w(f(X))

for variable precision with AM < Af.
Proof: For variables the statement is true by equation (6.6) and the same reasoning

applies to constants. For the midpoint operator we have d(Xc, Xc°) = 0. We now proceed
inductively and assume that for two subexpressions g and h:

d(g(X), g°(X)) < lgw(g(X))
d(h(X), h(X)) < lhw(h(X))

As before. we know that g(X) o h(X) is defined for sufficiently small A. say AM < Af.
Furthermore 3 such that:

d(f(X), g(X) o h (X)) < }w(f(X))

109

In addition, if variable interval precision is used 3 I":

d(g°(X) o h°(X), f°(X)) < w(f(X))

so that by the triangle inequality:
if = If + If

The values of the constants '.and lI' for arithmetic operators, as well as for unary elementary
operators are derived in appendix B.1. 0

For a quadratically converging Lipschitz operator '(X) (cf. equation (6.3)) we therefore
have:

d(I(X), I (X)) < ltw(T(X))
< lpqw(X) 2

so that:
w(ql°(X)) < qp(1 + il)w(X) 2 (6.8)

This result allows us to locally adjust the required precision relative to the interval width,
such that quadratic convergence is maintained.

Example 6.7

Using AM = 10-1 we apply this method to the same iteration as example 6.3 and find:

iteration X Y
0 [+0.2vO +0.8vO] [+0.6vO +0.9vO]
1 [+0.3vO +0.7vO] [+0.8vO +0.9vOl
2 [+0.49v0 +0.51v0] [+0.864v0 +0.869v0]
3 [+0.49998v0 +0. 50002v0] [+0.866024v0 +0.866027v0]
4 [+0.4999999999v0 +0.5000000001vO] [+0.8660254037v0 +0.8660254038vO]

We have again terminated the iteration at 10-digit accuracy. However, as mentioned earlier,
this approach allows us to achieve arbitrary accuracy using finite representations.

Clearly, the above result is valid for any order of convergence. This means that variable
interval precision preserves the convergence of the solution operator. Furthermore, as in 6.2
the precision of the computation approximately doubles at each iteration. The results of
Brent [25] therefore apply so that if w(m) denotes the time to evaluate f(_) with precision m,
using variable accuracy it takes O(w(m)) to solve a nonlinear system to the same precision.

6.4 Controlled Precision
In case of zero interval width the previous method would require exact precision. In this
section we combine both multiple and variable interval precision methods into a controlled
precision method. We also discuss practical implementation aspects for some operators.

We can combine definitions (6.1) and (6.5) to obtain a m-digit controlled variable interval
precision representation. We simply define P,, = bPc where pc = max(pv, pf):

X= [L JPI, [XH 1P.]

110

with the assumption that zero bounds are preserved. Note that when w(X) = 0, X ° has a
m-digit finite representation.
Example 6.8

Using again the interval of example 6.1, b = 10 and AM = 1, for m = 3 we now have:

X ° = [1.23, 1.24]

which is the same as the fixed precision interval representation of X. On the other hand
for m = 5 we have:

X ° = [1.234, 1.236]

corresponding to the variable interval representation.
By controlling the precision of a nonlinear solution operator by w(X) 2, quadratic con-

vergence is maintained. Indeed, every intermediate computation satisfies either theorem 2
or theorem 3.
Example 6.9

Application of this method to example 6.3 with An = 10-1 and AM = 10- 1 produces the
following iterates:

iteration digits X Y
0 2 [+0.2v0 +0.8v0] [+0.6v0 +0.9v0]
1 2 [+0.3vO +0.7v0] [+0.7vO +0.9vO]
2 2 [+0.4vO +0.6vO] [+0.84v0 +0.90v0J
3 3 [+O.48v0 +0.51v0J [+0.863v0 +0.871v0
4 5 [+0.4998v0 +0.5002vO] [+0.8660v0 +0.8661v0]
5 9 [+0.49999998v0 +0.50000002vO] [+0.86602539v0 +O0.86602541v0]
6 17 [+0.4999999999v0 +0.5000000001vl] +0.8660254037v0 +0.8660254038v0]

As compared to example 6.4 and example 6.7 one more iteration was required. Indeed, this
approach uses the minimum required precision to maintain the convergence.

Not only does controlled precision avoid infinite representations associated with w(X) =
0, it also allows us to take the actual size of the domain into account. This can be done
by imposing a lower bound on the precision in terms of w(X). While it will have no effect
on the convergence rate, it can be important for the accuracy of initial iterates. Indeed, by
ensuring that sufficient precision is used, it will prevent bisection from taking place due to
rounding errors. This additional control mechanism is also useful when the function to be
solved is interval valued.

If we consider the specific structure of the solution operators we can reduce required
precision even further. To that end, let us consider the nonlinear operators discussed in 3:

q'(f, X) = X - A(CJ(X), Cf(Xc), AX) (6.9)

As already indicated in [166] it is sufficient to compute an approximate midpoint precondi-
tioner C ~ J(X); q , for if:

d(C° , J(X)J;) = O(w(X))

the quadratic convergence will not be affected. In addition, if the precision is controlled by
w(X), we know that d(J°(X), J(X)) = O(w(X)). So that the multiplication A = C°J°(X)

111

can be computed using the same precision.
The accuracy of f °(Xc) on the other hand is required to be O(w(X) 2), but as f(Xc) =

O(w(X)) the actual multiplication can again be performed at the lower precision [263]:

d(B°, Cf(XC)) = ((X))

Finally, one can view equation (6.9) as an improvement iteration of an approximate solu-
tion. In fact, some multiple precision linear solvers are based on this technique [20]. The
associated error analysis [264] reveals that if A is computed with an accuracy of w(X), the
above assumptions imply:

d(T(fX), (f, X)) = OC(w(X)2)

so that only f(xc) and the final addition needs to be computed with precision pf controlled
by w(X) 2. Let us illustrate this method with an example.
Example 6.10

Consider again the system of example 6.3. As in example 6.9 we use controlled precision, but
now with AM = 10-3 so that the precision of the computation will essentially be controlled
by pf:

iteration digits X Y
0 4 [+0.2vO +0.8vO0 [+0.6vO +0.9v0]
1 4 [+0.3v0 +0.7v0] [+0.7v0 +0.9vO]
2 4 [+0.46v0 +0.54v0] [+0.85v0 +0.89vO]
3 6 [+0.498v0 +0.502v0] [+0.8657v0 +0.8663v0]
4 8 [+0.499997v0 +0.500003vO] [+0.8660250v0 +0.8660258vO]
5 14 [+0.4999999999v0 +0.5000000001v0] [+0.8660254037v0 +0.8660254038vO]

Notice that initially the convergence is slower. In fact we had to increase A to 10- 2 to
ensure the quality of the first iterates. It also takes a little longer before the quadratic
convergence sets in. The number of digits shown above is pf, but as mentioned earlier, only
the function evaluation and the final addition is computed at that precision. The remaining
calculations are done at pf / 2 .

As both f(Xc) and J(X) or S(X) are required, the methods described in chapter 5 can be
used to compute them efficiently. As a byproduct, one obtains the local partial derivatives
of the computational graph, which represent the sensitivity of the computation w.r.t. to
the accuracy of the different operators [108, 77]. This provides additional information to
control the precision for each operator, as it allows us to locally adjust the precision to
the sensitivity of the computation. Although this optimization will not affect the rate of
convergence, it can improve the conditioning of the computation. Indeed, as mentioned
earlier, the accuracy of f(Xc) is very important. Note however that in order to apply this
approach for the optimization of the accuracy of the partial derivates themselves, additional
information is required.

Finally, one should keep in mind that both the accuracy of the midpoint preconditioner
and the solution of the interval system depend on the corresponding condition number.
Although, algorithms for estimation matrix condition numbers are available [175, 84, 99],
simpler techniques can be used for this particular problem. Since the main reason for using

112

preconditioners is to improve the performance of the solution techniques, we should only
be concerned with the accuracy of the midpoint preconditioned matrix A. The distance
d(Ac, I) is in fact a good measure of the accuracy of the preconditioning operation [264].
Starting with a low precision, one can therefore verify the resulting accuracy and estimate
the required relative precision using theorem 2.

Estimation of the condition number associated with the interval matrix A on the other
hand is relatively easy. As indicated in chapter 4, the exact solution requires inversion of
(A). Since this is an M-matrix we have [18]:

I - r < (A) =, (A)- ' < (I-r)-

where rij = w(A)/2. Furthermore provided 2- nw(A) > 0 we have:

(I2-r)' -2-(n-1)w(A)
2 - nw(A)

(-r) - w(A) for i j
2- nw(A)

so that:
II(A)ooll(A) 11oo < III- rlooll(I-r)-'1oo < K

with:
K= 2 + nw(A)

2 - nw(A)

If for example Crout's algorithm is used to compute (A)-1, one therefore needs to reserve
an additional 0(log K + log n2) computed using digits to accommodate for rounding errors
[263, 20]. Observe that the above reasoning can also be used for the computation of the
condition numbers proposed by [46, 202].

113

Chapter 7

Design Computations

7.1 Introduction

In this chapter we illustrate how interval arithmetic can be used for computations with
bounded models. We have already indicated that conservative computations can provide
the reliability required for automation. More importantly, bounded models allow us to
address the consistency problem by considering sets of solutions. While the notion of
semantic consistency can be used to extend the automation of parametric design, procedural
consistency will guarantee that model refinement does not invalidate the decision process
even if heuristic models are used initially. Moreover, since each part of the computation
has conservative bounds on partial results computed elsewhere, the use of bounded models
allows for asynchronous distributed concurrent computation. Both aspects are particularly
useful for the design of large scale systems where refinements are made in a distributed
fashion, computations are performed at different speeds and communication delays are
unpredictable.

The basic features of interval computations in design are illustrated in section 7.2. In
section 7.3 we discuss the hierarchical design methodology and the associated consistency
problem in the context of interval arithmetic. A practical implementation of interval com-
putations for distributed concurrent computations is presented in section 7.4. Finally, sec-
tion 7.5 contains a number of concrete proposals for the Design Society.

7.2 Bounded Models in Design

As discussed in chapter 2, bounded models conservatively enclose sets of solutions. Interval
arithmetic, by definition, will not leave out candidate solutions, unless it is guaranteed that
they cannot satisfy the equations. Since initial design models typically can be represented
by interval equations, nonlinear solution techniques described in this thesis can be used to
enclose all design solutions.

Example 7.1

To illustrate the use of interval arithmetic in design we borrow a classic engineering design
problem from [147]. The symmetric two bar truss, shown in figure 7.1, has a height h, a
span 2b and is subjected to a load 2p. The truss members are made of tubular steel, with

114

I 2p

l h

2b

Figure 7.1: Symmetric tubular two bar truss

diameter d and thickness t. The problem is to select h and d so that the weight of the
structure is minimized. The length of each member is given by:

= xb2 + h2

while the weight w of the structure is:

w 2pirdtl

where p is the density of the material. The compressive stress in the members ac can be
written as:

iac - (7.1)
7rthd

and the Euler buckling stress a, is given by:

7r2 E(d2 + t2)
C = 812 (7.2)

Based on monotonicity analysis [181], one can easily verify that for this optimization prob-
lem both constraints are active. The solution therefore can be found by solving equa-
tions (7.1) and (7.2) for h and d, while the stresses are taken to be the ultimate material
strength ,z. The material properties of steel are:

p = 8000 kg/m 3

E = 200GPa
,max = 400 MPa

and the input parameters are defined to be:

p = 150 kN
b = lm
t = 2.5 mm

115

Furthermore, we are only interested in the following solution domain:

D = [25, 75]mm (73)
H = [75,150]cm

Using the above numerical values, we obtain the following system of equations:

207rdh- 3V/h2 + T = 0 74
4(h2 + 1)- r2(250d2 + 1/640) = 0 ()

which can be solved using the solution techniques presented in chapter 3. With a midpoint
preconditioned Gauss-Seidel operator and interval slopes enclosures, we have the following
iterates:

iteration D H
0 [+2. v-2 +8. v-2] [+0.7vO +1.5vOl
1 [+5.v-2 +8.v-2] [+0.7v0 +1.5vO]
2 [+5.8v-2 +6.6v-2] [+1.15vO +1.24vO]
3 [+6.23v-2 +6.26v-2] [+1.185v0 +1.188v0]
4 [+6.243610v-2 +6.243616v-2] [+1.1868042v0 +1.1868045vO]
5 [+6.243613215v-2 +6.243613216v-2] [+1.186804367v0 +1.186804368v0]

Although we are only imposing indirect requirements on w, namely that it has to be minimal,
the resulting weight is of interest. For the above solution, we find:

W = [12.17641932,12.17641933] kg

This information can therefore be considered as a view (see chapter 2) of the design model.
We would like to emphasize that while these are accurate solutions of the above mathemat-
ical model, one still has to keep in mind that the model itself is only an approximation to
the physical one.

In case the value of the load is not yet precisely known:

P = [140,160] kN (7.5)

some of the coefficients of equation (7.4) will be intervals. Although the exact solution in
this case is a set, one can use the same solution methods to obtain:

D 8 _ { [0.0595, 0.0654] 8 (7.6)
H = [1.092, 1.282]

meaning that irrespective of the exact value of the load p given by equation (7.5), the
dimensions of the minimum weight structure will not exceed the bounds of equation (7.6).

As the previous example illustrates, some optimization problems can directly be solved
using the techniques presented in this thesis. For optimization specific interval techniques
however, we refer the reader to [194].

A number of theoretical results concerning the enclosure of the solution of nonlinear
equations of the interval type are presented in [129, 136, 133, 135, 68, 132, 131]. WNe would
like to point out that for the global solution of this type of equations some modifications
to the bisection strategy are in order. Indeed, the exact solution of interval functions

116

can have nonzero width and it is therefore difficult to impose stopping criteria based on
the width of the iterate. Instead, we propose to stop bisecting as soon as the Lipschitz
matrix is regular and to use a threshold criterion when it is singular. In fact, the algorithm
described in chapter 4 can directly provide this information together with the solution
enclosure. Nonlinear solution iterations are then terminated when the decrease in width
itself is becoming too small or sufficient accuracy is obtained.

We have already mentioned that interval methods are not limited to functions and can
for example be used for point enumerations as well. Indeed, as long as interval bounds are
provided, nonlinear solution methods will conservatively enclose all possible solutions. It
should however be observed that while for continuous functions we still can prove existence,
this is no longer true for discrete point sets. Let us illustrate this idea with an example.

Example 7.2

Consider the beam shown in figure 7.2 on the left. The problem is to determine the height

P

Figure 7.2: Beam Selection by Enclosure

h and width b of the rectangular cross-section, given the length I and the load p. Assuming
that yield is determined by the maximum bending stress, we have:

ah - P= (7.7)
amax

where a is the area of the cross-section and amax is the maximal allowable stress in the beam.
Now let us now consider the case where beams only come in certain widths depending on the
required height. As is illustrated in figure 7.2 on the right, a is therefore a piecewise linear
function of h. In this example we use the bounds on b associated with each height interval
as generalized interval slopes S , and then determine the centers so as to conservatively
enclose the function. The slope of ah can now simply be computed by:

Shah = a + HSha

Using the same material and nonlinear operator as in example 7.1, the following configura-
tion:

p = 40 kN
= lm

117

produces the iterates:
iteration H

0 [0 +0.2vO0
1 [+8.v-2 +0.16vO]
2 [+8.v-2 +0.12vO]
3 [+0.1031vO +0.1037vO]
4 [+0.1032794vO +0.1032798v0]
5 [+0. 1032795558v0 +0.1032795559vO]

where H is given in m. The particular width corresponding with this choice of h is:

b = 0.01875 m

Finally, the interval techniques discussed in chapter 3 can be used to overcome the
robustness properties of existing solution techniques in the area of geometry. Indeed, unless
computations are performed conservatively, algorithms based on approximate values [138]
can never provide the 100% reliability of interval arithmetic.

Example 7.3

Consider for example the computation of the critical points of Geisow's multiple crunode
equation [188]:

g(x, y) = -6x 4 + 21X3 - 19x2 - 6x2y2 + 11xy2 + 3y2 - 4y4 (7.8)

which are defined to be the solutions of:

= -24x 3 +36x 2 - 38x- 12xy 2 +11y 2 = 0
ax

O = -12x 2 y + 22xy+ 6y- 16y3 = 0
ay

The corresponding curves in the domain:

X _ [-1, 3]
Y = [-2,2]

are shown in figure 7.3. For this problem, we can simply use the techniques of chapter 3 to
obtain:

x Y
[+0.2043643892v0 +0.2043643897v0] [-0. 7 903653794v0 -0.7903653792v0]
[+0.2043643892v0 +0.2043643897v0] [+0. 7 903653792v0 +0.7903653794vO]
[+0.9999999998v0 +1. 00000000lvO] [-1. 000000001v0 -0.9999999999v0]
[+0.9999999998vO0 +1.00000000lvO] [+0.9999999999vO0 +1.000000001v0]O
[+1.345635610v0 +1.345635611v0] [-0.9312344320v0 -0.9312344319vO]
[+1.345635610v0 +1.345635611vO] [+0.9312344319v0 +0.931234432Ov0]

[-7.v-15 +7.v-18] [-2.v-16 +2.v-16]
[+0.9392401486v0 +0.9392401487v0] [-3. v-17 +3.v-17]
[+1.685759851v0 +1.685759852vO] [-3.v-15 +3.v-15]

up to a 10-digit accuracy. Observe that while the roots of this equation can readily be
computed by traditional methods, the bounds given above are provably correct.

118

2

It

-1 X~. 3

Figure 7.3: Graphic interpretation of Equations (7.8)

7.3 Hierarchical Computations
As indicated in chapter 2, the specification of functional requirements defines a hierarchy of
design models. High level models are associated with dominant characteristics, while lower
level models represent more detailed information. The relative importance of the different
requirements is decided by the designer based on their sensitivity w.r.t. the overall design.
This idea is illustrated in figure 7.4. In this case, the gross shape of the design solution is

Figure 7.4: Hierarchical Definition of Functional Requirements based on Sensitivity

essentially determined by x and y, whereas only very little information can be obtained by
considering p.

Our framework allows the designer to incorporate the uncertainty on lower level variables
by leaving some of the modeling information unspecified. More specifically, we can associate
nonlinear interval equations to high level models and use the interval techniques proposed
in this thesis for enclosing their solution. Additional requirements can be imposed on lower
level models, which are allowed to depend on the solution of the higher level models in
a parametric fashion. Finally, lower level solutions can be used to refine the higher level

119

equations.
This approach is illustrated in figure 7.5. Models depend parametrically on enclosures

Figure 7.5: Hierarchical Modeling Relations

of higher level solutions x and determine the model variables p. This information is not only
used in a parametric fashion by lower level models, but also to refine the equations associated
with higher level models. Similarly, lower level models provide refinement information q,
so that the uncertainty on the interval coefficients of f can be reduced. Furthermore, weak
interactions between models at the same level of hierarchy can be decoupled by providing
interval bounds on the coupling variables.

Semantic and procedural consistency (chapter 2) ensure that the refinement process does
not allow for additional solutions. When both the parametric and refinement dependencies
are explicitly known, semantic consistency is automatically verified by the inclusion mono-
tonicity property of interval arithmetic (see example 7.10). Unfortunately, when bounds
are provided in a heuristic fashion, semantic consistency is no longer ensured. In this case,
the validity of model refinements can however be verified by procedural consistency checks.

Two types of interval enclosure checks can be used to verify procedural consistency. The
first one is simply to ensure that refined values of design parameters are enclosed in the
original ones. This method therefore simply views models as intervals enclosing the solution
of a system of equations. The second one is to allow for hierarchical refinement of parts of
the nonlinear equations by verifying that the enclosures used in the nonlinear solvers can
not introduce additional solutions. Consider to this end the i-th equation of the mean value
form defined in chapter 3:

f,(Xc) + F'(X)(X - XC) = 0 (7.9)
To be a refinement of this function enclosure, all values allowed by the refined bounds
should be enclosed by the mean value bounds. This is illustrated in figure 7.6. When the
bounds used in the computation contain their refinements, the solutions will be enclosed
too. However, when conservative solution bounds are computed, this inclusion is only
guaranteed if the interval coefficients of the approximate equations are enclosed. Indeed, by
the inclusion monotonicity property we know that conservative interval enclosures to the
solution will be consistent if the following inclusions are verified:

fi(X(j+l)) + F!(X(j+))(X(j) - x(J+l)) fi(X) (710)
F,!(X(3+1)) C Fi(X(J))

120

Figure 7.6: Procedural Consistency

The superscript j + 1 indicates the quantities related to the refined model, while j corre-
sponds with the original model.

Note that procedural consistency can be enforced by maintaining previous models and
intersecting refined bounds with the existing ones. While this would ensure the validity
of the decisions, it changes the meaning of the modeling equations. Furthermore, as the
original models are likely to be less accurate than the refined ones, overlapping intervals are
an indication of the poor quality of the high level models.

7.4 Concurrency in Design

The model used for concurrent computations in design needs to satisfy the following require-
ments. Since the design process is incremental, the computational model and the associated
design graphs should be able to incorporate incremental topological state changes. In addi-
tion, it is required that the processes themselves can be modified. Not only does this allow
us to incrementally refine existing models and to add new ones, but in addition it gives us
the possibility to control consistency in an asynchronous environment. Scalability, which
is the guarantee of effectiveness irrespective of the size of the problem was identified by
[117] as a crucial property for any distributed problem solving architecture. We therefore
favor an object oriented scalable model, so that the complexity of the proposed design sys-
tems is allowed to increase arbitrarily. Finally, it should allow for concurrent asynchronous
computations so that it accurately reflects real world situations.

Since the Actor model of computation satisfies the above requirements, we have decided
to use it as a basic representation of concurrent computations.

7.4.1 Actor Model of Computation

As indicated in chapter 5, computational graphs are a very powerful tool to represent the
data dependencies in computations. However, the flow of the computation is usually con-
trolled by continuations. But as indicated in [94], continuations can be viewed as patterns
of passing messages on a graph. In fact, it was this observation that originally led to the
concept of actors [1].

121

Actor graphs constitute a distributed representation of the design process and the asso-
ciated design model. They therefore define the meaning of design computations, much as
dataflow graphs define the semantics for parallel languages [12, 13].

Each actor has an address, a behavior and a number of acquaintances (see figure 7.7).
Actors can receive and send messages, create other actors and specify a replacement behavior

tal-queue

addresF

behavior

Figure 7.7: Representation of Actors

with new acquaintances. This allows not only for state changes, but also for topological
changes in the computational graph.

The examples below were implemented on a simulated Actor model. This model contains
a number of physical devises, such as Machines, Terminals, Mouses and Printers, which
are connected by a Network. The actual execution of the operators takes place in the
machine processors. Each machine has a queue of tasks, where:

task = (actor + message)

and processes a number of tasks per cycle. Furthermore, actors are allocated on different
machines by a load balancing algorithm. Other devices, such as Terminal, Mouse and
Printers have dedicated special actors that handle a standard message protocol, e.g.: read
and :print. We have also included a facility to simulate different types of delays on the
network.

For an introduction to programming Actor systems we refer the reader to [154] and
[155]. while a more detailed treatise of the compilation aspects is given in [153]. A recent
overview of the work in this area can be found in [98]. Note that we have deliberately
chosen not to use the ABCL [271] nor the Smalltalk [101] approach, as both are subsumed
by the Actor paradigm.

122

(behavior (value argl rg2 userl user2)
((:ah-a--argl a(new-argl))
(let ((naw-value (* novw-argl arg2)))

(saud (:ohange-argl useorl now value)
(: ahage-erg2 ur2 new value))

(next (self mew-value mew-argl rg2 uaerl ur2))))
((: ahag-arg2 (new-erg2))
(let ((new-value (argl new-ar2)))

(send (: ahage-&rgl usorl now-value)
(: change-arg2 user2 nov-value))

(nezt (self ow-value new-rgl arg uerl uer2))))
((: current-value (key seander))
(send (key sender value))))

__

7.4.2 Design Networks

Incremental modification

To represent data dependencies with actor graphs, we associate actors with arithmetic
operators, variables and constants. Each of these actors knows the addresses of the actors
which depend on their results. So we simply need to instruct them to recompute their result
and send it to their dependents as soon as input changes occur (see figure 7.7). Procedures
are also represented by actors and function application corresponds with sending a: connect
message to the procedure actor, who in turn will create the appropriate computation graph
given the addresses of the actors representing the arguments.
Example 7.4

Let us consider the following simple computation of the area of the cross-section of a beam:
-=> (define beam-area

(lambda (beau-height bean-width)
(* bean-height beau-width)))

AREA

-- > (define height [1 5])
HEIGHT

-> (define width 10 12])
WIDTH

-- > (define area (bean-area height width))
AREA
-> area

(10o 60]
--> (change height 2 3])
HEIGHT -> 2 3]

AREA -> [20 36]

Changing the value of height now triggers a sequence of :change messages on the com-
putational graph shown in figure 7.8. The corresponding parallelism profile is shown in

[20 361

I:ok

Figure 7.8: Computational graph of Example 7.4

figure 7.11.
It should be noted that propagating changes through a computational network requires

some synchronization. Indeed, since modification messages are not guaranteed to arrive in
sequence, different actors might otherwise have a different value for the same quantity. As

123

tasks/cycle

3.

4,

rAFLAr~h 1JI rl 1ir['2 . In2 %4N
cycles

Figure 7.9: Parallelism Profile of Example 7.4

illustrated in figure 7.8, this can be done by extending the behavior shown in figure 7.7 so
that incoming messages are buffered with insensitive actors until the acknowledgment: ok
message is received.

Observe that frequently used quantities will have to maintain large lists of dependents.
Fortunately, this can be alleviated by a hierarchical organization of agencies as illustrated
in figure 7.22. In this case, only one update for the entire agency is required. A different
approach would be to have computations ask for the latest available information.

Actor graphs can also change topologically, this occurs for example when replacement
behaviors have different acquaintances. Runtime changes of model definitions in concurrent
systems do however require a number of additional safeguards since computations are per-
formed while the changes occur. To ensure consistency, modeling changes therefore prompt
the actors of the old model to become insensitive to further changes, and buffer the incom-
ing messages, so that no inconsistent changes are passed on to dependents. At this point,
the consistency of the new model can be verified and the new graph inserted. Only then
are we allowed to replace the insensitive behavior of associated actors by the newly defined
ones or by forwarders to the inserted model. Let us illustrate this idea with an example.

Example 7.5

When changing the lambda expression associated with the model, for example, incoming
communications can simply be buffered by the environment actor.

-.> (define model (lambda (x y) (+ (* [6 x) (* 3 4] y))))
MODEL
-mm> (define a (model [1 2] [5 6]))
A
mm> A

[15 36]
-> (change model (lambda (x y) (+ (square x) (* 3 y))))

MODEL

A -> 16 22]

So in this example intermediate changes to both x and y are buffered by the local environ-
ment created by the lambda expression and sent to the new graph as soon as it is created.
The associated topological change is illustrated in figure 7.10, while the parallelism profile is
shown in figure 7.11. Note that topological changes require that the number of dependents
of referenced parameters be updated as well, so that old models can be garbage collected.

124

112]

Figure 7.10: Topological Changes of the Computational Graph of of Example 7.5

cycles

Figure 7.11: Parallelism Profile of Example 7.5

Concurrent Interval Computations

The key element for allowing asynchronous design computations is the conservative nature
of interval arithmetic. In addition, late arriving information can only further constrain the
design space. The inclusion isotonicity property therefore guarantees that interval bounds
can only improve.

One should however make sure that all available enclosures are compatible for solution
by linear interval solvers. One simple strategy based on equation (7.9) is to center all
equations around the oldest center X°:

fi(X)) + F(r)+'(- F(X)(X-X°) = O

This operation is illustrated in figure 7.12.
The accompanying assumption is that the oldest information has the largest interval

width and that it is preferable not to worsen the corresponding bounds by shifting to a
different center. Obviously, it is not necessarily true that the oldest information is con-
straining and other strategies can easily be devised based on the quality of the associated
enclosures.

Although for arithmetic expressions the cost of computing the derivative is very similar
to the cost of computing the center (see chapter 5), it is not required that this information
be used synchronously. Indeed, interval derivatives are valid over the entire interval and
can be used in conjunction with any center, as long as it belongs to the corresponding
domain. When concurrent computations are performed using interval slopes however, one
should take the dependence of the slopes on the center into account. Results of previous
iterations can therefore not directly be used in conjunction with a different center. This

125

Is 6

X

Figure 7.12: Center Shifting for Concurrent Interval Computations

implies that there is a trade-off between synchronization requirements on the one hand and
the improvement in accuracy over interval derivatives on the other. In addition, interval
derivatives are inclusion monotonic, while this is not necessarily true for slopes. Unlike
interval derivatives, it is therefore not allowed to intersect intermediate slopes.

In the examples below we have implemented a special actor to represent the linear
solution operator. This implies that the operation count for each iterate it produces is one.
Although this is not very realistic, it allows us to illustrate the computations in the network.
Furthermore, the problem of solving linear systems in parallel is relatively well understood.

Example 7.6

To illustrate the concurrent solution of equations, we have implemented this approach for
equations (3.27). The computational graphs are shown in figure 7.13 and numerical results

Figure 7.13: Computational Graph for Example 7.6

are as follows:

126

]
[+0. 2vO
[+0. 2v0
[+0.3vO
[+o. 3v0
[+0.4v0

[+0.49vO
[+O. 498vO

[+0. 4999vO
[+o. 4999998v0

[+0o. 49999997v0
[+0. 4999999999vo
[+0 .4999999999v0

+0.8v0l
+0.8vO
+0.7v0)
+0.7v0)
+0.6vO0
+0.51v0J
+0.502v0]
+0.5001v0]
+0.5000002v0]
+0.50000003v0]
+0.5000000001v0]
+0.500000000 1vO]

[+0 .6vO

[+0.6v0
[+0.81v0
[+0.81v0
[+0.83v0

[+0.864v0
[+0.865v0

+0. 86599v0
[+0.8660253v0

[+0.86602538v0
[+0.8660254037v0
[+0.8660254037v0

Y
+0. 9vO0
+0. 9vOJ
+0. 90v0
+0. 90vOl
+0.90VO0
+0.868v0]
+0.867v0]
+0.86606v0]
+0.8660255v0]
+0.86602542v0]
+0.8660254038v0]
+0.8660254038v0]

Figure 7.14 shows the corresponding parallelism profile. Observe that whereas initial it-

tasks/cycle
121

10
I

4,
2' 44J~Vrir JFL L

'4
cycles

Figure 7.14: Parallelism Profile of Example 7.6

erations are clearly distinguishable in the parallelism profile, this is no longer true at the
end. This is due to the small difference in critical path for the two functions. The apparent
slower convergence is related to the fact that we have constrained the solution operator to
incorporate only one change per iteration as indicated in the first column.

When all local equilibrium conditions are satisfied, we say that Design Equilibrium is
reached (see chapter 2). We now illustrate the effect of limited computational resources and
communication delays on concurrent interval computations.

Example 7.7

The increase in execution time for a parallelism bound of 2 is shown in figure 7.15. However,

tasks/cycle
1

L
rJ

32 9'
cycles

Figure 7.15: Parallelism Profile of Example 7.7 with Bounded Parallelism

as pointed out in [13], additional delays are not as detrimental as compared to the un-
bounded parallelism case (see figure 7.16). Indeed, the increase in the computation time
due to a unit delay in the bounded parallelism case (see figure 7.17) is not as significant. So
relatively speaking, the price of additional communication delays with bounded parallelism

127

function
f
g
f

g6fgf
g
f

6
f
g

I - . -c

r

I

el

4

1 i tLIJiIA A
128

Figure 7.16: Parallelism Profile of
lelism

Example 7.7 with a Unit Delay and Unbounded Paral-

2 _-

cycles

Figure 7.17: Parallelism Profile of Example 7.7 with Unit Delays and Bounded Parallelism

is very small, indicating a natural
delay.

compromise between the speed of computations and the

To illustrate the effect of different processor speeds we consider two machines, each with
different parallelism bounds.

Example 7.8

Consider again the problem of example 7.6 but now with a two machine configuration. The
parallelism of machine 1 is unbounded while for machine 2 it is bounded to 1. The interval
solver is allocated on machine 1, so that it would not be a constraining factor. The first
equation f, which also has a shorter critical path was also allocated on the faster machine,
while the second one g was allocated on machine 2. The effect of the different processor
speeds on the parallelism profiles is shown in figure 7.18. Notice that after three iterations
the solver decided that the solution improvement was too small for further iterations with
the function f. This can also be seen in the corresponding iterates:

128

tass/cycle
12!
10*
4f

4f

192
" cycles

31as7Rak
I

tasks/cycle

Ut

'1
nI r- 11 Ir

I9' G ~ u cycles
machine 2

asks/cycle

1 ~~~~~~32 64 96~ incycles
machine

Figure 7.18: Parallelism Profile of Example 7.8

X
[+0. 2v0 +0o. 8v0]
[+0.2v0 +0.8v0J
[+0.3vO +0.7v0]
[+O.4v0 +0.6v0]
[+0.4vO +0.6v0]
[+0.4vO +0.6v0]

[+0.496v0 +0.504vO]
[+0.498v0 +0.501v0]
[+0.499v0 +0.501vO]

[+0.49999v0 +0.50001lvO]
[+0.4999999v0 +0.500000IvO]

[+0.49999997v0 +0.50000003v0]
[+0.4999999999v0 +0. 500000000IvO]
[+0.4999999999v0 +0.500000000 lv0]

Y
[+0.6v0 +0.9vO]
[+0.6v0 +0.9v0]

[+0.81v0 +0.90v0O
[+0.83v0 +0.90vO]
[+0.83v0 +0.90v0]
[+0.84v0 +0.90v0]

[+0.865v0 +0.867v0]
[+0.865v0 +0.867v0]
[+.865v0 +0.867v0]

[+0. 866022v0 +0.866029v0]
[+0. 86602537v0 +0 .86602544vO]

[+0.86602538v0 +0.86602542v0O]
[+0. 8660254037v0 +0.8660254038v0]
[+0. 8660254037v0 +0.8660254038vO]

For each iterate for g approximately two iterations were performed for f.

Since the computations are represented as actor graphs, parametric changes can occur
at any moment. In particular, they can disturb local equilibrium conditions by providing
more accurate information. Let us illustrate this point with an example.
Example 7.9

To demonstrate how simple parameter changes trigger new refinements, we consider the
following equation:

ax2 + by2 - rf = 0
(7.11)

a(x - 1)2 + by 2 - r = 0

where a = b = [1] and originally R = R = [0.95, 1.05].
We now first change r = [1], wait until equilibrium is reached and then proceed to

change rg = [1].

129

function
f
g
f
f
g
f
S

f

S
f
f

S
f

.-
I

function X Y
f [+O.2vO 0. +.6v +0.8v0] [+0.6vO +0.9v0]
$ [+0.2v +0.8v0] [+0.6vO +0.9v0

g [+O.2vO +0.8v0 [+0.7vO +0. 9vOl
f [4+0.2vO +0.8vO [+0.7vO +0.9v0

g [+0.47v0 +0.53v0] [+0.84v0 +0.89v0]
f [+o0.470 +0.53v0] [4+0.85v0 +0.89v0]

g [+0.4999999998v0 +0.5000000002v0] [+0.8660254037v0 +0.8660254039vO]
f [+0.4999999999v0 +0.5000000001vOl [+0.8660254037v0 +0.8660254038v0]

The corresponding parallelism profile is shown in figure 7.19. Note that the time at which

tasks/cycle
SI

44 1 512 -5~~~~-- ~cycles

Figure 7.19: Parallelism Profile of Example 7.9

the parametric changes are initiated is immaterial, for if they would have taken place before
the equilibria were reached, we would still have convergence to the same final solution.

In general, large distributed systems can exhibit a very wide range of behaviors [105].
Although the computations proposed here provide verified accuracy, we found that the
propagation of changes can potentially lead to an increasing number of messages being
sent. Also, as this type of design networks are no longer acyclic, it is possible to find quasi
periodic behavior where a large number of messages is sent in cycles. This phenomenon
can however be controlled by a careful implementation of the solution actor, for example
by incorporating changes only by synchronous local iteration loops. So that a maximum of
one local iteration per function is allowed. In addition, pile-up of messages corresponding
to parametric changes can be avoided by merging. Indeed, except for midpoint and slope
computations, interval refinement messages may be intersected. Furthermore, if the interval
remains unchanged it is not required to propagate the change any further.

Hierarchical Design Networks

When concurrent computations associated with design models are organized in a hierarchical
fashion, both parametric changes and model refinements can take place.

130

Example 7.10

In this example we illustrate a two level hierarchical approach where in addition to equa-
tions (7.11), which make up the top level of the hierarchy, we consider the following lower
level model:

a2 + 16a + 16b = 29+16 2 y2 +32
(7.12)

(11+2z)a-12b 2 = 0

we now take A and B to be [.99,1.01]. Each model only has the authority to update its
local variables, and will be notified of parametric changes by other models as soon as new
information is available (see figure 7.22 for a similar example). Since only interval values
are passed from one model to the other, semantic consistency is verified.

The concurrency graph is shown in figure 7.20. Note that while the hierarchical orga-
nization creates additional communication cycles, no additional mechanisms are needed to
control the explosion of :change messages. The concurrent hierarchical solution of equa-

tasks/cycle

321
34

cycles

Figure 7.20: Parallelism Profile of Hierarchical Computations (Example 7.10)

tions (7.11) and (7.12) produces the following bounds:

(X) _ ([0.420, 0.580]
Y [0.824, 0.900])

(A) _ ([0.994, 1.006]
B = [0.994, 1.006]

Observe that different strategies can be used for coordinating hierarchical computations.
When lower levels are forced to iterate more then higher levels, the computations have
a strict hierarchical flavor, whereas they are much more democratic if all information is
communicated as soon as it is available.

Example 7.11

When external parameter changes occur, they now will trigger iterations and changes
throughout the hierarchy. Let us as before first change rf to [1]. Figure 7.21 illustrates
how the equilibrium is disrupted and the computation resumes. At the new equilibrium we
have:

X = [0.470,0.530]
Y J [[0.848, 0.884])

131

tasks/cycle

4

44 i2 192 S
cycles

Figure 7.21: Parallelism Profile of a Parametric Changes in Example 7.11

(A (_ [0.9977, 1.0023]
B [0.9978, 1.0022] 1

If we then change r, we find:

X [0.4999999992, 0.5000000008]
Y [0.8660254033, 0.8660254042

A _ [0.9999999999, 1.0000000001]

B - [0.9999999999,1.0000000001]

It should be noted that although for these nonlinear equations the convergence at each
individual level is quadratic, the hierarchical approach in effect decouples the equations by
abstracting parameters by intervals. This implies that the global convergence typically will
only be linear.

7.5 The Design Society

We can already put forward a number of practical implementation aspects for the design
society. In particular, models can be represented by actor agencies [179] (see for example
figure 7.22), which control only the free variables of that model. Parametric changes are
communicated to dedicated actors which transmit the change locally. As soon as the values
of local variables are updated, this information is sent out to the appropriate dependents.
The corresponding refinement processes allow the agencies to provide increasingly better
solution bounds in a concurrent fashion.

Intra-agency communication is allowed to be asynchronous and local dispatching and
message merging can occur. Inter-agency communication however, usually requires some
synchronization to ensure local consistency. Note that models, including their local iteration
processes, can be nested. A simple example of this is a model representing a function inverse.

Agency boundaries can be used by the compiler fo. allocation on physical machines. As
intra-agency communication is slower then inter-agency communication, it is desirable to
locate the actors of an agency on the same processor. This information is indeed crucial
and not always available in traditional parallel programming languages.

Finally, information concerning the design models can be obtained by sending queries
to the corresponding actors. The design society therefore is a concurrent distributed repre-
sentation of the design process.

132

Figure 7.22: Modeling Agencies

133

Chapter 8

Conclusion

8.1 Summary

Based on a careful study of the existing state of the art in design automation, we have come
to the conclusion that further progress in this area required us to rethink some of the basic
premises. We therefore have identified the basic issues that need to be addressed and have
integrated them in a framework for design.

First and foremost we have decided to use conservatively bounded models to overcome
some of the problems associated with traditional approximate models. Indeed, while ap-
proximate models provide very little information to verify their accuracy, bounded models
are guaranteed to conservatively enclose all solutions. Second, we propose to use a unified
representation for design models and computations based on design graphs. Third, con-
currency is inherent in design and should, in our opinion, explicitly be taken into account.
Bounded models are shown to allow for concurrency in a natural way, since all parts of the
computation have conservative bounds on partial results computed elsewhere. Fourth, we
believe that progress in design automation necessitates a language for design that concisely
captures the information provided by the designer.

We then have addressed a number of these issues. In particular, we have made a number
of significant contributions to existing interval arithmetic enclosure techniques. We not only
have improved the quality of the enclosures by improving linear interval solvers, but also the
efficiency of the computations by presenting fast evaluation methods for partial derivatives
and providing for variable accuracy computations. In addition, we have used denotational
semantics to unify a number of enclosure languages.

Finally, we have applied interval arithmetic methods for performing design computa-
tions. In particular, we have used these techniques to address the consistency problem
associated with the incremental nature of design and have demonstrated the advantage of
interval computations in concurrent distributed systems.

8.2 Contribution

The contribution of this thesis is twofold, on the one hand our framework provides a promis-
ing new approach to some of the existing problems in the area of design automation. On

134

the other hand, the algorithms contained in this thesis are a significant improvement to the
state of the art for the solution of nonlinear algebraic equations.

It is our opinion that numerical set computations fill an existing void between traditional
numerical analysis and discrete mathematics and promises to be an exiting new area of
research in engineering design.

8.3 Future Research

As we have pointed out, a number of elements have to be integrated before substantial
advances can be made towards the automation of design. Achieving this goal therefore
requires a concerted research effort. The following issues are subject to further research.

Interval arithmetic techniques can be used for enclosure of discrete enumerations as
well. The general problem of computing of bounds on discrete point sets however, is a hard
one and more research is needed in this area. Good enclosures would allow us to include
this type of variables in our framework for design hence avoiding the enumeration of all
possibilities in a combinatorial fashion.

We believe that better techniques should be devised to handle singular interval solutions
and matrices. This can be done not only by improving existing bisection techniques, but
also by incrementally increasing the complexity of the bounds and the order of the nonlin-
ear solver. Inclusion of additional intermediate variables in the computation of nonlinear
solutions for example, can help prevent singular interval matrices. Tighter enclosures can
also be obtained by recognizing parametric dependencies in interval coefficients and right
hand sides [112]. Finally, scaled maximum norm methods [171] can be used in conjunction
with line search methods to take advantage of local monotonicity properties.

Alternatively, one could proceed to use more sophisticated techniques then interval
arithmetic to represent bounded models, hereby increasing the time complexity. Polytopes
are a very interesting generalization of intervals by specifying bounds on vector compo-
nents and therefore describe tighter enclosures [111]. As they can simply be represented
by matrices, we believe that Nonlinear solution operators still will have a polynomial time
complexity. Unfortunately, the time complexity associated with more powerful representa-
tions very rapidly becomes exponential. It should however be emphasised that this can still
be allowed if these techniques are used in conjunction with a hierarchical approach. In that
case, the number of variables in each subproblem can remain relatively small.

Interval arithmetic methods can easily be extended to include optimization [194]. In
addition, optimization specific techniques can be devised to take advantage of the particular
structure of the associated nonlinear equations. Optimal computation of Hessians or second
order slopes will, in our opinion, prove to be a particularly interesting problem.

While the techniques presented in this thesis focus on the computation of conservative
bounds of the solution set, we have indicated in chapters 2 and 7 that conservative interior
bounds have a number of important applications in design. Indeed, not only do they allow
for design computations with operating ranges, but they can also be used to guarantee
feasibility. Although a preliminary discussion of the computation of interior bounds can be
found in [46]. we believe that this problem deserves more attention.

Computation of enclosures for the solution of partial differential equations is one of the
most important outstanding problems. While some solution techniques are already available

135

for general one dimerional equations, i.e. ordinary differential equations. [65, 164, 216, 238,
1391, as well as for a number of two dimensional differential equations [10, 213, 226, 38],
very little work has been done on systems. Enclosure methods for the solution of systems of
three dimensional elliptic partial differential equations would be a significant contribution.

We have included a design language as basic building block of our framework since is not
trivial to conceive constructs that allow us to concisely capture the modeling information
or functional requirements expressed by the designer. Furthermore, it is understood that
the formulation of design as an optimization problem can be demanding. We are however
convinced that this problem cannot be avoided by handling tradeoffs in an implicit fashion
as is done by most other methods. Furthermore, by allowing for the incremental refinement
of objective functions, our approach considerably simplifies this problem.

It is very important to provide this design language with proper semantic definitions
in terms of design graphs and available services. While the framework and techniques
proposed in this thesis provide a good indication of the specific aspects required for a
practical implementation of design graphs, more work is required towards a unified graph
representation for engineering models. This work will also include the development of fast
activation algorithms, lazy evaluation techniques for design views and the development of
standard protocols for information exchange.

The development of our framework will require further research on the automatic han-
dling of inconsistencies. In our opinion. inconsistency handlers should indeed be incorpo-
rated both in the design language and the design graphs. This can include user specified
strategies, such as backtrack mechanisms for example, that automatically recover the most
specific consistent model.

The techniques presented in this thesis really need to be complemented with algorithms
for controlling the cost of design computations, which can be decomposed into charges
for processor time, communications and memory space. We believe that this can be done
by abstracting over numerical solution operators [17] and conceiving appropriate selection
methods based on available resources and requirements.

Finally, one should address the fundamental problem of reflexiveness. Indeed, while one
can reason about a computation in the same computational system [149], this is always
done by a level shift. A well-known problem solving system based on meta-level shifts is
SOAR [143]. We believe that reflexive computation is impossible without level abstraction,
for it would imply working within the model one is abstracting over. The reflexiveness
problem has an important consequence for computations in design. It implies that it is
impossible to minimize the required resources, such as cost, if the resources required by the
design process are not neglectable w.r.t. to the overall process. By considering this problem
at higher levels of abstraction one can indeed only approximately minimize the required
resources as it can not include the cost of the optimizing computation itself. While better
approximations can be obtained by including more levels of abstraction, the exact solution
of this problem would lead to an infinite recursion. It should be noted that this issue is not
only of academic but also of practical interest, as further technological developments tend
to increase the cost ssociated with the design process w.r.t. to the manufacturing process.

136

Appendix A

Exact Solution of Midpoint
Preconditioned Equations

A.1 Derivation of Exact Lower Bounds

We begin by deriving some useful identities. By definition we have:

(A)iv = Bi,

(A)ie[i] = 1

we can rewrite equation (A.1) as:

E IAIjvj = (A)iivi - Bi,

so that:

(A)V =

IAliv =

Similarly, equation (A.2) implies that:

Z jAijeii]i

and therefore:

(A),e[i] =

IAlie[i] =

2(A)iie[i]j- 1

2e[i]i- 1

Note also that: > JAije'[i]j = -(A) -e'[i]i- 1
. 7 •i

137

(A.1)

(A.2)

2(A)iivi - Bu
2vi - Biu

= (A)iieli]i- 1

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

leading to:
(A)e'[i] = -1 (A.8)

Recalling the definition of m[i]:
· Vi

m[i] = v - e[i]

we can use equations (A.3) and (A.5) to simplify:

vi(A)m[i] = 2(A)iivi - Bi, - ei] (2(A)iie[i]i - 1) (A.9)

= -Bi v + i] (A.10)

Similarly, we can use equations (A.4) and (A.6) in:

IAlim[i] = 2vi - Bi, e i (2e[i]i- 1) (A.11)

vi= -Biu + - (A.12)
elzii

We now can use these relations to solve for c[i]. Elimination of c[i] in equations (4.13)
results in:

(A).(m[i] + e'[i]s') - Bil = 0

-Bi + v'i - s- Bil = 0
e[/]i

so that the value of the parameter s' is given by:

s' = -2Bic, +
e[i]i

Substituting this value in the equation of c[i] and restricting our interest to the i-th com-
ponent, we have:

c[i]i = m[i]i + e'[i]is'

= 2e[i]iBic -vi

In a similar fashion we eliminate c[i] in equations (4.20):

IAli(m[i] + e[i]s)-Bil = 0
vi-Bi + + (2e[i]i- 1)s - Bil = 0

so that the corresponding value of s is given by:

vi
2Bi e[i]i

2e[i]i- 1

138

which results in:

c[i]i = m[i]i + e[i]is
2e[i]iBic - vi

2e[i]i- 1

Condition (4.19) can be simplified as follows:

Vi=.(A).m[i]- Bil = (A)v - ei (A)e[i]- Bil

vi= 2(A)iivi- Bi, - [i] (2(A)i,[i]i]i - 1)- Bil

ievii
-2Bic + Ve[i~i

so that:
(A)'m[i]- Bi, < 0 , 2Bice[i]i - vi > 0

139

Appendix B

Variable Interval Precision

B.1 Constants for Variable Interval Precision

For f(X) = g(X) ± h(X) we have:

< d(g(X), g°(X)) + d(h(X), h°(X))
< 19 (g(X)) + lhw(h(X))
< max(Ig, lh)W(f(X))

so that l = max(Ig, lh). We now compute /I:

< Amw(go(X) ± ho(X))
< AM(1 + 2AM)(w(g(X))
< AM(1 + 2AM)w(f(X))

+ w(h(X)))

in other words = AM(1 + 2AM). For the multiplication f(X) = g(X)h(X):

< d(g°(X)h(X), g°(X)h°(X)) + d(g°(X)h°(X) , g(X)h°(X))
< g(X)Ilhw(h(X)) + Ih°(X)Ilgw(g(x))
< (1 + Ig)lhlg(X)lw(h(X)) + (1 + alh)lglh(X)lw(g(X))
< (g + 2 1g1h + h)w(f(X))

here Pl = 1 + 2 1g1h + h

< Aw(g°(X)h(X))
< AM(Ig°(X)Iw(h°(X)) + Ih°(X)!w(g°(X)))
< AM(1 + 2AM)((1 + 1g)lg(X)lw(h(X)) + (1 +
< A(1 + 2AM)(2 + g19 + lh)w(f(X))

with ' = AM(1 + 2AM)(2 + 1 + h). Finally, for f(X) = q(g(X)) with 4 E , including the
inverse, we have:

< I OV')W(g(X))
< 19 O() w((g(X)))

140

d(f(X), g(X) h(X))

d(g'(X) h(X) , f(X)) '

d(f(X) , g(X)h'(X'))

d(g*(X)h*(X), f(X))

Ih)lh(X)lw(g(X)))

d(f(X) , (g*(X)))

for some (° E g(X)

I;(. Similarly,
#~ (~.

and E g(X). Since for E , the ratio) is bounded, =O'()f
< Mw(o(g*(X)))
< AMO'(V*)W(g(X))

< A M ,-) ((g(X)))

so that l' = AM')

141

d((g(X)) , 0(g*(X)))

Bibliography

[1] G.A. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge, Massachusetts, 1986.

[2] G. Alefeld. Das symmetrische Einselschrittverfahren bei linearen Gleichungen mit
Intervallen als Koeffizienten. Computing, 18:329-340, 1977.

[3] G. Alefeld. Uber die Durchfihrbarkeit des Gauschen Algorithmus bei Gleichungen
mit Intervallen als Koeffizienten. Computing Suppl., 1:15-19, 1977.

[4] G. Alefeld. Intervallanalytische Methoden bei nichtlinearen Gleichungen. In
S.D. Chatterji et al., editors, Jahrbuch berblicke Mathematik 1979, pages 63-78,
Mannheim, 1979. Bibl. Inst.

[5] G. Alefeld. On the convergence of some interval-arithmetic modifications of Newton's
method. SIAM Journal of Numerical Analysis, 21(2):363-372, April 1984.

[6] G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic Press,
1983.

[7] G. Alefeld and L. Platz6der. A quadratically convergent Krawczyk-like algorithm.
SIAM Journal of Numerical Analysis, 20(1):210-219, February 1983.

[8] C. Alexander. Notes on the Synthesis of Form. Harvard University Press, Cambridge,
Massachusetts, 1966.

[9] E.L. Allgower, K. Bbhmer, F.A. Potra, and W.C. Rheinboldt. A mesh-independence
principle for operator equations and their discretizations. SIAM Journal of Numerical
Analysis, 23(1):160-169, February 1986.

[10] W. Appelt. FehlereinschlieBung fr die Lsungen einer Klasse elliptischer Randw-
ertaufgaben. Zeitschrift fur Angewandte Mathematik und Mechanik, 54:T207-209,
1974.

[11] I.K. Argyros. A mesh-independence principle for nonlinear operator equations and
their discretizations under mild differentiability conditions. Computing, 45:265-268,
1990.

[12] Arvind and D. E. Culler. Dataflow architectures. Annual Review in Computer Science,
1:225-253, 1986.

142

[13] Arvind, D. E. Culler, and Maa G. K. Assessing the benefits of fine-grained parallelism
in dataflow programs. Memo 279, Computation Structures Group, MIT, June 1988.

[14] R.E. Barnhill, editor. Chapter in Geometry Processing, Philadelphia, PA, 1991. Soci-
ety for Industrial and Applied Mathematics. To appear.

[15] R.G. Bartle. Newton's method in Banach spaces. Proc. Amer. Math. Soc., 6:827-831,
1955.

[16] W. Baur and V. Strassen. The complexity of partial derivatives. Theoretical Cormputer
Science, 22:317-330, 1983.

[17] D.G. Bell, D.L. Taylor, and P.D. Hauck. Mathematical foundations of engineering
design processes. In Stauffer [236], pages 181-189.

[18] A. Berman and R.J. Plemmons. Nonnegative Matrices in the Mathematical Sciences.
Academic Press, New York, 1979.

[19] D. P. Bertsekas and J. N. Tsitsiklis. A survey of some aspects of parallel and dis-
tributed iterative algorithms. Technical Report CICS-P-189, Center for Intelligent
Control Systems, MIT, January 1990.

[20] Bojaficzyk. Complexity of solving linear systems in different models of computation.
SIAM Journal of Numerical Analysis, 21(3):591-603, June 1984.

[21] A.H. Bond and R.J. Ricci. Cooperation in aircraft design. In D. Sriram, R. Logcher,
and S. Fukuda, editors, Proceedings of the MIT-JSME Workshop on Cooperative Prod-
uct Development, Cambridge, Massachusetts, November 1989. track 6.

[22] S. P. Bradley, A. C. Hax, and T. L. Magnanti. Applied Mathematical Programming.
Addison-Wesley Publishing Company, 1977.

[23] R.P. Brent. The complexity of multiple-precision arithmetic. In Proceedings of the
Seminar on Complexity of Computational Problem Solving held at the Australian
National University in December 1974, pages 126-165, Brisbane, Australia; 1975.
Queensland University Press.

[24] R.P. Brent. Fast multiple-precision evaluation of elementary functions. Communica-
tions of the Association for Computing Machinery, 23(2):242-251, April 1976.

[25] R.P. Brent. Multiple-precision zero-finding methods and the complexity of elementary
function evaluation. In J.F. Traub, editor, Proceedings of the Symposium on Analytic
Computational Complezity, pages 151-176, New York, 1976. Academic Press.

[26] R.P. Brent. Algorithm 524: MP, a fortran multiple-precision arithmetic package [al].
ACM Transactions on Mathematical Software, 4(1):71-81, March 1978.

[27] R.P. Brent. A fortran multiple-precision arithmetic package. ACM Transactions on
Mathematical Software, 4(1):57-70, March 1978.

143

[28] E. Brisson. Representation of d-Dimensional Geometric Objects. PhD thesis, De-
partment of Computer Science and Engineering, University of Washington, Seattle,
Washington, 1990.

[29] R. A. Brooks. A robust layered control system for a mobile robot. IEEE Journal of
Robotics and Automation, 2(1):14-23, March 1986.

[30] R. A. Brooks. Intelligence without representation. AI memo, Artificial Intelligence
Laboratory, MIT, Cambridge, Massachusetts, 1988.

[31] D. C. Brown and R. Breau. Types of constraints in routine design problem-solving.
In Sriram and Adey [233], pages 383-390.

[32] D. C. Brown and B. Chandrasekaran. Design Problem Solving: Knowledge Structures
and Control Strategies. Pitman Publishing, London, U.K., 1989.

[33] L. L. Bucciarelli. An ethnographic perspective on engineering design. Design Studies,
9(3):159-168, July 1988.

[34] J.R. Bunch and D.J. Rose, editors. Sparse Matrix Computations. Academic Press,
September 1976.

[35] S.A. Burns, T.M. Carr, and A. Locascio. Graphical representation of design process
optimization processes. In NSF DMSC '90 [173], pages 115-122.

[36] J.F. Canny. The Complexity of Robot Motion Planning. MIT Press, Cambridge,
Massachusetts, 1988.

[37] C. Chryssostomidis and N. M. Patrikalakis. Geometric modeling issues in computer
aided design of marine structures. Marine Technology Society Journal, 22(2):15-33,
1988.

[38] L. Collatz. Guaranteed inclusions of solutions of some types of boundary value prob-
lems. In Ullrich [253], pages 189-198.

[39] D. D. Corkill and V. R. Lesser. The use of meta-level control for coordination in a
distributed problem solving network. In Proceedings of the 8th International Joint
Conference on Artificial Intelligence, pages 748-756, Karlsruhe, West Germany, Au-
gust 1983.

[40] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT
Press, Cambridge, Massachusetts, 1990.

[41] G. Dahlquist and A. Bjorck. Numerical Methods. Prentice-Hall, Englewood Cliffs,
NJ, 1974.

[42] L. (Editor) Davis. Genetic Algorithms and Simulated Annealing. Pitman Publishing,
London, U.K., 1987.

[43] R. Davis. Expert systems: Where are we? and where do we go from here? The AI
Magazine, 3(2):3-22, Spring 1982.

144

[44] R. Davis. Expert systems: How far can they go? The AI Magazine, 10(1):614-67,
Spring 1989.

[45] R. Davis and R. G. Smith. Negotiation as a metaphor for distributed problem solving.
Artificial Intelligence, 20:63-109, 1983.

[46] A. Deif. Sensitivity Analysis in Linear Systems. Springer-Verlag, 1986.

[47] J.W. Demmel and F. Kriickeberg. An interval algorithm for solving systems of linear
equations to prespecified accuracy. Computing, 34:117-129, 1985.

[48] Y.M. Dirickx and P.L. Jennergren. Systems Analysis by Multilevel Methods, with
Applications to Economics and Management. John Wiley and Sons, 1979.

[49] J. R. Dixon, M. K. Simmons, and P. R. Cohen. An architecture for application of
artificial intelligence to design. In Proceedings of the ACM-IEEE Design Automation
Conference, pages 634-640, Albuquerque, New Mexico, June 1984.

[50] J. Doyle. A truth maintenance system. In B.L. Webber and N.J. Nilsson, editors,
Readings in Artificial Intelligence, pages 496-516, Los Altos, California, 1985. Morgan
Kaufmann Publishers.

[51] I.S. Duff, A.M. Erisman, and J.K. Reid. Direct Methods for Sparse Matrices. Claren-
don Press, Oxford, 1986.

[52] E.H. Durfee. The distributed artificial intelligence melting pot. IEEE Transactions
on Systems, Man, and Cybernetics, 21(6):1301-1306, November 1991.

[53] P.S. Dwyer. Linear Computations. John Wiley and Sons, New York, 1951.

[54] C.M. Eastman, A.H. Bond, and S.C. Chase. A formal approach for product model
information. Research in Engineering Design, 2:65-80, 1991.

[55] S.C. Eisenstat, M.H. Schultz, and A.H. Sherman. Applications of an element model
for Gaussian elimination. In Bunch and Rose [34], pages 85-96.

[56] S.D. Eppinger, D.E. Whitney, and D.A. Gebala. Organizing the tasks in complex
design projects: Development of tools to represent design procedures. In NSF DMSC
'92 [174], pages 301-309.

[57] L. D. Erman and V. R. Lesser. A multi-level organization for problem solving using
many, diverse, cooperating sources of knowledge. In Proceedings of the 4th Inter-
national Joint Conference on Artificial Intelligence, pages 483-490, Tbilisi, Georgia,
USSR, September 1975.

[58] A. Esterline, M. Arnold, D.R. Riley, and A.G. Erdman. Representations for the
knowledge revealed in conceptual mechanism design protocols. In NSF DMSC '90
[173], pages 123-135.

145

[59] D.W. Etherington and R. Reiter. On inheritance hierarchies with exceptions. In R.J.
Brachman and H.J. Levesque, editors, Readings in Knowledge Representation, pages
329-334, Los Altos, California, 1985. Morgan Kaufmann Publishers.

[60] S. Finger and J. R. Dixon. A review of research in mechanical engineering design.
part I: Descriptive, prescriptive, and computer-based models of design processes. Re-
search in Engineering Design, 1(1):51-67, 1989.

[61] S. Finger and J. R. Dixon. A review of research in mechanical engineering design.
part II: Representations, analysis, and design for the life cycle. Research in Engineer-
ing Design, 1(1):121-137, 1989.

[62] K.D. Forbus. Qualitative process theory. Artificial Intelligence, 24:85-168, 1984.

[63] L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton University Press, Prince-
ton, New Jersey, 1962.

[64] P. Freeman and A. Newell. A model for functional reasoning in design. In Walker
[258], pages 621-640.

[65] I. Fried. Numerical Solution of Differential Equations. Academic Press, 1979.

[66] D. Friedman. Bringing mechanical design automation closer into alignment with
electronic design automation. In A UTOFACT '89: Conference Proceedings, pages
16.1-13, Detroit, Michigan, October 1989.

[67] Y. Fujii, K. Ichida, and M. Ozasa. Maximization of multivariable functions using
interval analysis. In Interval Mathematics 1985: Proceedings of the International
Symposium, pages 17-26. Springer-Verlag, September 1985.

[68] J. Garloff and R. Krawczyk. Optimal inclusion of a solution set. SIAM Journal of
Numerical Analysis, 23(1):217-226, February 1986.

[69] A. George and J.W.H. Liu. Algorithms for matrix partitioning and the numerical
solution of finite-element systems. SIAM Journal of Numerical Analysis, 15:297-327,
1978.

[70] A. George and J.W.H. Liu. A quotient graph model for symmetric factorization. In
I.S. Duff and G.W. Stewart, editors, Sparse Matrix Proceedings 1978, pages 154-175,
Philadelphia, PA, 1978. Society for Industrial and Applied Mathematics.

[71] A. George and J.W.H. Liu. A minimal storage implementation of the minimum degree
algorithm. SIAM Journal of Numerical Analysis, 17:282-299, 1980.

[72] A. George and J.W.H. Liu. Computer Solution of Large Sparse Positive Definite
Systems. Prentice-Hall, Englewood Cliffs, NJ, 1981.

[73] A. Gerstenfeld, G. D. Gosling, and D. Touretzky. An expert system for managing
cooperating expert systems. In Sriramr and Adey [234], pages 219-244.

[74] P. E. Gill, W. Murray, and A. Wright. Practical Optimization. Academic Press, 1981.

146

[75] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley Publishing Company, 1989.

[76] G. D. Gosling and A. M. Okseniuk. SLICE - a system for simulation through a set
of cooperating expert systems. In Sriram and Adey [234], pages 1083-1093.

[77] A. Griewank. On automatic differentiation. In M. Iri and K. Tanabe, editors, Math-
ematical Programming, pages 83-107. KTK Scientific Publishers, Tokyo, 1989.

[78] A. Griewank. Automatic Evaluation of First and Higher-Derivative Vectors, volume 97
of International Series of Numerical Mathematics, pages 135-148. Birkhiuser Verlag,
1991.

[79] M. D. Gross, S. M. Ervin, J. A. Anderson, and A. Fleisher. Designing with constraints.
In Y. E. Kalay, editor, Computability of Design, pages 53-83. John Wiley and Sons,
1987.

[80] M. D. Gross, S. M. Ervin, J. A. Anderson, and A. Fleisher. Constraints: Knowledge
representation in design. Design Studies, 9(3):133-143, July 1988.

[81] G. Gupta, editor. Proceedings of the ASME Computers in Engineering Conference,
Chicago, 1986.

[82] H.N. Gursoy. Shape Interrogation by Medial Azis Transform for Automated Analy-
sis. PhD thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts,
November 1989.

[83] E. L. Gursoz, Y. Choi, and F. B. Prinz. Vertex-based representation of non-manifold
boundaries. In Gursoz [270], pages 87-106.

[84] W.W. Hager. Condition estimates. SIAM Journal of Scientific and Statistical Com-
putation, 5(2):311-316, June 1984.

[85] E. Hansen. Interval arithmetic in matrix computations: Part 1. SIAM Journal of
Numerical Analysis, 2:308-320, 1965.

[86] E. Hansen, editor. Topics in Interval Analysis. Oxford University Press, 1969.

[87] E. Hansen. Interval forms of Newton's method. Computing, 20:153-163, 1978.

[88] E. Hansen and R.I. Greenberg. An interval Newton method. Applied Math. and
Comp., 12:89-98, 1983.

[89] E. Hansen and S. Sengupta. Bounding solutions of systems of equations. BIT, 21:203-
211, 1981.

[90] E. Hansen and R. Smith. Interval arithmetic in matrix computations: Part 2. SIAM
Journal of Numerical Analysis, 4:1-9, 1967.

[91] P. Hansen, B. Jaumard, and S.H. Lu. A framework for algorithms in globally optimal
design. Journal of Mechanisms, Transmissions, and Automation in Design, 111:353-
360, September 1989.

147

[92] F. Harary. Sparse matrices and graph theory. In J.K. Reid, editor, Large Sparse
Sets of Linear Equations: Proceedings of the Oxford Conference of the Institute of
Mathematics and Its Applications, pages 139-150. Academic Press, 1971.

[93] E.B. Haugen. Probabilistic Mechanical Design. John Wiley and Sons, New York, 1980.

[94] C. Hewitt. Viewing control structures as patterns of passing messages. Artificial
Intelligence, 8:323-364, 1977.

[95] C. Hewitt. Offices are open systems. ACM Transactions on Office Information Sys-
tems, 4(3):271-287, July 1986.

[96] C. Hewitt. Open systems architecture. Preprint, 1989.

[97] C. Hewitt and G.A. Agha, editors. Concurrent Systems for Knowledge Processing,
Cambridge, Massachusetts, 1989. MIT Press.

[98] C. Hewitt, G.A. Agha, and J. Inman, editors. Towards Open Information Systems
Science. MIT Press, Cambridge, Massachusetts, 1992. To Appear.

[99] N.J. Higham. A survey of condition number estimation for triangular matrices. SIAM
Review, 29(4):575-596, December 1987.

[100] W. D. Hillis. Intelligence as an emergent behavior, or, the songs of Eden. Daedalus,
117(1):175-189, Winter 1988.

[101] W. Horwat. Concurrent smalltalk on the message-driven processor. Technical Report
1321, Artificial Intelligence Laboratory, MIT, Cambridge, Massachusetts, September
1991.

[102] A. Howe, P. Cohen, J. Dixon, and M. Simmons. Dominic: A domain-independent
program for mechanical engineering design. In Sriram and Adey [233], pages 289-299.

[103] T.C. Hu and M.T. Shing. Some theorems about matrix multiplication. In Proceedings
of the 21st Annual Symposium on Foundations of Computer Science, pages 28-35.
IEEE Computer Society, 1980.

[104] B. A. Huberman, editor. The Ecology of Computation, The Netherlands, 1988. Else-
vier Science Publishers.

[105] B. A. Huberman and T. Hogg. The behavior of computational ecologies. In Huberman
[104], pages 77-115.

[106] T.E. Hull. The use of controlled precision. In J.K. Reid, editor, Proceedings of the
IFIP TC2 Working Conference on the Relationship between Numerical Computation
and Programming Languages held in Boulder, Colorado in August 1981, pages 71-84.
North-Holland Publishing Company, 1982.

[107] T.E. Hull and A. Abrham. Variable precision exponential function. ACM Transactions
on Mathematical Software, 12(2):79-91, June 1986.

148

[108] M. Iri. Simultaneous computation of functions, partial derivatives and estimates of
rounding errors -complexity and practicality-. Japan Journal of Applied Mathe-
matics, 1:223-252, 1984.

[109] P. Jain and A.M..Agogino. Global optimization using the multistart method. In
Ravani [196], pages 39-44.

[110] P. Jansen and P. Weidner. High-accuracy arithmetic software - some tests of the acrith
problem-solving routines. ACM Transactions on Mathematical Software, 12(1):62-70,
March 1986.

[111] C. Jansson. A geometric approach for computing a posteriori error bounds for the
solution of a linear system. Computing, 47:1-9, 1991.

[112] C. Jansson. Interval linear systems with symmetric matrices, skew-symmetric matrices
and dependencies in the right hand side. Computing, 46:265-274, 1991.

[113] V.Y. Jin and A.H. Levis. Effects of organizational structure on performance: Ex-
perimental results. Technical Report LIDS-P-1978, Laboratory for Information and
Decision Systems, MIT, May 1990.

[114] R. C. Johnson and R. C. Benson. A multistage decomposition strategy for design
optimization. Journal of Mechanisms, Transmissions, and Automation in Design,
106:387-393, September 1984.

[115] C.B. Jones. A significance rule for multiple-precision arithmetic. ACM Transactions
on Mathematical Software, 10(1):97-107, March 1984.

[116] W.M. Kahan. A more complete interval arithmetic. Lecture notes for an engineering
summer course in numerical analysis, University of Michigan, 1968.

[117] K. M. Kahn and M. S. Miller. Language design and open systems. In Huberman
[104], pages 291-313.

[118] R.B. Kearfott. Some tests of generalized bisection. ACM Transactions on Mathemat-
ical Software, 13(3):197-220, September 1987.

[119] R.B. Kearfott. Decomposition of arithmetic expressions to improve the behavior of
interval iteration of nonlinear systems. Computing, 47:169-191, 1990.

[120] F. Kinoglu, D. Riley, and M. Donath. Knowledge-based system model of the design
process. In Gupta [81], pages 181-191.

[121] S. Kirkpatrick, C. D. Gellat, and M. P. Jr. Vecchi. Optimization by simulated an-
nealing. Science, 220(4598):671-680, May 1983.

[122] D.E. Knuth. The Art of Computer Programming: Volume 2, Seminumerical Algo-
rithms. Addison-Wesley Publishing Company, 1969.

149

[123] W. A. Kornfeld. Ether - a parallel problem solving system. In Proceedings of the
6th International Joint Conference on Artificial Intelligence, pages 490-492, Tokyo,
Japan, August 1979.

[124] E.V. Korngold, M.S. Shephard, R. Wentorf, and D.L. Spooner. Architecture of a
design system for engineering idealizations. In B. Ravani, editor, Advancer in Design
Automation, volume 1, pages 259-265, Montreal, Canada, September 1989.

[125] A.S. Kott and J.H. May. Decomposition vs. transformation: Case studies of two
models of the design process. In D.R. Riley and T.J. Cokonis, editors, Proceedings
of the ASME Computers in Engineering Conference, pages 1-8, Anaheim, California,
1989.

[126] R. Krawczyk. Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehler-
schranken. Computing, 4:187-201, 1969.

[127] R. Krawczyk. Intervallsteigungen fur rationale Funktionen and zugeordnete zentrische
Formen. Freiburger Intervall-Berichte, February 1983.

[128] R. Krawczyk. A remark about the convergence of interval sequences. Computing,
31:255-259, 1983.

[129] R. Krawczyk. Interval iterations for including a set of solutions. Computing, 32:13-31,
1984.

[130] R. Krawczyk. A class of interval-Newton-operators. Computing, 37:179-183, 1986.

[131] R. Krawczyk. A Lipschitz operator for function strips. Computing, 36:169-174, 1986.

[132] R. Krawczyk. Properties of interval operators. Computing, 37:227-245, 1986.

[133] R. Krawczyk. Optimal enclosure of a generalized zero set of a function strip. SIAM
Journal of Numerical Analysis, 24(5):1202-1211, October 1987.

[134] R. Krawczyk and A. Neumaier. Interval slopes for rational functions and associated
centered forms. SIAM Journal of Numerical Analysis, 22:604-616, 1985.

[135] R. Krawczyk and A. Neumaier. An improved interval Newton operator. Journal of
Mathematical Analysis and Applications, 118:194-207, 1986.

[136] R. Krawczyk and A. Neumaier. Interval Newton operators for function strips. Journal
of Mathematical Analysis and Applications, 124:52-72, 1987.

[137] R. Krawczyk and K. Nickel. Die zentrische Form in der Intervallarithmetik, ihre
quadratische Konvergenz und ihre Inklusionsisotonie. Computing, 28:117-132, 1982.

[138] G.A. Kriezis. Algorithms for Rational Spline Surface Intersections. PhD thesis, Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts, March 1990.

150

[139] F. Kriickeberg and R. Leisen. Arbitrarily accurate boundaries for solutions of ODEs
with initial values using variable precision arithmetic. In R. Vichenevetsky and J. Vi-
gnes, editors, Numerical Mathematics and Applications, pages 47-53. Elsevier Science
Publishers, 1986.

[140] U.W. Kulisch. A new arithmetic for scientific computation. In Kulisch and Miranker
[142], pages 1-26.

[141] U.W. Kulisch and W.L. Miranker. Computer Arithmetic in Theory and Practice.
Academic Press, New York, 1981.

[142] U.W. Kulisch and W.L. Miranker, editors. A New Approach to Scientific Computation.
Academic Press, 1983.

[143] J.E. Laird, A. Newell, and P.S. Rosenbloom. SOAR: An architecture for general
intelligence. Artificial Intelligence, 33:1-64, 1987.

[144] L. Lamport and N. Lynch. Chapter on distributed computing. Preprint, February
1988.

[145] V. R. Lesser and D. D. Corkill. Functionally accurate, cooperative distributed systems.
IEEE Transactions on Systems, Man, and Cybernetics, 11(1):81-96, January 1981.

[146] V. R. Lesser and D. D. Corkill. The distributed vehicle monitoring testbed: A tool
for investigating distributed problem solving networks. The AI Magazine, 4(3):15-33,
Fall 1983.

[147] S. H. Lucas and S. J. Scotti. The sizing and optimization language, SOL: A computer
language for design problems. Technical Memorandum 100565, NASA, April 1988.

[148] D. G. Luenberger. Introduction to Dynamic Systems: Theory, Models and Applica-
tions. John Wiley and Sons, 1979.

[149] P. Maes. Computational reflection. Technical Report 87-2, Artificial Intelligence
Laboratory, VUB, Brussels, Belgium, 1987.

[150] P. Maes. How to do the right thing. Connection Science, 1(3), March 1990.

[151] P. Mandel and C. Chryssostomidis. A design methodology for ships and other complex
systems. Philosophical Transactions of the Royal Society A., 273:85-98, 1972.

[152] M.L. Manheim. Highway Route Location as a Hierarchically Structured Sequential De-
cision Process: An Experiment in the use of Bayesian Decision Theory for Guiding an
Engineering Process. PhD thesis, Massachusetts Institute of Technology, Cambridge,
Massachusetts, May 1964.

[153] C. R. Manning. Acore: The design of a core actor language and its compiler. Master's
thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, May 1987.

[154] C.R. Manning. Introduction to programming actors in acore. In Hewitt and Agha
[97].

151

[155] C.R. Manning. Traveler: The actor observatory. In Hewitt and Agha [97].

[156] H.M. Markowitz. The elimination form of the inverse and its application to linear
programming. Management Science, 3:255-269, 1957.

[157] O. Mayer. Uber die Bestimmung von EinschlieBflungsmengen fr die Lbsungen lin-
earer Gleichungssystene mit fehlerbehafteten Koeffizienten. Angewante Informatik
(Elektronische Datenverarbeitung), 12:164-167, 1970.

[158] M.D. Mesarovic, D. Macko, and Y. Takahara. Theory of Hierarchical Multilevel Sys-
tems. Academic Press, 1970.

[159] M. Minsky. The Society of Mind. Simon and Schuster, 1986.

[160] R.E. Moore. Automatic error analysis in digital computation. Technical Report
LMSD-48421, Lockheed Missiles and Space Division, Sunnyvale, CA, 1959.

[161] R.E. Moore. Interval arithmetic and automatic error analysis in digital computing.
PhD thesis, Stanford University, Stanford, CA, 1962.

[162] R.E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1966.

[163] R.E. Moore. A test for existence of solutions to nonlinear systems. SIAM Journal of
Numerical Analysis, 14(4):611-615, September 1977.

[164] R.E. Moore. Methods and Applications of Interval Analysis. Society for Industrial
and Applied Mathematics, Philadelphia, PA, 1979.

[165] R.E. Moore, editor. Reliability in Computing: The Role of Interval Methods in Sci-
entific Computing. Academic Press, September 1988.

[166] R.E. Moore and S.T. Jones. Safe starting regions for iterative methods. SIAM Journal
of Numerical Analysis, 14(6):1051-1065, December 1977.

[167] R.E. Moore and L. Qi. A successive interval test for nonlinear systems. SIAM Journal
of Numerical Analysis, 19(4):845-850, August 1982.

[168] A. Neumaier. New techniques for the analysis of linear interval equations. Linear
Algebra Applications, 58:273-325, 1984.

[169] A. Neumaier. Interval iteration for zeros of systems of equations. BIT, 25:256-273,
1985.

[170] A. Neumaier. Existence of solutions of piecewise differentiable systems of equations.
Arch. Math., 47:443-447, 1986.

[171] A. Neumaier. Interval Methods for Systems of Equations. Cambridge University Press,
1990.

[172] K. Nickel. On the Newton method in interval analysis. MRC Technical Summary
Report 1136, University of Wisconsin, Madison, WI, 1971.

152

[173] Proceedings of NSF Design and Manufacturing Systems Conference, Tempe, Arizona,
January 1990.

[174] Proceedings of NSF Design and Manufacturing Systems Conference, Atlanta, Georgia,
January 1992.

[175] D.P. O'Leary. Estimating matrix condition numbers. SIAM Journal of Scientific and
Statistical Computation, 1(2):205-209, June 1980.

[176] 0. Osterby and Z. Zlatev. Direct Methods for Sparse Matrices, volume 157 of Lecture
Notes in Computer Science. Springer-Verlag, 1983.

[177] A.M. Ostrowski. Ufber die Determinanten mit iberwiegender Hauptdiagonale. Com-
ment. Math. Helv., 10:69-96,1937.

[178] H. M. Painter. Analysis and Design of Engineering Systems. MIT Press, Cambridge,
Massachusetts, 1960.

[179] J.J. Palmucci. ORGs: An architecture for constructing large scale actor systems.
Bachelor's thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts,
June 1989.

[180] J.Y.C. Pan and J.M. Tenenbaum. An intelligent agent framework for enterprise in-
tegration. IEEE Transactions on Systems, Man, and Cybernetics, 21(6):1391-1408,
November 1991.

[181] P.Y. Papalambros and D.J. Wilde. Principles of Optimal Design: Modeling and
Computation. Cambridge University Press, 1987.

[182] J.D. Papastavrou and M. Athans. On optimal distributed decision architectures in
a hypothesis testing environment. Technical Report LIDS-P-1928, Laboratory for
Information and Decision Systems, MIT, January 1990.

[183] S. Parter. The use of linear graphs in Gauss elimination. SIAM Review, 3(2):119-130,
April 1961.

[184] N.M. Patrikalakis. Interrogation of surface intersections. In Barnhill [14]. To appear.

[185] J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall, 1981.

[186] M. Petkovic. Iterative Methods for Simultaneous Inclusion of Polynomial Zeros.
Springer-Verlag, 1989.

[187.] O. Pironneau. Optimal Shape Design for Elliptic Systems. Springer-Verlag, 1984.

[188] P. V. Prakash. Computation of Surface-Surface Intersections for Geometric Modeling.
PhD thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, May
1988.

[189] L. Qi. A note on the Moore test for nonlinear systems. SIAM Journal of Numerical
Analysis, 19(4):851-857, August 1982.

153

[190] L.B. Rall. Automatic Differentiation: Techniques and Applications. Number 120 in
Springer Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1981.

[191] L.B. Rail. Differentiation and generation of Taylor coefficients in PASCAL-SC. In
Kulisch and Miranker [142], pages 291-309.

[192] L.B. Rall. Mean value and Taylor forms in interval analysis. SIAM Journal of Math-
ematical Analysis, 14(2), March 1983.

[193] H. Ratschek and J. Rokne. Computer Methods for the Range of Functions. Ellis
Horwood Limited, Chichester, 1984.

[194] H. Ratschek and J. Rokne. New Computer Methods for Global Optimization. Ellis
Horwood Limited, Chichester, 1988.

[195] H. Ratschek and J. Rokne. The transistor modeling problem again. Unpublished
Manuscript, April 1991.

[196] B. Ravani, editor. Advances in Design Automation, volume 2, Montreal, Canada,
September 1989.

[197] J. Regh, A. Elfes, S. Talukdar, R. Woodbury, M. Eisenberger, and R. Edahl. Case:
Computer-aided simultaneous engineering. Technical Report EDRC 05-22-88, Engi-
neering Design Research Center, CMU, Pittsburg, Pennsylvania, 1988.

[198] G.V. Reklaitis, A. Ravindran, and K.M. Ragsdell. Engineering Optimization: Meth-
ods and Applications. John Wiley and Sons, 1983.

[199] J.E. Renaud and G.A. Gabriele. Using the generalized reduced gradient method to
handle equality constraints directly in a multilevel optimization. In Ravani [196],
pages 7-14.

[200] J.R. Rinderle. Implications of function-form-fabrication relations on design decompo-
sition strategies. In Gupta [81], pages 193-198.

[201] F.N. Ris. Interval analysis and applications to linear algebra. PhD thesis, Oxford
University, Oxford, U.K., 1972.

[202] J. Rohn. New condition numbers for matrices and linear systems. Computing, 41:167-
169, 1988.

[203] J. Rohn. Solving systems of linear interval equations. In Moore [165], pages 171-182.

[204] J. Rohn. Some tests of generalized bisection. Linear Algebra Applications, 1990. To
appear.

[205] D.J. Rose. Triangulated graphs and the elimination process. Journal of Mathematical
Analysis and Applications, 32:597-609, 1970.

[206] D.J. Rose. A graph-theoretic study of the numerical solution of sparse positive definite
systems of linear equations. In R. Read, editor, Graph Theory and Computing, pages
183-217. Academic Press, 1972.

154

[207] D.J. Rose and R.E. Tarjan. Algorithmic aspects of vertex elimination on directed
graphs. SIAM Journal of Applied Mathematics, 34(1):176-197, January 1978.

[208] J. R. Rossignac and M. A. O'Connor. SGC: A dimension-independent model for
pointsets with internal structures and incomplete boundaries. In Wozny et al. [270],
pages 145-180.

[209] S. Rowley and C. Rockland. The design of simulation languages for systems with
multiple modularities. Technical Report LIDS-P-1961, Laboratory for Information
and Decision Systems, MIT, April 1990.

[210] D. E. Rumelhart, J. L. McClelland, and PDP Research Group. Parallel Distributed
Processing: Explorations in the Microstructure of Cognition. MIT Press, Cambridge,
Massachusetts, 1986.

[211] T.L. Saaty. The Analytic Hierarchy Process: Planning, Priority Setting, Resource
Allocation. McGraw-Hill Book Company, 1980.

[212] S.E. Sarma and J.R. Rinderle. Quiescence in interval propagation. In Stauffer [236],
pages 257-263.

[213] G. Scheu. Schrankenkonstruktion fur die Lsung der elliptischen Randwertaufgabe
mit konstanten Koeffizienten. Zeitschrift fur Angewandte Mathematik und Mechanik,
55:T221-223, 1975.

[214] D. A. Schmidt. Denotational Semantics: A Methodology for Language Development.
Wm. C. Brown Publishers, Dubuque, Iowa, 1986.

[215] J.L. Schonfelder and J.T. Thomason. Arbitrary precision arithmetic in Algol 68.
Software - Practice and Experience, 9:173-182, 1979.

[216] J. Schrbder. Numerical algorithms for existence proofs and error estimates for two-
point boundary value problems. In Ullrich [253], pages 247-268.

[217] H. Schwandt. Schnelle fast global konvergente Verfahren fir die fnf punkt Diskreti-
sierung der Poisson Gleichung mit Dirichletschen Randbedingungen auf Rechteckge-
bieten. PhD thesis, Technical University of Berlin, 1981.

[218] D. Serrano. Constraint Management in Conceptual Design. PhD thesis, Massachusetts
Institute of Technology, Cambridge, Massachusetts, October 1987.

[219] D. Serrano and D. Gossard. Constraint management in MCAE. In J.S. Gero, ed-
itor, Artificial Intelligence in Engineering: Design, pages 217-240. Elsevier Science
Publishers, 1988.

[220] V. Shapiro and H. Voelcker. On the role of geometry in mechanical design (technical
note). Research in Engineering Design, 1(1):69-73, 1989.

[221] J.M. Shearer and M.A. Wolfe. An improved form of the Krawczyk-Moore algorithm.
Applied Mathematics and Computation, 17:229-239, 1985.

155

[222] J.M. Shearer and M.A. Wolfe. Some algorithms for the solution of a class of nonlinear
algebraic equations. Computing, 35:63-72, 1985.

[223] J.M. Shearer and M.A. Wolfe. Some computable existence, uniqueness, and conver-
gence tests for nonlinear systems. SIAM Journal of Numerical Analysis, 22(6):1200-
1207, December 1985.

[224] J.M. Shearer and M.A. Wolfe. A note on the algorithm of Alefeld and Platz'der for
systems of nonlinear equations. SIAM Journal of Scientific and Statistical Computa-
tion, 7(2):362-369, April 1986.

[225] J.N. Siddall. Probabilistic Engineering Design. Marcel Dekker, New York, 1983.

[226] V.G. Sigillito. Ezplicit a priori inequalities with applications to boundary value prob-
lems. Pitman Publishing, 1977.

[227] H.A. Simon. Administrative Behavior: A Study of Decision-Making Processes in
Administrative Organization. The Free Press, New York, 1957.

[228] H.A. Simon. The architecture of complexity. In Proceedings of the American Philo-
sophical Society, volume 106, pages 467-482, December 1962.

[229] H.A. Simon. The Shape of Automation. Harper and Row, Publishers, 1965.

[230] H.A. Simon. The Sciences of the Artificial. MIT Press, Cambridge, Massachusetts,
1969.

[231] R. D. Smith and R. Davis. Frameworks for cooperation in distributed problem solving.
IEEE Transactions on Systems, Man, and Cybernetics, 11(1):61-70, January 1981.

[232] B. Speelpenning. Compiling fast Partial Derivatives of Functions given by Algorithms.
PhD thesis, University of Illinois at Urbana-Champaign, Urbana, Illinois, 1980.

[233] D. Sriram and R. Adey, editors. Applications of Artificial Intelligence in Engineering
Problems: 1st International Conference, volume 1, Southampton, U.K., April 1986.

[234] D. Sriram and R. Adey, editors. Applications of Artificial Intelligence in Engineering
Problems: 1st International Conference, volume 2, Southampton, U.K., April 1986.

[235] D. Sriram, R. D. Logcher, N. Groleau, and J. Cherneff. Dice: An object oriented
programming environment for cooperative engineering design. Technical Report IESL-
89-03, Intelligent Engineering System Laboratory, MIT, Cambridge, Massachusetts,
March 1989.

[236] L.A. Stauffer, editor. Design Theory and Methodology - DTM '91, Miami, Florida,
September 1991.

[237] V. L. Stefanuk. Collective behavior of automata and the problems of stable local
control of a large-scale system. In Walker [258], pages 51-58.

156

[238] H.J. Stetter. Validated solution of initial problems for ODE. In Ullrich [253], pages
171-187.

[239] J.E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory. MIT Press, Cambridge, Massachusetts, 1977.

[240] N. P. Suh. The Principles of Design. Oxford University Press, 1990.

[241] R. Suri and M. Shimizu. Achieving competitiveness in engineering design through
'design for analysis'. In NSF DMSC '90 [173], pages 47-50.

[242] G. J. Sussman and G. L. Jr. Steele. Constraints: A language for expressing almost-
hierarchical descriptions. Artificial Intelligence, 14:1-39, 1980.

[243] B.A. Szabo. Control of errors of idealization in design computations. In NSF DMSC
'90 [173], pages 105-107.

[244] G. Taguchi and M. S. Phadke. Quality engineering through design optimization.
In Proceedings of IEEE Globecom Conference, pages 1106-1113, Atlanta, Georgia,
November 1984.

[245] K. S. Tam and E. D. Bloodworth. Formation and exploration of feasible design space.
In NSF DMSC '90 [173], pages 1-7.

[246] R.E. Tarjan. Graph theory and Gaussian elimination. In Bunch and Rose [34], pages
3-22.

[247] R.H. Thomason. Fahlman's NETL and inheritance theory. Preprint, 1990.

[248] W.F. Tinney and J.W. Walker. Direct solutions of sparse network equations by opti-
mally ordered triangular factorization. Proceedings of IEEE, 55:1801-1809, 1967.

[249] T. Tomiyama, T. Kiriyama, H. Takeda, D. Xue, and H. Yoshikawa. Metamodel: A
key to intelligent CAD systems. Research in Engineering Design, 1(1):19-34, 1989.

[250] T. Tomiyama and H. Yoshikawa. Extended general design theory. In T. Sata and
E. Warman, editors, Proceedings of IFIP WG 5.2 Working Conference, Design Theory
for CAD, pages 95-130, Tokyo, Japan, October 1985.

[251] S.S. Tong. Coupling symbolic manipulation and numerical simulation for complex
engineering designs. In Conference on Ezpert Systems for Numerical Computing,
Purdue University, December 1988. International Association of Mathematics and
Computers in Simulation.

[252] J.F. Traub. Iterative Methods for the Solution of Equations. Prentice-Hall, Englewood
Cliffs, NJ, 1964.

[253] C. Ullrich, editor. Computer Arithmetic and Self- Validating Numerical Methods. Aca-
demic Press, 1989.

157

[254] K. T. Ulrich and W. P. Seering. Synthesis of schematic descriptions in mechanical
design. Research in Engineering Design, 1(1):3-18, 1989.

[255] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press, Cam-
bridge, Massachusetts, 1989.

[256] G.N. Vanderplaats. Numerical Optimization Techniques for Engineering Design.
McGraw-Hill Book Coimpany, 1984.

[257] R.J. Verrilli, K.L. Meunier, J.R. Dixon, and M. K. Simmons. Iterative respecifica-
tion management: A model for problem-solving networks in mechanical design. In
Proceedings of the ASME Computers in Engineering Conference, pages 103-112, New
York, 1987.

[258] D.E. Walker, editor. Proceedings of the 2nd International Joint Conference on Arti-
ficial Intelligence, London, U.K., September 1971.

[259] A. C. Ward. A Theory of Quantitative Inference for Artifact Sets Applied to a Mechan-
ical Design Compiler. PhD thesis, Massachusetts Institute of Technology, Cambridge,
Massachusetts, November 1988.

[260] A.C. Ward. Foundations of quantitative inference about sets of design possibities:
1991 progress report. In NSF DMSC '92 [174], pages 441-447.

[261] K. J. Weiler. Topological Structures for Geometric Modeling. PhD thesis, Rensselaer
Polytechnic Institute, Troy, NY, August 1986.

[262] A. W. Westerberg, P. C. Piela, E. Subrahmanian, G. W. Podnar, and W. Elm. A
future computer environment for preliminary design. Technical Report EDRC 05-42-
89, Engineering Design Research Center, CMU, Pittsburg, Pennsylvania, 1989.

[263] J.H. Wilkinson. Rounding Errors in Algebmaic Processes. Prentice-Hall, Englewood
Cliffs, New Jersey, 1963.

[264] J.H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, 1965.

[265] M.A. Wolfe. A modification of Krawczyk's algorithm. SIAM Journal of Numerical
Analysis, 17:376-379, 1980.

[266] M.A. Wolfe. Interval methods for algebraic equations. In Moore [165], pages 229-248.

[267] K.L. Wood, E.K. Antonsson, and J.L. Beck. Comparing fuzzy and probability calculus
for representing imprecision in preliminary engineering design. In W.H. Elmaraghy,
W.P. Seering, and D.G. Ullman, editors, Design Theory and Methodology - DTM '89,
pages 99-105, Montreal, Canada, September 1989.

[268] R. Woodbury and I. Oppenheim. An approach to geometric reasoning. Techni-
cal Report EDRC-48-06-87, Engineering Design Research Center, CMU, Pittsburg,
Pennsylvania, 1987.

[269] J. Woodwark, editor. Geometric Reasoning. Oxford University Press, 1989.

158

[270] M. J. Wozny, J. U. Turner, and K. Preiss, editors. Geometric Modelling for Product
Engineering, The Netherlands, 1990. Elsevier Science Publishers.

[271] A. Yonezawa. ABCL - An Object-Oriented Concurrent System. MIT Press, Cam-
bridge, Massachusetts, 1990.

[272] H. Yoshikawa. General design theory and a CAD system. In T. Sata and E. War-
man, editors, Proceedings of IFIP WG 5.2-5.8 Working Conference, Man-Machine
Communication in CAD/CAM, pages 35-58, Tokyo, Japan, October 1980.

[273] R.C. Young. The algebra of many-valued quantities. Mathematical Annals, 104:260-
290, 1931.

159

