EFFICIENT AND RELIABLE GLOBAL
OPTIMIZATION

DISSERTATION

Presented in Partial Fulfillment of the Requirements for
the Degree Doctor of Philosophy in the Graduate

School of The Ohio State University
By

Anthony P. Leclerc, B.S., M.S.

* %k ok ok ok

The Ohio State University

1992

Dissertation Committee:

Ramon E. Moore Approved by

Judith D. Gardiner

Wayne E. Carlson

Adviser

Department of Computer
and Information Science

(© Copyright by
Anthony P. Leclerc

1992

To My Parents

i

ACKNOWLEDGEMENTS

I offer a sincere thanks to my advisor, Dr. Ramon Moore, for inspiring me, as a
young graduate student, with the “interval bug”. I further thank professor Moore for
his guidance, encouragement, and enthusiasm during my dissertation research. Your
ideas, empathy, and friendship have indeed enriched my life.

For suggestions and comments regarding this document, I thank both Dr. Wayne
Carlson and Dr. Judith Gardiner. I thank Eldon Hansen for sharing ideas and
proposing problems pertaining to reliable interval global optimization. For input and
technical assistance, I am grateful to Manas Mandal, Bob Manson, Steve Romig,
Dave Ebert, Richard Fox, and Keith Boyer. For conversation, friendship, and the
exchange of ideas, I thank Jeff Ely, a fellow “interval disciple’.

To the CIS department, I offer my gratitude for providing a delightful work en-
vironment. The graduate students and the staff have been helpful and encouraging
throughout my 6 year graduate program. To those in the main office, Jane Grissom,
Jeff Steinbeck, Tom Fletcher, and Marty Marlatt, I say thanks. I offer my thanks to
Carl Phillips for being a friend and efficiently managing the CIS network of over 300
workstations necessary for my research.

A deep and sincere thanks to all of my family for their support and love. To my

il

mother, for a lifetime of caring, patience, advice, and encouragement, I express my
warmest thanks: I love you. To my father, for “making me think” and consistently
being concerned with my total well being, I also express my most sincere thanks. I
thank my brothers and sister for their unfailing patience, understanding and interest
with regard to my graduate studies.

I offer my sincere appreciation to Clark Hultquist as a friend, tennis partner, fellow
graduate student, intellectual, and roommate. To Magoo, I extend my appreciation
for your genuine concern and support throughout my undergraduate and graduate
endeavors. To T.D. Nicklas, I wish to say thank you for helping me obtain those crit-
ical scholarships during my first years as an undergraduate. To Dr. Gary Huckabay,
I say thank you for encouraging me and guiding me into mathematics and computer
science. To all the rest of my friends from OSU, Columbus, and Lawton, Oklahoma,
I say thanks for getting me here. Finally, to Jesus Christ, I say thank you for blessing

me with this Ph.D. and many other great and enjoyable things all of my life.

v

May 11, 1963 ... e Born—Chalon-Sur-Marne,
France
1086 oo B.S. Computer Science

Cameron University
Lawton, Oklahoma

1986-1987, 1988-1990o Graduate Teaching Associate
Computer Science Department
The Ohio State University
Columbus, Ohio

1987-1988 .. Graduate Administrative Asso-
ciate
Computer Science Department
The Ohio State University
Columbus, Ohio

1988 M.S. Computer Science
The Ohio State University
Columbus, Ohio

1990-1991 .. o Course Coordinator
Computer Science Department
The Ohio State University
Columbus, Ohio

1992-present Instructor
Computer Science Department
The Ohio State University
Columbus, Ohio

Publications

R. E. Moore, E. R. Hansen, and A. P. Leclerc. “Rigorous Methods for Parallel Op-
timizatoin”. Recent Advances in Global Optimization, Princeton University Press,
December 1991.

A. P. Leclerc. “Newton’s Method”. Technical Report OSU-CISRC-01/91-TR-04,
The Ohio State University Computer and Information Science Research Center, Jan-
uary 1991.

Fields of Study

Major Field: Computer and Information Science

Studies in:

Numerical Analysis: Prof. Ramon Moore
Computer Graphics: Prof. Ed Tripp
Operating Systems: Prof. Sandra Mamrak

vi

TABLE OF CONTENTS

DEDICATIONo e ii
ACKNOWLEDGEMENTS o s iii
VITA e v
LIST OF TABLES s X
LIST OF FIGURES o e xi
CHAPTER PAGE
I INTRODUCTION oo o oo e 1

1.1 Description of Global Optimization 1
1.2 Importance of the Global Optimization Problem 2
1.3 Global Optimization Versus Local Optimization 3
1.4 Layout of this Dissertation 4

IT THE PROBLEM STATEMENT 6
2.1 Definition of Global Optimization 6

2.2 Complexity of the Global Optimization Problem 6

IIT RELATED WORK oo 9
3.1 Introduction 9

3.2 Methods to Solve the Global Optimization Problem 9

3.3 Point Methods and Their Weaknesses 10

3.4 Bounding Methods Lo 11

3.4.1 Some Techniques for Calculating Bounds 12

vii

3.4.2 A Simple Bounding Algorithm 13

3.4.3 The General Bounding Algorithm 15
3.5 Ideal Bounding Functions 18
3.6 Roundoff Error 18
3.6.1 Example of Roundoff Exror 19
3.6.2 Controlling Roundoff Error 20
3.7 Imterval Arithmetic Lo 21
3.7.1 A Brief History of Interval Arithmetic 22
3.7.2 Machine Interval Arithmetic. 23
3.7.3 An Example of Machine Interval Arithmetic 25
3.7.4 Interval Arithmetic Compared with the Lipschitzian Approach 26
3.7.5 Interval Arithmeticin C+4+ 28
3.8 Interval Optimization with No Rejection Tests 30
3.9 Interval Optimization with a Midpoint Rejection Test 32
3.10 Interval Optimization with Uniform Subdivisions 34
IV TOWARDS EFFICIENT INTERVAL GLOBAL OPTIMIZATION 36
4.1 Introduction Lo 36
4.2 A Basic Interval Global Optimization Algorithm for Programmable
Functions o 37
4.2.1 The Feasibility Rejection Test 38
4.2.2 'The Midpoint Rejection Test 39
4.2.3 The Algorithm 0oL 40
4.2.4 An Illustration of the Algorithm 41
4.3 Differentiable Optimization Problems 46
4.3.1 The Monotonicity Test 47
4.3.2 A Nonconvexity Test 47
4.3.3 Using the Upper Bound 48
4.3.4 An Interval Newton Method 49
4.4 Parallelizationo oL 50
4.4.1 One Possible Parallel Implementation 52
4.4.2 The Distributed Parallel Algorithm 23
4.4.3 Initialize/Startup All Processors 54
4.4.4 Perform “The Algorithm” in Parallel 55
4.4.5 Termination. 56

viii

V. RESULTS e 29

5.1 Kowalik Problem 59
5.2 Photoelectron Spectroscopy Problem 61
VI CONCLUSIONS . . . s 68
6.1 Future Worko 69
APPENDICES
A C++ Programs Evaluating the Rump Function 71
A.1 Floating Point Version 71
A2 Interval Version 72
B C+-+ Interval Class Used in this Thesis 73
B.1 Header File “interval.h” 73
B.2 Source File “interval.C” 85
BIBLIOGRAPHY 122

X

LI1ST OF TABLES

TABLE PAGE
1 Timing Results for the Smiley Face Problem 45
2 Kowalik Data oo 60
3 Photoelectron Spectroscopy Data 62
4 Initial Input Box for the Photoelectron Spectroscopy Problem 64

LisT OF FIGURES

FIGURE PAGE
1 Smiley Face with e, =0.2 43
2 Smiley Face withe, =01 44
3 Smiley Face with ¢, =0.0125 44
4 Graph of Points oo 63
5 Speedup Graph L 65
6 Portion of One Possible Binary Progress Tree. 67

xi

EFFICIENT AND RELIABLE GLOBAL OPTIMIZATION

By
Anthony P. Leclerc, Ph.D.

The Ohio State University, 1992

Ramon E. Moore, Adviser

For quite some time, it has been held that no numerical algorithm could guarantee
having found a global solution to the general nonlinear global optimization problem.

The reasoning was:

The function to be minimized can only be sampled at a finite number of
points. Therefore, there is no way of knowing whether the function dips

to some smaller value between sampled points.

Although this argument is probably true using evaluations of functions at points, it
is not true of methods which can produce asymptotically accurate lower bounds for
the range of values of the function over compact sets.

Interval arithmetic, for example, provides asymptotically accurate upper and lower
bounds on ranges of values of functions over continua [12, 11, 21, 22, 23, 24, 26,
32]. Coding interval arithmetic in C++, the author has designed an ideal bounding

mechanism which is:

1. capable of producing reliable, “tight”, and asymptotically accurate bounds

2. efficient to compute

3. applicable to any programmable function

4. easy to generalize and automate

5. convenient for an unsophisticated user to utilize

Using this mechanism, rigorous algorithms are presented which produce a list of
“boxes” enclosing the set of all global minimizers and an interval trapping the mini-
mum value.

The most basic algorithm does not even use differentiability. Using interval New-
ton methods, monotonicity tests, and convexity tests, improvements in efficiency are
achieved for differentiable problems. For further improvements in efficiency, the al-
gorithms are parallelized. Numerical examples illustrating the techniques are given.

The parallelization task is accomplished by distributing identical processes over
a network of workstations. Fach process performs the interval global optimization
algorithm but with a different subregion of the initial search space. Communication
overhead is minimized in order to maximize the speedup. Issues of distributed ini-
tialization, load balancing, and global termination detection are addressed. Finally,

an analysis of the speedup is determined.

CHAPTER 1

INTRODUCTION

1.1 Description of Global Optimization

Global optimization is concerned with the determination of global optima (maxima or
minima) of a function. Such problems occur frequently in numerous disciplines which
model real world systems. For instance, a bond manager may wish to optimize the
geometric mean of several indices, such as average coupon rate, average maturity, av-
erage yield to maturity, etc., which measure the performance of a bond portfolio [17].
An engineer, wishing to design an airplane wing consisting of composite materials,
would like to determine what angles to bond the various plies of composites in order
to maximize the strength of the wing [43]. A chemist desires a “best fit” of a photo-
electron spectrum as the sum of Gaussian curves representing individual spectrums

of various substances.

1.2 Importance of the Global Optimization Problem

The importance of the global optimization problem almost requires no explanation.
For instance, the bond manager, optimizing a bond portfolio, will hopefully reap
economic rewards from obtaining an optimal solution to the geometric mean function
of the various bond performance indices. The engineer, by optimizing, will conceivably
design a lighter, stronger, and safer composite wing. Finally, the chemist, seeking
an optimal solution, can decompose a given substance into basic components more
accurately.

Claude Jablon, Chief Scientist, Elf-Aquitaine, succinctly emphasizes the impor-

tance of global optimization problems [28]:

Among the various subfields of scientific computing, optimization plays a
major role: In a formal way, almost every mathematical problem can be
recasted into an optimization problem. On a more practical level, design
engineers are continuously looking for the most acceptable trade-offs —

thus implicitly or explicitly solving complex optimization problems.

As an area of research, global optimization has become increasingly active. Several
new international journals on the subject have recently been published or are being
planned [8, 14]. In addition, existing journals are dedicating special issues to the

subject of global optimization [9, 10].

1.3 Global Optimization Versus Local Optimization

As its importance alone may suggest, the global optimization problem is an extremely
hard problem. Indeed, no efficient solutions exist which solve the general global op-
timization problem. The global optimization problem is much more difficult, for
instance, than the related task of local optimization in which only the determination
of local optima is desired. In local optimization, tests exist to determine if a point
is a local optimum (assuming that the function to be optimized is twice differen-
tiable). With such tests, a sequence of points converging to a local optimum can be
constructed.

The relative difficulty of solving the global optimization problem on a computer
as compared with the local optimization problem stems from the fact that, in gen-
eral, the objective function may contain numerous local optima with corresponding
function values varying significantly. Although an iterative algorithm for finding a
local minimum (local method), such as Newton’s method, may find one of these local
minima efficiently, it is difficult to know whether this local solution is indeed a global
solution.

One might suggest finding all of the local minima and choosing the smallest
value(s) as the global minimum (minima). In general, however, the number of local
minima may be quite large. Furthermore, due to the unpredictable global conver-
gence behavior of local iterative methods (see [18]), one cannot determine whether all

the local minima have been identified simply by varying the initial starting guesses.

1.4 Layout of this Dissertation

Chapter II is a short chapter providing a formal definition of the global optimization
problem. The solvability of the global optimization is established in terms of an e-
global solution. Finally, the complexity of the global optimization is briefly discussed.

Chapter IIT considers methods which are capable of yielding e-global solutions to
the global optimization problem. Methods which do not calculate bounds for the
range of a function over a compact set are dismissed from further investigation since
they are susceptible to the indentation argument mentioned in chapter II. Given a
technique for bounding the range of a function, algorithms for reliably solving the
global optimization are discussed. Among bounding techniques, interval arithmetic
is favored because of its ideal properties, including automatic control of roundoff
error. Interval arithmetic is investigated, especially with regard to the author’s im-
plementation using C++. Finally, various interval global optimization algorithms are
considered.

Chapter IV focuses on the efforts, some of which are based on joint work with
R. E. Moore and E. R. Hansen, to make interval global optimization algorithms more
efficient. In section 4.2, some simple-looking global optimization problems are consid-
ered. These problems are relatively difficult to solve, however, because the functions
involved are not differentiable. Therefore, only simple (and relatively inefficient) pro-
cedures are applied. In section 4.3 other procedures are discussed which are applicable
when the functions are differentiable. Finally, in section 4.4, parallel methods are con-

sidered. This section is based entirely on original work of the author, first presented

in a talk at Princeton University [25], and expanded here.

Chapter V contains the results of numerical testing. The first problem, the Kowa-
lik problem, was suggested by Eldon Hansen. At the time, the solution to this problem
was the only test problem which had eluded Hansen and his interval software. The
second problem is a “real world” chemistry problem which the author discovered and
researched. This problem was used as the main test of the author’s newly parallelized
interval software. The photoelectron spectroscopy problem was executed, in parallel,

on up to 40 workstations connected on an Ethernet network.

CHAPTER 11

THE PROBLEM STATEMENT

2.1 Definition of Global Optimization

Formally, the global optimization problem is defined as finding

f. = min f(z) (2.1)

reX
where f : R® — R! is a continuous real value objective function and X C R" is a
compact feasible set. X is often succinctly called the feasible region. Since minimizing
f(z) is equivalent to maximizing — f(x) this definition sufficiently includes the search
for global minima as well as global maxima.
For future discussion, the set of all points for which the objective function possesses
a global minimum value shall be called X,. This is the set which contains all points,

T, such that f(z,) = f.. This set is often called the set of global minimizers.

2.2 Complexity of the Global Optimization Problem

The global optimization problem is indeed hard. Rinnooy Kan and Timmer [16] claim

that the global optimization problem as stated in equation 2.1 is unsolvable in a finite

6

number of steps. Their argument is as follows:

For any continuously differentiable function f, any point z and any neigh-
borhood B of Z, there exists a function f’ such that f+ f’ is continuously
differentiable, f + f’ equals f for all points outside B and the global mini-
mum of f+ f"isZ. ((f+ f') is an indentation of f.) Thus, for any point Z,
one cannot guarantee that it is not the global minimum without evaluating
the function in at least one point in every neighborhood B of . As B can
be chosen arbitrarily small, it follows that any method designed to solve
the global optimization problem would require an unbounded number of

steps.

The indentation argument is certainly valid if one wishes to guarantee that an
exact point, Z, is a global minimizer. Indeed, should the exact global minimizer
be an irrational number, it is obviously impossible, in a finite number of steps, to
numerically represent this solution. However, one can, in a finite amount of time,
guarantee that f(Z) is within e of the global minimum [23]. Such a solution is called

a e-global minimizer. Formally, an e-global minimizer is defined as a point, Z, where

f(@) < fi+e

While the global optimization problem is, in general, solvable (in the sense that
one can come arbitrarily close to the optimum) in a finite amount of time, it is by
no means easy to solve. Certain optimization problems have been shown to reside in

the complexity class of NP-hard problems (see, for instance, [34, 27]). At present, all

reliable, universally applicable algorithms to solve the global optimization problem

have computational times which increase exponentially with the number of variables.

CHAPTER III

RELATED WORK

3.1 Introduction

This chapter considers methods which are capable of yielding e-global solutions to the
global optimization problem. Methods which do not calculate bounds for the range of
a function over a compact set are dismissed from further investigation since they are
susceptible to the indentation argument mentioned in chapter II. Given a technique
for bounding the range of a function, algorithms for reliably solving the global opti-
mization are discussed. Among bounding techniques, interval arithmetic is favored
because of its ideal properties, including automatic control of roundoff error. Inter-
val arithmetic is investigated, especially with regard to the author’s implementation

using C++. Finally, various interval global optimization algorithms are considered.

3.2 Methods to Solve the Global Optimization Problem

Historically, methods to solve the global optimization problem have been classified

as either stochastic or deterministic. Stochastic methods evaluate the objective func-

10

tion, f, at randomly sampled points from the feasible region X (see equation 2.1).
Deterministic methods, on the other hand, involve no elements of randomness.

Since this thesis is concerned with reliable solutions, all global optimization algo-
rithms will alternatively be partitioned into the two classes: reliable and unreliable.
Clearly all stochastic methods, including simulated annealing, clustering, and ran-
dom searching, fall into the unreliable category. In fairness, however, efficiency is
the strength of such methods. For now, large-scale problems may best be “solved”
stochastically.

The class of deterministic algorithms, including branch and bound methods, cov-
ering methods, interval methods, tunneling, and enumerating, can be furthered par-

titioned into two categories:
e methods which compute function values at sampled points (point methods) and
e methods which compute function bounds over compact sets (bounding methods).

This division further separates reliable methods from unreliable. Point methods are
inherently incapable of reliably solving the global optimization problem. On the other
hand, bounding methods, if properly implemented and considerate of roundoff error,

can produce rigorous global optimization solutions.

3.3 Point Methods and Their Weaknesses

Point methods suffer from the indentation argument mentioned in section 2.2. Fur-

thermore, these methods, without additional information about the objective func-

11

tion, cannot even guarantee an e-global minimizer because there is no indication as
to the depth of the indentation between sampled points. In addition, since most
computations are done with fized precision floating point arithmetic, even the best of
these methods can miss the detection of a global minimizer positioned between two
consecutive machine numbers. The following example given by Moore [23] illustrates
this event.

Consider finding the minimum of a function f(z) for 1 < z < 2. Suppose a
subroutine for f(z) has been written which receives the floating point number, z,
and returns a floating point number for f(x). Now, suppose that f(z) is modified by
adding to it the new function g(x) defined as follows:

0 forx < x; or z > 29
g(z) =
(xr —z1) (T — 22)10%° for z; <z < 39
where, say, r1 = 1.423561177 and zo = 1.423561178.

Any point method limited to sampling values of f(z) in floating point arithmetic

with ten decimal digits or fewer of accuracy will find no change in f(z). Thus the

indentation or “blip” will go undetected.

3.4 Bounding Methods

Using various techniques, all bounding methods attempt to produce at least a lower
bound for the range of values of f over a certain compact set. For the “blip” example
given in section 3.3, should the input compact set (an interval) say [z, zy], include

points in the range [z, 2], then the lower bounding function, Fi, would return a

12

value less than or equal to the minimum value of the function at the “blip”.

For instance, if f(xz1) = f(xz2) = 0, the automatic bounding technique, interval
arithmetic, with 10 digits of accuracy, would return the interval result [—100,0].
With more precision and narrower [z, zy]|, interval arithmetic would converge from
the outside upon the minimum value —25.0 at (21 +2z2)/2. The “blip” will not escape
detection.

All bounding methods, if properly implemented, are immune to the “blip” problem
as discussed in section 3.3. Furthermore, if the lower bounding function is asymp-
totically accurate (see subsection 3.4.2), as is interval arithmetic, then the bounding
method can yield an e-global minimum.

Various techniques have been proposed for constructing lower bounding functions.
Most of these techniques operate on compact convex sets which are hyperrectangles
(n-dimensional rectangles). In addition, many of the techniques require assumptions

about the objective function, f.

3.4.1 Some Techniques for Calculating Bounds

The Lipschitzian Approach

The Lipschitzian approach [29] is based on the assumption that a Lipschitz constant,

L, exists such that

|f(z1) = f(z2)| < Ll[z1 — 22]].

13

If the value of f is known at some point, say, z;, then a lower bound on the function

value for all z between z; and x5 can be determined by f(z1) — L||z — z1]|.

The Linear Lower Bound Approach

The linear lower bound approach [2], generates linear lower bounds for a function, f,
by decomposing f into simpler functions, such as monotonic convex functions. Once
linear lower bounds for each of the simpler functions are found these bounds are
recombined to obtain a linear lower bound for the original function. This approach,
of course, assumes that f can be decomposed into simpler functions and has, as yet,

only been demonstrated for one dimensional global optimization problems.

The Interval Approach

The interval approach automatically calculates lower and upper bounds using the
principals of interval arithmetic. A “natural interval extension” (see [21]), F', for any
programmable function, f, can easily be written. Such an interval function operates
over hyperrectangles and returns interval results automatically bounding the range

of the function over the input set.

3.4.2 A Simple Bounding Algorithm

Given a bounding function, F, with the ability to compute a lower bound for the

range of f over a set, a simple exhaustive global search algorithm becomes evident.

14

One of the simplest of the bounding methods partitions the initial compact feasible set
X into compact subsets, SX. A lower bound on the function value, F,(S5), over each
subset Si¥ is then calculated. In addition, an upper bound on the global minimum
thus far, Uy, , is maintained. Any subset S{* where F(S;¥) > Uy, is properly rejected
as not containing a global minimum. This process of partitioning, bounding, and
possibly rejecting is continued on successively generated subsets until some stopping
criteria is met. The union of the remaining unrejected sets will contain the set of all
global minimizers of f.

Clearly the effectiveness of this simple bounding method (and all bounding meth-
ods) is related to the ability of the lower bounding function to return a “tight” lower
bound for the global minimum of the function over a given compact set. If the cal-
culated lower bound is too crude, the ability to reject sets is hampered. On the
other hand, if the lower bounding function returns the “tightest” (to the precision
of the machine) lower bound for the global minimum of the function over a compact
set, then the global optimization problem would be e-solved. Most lower bounding
functions, being only a piece of a larger global optimization algorithm, are not so
accurate. However, in order to obtain an arbitrarily close global minimum, the lower
bounding function should be asymptotically accurate in that the lower bound should

[3

approach the global minimum of f over the compact set S as the “volume” of S

becomes smaller.

15

3.4.3 The General Bounding Algorithm

All bounding methods, such as branch and bound algorithms [16, 7], covering meth-
ods [7], linear lower bound methods [2], Lipschitzian methods [29], bisection meth-
ods [7, 30], and interval methods [12, 11, 23, 26, 32, 25], implement the following

general algorithm:
1. partition the initial search space into smaller subregions,
2. bound the function (and possibly its derivatives) over the subregions, and

3. reject (by using the bounds calculated in step 2) those subregions which defi-

nitely cannot contain a global minimizer.

The union of the remaining unrejected subregions will contain all global minimizers.
The general bounding algorithm uses the ezhaustive principle. It indirectly searches
for a global minimum by exhaustively partioning and “cutting away” all of the feasible

space, X, which definitely cannot contain a global solution.

The Partitioning and Bounding Phases

The manner in which the space is partitioned is mostly a function of the type of
compact set over which the bounding function can compute. Each of the partitioned
subregions will possess a certain geometry over which the bounding function must be
able to compute. For instance, interval arithmetic computes over hyperrectangles. A

partitioning step involves dividing a large hyperrectangle into smaller hyperrectangles.

16

In addition to being able to compute over the partitioned subregions, the geometric
shape of the partitioned subregions should be able to tessellate (or cover) the entire
feasible space, X. If the shapes cannot tessellate the space, then one cannot know,
by exhaustively searching, whether a region of space was missed which might have
contained a global minimizer.

Hypercircles, for instance, are a poor choice for partitioning a search space. Con-
sider trying to tessellate a fish bowl with marbles. Between the marbles, empty space
exists. This gap of space will not be covered by the bounding algorithm and therefore
a global minimizer may be missed.

It is perhaps possible to use any shape and simply tessellate the space with overlap.
However, it seems that such a crude collage of the initial search space will produce
a less efficient algorithm since there is now a “bleeding” of boundaries between sub-
regions. The ability to reject subregions appears to be less decisive. Furthermore, if
one wishes to produce arbitrarily close global solutions, the amount of overlap should
asymptotically diminish as the size of the subregion gets smaller.

With these considerations, hyperrectangles are usually the shape of choice by
which to partition the feasible space. Hyperrectangles are simple shapes with which

one can:
e partition easily
o tessellate the feasible region without overlap

e compute easily

17

If the feasible space is not itself a hyperrectangle, then an overlapping initial
hyperrectangle is used as the initial search space. The equations which are used to
characterize the true feasible space (constraint functions) are then additionally used
in the rejection phase of the algorithm to eliminate those subregions lying in the

initial hyperrectangle, but outside of the feasible region.

The Rejection Phase

The rejection phase of the above algorithm can include any of the following:

e rejection of subregions whose lower bound function value is greater than an

upper bound on the global minimum known thus far

e rejection of subregions which are not in the feasible space (i.e. do not meet the

constraints)
e if the objective function is differentiable

— rejection of subregions not on the border of the initial search space for

which 0 & g(z), where g(z) is the gradient of the objective function, f

— rejection of subregions for which the function is not convex anywhere

within the subregion

18

3.5 Ideal Bounding Functions

Since the lower bounding function is at the core of bounding algorithms, such a
bounding function should ideally possess the following characteristics in descending

order of importance:

—

. capable of producing reliable, “tight”, and asymptotically accurate bounds
2. efficient to compute

3. applicable to any programmable function (i.e. any function for which a com-

puter program can be written)
4. easy to generalize and automate

5. convenient for an unsophisticated user to utilize

Once again, since the aim of this thesis is reliable global optimization, those
remaining algorithms which are not capable of generating reliable global optimization
solutions will be culled. A final partition separates those methods which use reliable

lower bounding functions from those methods which do not.

3.6 Roundoff Error

Regardless of the accuracy of a lower bounding function in theory, such a function
must yield guaranteed bounds in practice, on a computer. It is for this reason that

any reliable lower bounding function must at least account for roundoff error.

19

3.6.1 Example of Roundoff Error

Some might contend that, today, roundoff error is not a critical issue because of the
extended precision floating point numbers available on many computers. However,
consider the following example of S. M. Rump [33] where the following innocuous-

looking function
flz,y) = 333.75y% + 2?(112%y® — y® — 121y* — 2) + 5.5 + z/(2y) (3.1)

was evaluated at x = 77617 and y = 33096. The FORTRAN program to evaluate
this function at various precisions was compiled and executed on a SPARCstation
SLC. The accuracy of the three precisions tested, single, double, and extended, were
6, 14, and 35 decimal digits, respectively. In order to test only the basic arithmetic
operations, the powers on x and y were evaluated with multiplications rather than

with the built-in library power function. The following results were obtained:

(single precision) f = 6.33825 x 10%°
(double precision) f = 1.1726039400532

(extended precision) f = 1.1726039400531786318588349045201838

By observing these results, one might conclude that single precision result is
wrong. One might further (and erroneously) conclude that the double precision result
is accurate since it agrees to 13 digits with the extended precision result. Surprising
to many, all three results are wrong even in the first digit! For that matter, the sign

itself is incorrect. The exact result, obtained using the variable precision interval

20

arithmetic of VPI [6] with about 40 decimal digits of accuracy, is “trapped” tightly
in the following interval:

[—0.827396059946821368141165095479816292005,
—0.827396059946821368141165095479816291986 |

The point to be made here is two-fold:

1. Roundoff error can seriously compromise the reliability of the results for any

fixed precision floating point computation.

2. By simply observing the one number results at various precisions, no indication

of the seriousness of the roundoff error is given.

3.6.2 Controlling Roundoff Error

It seems that roundoff error plagues all computations performed with fixed precision
floating point arithmetic. How can one hope to control this last impediment to reliable
global optimization? One tedious effort is to perform floating point error analysis.
However, such analyses are extremely cumbersome and usually only applied to sim-
ple functions. In addition, floating point error analysis becomes more difficult with
iterative algorithms in which roundoff error might be propagated from one iteration
to the next.

Another attempt to “estimate” the accuracy of results from a floating point com-
putation by using stochastic approaches such as the CESTAC method (or Permutation-
Perturbation method) [40]. Such methods, however, are probabilistic in nature and

cannot reliably guarantee the accuracy of the results.

21

To date, the author knows of only one bounding technique which is capable of
computing asymptotically accurate bounds (on a computer) over a hyperrectangle.

This technique is interval arithmetic.

3.7 Interval Arithmetic

Just one evaluation of a function using interval arithmetic provides upper and lower
bounds on the range of values of the function over a set of values (a continuum) of the
arguments. For instance, using interval arithmetic, one can test—on a computer—the

truth of a relation such as:
Lf(z) = f(x1,29,--.,2,) <0 for all points x € B

where B is any given initial hyperrectangle, or “box”, defined as the following n-

dimensional interval:
B = {z:0;<z; <b;foralli=1,2,...,n}.
= ([a1,b1],...,[an,bn)).
One can do this for any programmable function using interval software, because a
computer can find, simply by evaluating f with the argument B, numbers L and U

such that

L < f(x) <U for all z € B.

If U <0, then it follows that f(z) < 0 for all x € B.

1Such a relation is important in inequality constrained global optimization problems

22

The bounds L and U are generally not sharp (unless B is degenerate) even if
infinite precision interval arithmetic is used. With fixed precision, these bounds are
slightly less sharp because of rounding errors. In practice, interval arithmetic is done
with outward rounding (the left end-point towards minus infinity and the right end-
point towards plus infinity) so that the bounds are always correct although possibly
not sharp.

Any given region can be covered by a set of boxes which can be subdivided so that
each sub-box is as small as one likes. Because of this, there are two facts which make

it possible to compute arbitrarily sharp bounds on the ranges of values of functions:

1. As a sub-box Y gets smaller, the over-estimation of F'(Y') diminishes and con-
verges towards the actual range of values limited only by the number of digits

carried (i.e. asymptotically accurate) [23, 31].

2. As Y gets smaller, if the number of digits carried is increased, one can come

arbitrarily close to the exact range of values F(Y") [23].

The range of values of f over a box B is contained in the union of the ranges of values

of f over a covering of B by sub-boxes.

3.7.1 A Brief History of Interval Arithmetic

The earliest reported independent investigations into interval arithmetic were in pa-
pers by P. S. Dwyer [5], M. Warmus [42], T. Sunaga [38], and R. E. Moore [19].

However, it was the papers of Moore, especially his early monograph introducing in-

23

terval arithmetic [20] in 1966, which actively commenced work in interval arithmetic.
More than two dozen books and over 1000 journal articles and reports concerning in-
terval analysis have been written since his monograph (see [12]). It is for this reason

that R. E. Moore is know as the “father” of interval arithmetic.

3.7.2 Machine Interval Arithmetic

An interval is a closed bounded set of real numbers
[a,b] ={z:a <z < b}.

Arithmetic with intervals is simply arithmetic with inequalities. For instance, if a <
r<bandc<y<d,then a+c<zx+y <b+d. Thus, the addition of two intervals

is defined by:
[a,b] + [c,d] = [a+c,b+d]

Likewise, using the properties of inequalities, the four basic interval operations are

defined as follows:

[a,b] + [c,d] = [a+c,b+d]
[a,b] — [c,d] = [a—d,b— (]
[a,b] X [c,d] = [min(ac,ad,bc,bd), max(ac, ad, be, bd)]
[a,b] ~[c,d] = [a,b] x[1/d,1/c] if 0 & [c,d]
The implementation of interval arithmetic on a computer is easy. Since the end-

points a and b of a given interval [a, b] may not be machine representable numbers, a is

24

rounded to the largest machine number, say a,,, which is less than or equal to a, and
b is rounded to the smallest machine number, say b,,, which is greater than or equal
to b. This outward-rounded machine interval, [a;,, b,,], contains [a, b]. Simply put,
[a,b] C [am,bn]. The basic principle of interval arithmetic is preserved in that the
exact result is contained in the corresponding known machine interval, with roundoff
error controlled.

Interval arithmetic is inclusion monotonic. This means that if

S1 € Xy and S5, C X,

then
Si+5 C X+ Xy,
S1—95 C X;— Xy,
Sl X SQ g Xl X XZ:

Sl+52 C X;=+ X,

By finite induction and the transitivity of the partial order relation, C, it follows that
rational interval functions are inclusion monotonic, as are natural interval extensions
of all the standard functions used in computing [21]. Furthermore, machine interval
arithmetic with outward rounding is also inclusion monotonic. Given an expression
in real variables, one can replace the real variables by corresponding interval vari-
ables and replace the real arithmetic operations and functions by the corresponding
interval arithmetic operations and functions to obtain an interval function which is

an inclusion monotonic natural interval extension of the real function.

25

Today, performing interval arithmetic on a computer with outward rounding is easy
to achieve. The IEEE standard for binary floating point arithmetic specifies that the
ability to round up or down as desired be available in the arithmetic hardware or
software. The author has written a fixed precision interval arithmetic package in C

and C++ (see [37]) which has been ported to the following systems:

e HP300
e SUN3 and SUN4

e IBM-PC

3.7.3 An Example of Machine Interval Arithmetic

Consider the following interval computation of:

(u.1) u?t
r(u,t) = ————
’ u? + 1241
where u = [.1,.3] and t = [.2,.6]. Evaluating each sub-expression, one obtains:
u?* = [.01,.09]
t* = [.04,.36]
u*t = [.002,.054]
w?+ 12 +1 = [1.05,1.45]
u?t [002,.054] [.002 .054
—_— = ’ = C [.00137,.05143
u? +12+1 [1.05, 1.45] [1.45’ 1.05] < ’]

26

3.7.4 Interval Arithmetic Compared with the Lipschitzian
Approach
For comparison, the above computation will be performed using a different bounding
technique, namely the Lipschitzian approach. This approach requires center points,
u. and t., for u and t respectively. In addition, values for the “half-widths” of v and
t are needed. These half-width values will be called du and dt, respectively.
Since u € [.1,.3], u, = .2, du = .1 and since t € [.2,.6], t. = .4, dt = .2. Using the

Lipschitzian approach, one obtains
|z(u,t) — 2(.2,.4)] < Bry|u — 2| + Bay|t — 4| < Bz, (.1) + Bxy(.2)

where Bz, is an upper bound for |z,| over the box u € [.1,.3], ¢t € [.2,.6] and Bux; is
an upper bound for |z;| over this same box. Here z, and x; are the partials of z(u,t)

with respect to u and ¢. Now

(u? + 12 4+ 1)(u?t) — (u?® + t* + 1) (u*t)
(’LL2 + 12 + 1)2
(u? + 12 + 1)(2ut) — (2u)(u*t)
(U,2 +t2 + 1)2
2ut(t* + 1)
(U2 + t2 + 1)2

(W) (W) - (20) () uwP(uP -+ 1)
s (u? + 12 +1)2 (W4 +1)?

So

2] = 2lul [t](#* + 1) < 2(.3)(.6)(.62+1) _ (.36)(1.36)
T w22 41)2 (124 (22412 (1.05)2

< 44409 = B,,

27

and

wlu? — 2+ 1] w?(u?+ 12 +1) u? .09
= < = < <.08571=1B
24 (W2+t2+1)2 = (w24+t2+1)2 w24+t 4+1 7 1.05 — o

Thus

z(u,t) — 2(.2,.4)] < (.44409)(.1) + (.08571)(.2) = .06155

= half-width of the bounding box for x

and the width = 2 % .06155 = .12310. The resulting bounding interval is z(u., t.) £
06155 =~ .01333 + .06155 = [—.04822, .07488].

In this example, the interval calculation

e requires less mathematical sophistication from the user (the user need not know

any calculus, but merely be able to perform simple interval calculations),

e assumes less about the nature of the function (i.e. the existence of bounded

partial derivatives for the functions need not be assumed), and
e results in a “tighter” bounding box.

The author does not assert that the interval calculation always results in a tighter
bound, but the other two advantages hold regardless of the function. It would seem
that the only reason for possibly choosing the Lipschitzian approach would be if it
produced a consistently tighter bounding box than the interval approach. In fact,
given the considerable burden of asking the user to supply bounding functions for

the rates, one should ultimately require the Lipschitzian approach to produce such a

28

tighter bounding box that algorithms would accrue a non-trivial speedup to make it
worth the bother.

Even though [.00137,.05143] overestimates the actual range of values, it is certainly
known that min z(u,t) > .00137 and that x(u, t) has no zeroes for any u € [.1,.3] and
t = [.2,.6]. The Lipschitzian result, although accurate, was not sharp enough for us

to make these two conclusions.

3.7.5 Interval Arithmetic in C++4

In section 3.5 the characteristics of an ideal bounding function were mentioned in
descending order of importance. From the example in subsection 3.7.3 interval arith-

metic has been shown to be
e capable of producing reliable, “tight”, and asymptotically accurate bounds, and
e efficient to compute.
Finally, using the language C++, interval arithmetic is additionally
e easy to generalize and automate, and
e convenient for an unsophisticated user to utilize.

Compare the floating point code in appendix A.1 with that of the interval code in ap-
pendix A.2. The only difference is the inclusion of “interval.h” instead of “math.h” and

the variable declaration type of “interval” rather than “double”. Yet, the interval code

29

in appendix A.2 is performing the more complicated task of interval arithmetic and
interval I/0.

The reason that the interval code is as simple to read and write as the floating
point code is that the type interval has been defined as an object class within C++.
In addition, the semantics of the operators, +,—,*, and / have been overloaded
to perform the appropriate interval operations when expressions involving interval
variables are evaluated. The input operator, “>>", and the output operator, “<<”
have also been overloaded so that the complicated task of interval I/O, which requires
converting between base 10 and base 2 with correct outward rounding, is transparent
to the user.

Appendix B shows the complete underlying interval class for all the C++ interval
computations used in this thesis. The interval class declaration for the overloaded
interval operation of division, for instance, can be found in appendix B.1. The corre-
sponding code for such a declaration is listed in appendix B.2. The overloaded I/O
routines, “>>" and “<<”, are also listed.

In appendix B.2 one can find the routines “rounddown()” and “roundup()” which
are the essential outward rounding routines used in all the interval arithmetic func-
tions and operators. The particular definition of these routines is tailored for a SUN4
workstation. The most complicated routines are the overloaded operators for division
and multiplication, the non-monotonic sine and cosine routines, and the I/O routines,

“>>7 and “<<”.

30

3.8 Interval Optimization with No Rejection Tests

Moore [20] was possibly the first person to use interval arithmetic as a tool to compute
the range of a function over a hyperrectangle. Clearly, if one can find the range of
values of a function over a given set, then the maximum and minimum over the
given set has been found. For this reason, Moore is credited with developing and
implementing the first interval global optimization algorithms.

As Ratschek and Rokne [32] describe, Skelboe [35] later combined Moore’s “range
finding” interval methodology with the branch and bound principle. This principle

has two characteristics:

e A uniform search of the feasible space is not performed. Instead, certain subre-

gions (or branches) are searched sooner and more in depth than other subregions.
e A lower bound over a subregion must be computable.

The Moore-Skelboe algorithm first partitions the initial search space, X, into
smaller subregions, S;*. The search for the global minimum, f,, is performed by
preferring those subregions, S;*, for which the lower bound on the function value,
Fp(5%), is least. It is hoped that these selected boxes are more likely to contain a
global minimizer, z,.

The selection of the subregion, S, where Fy(S;¥) is the least can be quickly
determined by using and maintaining a priority queue (or list). In a queue with m
hyperrectangles, the subregion with the smallest F7,(S:), say S, will be at the front.

The value of F(SX) is a lower bound on the value of the global minimum thus far

31

and shall be called Ly,.

The Moore-Skelboe algorithm does not employ any tests to eliminate those sub-
regions which definitely do not contain any global minimizers. Such tests are called
rejection tests. The algorithm simply continues until a suitable stopping criteria has

been met. For instance, one may continue until either
width(F(S))) < ep (3.2)

or

where the upper bound on the global minimum, Uy, is determined as the minimum
of the upper bound on the function value, Fy;(S7), over each subset Si.

When using condition 3.2, the value, width(F(S2)), is a bound for the absolute
error when f, is approximated by any point x € S;X. If condition 3.3 is met, a bound
for the absolute error, |Uy, — f.| or |Ly, — f.|, is given by Uy, — Ly,. Relative error
bounds for f, can also be determined for both conditions 3.2 and 3.3. These bounds

are, respectively,

width(F(SX)) . X
: m it 0 € F(S;,
min(|F(S5); [Fu(Sx)|) (5)
and
Us, — Ly .
I u if 0 e [L;,,Ut]
min(|Ly,|,|Uy,|) o

Since, due to roundoff error, conditions 3.2 and 3.3 may not be met, additional

stopping criteria should be integrated in order to prevent the possibility of an infinite

32

loop. Two possible extra safety conditions are:

n > nyg

or

width(S2) < e

where n is the number of iterations of the algorithm performed and n is the prescribed

maximum number of iterations to perform.

3.9 Interval Optimization with a Midpoint Rejection Test

Two weaknesses with the Moore-Skelboe algorithm are as follows:

e No stopping criteria exist which are based on the “closeness” of an approximated
global minimizer to a true global minimizer. In other words, when the Moore-
Skelboe algorithm converges to a solution, S, one does not have a good measure

of how close © € S is to a true global minimizer, z..

e No guarantee exists that the set of all global minimizers has been found. In
general, there may be many global minimizers scattered about the initial search

space.

An improvement to the Moore-Skelboe algorithm was made by Ichida and Fu-
jii [15]. Their method incorporated a test which allowed one to determine if a par-

ticular subregion possibly contained a global minimizer. If it was determined that a

33

particular subregion definitely did not contain a global minimizer, then the subregion
was wisely rejected from further consideration.
The rejection test Ichida and Fujii employed is called the midpoint test. This test

discards all subregions, S;¥, where:
FL(SZX) > Uf*.

Here, Uy, is an upper bound on the global minimum thus far determined by evalu-
ating and maintaining the function at the midpoint of each hyperrectangle, S;*, and
choosing the smallest value. Note that this definition of Uy, is different from that of
the one in the Moore-Skelboe algorithm.

The Ichida-Fujii algorithm produces a list of hyperrectangles. Furthermore, each
hyperrectangle can contain a global minimizer. At any stage of the algorithm, the
union of each S* yields a proper superset, M, of X,. No global minimizers have been
lost.

A stopping criterion based on the error estimation of the approximated global
minimizers to the true global minimizers now exists. The additional possible stopping

criterion is as follows:

‘max width(S) < ¢, (3.4)

i=1,...,n
Using only stopping condition 3.4, one can now estimate the accuracy of an ap-
proximate global minimizer. Given z € S, then

Iz = zulloo < max |z — ylloo

i

34

In addition, if it is known that each hyperrectangle, S;*, on the list contains a global

minimizer, z,, then one can more tightly bound the error as

[[2 — 2.||0 < max width(S;")
1= n

el PYPPPY

3.10 Interval Optimization with Uniform Subdivisions

Ideally one would like a global optimization algorithm which, given enough precision,
would always converge to the true set of global minimizers, X,, as the number of
iterations, n, approached infinity. The weakness of the Ichida-Fujii algorithm is that
it can, in rare cases, converge to only a superset of X,, and not upon X, itself as
n — oo. This exception occurs if there exists a subregion, Si, not at the front of the
queue in which

fe = F(SY).

This subregion will very possibly never move to the front of the queue, and therefore
never be further partitioned. Furthermore, S§ will never be rejected because the
condition F1,(Si) > Uy, will never be true. Since M is the union of each S;*, M will
never equal X,.

It was Hansen who first suggested a reordering of the list in order to guarantee that
with enough precision and iterations, M can be made to converge arbitrarily tightly
upon X,. He orders the list either with respect to the widths of the hyperrectangles
or to the age (how long a particular hyperrectangle has been in the list) of the hyper-

rectangles. Either variant produces a uniform subdivision of all the hyperrectangles

35

which have not been rejected.

With enough precision, Hansen’s algorithm always converges to the true set of
global minimizers, X,, as the number of iterations, n, approaches infinity (see [26]).
Efficiency aside, this is the ideal global optimization algorithm. Unlike all point
methods, which are inherently incapable of ever completely solving the general global
optimization problem, Hansen’s algorithm is capable of solving any programmable

global optimization problem given enough resources.

CHAPTER 1V

TOWARDS EFFICIENT INTERVAL GLOBAL
OPTIMIZATION

4.1 Introduction

This chapter focuses on the efforts, some of which are based on joint work with
R. E. Moore and E. R. Hansen, to make interval global optimization algorithms more
efficient. In section 4.2, some simple-looking global optimization problems are consid-
ered. These problems are relatively difficult to solve, however, because the functions
involved are not differentiable. Therefore, only simple (and relatively inefficient) pro-
cedures are applied. In section 4.3 other procedures are discussed which are applicable
when the functions are differentiable. Finally, in section 4.4, parallel methods are con-
sidered. This section is based entirely on original work of the author, first presented

in a talk at Princeton University [25], and expanded here.

36

37

4.2 A Basic Interval Global Optimization Algorithm for Pro-
grammable Functions

In this section, a simple algorithm is presented for optimization problems of the form:

min f ()
subject to
pi(z) <0,i=1,...,k. (4.1)

Here B is any given initial hyperrectangle, or “box”, defined as the following n-

dimensional interval:
B = {z:0;<z; <b;foralli=1,2,...,n}.
= ([al,bl],...,[an,bn]).

An arbitrarily tight bound is sought, within the box B, for the set X, of all global
minimizers x, lying in the feasible region defined by the inequality constraints (4.1).
Likewise, an arbitrarily tight bound on the global minimum value, f,, of the given
objective function, f, is also desired. That is, a bound for X, and f, is sought such
that

f(z.) = f« and f, < f(z) for all x € B satisfying (4.1).

The functions f, py, ..., pr are assumed to be programmable, but not necessarily
differentiable throughout this section. For extensions of the algorithm to unbounded
feasible regions and to problems involving equality constraints, see [32].

The basic algorithm will find a list of small boxes whose union contains the set X,

of all feasible global minimizers z,. The algorithm terminates when the maximum

38

box width (defined as the maximum edge length over all the coordinate directions) of
all boxes in the list is less than a prescribed tolerance €,. The algorithm also finds
lower and upper bounds on the minimum value f, = f(x,).

The algorithm proceeds by rejecting parts of the initial box B which cannot contain
a global minimizer, leaving a list of sub-boxes (of B) whose union still contains the
set of all global minimizers of f(x).

The methods for rejecting parts of a box and for finding lower and upper bounds

on the minimum value of f(z) for feasible points = are now described.

4.2.1 The Feasibility Rejection Test

Let X be a sub-box of B. A point in B can be represented as a degenerate box.
One can evaluate (in interval arithmetic) the constraint functions p;(X),...,pk(X)
and make the following test. X is said to be certainly feasible if p;(X) < 0 for all
1 =1,...,k. If X is certainly feasible, then every point x € X is feasible. This is
guaranteed despite the presence of rounding errors because of the outward rounding

used in the computer implementation of interval arithmetic.

e X is certainly infeasible (i.e. it contains no feasible points) if, for some i =

1,...,k, pi(X) > 0. X may be rejected from further consideration.

39
4.2.2 The Midpoint Rejection Test

Let mX be the midpoint (or any other point) of a sub-box X of B. If mX is certainly
feasible (see (4.2.1)), then the objective function is evaluated at mX to obtain an
interval f(mX) = [Lg, ,,Ur,]- It is certainly the case that Ugr _, > f., that is,
Ur, is an upper bound on the minimum value of f(x) over the feasible region. If
f is evaluated over another sub-box Y of B yielding f(Y) = [Lg,,Ur,], then the

following test can be made. Let Up, be the smallest Uy, , yet found.

o If Lp, > Up, then Y cannot contain a feasible global minimizer in B, so Y can

be rejected from further consideration.

Using these tests, a very simple algorithm for global optimization with inequality
constraints can be formulated. The algorithm is valid whether or not the functions
involved are differentiable.

The list of boxes in the algorithm to follow is technically a queue. Elements are
added to the end of the queue and removed from the front of the queue. Every time
a box is removed , it is bisected along the coordinate direction of maximum width.
Each half is then tested. If it cannot be rejected, then it is placed at the end of the
queue.

As a result, the widest box remaining is always the first one. If it is narrower than
€, then so are all the rest. At any stage of the process, the remaining boxes on the

list contain all the feasible global minimum points.

40

4.2.3 The Algorithm

1. Input the initial box, B, and box width tolerance, €,

2. Add (B, Lp,) to the queue and update Up,

loop:
Remove the first box, X, on the queue
Bisect X = X; U X, along the coordinate direction of maximum width
Reject X, or queue (Xy, Ly,) at end of the queue
If X, is queued, then update Up, if mX; is feasible
Reject X, or queue (X, LFX2) at end of the queue
If X5 is queued, then update Up, if mX, is feasible
If the first box on the queue has width < ¢,, then go to step 4

Otherwise go to the beginning of step 3

Main program end:
Graph (optionally print) the remaining boxes on the queue
Print Lp, = min Ly, over all the boxes X on the queue

Print the current Up,

Some remarks are in order. Lots of other information can, of course, be displayed

on the screen as the computation proceeds. For instance, the bisection and rejection

41

steps can be graphically displayed as they take place along any two coordinate direc-
tions that one wishes. The number of function evaluations and the total elapsed real
time during the computation can also be monitored.

Upon termination, Lp, < f, < Up,. The union of boxes in the list will certainly
contain all the feasible global minimizers of f € B. Up, is “updated” by replacing it
with any smaller Ug,_, found (see “midpoint test” (4.2.2)).

Suppose that a sub-box Y of B contains a local (but non-global) minimizer. Y is
rejected if Lp, > Up, (see “midpoint test” (4.2.2)). The smaller Y is, the closer the
lower bound L, is to being exact. Therefore, the smaller ¢, is, the more likely that

a local minimum will be rejected. Compare Figures 1 and 2.

4.2.4 An Illustration of the Algorithm

As an example of how the algorithm works, consider the following non-differentiable

optimization problem ! in which the following function is to be minimized:
f(@) = (|22 + 22 — 1| +.001) |2? + 2% — 0.25|
subject to

p(z) =max{ (1— max{|z|/0.6,|x2|/0.25}),

(1 — max{|z1]/0.25, |z, — 0.4|/0.3})} <0

and z in the initial box B = ([-1.2,1.2],[—1.2,1.2]), (that is: —1.2 < z; < 1.2 and

—1.2 <z, < 1.2).

1 This problem was suggested by Devin Moore.

42

The results obtained depend on a number of factors, including the number of
digits carried in the arithmetic and the final box-width tolerance, €.

Using interval arithmetic with outward rounding at the 11th decimal digit, the fol-
lowing results (carried out on an Apple MacIntosh with all the programming written
in MS-BASIC) were obtained.

For €, = 0.2, there were 74 boxes in the final list (see Figure 1). For ¢, = 0.1,
there were 28 boxes in the final list (see Figure 2).

For this problem there are three disconnected continua of global optimizers con-
sisting of arcs, on the circle 22 + 22 = 0.25, which lie outside the union of two
rectangles cutting through the circle. The entire unit circle, 22 + z2 = 1, consists of
local minimizers. By merely reducing the final box width tolerance, €,, the local (but
not the global) minimizers are eliminated. Compare Figures 1 and 2.

It is clear that standard (non-interval) optimization methods using only function
evaluations at sample points will not be able to solve problems of this type in the
same sense as is done here. The interval “solution” consists of a list of boxes whose
union contains the set of all global minimizers. Other points are also contained, of
course; but one can come as close as one pleases to the actual set of minimizers by
doing enough computing and by carrying enough digits in the interval arithmetic.
See Figure 3.

As alternative stopping criteria one might use, for instance:
e Stop if Up, — Lp, < ¢y, or

e Stop if Up, — Ly, < €7 and the maximum box width < ¢,.

43

Figure 1: Smiley Face with ¢, = 0.2

Figure 2: Smiley Face with ¢, = 0.1

7N

Figure 3: Smiley Face with ¢, = 0.0125

44

45

However, it seems necessary to scan the existing list for the minimum lower bound
Ly, (see 4.2.3) each time such a test is applied, so that this would require some
additional time.

For a discussion of the “complexity” of the type of algorithm presented in this
section, see [32]. An accurate a-priori estimate of computing time seems difficult,
even for the two-dimensional example given above, as Table 1 shows. The initial box
B, the stopping tolerance €, on the maximum width of boxes in the final list, a count
of the number of objective function evaluations n and the actual computing time, ¢,
in seconds (in the slow, interpretive language MS-BASIC on the Maclntosh) is listed.
In each case, the final list of boxes contained the global minimizers in B, but not the

local minimizers on the unit circle.

Table 1: Timing Results for the Smiley Face Problem

B €z n t
([-1.2,1.2],[-1.2,1.2]) | 0.1 898 | 337
([-1.2,1.2],[-1.2,1.2]) | 0.05 1143 | 445
([0,1. 1], [0,1.1]) 0.025 444 | 183
([0,1],]0,1]) 0.025 943 | 346
([0,1],]0,1]) 0.0125 | 1137 | 417
([0,2],]0,2]) 0.025 | 1020 | 392
([0, 10], [0, 10]) 0.025 629 | 308
([0, 100], [0, 100]) 0.025 546 | 201
(10, 10°], [0, 10%]) 0.025 798 | 298

An explanation of these timing results is difficult. They depend on the details
of the rejection process. In particular, note that the cases involving the initial box

([0,1],]0,1]), in the example at hand, take longer than some of the much larger initial

46

boxes.

It is likely that this happened, for this example, because the unit circle of local
minimizers is tangent to the edges of the initial box ([0, 1],[0,1]). A similar thing
happens for the initial box ([0, 2], [0, 2]) after the first couple of bisections. This type
of curious behavior has been observed by the authors for other examples using quite
different interval algorithms.

It is remarkable that the much larger initial boxes ([0, 100],[0,100]) and even
([0,10],[0,10%]) run faster than ([0, 1],[0,1]). This is because, upon bisection, these
boxes never get cut down to any sub-box with edges tangent to the circle of local
minimizers. Thus, an accurate a-priori complexity analysis for this algorithm must
take into account the geometry of the solution set relative to the boundary of the
feasible region. If this is not impossible, it is perhaps a research problem for the
future.

More to the point, many improvements in efficiency are possible, particularly for

differentiable problems, as is shown in the next section.

4.3 Differentiable Optimization Problems

When the objective function and the constraint functions are differentiable, one can
use more efficient methods such as those discussed in this section.

If the objective function is differentiable, one can make use of local monotonicity.
One can also make more efficient use of the upper bound Up, on the globally minimum

value f, of f(z). When the objective function is twice differentiable, one can make use

47

of local convexity, and one can use interval Newton methods. See subsection 4.3.4.
If the constraints are also continuously differentiable, then one can apply an in-
terval Newton method to solve the Kuhn-Tucker or the John conditions which must
be satisfied at a solution point.
For simplicity in discussing the procedures of this section, it will be assumed
that the constraint functions p;(x) are continuously differentiable and the objective

function f(z) is twice continuously differentiable.

4.3.1 The Monotonicity Test

Consider the case in which a box B is certainly strictly feasible. Suppose the gradient
g is evaluated over a sub-box X of B. If 0 ¢ ¢;(X) for some i = 1,...,n, then the
gradient is not zero in X. Therefore the global minimum cannot occur in X, and X

can be rejected.

4.3.2 A Nonconvexity Test

Again consider a certainly strictly feasible box B and consider a sub-box X of B. If
a global solution point, x, occurs in B, then f must be convex in some neighborhood
of z,. In other words, the Hessian of f(z) must be non-negative definite (positive
semi-definite) at z,. If it can be shown that the Hessian is not positive semi-definite

anywhere in X, then X can be rejected.

48

The diagonal elements of the Hessian are given by
h“(ZE) = 82f(m)/8x2,z = 1, e, .

One necessary condition for the Hessian to be positive semi-definite is that its
diagonal elements be non-negative. Suppose h;; is evaluated over X, using interval
arithmetic, and that h;(X) < 0 for some i. X can be rejected. Other necessary
conditions for non-convexity could be checked, but here only this simplest one is

used.

4.3.3 Using the Upper Bound

In the basic algorithm described in section 4.2, the use of an upper bound Up, on the
globally minimum value f, of f(x) was considered. It was pointed out that a box X
could be rejected if f(X) > Up,. This bound can be used in a more sophisticated
way. Even if f(X) # Up,, it may still be possible to reject a sub-box X' of X for
which f(X') > Up,.

f can be expanded in the form
fy) € f(x) + (y — 2)T g(X).

See, for example [21]. If
fl@)+(y—2)"9(X) > Ur, (4.2)

for all y € X', then f(y) > Up, for all y € X'; therefore, X' can be rejected.

49

One can solve the inequality (4.2) for y to determine such a sub-box X'. See [11]
for details. One can also use a second order expansion of f in the same way. Again,

see [11] for details.

4.3.4 An Interval Newton Method

The most effective procedure for use in solving differentiable global optimization
problems is the interval Newton method.

Consider a vector function g(x) which might be the gradient of f. Suppose one
seeks the zero(s) of g in a box X. Let J denote the Jacobian of ¢ and let z be a point

in X. For any point y in X, the expansion
9(y) € g(z) + J(X)(y — x)
holds [21]. If y is a zero of ¢ , then y is in the solution set of
g9(x) + J(X)(y —2) = 0. (4.3)

One can find a box Y containing the set of solution points y of (4.3). X is then
replaced by X NY. Note that this intersection could be empty. If so, X is simply
rejected. See [13] for details.

If X is certainly strictly feasible, then any minimum of f(x) in X is at a stationary
point. Therefore, g(z) = 0 at such a point, where g(z) is the gradient of f(z). In
such a case, the interval Newton method to solve g(z) = 0 in X can be applied.

If X is not certainly strictly feasible, then a global minimum may not occur where

g(x) = 0. However, it will occur where the John or Kuhn-Tucker conditions are

a0

satisfied. In this case, one can apply the interval Newton method to solve the set of
equations expressing the John or Kuhn-Tucker conditions.

For the problem given by (4.1), these conditions are

where u; is a Lagrange multiplier. See, for example [32].

4.4 Parallelization

A basic interval global optimization algorithm for possibly non-differentiable functions
was given in section 4.2. In section 4.3 a list of more “powerful” box and sub-box
deletion tests were given which could be incorporated when the objective function
and the constraint functions were differentiable.

One can further improve the efficiency of the algorithm given in section 4.2, or
augmented variations of this algorithm which use the tests given in section 4.3, by
parallelizing. The parallelization of a sequential algorithm is not an obvious or even
unique task for most problems. In particular this is true for the global optimization al-
gorithms mentioned in sections 4.2 and 4.3. For what follows, a differentiation among
the possible variations of these algorithms will not be made. The interval global opti-
mization algorithms to be parallelized will simply be referred to, collectively, as “the

algorithm”.

o1

In order to better qualify the parallelization intent, the terms fine grain parallelism
and coarse grain parallelism will be used. Fine grain parallelism refers to the paral-
lelism in an algorithm at the instruction level. For example, consider the addition of
two intervals, A = [al,ar| and B = [bl, br] to obtain C = [cl, cr] = [al + b, ar + br].
One could implement this simultaneously on two processors, one of which calculates
cl = al + bl while the other performs cr = ar + br.

The speedup of this parallel interval addition over the sequential interval addition
is at most 2. Furthermore, this maximum speedup can only be realized in hardware,
or perhaps on tightly-coupled parallel machines such as the Butterfly, Hypercube, or
Transputer network, in which communication or shared-memory overhead is mini-
mal. In a similar vein, the other basic operations (—,*,/) could also be fine grain
parallelized.

If arbitrary precision intervals are considered, such as those used in VPI [6], one
can gain much greater speedups over the sequentially coded version by implementing
the basic arithmetic operations as vector operations on a vector processor such as
the CRAY Y-MP 8/64. In this thesis, however, fixed precision intervals are used.
Furthermore, speedups on the order of N, where N is the number of processors, are
desired.

Since in the Computer Science Department of The Ohio State University there are
more than 300 SPARC station SLCs on a distributed Ethernet network available for
the author to use, fine grain parallelism is not considered in this thesis, but instead

coarse grain parallelism is investigated in which a different partition of the initial

92

input data is mapped onto various processors.

4.4.1 One Possible Parallel Implementation

One possible parallel implementation would designate one processor as the queue
processor, Py. Pg would be responsible for maintaining the global queue. All the
other processors would queue/dequeue boxes by consulting Py and then perform the
rest of the algorithm in parallel.

Whenever an improved upper bound U, on the global minimum (see midpoint test
in section 4.2) is discovered by any processor, this new Up, would be broadcast to all
other processors so that all could make sharper midpoint deletion tests. Note that at
any given instant in time, some of the processors might be performing a midpoint test
with an older Ug,. This does not affect the correctness of the algorithm, but rather
in the worst case, the box for which the test is being applied will not be deleted, but
instead bisected. When each bisected half later comes to the foreground of the queue,
the newer Up, will be available.

This parallel version possesses at least two short-comings. First, as the total
number of processors involved in the computation increases, so does the demand
for services from FPg. Quickly Py will become a bottleneck with all other processors
waiting unreasonable amounts of time in order to access the global queue. The
second handicap is that the size of the global queue is limited to the amount of
memory available on a single processor. Based upon considerable experience with the

sequential algorithm, this is too constraining for real world problems. Therefore, a

93

coarse grain distributed parallel global optimization algorithm in which each processor

maintains its own local queue is considered.

4.4.2 The Distributed Parallel Algorithm

The distributed parallel algorithm has three main steps:

1. Initialize/Startup all processors
2. Perform “the algorithm” in parallel

e Dynamic partitioning and load balancing

e Broadcasting new Up,
3. Terminate all processors

e Detect global termination

e Compute final solution list

The steps are defined and discussed in the succeeding sections. Before doing so,
the pair of terms partitioning and mapping are defined in the context of the parallel
program. Partitioning refers to the manner in which the input data is divided-up
among each of the processors. Mapping is concerned with the particular feasible
assignment (with respect to the processor interconnection topology) of processor to

process which minimizes communication costs.

o4

A distributed network environment is a fully connected multiprocessor system.
Furthermore, the interprocessor communication time is virtually homogeneous. There-
fore, in the succeeding algorithm description, the reader can assume that any process
can be mapped to any processor, and the mapping issue will not be addressed further.

The parallel algorithm is now described.

4.4.3 Initialize/Startup All Processors

Observing the initial step for the basic algorithm in section 4.2, 4 steps are noted:
1. Input initial box, B
2. Input initial box width tolerance, ¢,
3. Queue the tuple, (B, Lg,), on the box queue
4. Update Up,

These first 4 steps are performed only on the main processor, namely Fy. Next,
P, will attempt to spawn N — 1 process copies of itself on N — 1 remote processors,
P,,0 <t < N. P, will then wait until it has received from each P; a local state
message, LSM , indicating the status of the attempted spawn (many errors can occur
when attempting to spawn a remote process on a distributed network). Each of the
LSMs are compiled, along with the sending processor’s unique identification number,
domain name, and Ethernet address, into a global state message, GSM. After all

N —1 LSMs have been received, P, sends a copy of the GSM to all P;s. All processors

95

now have the necessary information to communicate with any other living processor

involved in the parallel computation.

4.4.4 Perform “The Algorithm” in Parallel

Once step 4.4.3 above has been completed, only Py has a box on the box queue.
How do the other N — 1 processors proceed? This brings us to the issue of dynamic

partitioning and load balancing.

Dynamic Partitioning and Load Balancing

Whenever any processor, P;, has an empty box queue, it begins sending box request
messages, BRMs, to a random P;,i # j. If there are boxes available on P;’s box
queue, then P; sends P; a box message, BM, containing half of its queued boxes, but
no more than NUMBOXES (sending arbitrarily large messages is undesirable).

Otherwise, P; sends back a short no bores available message, NBM, indicating
that it has no boxes available. If P; receives a NBM, it then sends requests to
processors, Piy1ymoan, Pit2)ymodN, Plit3)ymodn, -+, Plitkymoan until it receives a BM
or until £ = N — 1 (see section 4.4.5).

This partitioning scheme is dynamic and demand driven. The hope is that by
sending half of the workload to each box requesting processor, the work load (number

of boxes) among all processors can be balanced.

56
Broadcasting the New Up,

As each processor executes “the algorithm” in parallel, eventually (assuming there
exists a point, x € B (the initial input box) such that f(z) < Lp,) an improved
upper bound Up, on the global minimum will be discovered by a given processor,
P;. At this point, P; will send this new Up,, NUF,, to all other processors F;,i # j.
When a given P, receives this NUp, it compares it with its local Ug,. If NUp, < Up,,
P; updates Up,. Otherwise, P; must have received a lower NUp, from some other
processor or calculated a lower Up, itself during the time it took to receive P;’s NUp,.

In this case, P;’s Up, is not updated.

4.4.5 Termination

With the sequential version of “the algorithm”, it was guaranteed that if the first box
on the box queue had width less than ¢,, then so did all the other remaining queued
boxes. However, in the parallel case, if the first queued box on the box queue of given
processor, P;, has width less than ¢,, then this does not necessarily imply that all the
remaining boxes on the N — 1 other processors’ box queues will have width less than
€z

Indeed, P; may very well only have found a local minimum. What is P; to do
in this case? If P, simply prints its output as described in section 4.2 and then
terminates, then an uninteresting local solution very likely will be outputted, and

moreover, a valuable worker processor will be lost.

S7

The solution, for the moment, is to maintain a second queue, called the possible
solution queue, PSQ), on every processor. Now, if the width of the first queued box on
P;’s box queue is less than €, then all of the boxes on P;’s box queue are placed on
PSQ). P, then behaves as in 4.4.4 for a processor with no queued boxes. Furthermore,
whenever P; determines a new U, , it checks all boxes on PS(Q) and discards those boxes
which fail the midpoint test (see section 4.2) using the new Up,. Global termination
now becomes a question of detecting when ewvery processors’ box queue is empty.
For the moment, such a state is detected with a simple centralized algorithm. A
distributed algorithm using either a ring [3] or a tree [39] would be more efficient and

fault tolerant.

Detect Global Termination

If a given P; does not receive a BM after sending N — 1 BRMs, P; then sends P
a possible global termination message, PGI'M. P; then waits for either a BM or a
terminate message, TM, from P,. If Py receives a PGI'M and has boxes on its box
queue, then Py simply sends P; a BM. If P, receives a PGI'M while it has no boxes
on its box queue, then Py logs P;’s PGTM. When P, receives N —1 PGI'Ms, P, sends
a TM to all other processors. Additionally, if P, is sending BRMs and receives a BM,

Py must send BMs to all processors for which a PGI'M was logged.

28

Compute Final Solution List

When a processor, P;, receives a TM, it prints out all boxes on its PS() and terminates.
Py does the same as soon as it detects global termination and has sent N —1 TMs. The
final solution list is obtained by combining the output from each terminated processor.
As in the sequential version, the union of all the boxes on the final solution list will

contain the set of all global minimizers.

CHAPTER V

RESULTS

Examples for the methods described in chapter IV are discussed in this chapter. All
examples were run on one or more SUN4 workstations connected on an Ethernet
network. In addition, all examples utilized the midpoint, monotonicity, and Newton
tests described in sections 4.2 and 4.3. Termination was effected when the width of

each remaining box containing a solution was less than 1076.

5.1 Kowalik Problem

For the first example, the Kowalik problem mentioned by Walster and Hansen [41]
was solved. For this unconstrained global optimization problem the following function

was to be minimized: f(x1,zs, 3, x4) defined as

11 2
bz+bz$2)2
T1, T2, L3, %4) = P (G — 15—

with the constants defined in Table 2.

The correct solution as reported by Walster and Hansen is as follows:

;7 = [0.1928334529823, 0.1928334529827]

99

60

Table 2: Kowalik Data

1 0.1957 0.25
2 0.1947 0.5
3 0.1735 1
4 0.1600 2
5 0.0844 4
6 0.0627 6
7 0.0456 8
8 0.0342 10
9 0.0323 12
10 0.0235 14
11 0.0246 16
x5 = [0.190836238780,0.190836238785]

zy = [0.123117296277,0.123117296279)

z; = [0.135765989980,0.135765989983]

f* = [0.00030748598779,0.00030748598781]

Given an initial input box of [—0.2892,0.2893] in all dimensions and running on

1 processor, the program reported the following results:

convex hull of boxes on the queue:

x1 [0.19283345267383470, 0.19283345332189572]

x2

[0.19083623185103013, 0.19083624496089555]

61

x3

[0.12311729477860661, 0.12311729761465269]

x4 [0.13576598850717606, 0.13576599113717366]
f(hull): [0.00030748584424075611, 0.00030748613137046295]

max width of 1 box on the queue = 1.31099e-08

performed 545490 function evaluations.
performed 492923 Jacobian evaluations.

performed 200627 Hessian evaluations.

performed 51263 midpoint deletioms.
performed 88999 monotonicity deletions.
performed 49741 Newton deletions.

performed 34635 Newton reductions.

computation time = 4057067 milliseconds > 1 hour

5.2 Photoelectron Spectroscopy Problem

The second example concerns a real world problem which arises in the field of chem-
istry. More specifically, chemists performing photoelectron spectroscopy collide pho-

tons with atoms or molecules. These collisions result in the ejection of photoelec-

62

trons [4, 1, 36]. A photoelectron spectrum, which is a plot of the number of photoelec-
trons ejected as a function of the kinetic energy of the photoelectron, is produced from
monitoring these collisions. A typical spectrum consists of a number of overlapping
peaks of various shapes and intensities. The chemist desires to resolve the individual
peaks.

One method for isolating each peak attempts to “fit” the spectrum as the sum of
peak functions. Peak functions are functions of variables which convey information
regarding the peak’s position, intensity, width, function type, and tail characteristics.
Various types of functions have been used for this purpose, but the most common are
Gaussian and/or Lorentzian.

For a specific test problem, a spectral curve as the sum of two Gaussian functions

(see Figure 4) was arbitrarily constructed. The function definition is

;= 4.0+01G+1),i=1,2...,n

7[%"“1]2

o - 7[%"“2]2
Y; = € 1 + ase

82

with the constants defined in Table 3.

Table 3: Photoelectron Spectroscopy Data

a; = 130.89 as = 52.6
u; = 6.73 Uy = 9.342
S1 = 1.2 S9 = 0.97

An attempt to “fit” this curve by recovering aq, as, uq, us, $1, and sy was made.

Given n = 81, (x;,y;), and the initial input box, B, defined in Table 4, the task was

140

120

100

a0

60

40

20

63

jﬁ**\@ Two Gauszian Sum Spectroscopy Curve ——

Figure 4: Graph of Points

12

to minimize f defined as follows:

N [-[Ep ?
flay, ag,ui, ug, 51, 82) = Z(Ch@ 1 tage - o2 0 — yi)
i=1

Table 4: Initial Input Box for the Photoelectron Spectroscopy Problem

B
a1 = [130, 135]
as = [50, 55]
uy = [6, 8]
us = [8,10]
S1 = [1, 2]
S9 = [05, 1]

The results were as follows:

convex hull of boxes on the queue:

al = [130.889999624668920, 130.890000237423440]
a2 = [62.5999994426222910, 52.6000003353821410]
ul = [6.72999999580056230, 6.73000000523584680]
u2 = [9.34199999170696670, 9.34200000792551850]
s1 = [1.19999999502502950, 1.20000000672384770]

s2 = [0.96999998507893725, 0.97000001469388031]

f (hull):

[6.3015390640982946e-13, 9.9696829305332294e-11]
max width of 31 boxes on the queue = 5.57378e-07

computation time on 1 processor = 109240 seconds > 30 hours
zpeedup

180 L] T L] L] T L] L]
curwe —4—
160 F 5
™,
by
\\
140 F h
/]
120 F
100 F E
i
£
anr
(S
0 F
20F
0 ————— '] L '] '] L '] ']
0 5 10 15 20 20 20
number of processors

e

40
Figure 5: Speedup Graph

The parallel algorithm was run on up to 40 processors and achieved superlinear
speedup as indicated by Figure 5. In order to explain this superlinear speedup, the
progress of the parallel algorithm will be considered in the form of a binary tree.

At the beginning of the algorithm, one is usually given a single initial input box
(denoted as the root of the tree). One either eliminates this box or divides it in half

yielding two new boxes (depicted as child nodes). Likewise these two new boxes can

66

be eliminated or split. Continuing in this manner, one gradually creates what shall
be called a binary progress tree.

A portion of one possible binary progress tree is given in Figure 6. The rectan-
gularized regions represent sets of boxes which would be deleted using the current
upper bound Ug, on the global minimum. An improved upper bound NUp, on the
global minimum exists within box Bsg.

In the single processor case, boxes are tested in the order By, By, ..., Bs;. The
reason for this is the fact that boxes are queued based upon the time in which they
were generated. This progress amounts to a breadth first search of the entire tree for
a “small” enough box containing a solution. Because of this searching strategy, the
NUp, within box Bsy would require 22 tests before being discovered.

In the two processor case (P; initially getting By and P, initially getting Bs),
each processor would employ a breadth first search on its respective half of the tree.
Therefore P, would discover the NUg, in 6 tests (nearly 1/4 the Number of tests it
took in the single processor case). Furthermore, P, would broadcast the NUp, to
P, thus allowing P; to make sharper midpoint tests earlier and possibly “pruning”
other subtrees from consideration. It is this combination of breadth first and depth
first searching which is believed to account for the superlinear speedup of the parallel

algorithm.

67

@@ /
® ® ® O ® ®©|6

CICICRCISIIC @@@@

new UF*

@9 @) @9

Figure 6: Portion of One Possible Binary Progress Tree

CHAPTER VI

CONCLUSIONS

This thesis has considered the topic of global optimization. The first objective was
to consider algorithms which are reliable. The second goal was efficiency.

With regard to reliability, bounding methods were favored over point methods
since the later are susceptible to the indentation argument as well as roundoff error.

Among bounding techniques, interval arithmetic was chosen because it is

e capable of producing reliable, “tight”, and asymptotically accurate bounds,
e efficient to compute, and

e applicable to any programmable function.

Machine interval arithmetic traps roundoff error thus always producing reliable

bounds. Using C++, an added benefit is that machine interval arithmetic is

e casy to generalize and automate, and

e convenient for an unsophisticated user to utilize.

The second goal, that of efficiency, was attacked in two ways. The first direc-

tion sought to make the basic interval global optimization algorithm more efficient

68

69

by taking advantage of certain properties of the objective function and constraint
functions. With differentiability, the acceleration devices of the monotonicity test,
convexity test, and Newton’s method can be used to improve efficiency.

The second technique to improve efficiency was parallelization. A parallel interval
global optimization algorithm was devised and mapped onto a network of worksta-

tions. The resulting speedup was encouraging.

6.1 Future Work

Much work can be done to improve the efficiency of the parallel interval global op-
timization algorithm discussed in this thesis. A few such possibilities will be briefly

mentioned.

1. Methods such as centered forms, meanvalue forms, and Taylor forms [32] which

attempt to produce tighter interval bounds could be investigated.

2. Since Newton’s method is expensive in terms of time, a test signaling when
Newton’s method should be applied may improve efficiency. The author has
experimented with such a test based upon the width of the “box” being consid-

ered.

3. Since a better Up, will almost certainly permit the midpoint test to dispose of
more boxes, a method for determining such a better Up, early will, in general,
improve efficiency [12]. The author has experimented with such possibilities

using a local Newton’s method search.

70

4. With regard to parallelization, several areas can be improved. Global termina-
tion is detected with a simple centralized algorithm. A distributed algorithm
using either a ring [3] or a tree [39] would be more efficient and fault tolerant.
Much experimentation can be made to determine the optimal load balancing
scheme. For instance, more boxes could be sent when an idle processor requests
work. Also, possibly only certain selected boxes should be sent to a requesting
idle processor. Indeed the areas of partitioning and load balancing offer the

richest bed of possibilities for improvement.

Appendix A

C++ Programs Evaluating the Rump Function

A.1 Floating Point Version

#include <math.h>

main()

double x, y, f;

x = 77617,
y = 33096;
f = 333,75*y*y*y*y*y*y+x*x * (11*x*x*y*y—y*y*y*y*y*y—121*y*y*y*y—2)

+

5_5*y*y*y*y*y*y*y*y+x/(2*y);

cout << f << endl;

71

72

A.2 Interval Version

#include <interval.h>

main()

interval x, y, f;

x = 77617;

y = 33096;

f = 333_75*y*y*y*y*y*y+x*x * (11*x*x*y*y—y*y*y*y*y*y—121*y*y*y*y—2)
+ 5_5*y*y*y*y*y*y*y*y+x/(2*y) ;

cout << f << endl;

Appendix B

C++ Interval Class Used in this Thesis

B.1 Header File “interval.h”

#ifndef interval_h

##define interval_h

#include "mymath.h"

#include <stream.h>

class interval {
double left;

double right;

public:
inline interval() {7};
inline interval (double) ;
inline interval (double, double);
inline interval (interval &);

73

friend

friend

friend

inline

inline

inline

inline

inline

interval &operator

interval &operator

int

int

int

operator
operator

operator

74

(interval &);
(double) ;
(interval&, double);
(double, intervalk);

(interval&, intervalk);

// less than or equals is used for subset

friend inline int

friend

friend

friend

friend

friend

friend

friend

friend

friend

friend

friend

friend

inline

inline

inline

inline

inline

inline

inline

inline

int

int

int

int

int

int

int

interval

interval

interval

interval

interval

interval

operator
operator
operator
operator
operator
operator
operator

operator

operator
operator
operator
operator
operator

operator

(double, interval&);
(double, intervalk);
(interval&, intervalk);
(interval&, intervalk);
(interval&, interval&);
(interval&, double);
(double, intervalk);

(interval&, intervalk);

O;

(interval&, double);
(double, intervalk);
(interval&, intervalk);
(interval&, double);

(double, interval&);

friend interval
friend interval
friend interval
friend interval
friend interval
friend interval
friend interval

operator
operator
operator
operator
operator
operator

operator

75

(interval&, interval&);
(interval&, double);
(double, interval&);
(interval&, intervalk);
(interval&, double);
(double, intervalk);

(interval&, intervalk);

// ampersand is used for intersection

friend inline int

friend inline int

friend interval
friend interval
void
void
void
void
friend inline interval
friend interval
friend interval

operator & (intervalk, double);
operator & (double, intervalk);
operator & (interval&, interval&);
operator | (interval&, interval&);
operator += (intervalk);

operator -= (interval&);

operator *= (interval&);

operator /= (intervalk);
floor(interval&) ;

sin(intervalg) ;

cos(intervalk) ;

friend

friend

friend

friend

friend

friend

friend

friend

friend

friend

friend

friend

friend

friend

friend

friend

friend

friend

friend

friend

friend

inline

inline

inline

inline

inline

inline

inline

inline

inline

inline

inline

interval

interval

interval

interval

interval

interval

interval

interval

interval

interval

interval

double&

double&

double&

double&

double

double

double

int

int

istream&

atan(intervalk) ;
arctan(interval’) ;
exp(interval&) ;
log(intervalk) ;
1n(interval&) ;
pow(interval&, double);
sqrt (intervalk) ;

sqr (interval&) ;

abs (interval&) ;
poshalf (intervalk);
neghalf (intervalé&) ;
left(interval®) ;
right (intervalg) ;
leftpart(intervalk) ;
rightpart(interval&) ;
mid(interval);
width(intervalk) ;
sign(intervald&) ;
empty (interval&) ;

negative(interval&) ;

operator >> (istream&, interval&);

friend istream& operator >> (istream&, decimal_record&);
friend ostream& operator << (ostream&, interval&);

};

extern interval pi;
extern interval piZ2;
extern interval piby2;
extern interval pi3by2;

extern interval pibby2;

inline interval::interval(interval &x)

{

left = x.left; right = x.right;

inline interval::interval(double c)

{

left = right = c;

inline interval::interval(double 1, double r)

{

78

left = 1; right = r;

inline interval &interval::operator = (interval &x)

{

left = x.left; right = x.right; return *this;

inline interval &interval::operator = (double x)

{
left = right = x; return *this;
}
inline int operator == (interval &x, interval &y)
{
return x.left == y.left && x.right == y.right;
}
inline int operator == (interval &x, double y)
{

return x.left ==y && x.right == y;

inline int
{

return x

inline int

{

return x.

inline int
{

return x

inline int
{

return x

inline int

79

operator == (double x, interval &y)

== y.left && x == y.right;

operator <= (interval &x, interval &y)

left >= y.left && x.right <= y.right;

operator <= (double x, interval &y)

>= y.left && x <= y.right;

operator < (double x, interval &y)

> y.left && x < y.right;

operator > (interval &x, interval &y)

return Xx.

inline int

{

return Xx.

inline int

{

return x.

inline int

{

return x.

inline int

{

return x

30

left < y.left && x.right > y.right;

operator >= (interval &x, interval &y)

left <= y.left && x.right >= y.right;

operator != (interval &x, interval &y)

left != y.left || x.right != y.right;

operator != (interval &x, double y)

left !'=y || x.right != y;

operator != (double x, interval &y)

= y.left || x !'= y.right;

inline interval interval::operator - ()
{

return interval(-right, -left);

inline int operator & (interval &x, double y)
{

return y >= x.left && y <= x.right;

inline int operator & (double x, interval &y)
{

return x >= y.left && x <= y.right;

inline interval poshalf(interval &x)
// assumes x straddles 0
{

return interval(0.0, x.right);

81

inline interval neghalf (interval &x)
// assumes x straddles 0

{

return interval(x.left, -0.0);

inline double& left(interval &x)

{

return x.left;

inline double& right(interval &x)

{

return x.right;

inline double& leftpart(interval &x)

{

return x.left;

82

inline double& rightpart(interval &x)

{

return x.right;

inline double mid(interval &x)

{

return (scalbn(x.left + x.right, -1));

inline double width(interval &x)
{

return x.right - x.left;

inline double sign(interval &x)
{
if (signbit(x.right))
return -1.0;
else if (signbit(x.left))
return 0.0;

else return 1.0;

83

inline int empty(interval &x)

{

return isnan(x.left) && isnan(x.right);

inline int negative(interval &x)

{

return signbit(x.right);

inline interval floor(interval &x)

{

return interval(floor(x.left), floor(x.right));

#tendif

84

B.2 Source File “interval.C”

#include <ctype.h>

#include "interval.h"

void ierror(char* p) {

cerr << "interval: " << p << endl;
abort();

}

#define MAXEXP 308

// number of digits of precision for I/O

#tdefine NDIGITS 17

// mask for rounding down on sparc station
static int rdval = 0xc0000000;

// mask for rounding up on sparc station
static int ruval = 0x80000000;

// fsr() returns current rounding here

static int rval;

85

#define fsr() {\
asm("sethi %hi(_rval),%ol");\
asm("st %Esr, [hol+%hlo(_rval)]");\

3

#define rounddown() {\
asm("sethi %hi(_rdval),%o1");\
asm("1d [hol+%lo(_rdval)], %fsr");\

}

#define roundup() {\
asm("sethi %hi(_ruval),%ol");\
asm("1ld [%o1+%lo(_ruval)]l, %fsr");\

3

interval pi(3.1415926535897932, 3.1415926535897934);
interval pi2(scalbn(3.1415926535897932, 1),
scalbn(3.1415926535897934, 1));
interval piby2(scalbn(3.1415926535897932, -1),
scalbn(3.1415926535897934, -1));
interval pi3by2(3 * piby2);

interval pibby2(5 * piby2);

36

interval operator + (interval &x, interval &y)

{

rounddown () ;
register double left = x.left + y.left;

roundup() ;

return interval(left, x.right + y.right);

interval operator + (interval &x, double y)

{

rounddown () ;
double left = x.left + y;;

roundup() ;

return interval(left, x.right + y);

interval operator + (double x, interval &y)

{

rounddown () ;

87

double left = x + y.left;

roundup() ;

return interval(left, x + y.right);

interval operator - (interval &x, interval &y)

{
rounddown () ;
register double left = x.left - y.right;

roundup() ;

return interval(left, x.right - y.left);

interval operator - (interval &x, double y)

{

rounddown () ;
double left = x.left - y;

roundup() ;

return interval(left, x.right - y);

interval operator - (double x, interval &y)

{
rounddown() ;
double left = x - y.right;
roundup() ;
return interval(left, x - y.left);
}

void interval::operator += (interval &x)
{

rounddown() ;

left += x.left;

roundup() ;

right += x.right;

void interval::operator -= (interval &x)

{

rounddown() ;

89

left -= x.right;
roundup() ;

right -= x.left;

interval sqrt(interval &x)

{

rounddown () ;
double left = sqrt(x.left);

roundup() ;

return interval(left, sqrt(x.right));

interval exp(interval &x)

{

rounddown() ;
double left = exp(x.left);

roundup() ;

return interval(left, exp(x.right));

90

interval log(interval &x)

{

rounddown () ;
double left = log(x.left);

roundup() ;

return interval(left, log(x.right));

interval 1ln(interval &x)
{

rounddown () ;
double left = log(x.left);

roundup() ;

return interval(left, log(x.right));

interval arctan(interval &x)

{

rounddown () ;

91

double left = atan(x.left);

roundup() ;

return interval(left, atan(x.right));

interval operator & (interval &x, interval &y)
{
if (x.right < y.right) {
if (y.left < x.left)
return x;
else if (y.left <= x.right)
return interval(y.left, x.right);
else
return interval(quiet_nan(0));
}
else {
if (x.left < y.left)
return y;
else if (x.left <= y.right)
return interval(x.left, y.right);

else

92

return interval(quiet_nan(0));

interval operator | (interval &x, interval &y)
{

ierror("not implemented yet");

void interval::operator *= (interval &y)

// cases are from Moore’s book ‘‘Methods and Applications
// of Interval Analysis’’ page 12

{

double 1ft, rght, temp;

if (signbit(left)) { // cases 2,3,5,7,8 and 9
if (signbit(y.left)) { // cases 5,7, and 8
if (signbit(right)) { // cases 5 and 8
roundup() ;

rght = left * y.left;
rounddown() ;

if (signbit(y.right)) // case 8

94

1ft = right * y.right;
else // case 5
1ft = left * y.right;
}
else { // cases 7 and 9
if (signbit(y.right)) { // case 7
rounddown () ;
1ft = right * y.left;
roundup() ;
rght = left * y.left;
}
else { // case 9
rounddown () ;
if ((temp = left * y.right) < (1ft = right * y.left))
1ft = temp;
roundup() ;
if ((temp = left * y.left) > (rght = right * y.right))
rght = temp;
}
}

else { // cases 2 and 3

rounddown() ;
1ft = left * y.right;
roundup() ;

if (signbit(right))

rght = right * y.left;

else

rght = right * y.right;

}
else {
if (signbit(y.left)) {
rounddown() ;
1ft = right * y.left;
roundup() ;

if (signbit(y.right))

rght = left * y.right;

else

rght = right * y.right;
}
else {
rounddown () ;

1ft = left * y.left;

//

//

//
//

//

//

//

case 3

case 2

cases 1,4, and 6

cases 4 and 6

case 6

case 4

case 1

95

roundup() ;

rght = right * y.right;

3

left = 1ft; right = rght;

interval operator * (interval &x, interval &y)

// cases are from Moore’s book °‘Methods and Applications

// of Interval Analysis’’ page 12

{

double left, right, temp;

if (signbit(x.left)) {
if (signbit(y.left)) {
if (signbit(x.right)) {

roundup() ;

right = x.left * y.left;

rounddown() ;

if (signbit(y.right))

left = x.right * y.right;

else

//
//
//

//

//

cases 2,3,5,7,8 and 9
cases 5,7, and 8

cases 5 and 8

case 8

case 5

96

3

}

else

if

}

left = x.left * y.right;

{

(signbit(y.right)) {
rounddown () ;
left = x.right * y.left;
roundup() ;

right = x.left * y.left;

else {

else

rounddown () ;

if ((temp = x.left * y.right) < (left

left = temp;

roundup() ;

if ((temp = x.left * y.left) > (right

right = temp;

{

rounddown () ;

left

= x.left * y.right;

97

// cases 7 and 9

// case 7

// case 9

x.right * y.left))

x.right * y.right))

// cases 2 and 3

roundup() ;

if (signbit(x.right))

right = x.right * y.left;

else

right = x.right * y.right;

}
else {
if (signbit(y.left)) {
rounddown () ;
left = x.right * y.left;
roundup () ;

if (signbit(y.right))

right = x.left * y.right;
else
right = x.right * y.right;
I
else {
rounddown() ;

left = x.left * y.left;
roundup() ;

right = x.right * y.right;

//

//

//
//

//

//

//

case 3

case 2

cases 1,4, and 6

cases 4 and 6

case 6

case 4

case 1

98

3

return interval(left, right);

interval operator * (interval &x, double y)

{

double left;

if (signbit(y)) {

rounddown() ;

left = x.right * y;

roundup() ;

return interval(left, x.left * y);
}
else {

rounddown() ;

left = x.left * y;

roundup() ;

return interval(left, x.right * y);

interval operator * (double x, interval &y)

{
double left;
if (signbit(x)) {
rounddown () ;
left = x * y.right;
roundup() ;
return interval(left, x * y.left);
}
else {
rounddown() ;
left = x * y.left;
roundup() ;
return interval(left, x * y.right);
}
}

void interval::operator /= (interval &y)

// cases are from Moore’s book ‘‘Methods and Applications

// of Interval Analysis’’ page 12

100

double 1ft, rght;

if (signbit(left)) {
if (signbit(y.left)) {
if (signbit(right)) {
if (signbit(y.right)) {
rounddown () ;
1ft = right / y.left;
roundup() ;
rght = left / y.right;
}
else {

cerr << y << endl;

// cases 2,3,5,7,8 and 9
// cases 5,7, and 8
// cases 5 and 8

// case 8

// case 5

ierror("divide by interval containing zero");

}
else {
if (signbit(y.right)) {
rounddown () ;
1ft = right / y.right;

roundup() ;

// cases 7 and 9

// case 7

101

rght = left / y.right;
}

else {

// case 9

1ft = -HUGE_VAL; rght = HUGE_VAL;

}

else {
rounddown() ;
1ft = left / y.left;
roundup() ;

if (signbit(right))

rght = right / y.right;
else
rght = right / y.left;
b
}
else {

if (signbit(y.left)) {
if (signbit(y.right)) {
rounddown () ;

1ft = right / y.right;

//

//

//

//
//
//

cases 2 and 3

case 3

case 2

cases 1,4, and 6
cases 4 and 6

case 6

102

103

roundup() ;
rght = left / y.left;
}
else { // case 4
cerr << y << endl;

ierror("divide by interval containing zero");

}

else { // case 1
rounddown() ;
1ft = left / y.right;
roundup () ;

rght = right / y.left;

3

left = 1ft; right = rght;

interval operator / (interval &x, interval &y)
// cases are from Moore’s book ‘‘Methods and Applications
// of Interval Analysis’’ page 12

{

104

double left, right;

if (signbit(x.left)) { // cases 2,3,5,7,8 and 9
if (signbit(y.left)) { // cases 5,7, and 8
if (signbit(x.right)) { // cases 5 and 8
if (signbit(y.right)) { // case 8
rounddown() ;

left = x.right / y.left;
roundup() ;
right = x.left / y.right;
}
else { // case 5
cerr << x << "\n" << y << endl;

ierror("divide by interval containing zero");

}
else { // cases 7 and 9
if (signbit(y.right)) { // case 7
rounddown() ;
left = x.right / y.right;
roundup() ;

right = x.left / y.right;

}

else {

// case 9

left = -HUGE_VAL; right = HUGE_VAL;

}

else {
rounddown() ;
left = x.left / y.left;
roundup() ;

if (signbit(x.right))

right = x.right / y.right;

else

right = x.right / y.left;

}
else {
if (signbit(y.left)) {
if (signbit(y.right)) {
rounddown () ;
left = x.right / y.right;

roundup() ;

//

//

//

//
//
//

cases 2 and 3

case 3

case 2

cases 1,4, and 6
cases 4 and 6

case 6

105

right = x.left / y.left;
}
else { // case 4
cerr << x << "\n" << y << endl;

ierror("divide by interval containing zero");

}

else { // case 1
rounddown () ;
left = x.left / y.right;
roundup() ;

right = x.right / y.left;

}

return interval(left, right);

interval operator / (interval &x, double y)

{

double left;

if (signbit(y)) {

106

rounddown () ;

left = x.right / y;

roundup() ;

return interval(left, x.left / y);
}
else {

rounddown () ;

left = x.left / y;

roundup() ;

return interval(left, x.right / y);

interval operator / (double x, interval &y)

{

double left;

if (signbit(y.left) && !'signbit(y.right)) {

cerr << x << "\n" << y << endl;

ierror("divide by interval containing zero");

}

if (signbit(x)) {

107

108

rounddown () ;

left = x / y.left;

roundup() ;

return interval(left, x / y.right);
}
else {

rounddown () ;

left = x / y.right;

roundup() ;

return interval(left, x / y.left);

interval sqr(interval &x)

{

double left, right;

if (signbit(x.right)) { // all negative interval
rounddown() ;
left = x.right * x.right;
roundup() ;

right = x.left * x.left;

b

else if (signbit(x.left)) {
roundup() ;
left = x.left * x.left;
right = x.right * x.right;

if (left > right)

right = left;

left = 0.0;
}
else {

rounddown () ;

left = x.left * x.left;

roundup() ;

right = x.right * x.right;
}

return interval(left, right);

interval abs(interval &x)

{

double left, right;

// stradle zero interval

// all positive interval

109

110

if (signbit(x.right)) { // all negative interval

left

-x.right;

right = -x.left;

}
else if (signbit(x.left)) { // stradle zero interval
left = —-x.left;
right = x.right;
if (left > right)
right = left;
left = 0.0;
}
else { // all positive interval
left = x.left;
right = x.right;
}

return interval(left, right);

interval sin(interval &x)
{
interval sine;

double temp;

111

interval distr, distl;

if (x.left < 0 || x.right > pi2.right) {
cout << "bad argument for restricted sine of " << x << "\n";

return interval(-1, 1);

if (lempty(x & piby2)) {

if (lempty(x & pi3by2)) {
sine.left = -1.0;
sine.right = 1.0;

return sine;

sine.right = 1.0;

distr = x.right - piby2;

distl = piby2 - x.left;

rounddown () ;

if (distr.left > distl.right)
sine.left = sin(x.right);

else if (distl.left > distr.right)

sine.left = sin(x.left);
else {
sine.left = sin(x.left);

temp = sin(x.right);
if (temp < sine.left)
sine.left = temp;

}

return sine;

if (lempty(x & pi3by2)) {

sine.left = -1.0;

distr = x.right - pi3by2;

distl = pi3by2 - x.left;

roundup() ;

112

113

if (distr.left > distl.right)
sine.right = sin(x.right);

else if (distl.left > distr.right)

sine.right = sin(x.left);

else {

sine.right = sin(x.left);
temp = sin(x.right);
if (temp > sine.right)
sine.right = temp;

}

return sine;

if (x.right < piby2.left || x.left > pi3by2.right) {
rounddown () ;
sine.left = sin(x.left);
roundup() ;
sine.right = sin(x.right);

return sine;

rounddown () ;
sine.left = sin(x.right);
roundup() ;

sine.right = sin(x.left);

return sine;

interval cos(interval &x)

{

interval cossine;

double temp;

if (x.left < 0 || x.right > pi2.right) {

cout << "bad argument for restricted cossine of " << x << "\n";

return interval(-1, 1);

if (lempty(x & pi)) {

cossine.left = -1.0;

roundup() ;

114

cossine.right = cos(x.left);
temp = cos(x.right);
if (temp > cossine.right)

cossine.right = temp;

return cossine;

if (x.left > pi.right) {

rounddown () ;
cossine.left = cos(x.left);
roundup() ;

cossine.right = cos(x.right);

return cossine;

rounddown() ;
cossine.left = cos(x.right);
roundup() ;

cossine.right = cos(x.left);

115

116

return cossine;

interval pow(interval &x, double p)
{

rounddown() ;

double left = pow(x.left, p);

roundup() ;

return interval(left, pow(x.right, p));

istream &operator >> (istream &s, decimal_record &pd)
{
char c;

register int i, exp = 0;

pd.fpclass = fp_normal;
// indicates no additional nonzero digits follow

pd.more = O;

// get first not white space character

s > c;

// assume, at first, that the sign is positive

pd.sign = O;

if (¢ == ’-7) A

// set sign to negative
pd.sign = 1;

s > c;

else if (¢ == ’+?)

s > c;

// extract each digit left of the decimal point

for (i = 0; isdigit(c); s.get(c))

pd.ds[i++] = c;

if (¢ == .?)

// extract each digit right of the decimal point
for (s.get(c); isdigit(c); s.get(c), exp--)

pd.ds[i++] = c;

117

118

if (!i)

ierror("invalid decimal input string base");

pd.ds[i] = ’\0’;

if (¢ == ’e’ || ¢ == ’E’) {
8 >> pd.exponent;
if (!'s.good())
ierror("invalid decimal input string exponent");
if (pd.exponent > MAXEXP || pd.exponent < -MAXEXP)
ierror("input string exponent is out of range");
pd.exponent += exp;
}
else {
pd.exponent = exp;
s.putback(c) ;
}

return s;

istream &operator >> (istream &s, interval &x)

{

119

char c;
decimal_mode pm;
decimal_record pd;

fp_exception_field_type ps;

s > c;
if (c == "[") {
s >> pd > c;
pm.rd = fp_negative;
decimal_to_double(&x.left, &pm, &pd, &ps);
if (¢ == ,7)
s > pd > c;
if (¢ == 1) {
pm.rd = fp_positive;

decimal_to_double(&x.right, &pm, &pd, &ps);

}
else {
s.putback(c) ;
s >> pd;
pm.rd = fp_negative;

decimal_to_double(&x.left, &pm, &pd, &ps);

120

pm.rd = fp_positive;
decimal_to_double(&x.right, &pm, &pd, &ps);
}

return s;

ostream &operator << (ostream &s, interval &x)

{

char ds[NDIGITS + 6];

s.put(C[?);

s.put(’ ’);

rounddown() ;

// 0 parameter means NO trailing zeros

gconvert(x.left, NDIGITS, 0, ds);

s << ds;

s.put(’,’);

s.put(’ ’);

roundup () ;
// 0 parameter means NO trailing zeros

gconvert(x.right, NDIGITS, 0, ds);

s << ds;
s.put(’ ’);
s.put(’1%);

return s;

121

1]
2]

3]

[4]
[5]
[6]

[7]

8]
[9]
[10]
[11]

[12]

BIBLIOGRAPHY

D. Briggs and M. P. Seah. Practical Surface Analysis: by Auger and X-ray
Photoelectron Spectroscopy. Wiley, Chichester, New York, 1983.

Matthew Bromberg and Tsu-Shuan Chang. Recent Advances in Global Optimi-
zation, pages 200-220. Princeton University Press, 41 William Street, Princeton,
1992. Linear lower bound approach.

E. W. Dijkstra, W. H. J. Feijen, and A. J. M. van Gasteren. Derivation of
a termination detection algorithm for distributed computations. Information
Processing Letters, 16(5):217-219, June 1983.

Russell S. Drago. Physical Methods in Chemistry. Saunders Golden Sunburst
Series. W.B. Saunders Company, Philadelphia, PA 19105, 1977.

P. S. Dwyer. Computation with Approrimate Numbers, pages 11-34. Wiley and
Sons, New York, 1951. Linear Computations book.

J. S. Ely. Prospects for Using Variable Precision Interval Software in C++ for
Solving Some Contemporary Scientific Problems. PhD thesis, The Ohio State
University, 1990.

Yu. G. Evtushenko, M. A. Potapov, and V. V. Korotkich. Recent Advances
in Global Optimization, pages 274-297. Princeton University Press, 41 William
Street, Princeton, 1992. Covering methods.

E. A. Galperin. Control and games. International Journal of Global Optimiza-
tion. To appear, personal communication.

E. A. Galperin. Global optimization, control and games. Special Issue of the
International Journal of Computers and Mathematics, 1990.

E. A. Galperin. Global optimization, control and games. Second Special Issue
of the International Journal of Computers and Mathematics, 1991. To appear.

E. R. Hansen. Global optimization using interval analysis — the multi-dimensional
case. Numer. Math., 34:247-270, 1980.

E. R. Hansen. Global Optimization Using Interval Analysis. Marcel Dekker, Inc.,
New York, 1992. To be published.

122

123

[13] E. R. Hansen and R. I. Greenberg. An interval newton method. Appl. Math.
Comp., 12:89-98, 1983.

[14] R. Horst. Journal of global optimization. 1(1), 1991.

[15] K. Ichida and Y. Fujii. An interval arithmetic method for global optimization.
Computing, 23:85-97, 1979.

[16] A. H. G. Rinnooy kan and G. T. Timmer. New Methods in Optimization and
their Industrial Uses, pages 133-155. Birkhauser Verlag, Basel, 1989. Argument
for the unsolvability of global optimization problems.

[17] Hiroshi Konno and Yasutoshi Yajima. Recent Advances in Global Optimization,
pages 259-273. Princeton University Press, 41 William Street, Princeton, 1992.
First example global optimization problem.

[18] A. P. Leclerc. Newton’s method. Technical Report OSU-CISRC-01/91-TR-04,
The Ohio State University Computer and Information Science Research Center,
January 1991.

[19] R. E. Moore. Automatic error analysis in digital computation. Technical Report
LMSD-4842, Lockheed Missiles and Space Division, Sunnyvale, California, 1959.
Early interval arithmetic paper.

[20] R. E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, N.J, 1966.

[21] R. E. Moore. Methods and Applications of Interval Analysis. SIAM Studies in
Applied Mathematics. STAM, Philadelphia, 1979.

[22] R. E. Moore. Reliability in Computing. Academic Press, 1988. See especially
the papers by E. Hansen 289-308, G. W. Walster 309-324, H. Ratschek 325-340,
and W. A. Lodwick 341-354.

[23] R. E. Moore. Global optimization to prescribed accuracy. Computers Math.
Applic., 21:25-39, 1991.

[24] R. E. Moore. Interval tools for computer aided proofs in analysis. The IMA
Volumes in Mathematics and Its Applications, 28:211-216, 1991.

[25] R. E. Moore, E. R. Hansen, and A. P. Leclerc. Recent Advances in Global Optimi-
zation, pages 321-342. Princeton University Press, 41 William Street, Princeton,
1992. Interval Global Optimization.

[26] R. E. Moore and H. Ratschek. Inclusion functions and global optimization II.
Mathematical Programming, 41:341-356, 1988.

[27] P. M. Pardalos and S. A. Vavasis. Quadratic programming with one negative
eigenvalue is np-hard. Journal of Global Optimization, 1(1):15-22, 1991. NP-
hard example.

124

[28] Jean-Paul Penot. New Methods in Optimization and their Industrial Uses, page ix.
Birkhauser Verlag, Basel, 1989. Quote emphasizing the importance of global op-
timization.

[29] Janos Pintér. Recent Advances in Global Optimization, pages 399-432. Prince-
ton University Press, 41 William Street, Princeton, 1992. Lipschitzian Global
Optimization.

[30] H. Ratschek. Inclusion functions and global optimization. Mathematical Pro-
gramming, 33(3):300-317, 1985.

[31] H. Ratschek and J. Rokne. Computer Methods for the Range of Functions. Ellis
Horwood and John Wiley, 1984.

[32] H. Ratschek and J. Rokne. New Computer Methods for Global Optimization.
Ellis Horwood and John Wiley, 1988.

[33] S. M. Rump. Reliability in Computing. The Role of Interval Methods in Scientific
Computing. Academic Press, 1988. roundoff error example.

[34] Sartaj Sahni. Computationally related problems. STAM Journal on Computing,
3(4):262-279, December 1974.

[35] S. Skelboe. Computation of rational interval functions. BIT, 14:87-95, 1974.

[36] Peter E. Sobol. A comparison of techniques for compositional and chemical
analysis of surfaces. Perkin-Elmer, 11(2):2-5, Winter 1989.

[37] B. Stroustrup. The C++ Programming Language. Addison Wesley, 1986.

[38] T. Sunaga. Theory of an interval algebra and its application to numerical anal-
ysis. RAAG Memoirs, 2:547-564, 1958. Early investigation into interval arith-
metic.

[39] Rodney W. Topor. Termination detection for distributed computations. Infor-
mation Processing Letters, 18(1):33-36, January 1984.

[40] Jean VIGNES. New Methods in Optimization and their Industrial Uses, pages
219-227. Birkhéauser Verlag, Basel, 1989. Estimation of the accuracy of results.

[41] G. W. Walster, E. R. Hansen, and S. Sengupta. Test Results for a Global Optimi-
zation Algorithm, pages 272-287. Numerical Optimization. STAM, 1985. Boggs,
Byrd, Schnabel (eds.).

[42] M. Warmus. Calculus of approximations. Bull. Acad. Polon. Sci. Cl. III,
4:463-464, 1956. Early investigation into interval arithmetic.

[43] Zelda B. Zabinsky, Douglas L. Graesser, Mark E. Tuttle, and Gun-In Kim.
Recent Advances in Global Optimization, pages 343-368. Princeton University
Press, 41 William Street, Princeton, 1992. Second example global optimization
problem.

