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1. Ranges of functions. The range of a real function f:D C R + R on a set 

XeD is 

R(f;X) {f(x) I x e X}. ( 1 • 1 ) 

In case X = [a,b] is a closed, bounded interval and f is continuous, then R(f;X) 

will also be an interval of the same kind. Closed, bounded intervals will be 

referred to simply as intervals, and the set of such intervals will be denoted ~ 

:IR. 

A fundamental problem of interval analysis is the calculation of R(f;X) or at 

least a good approximation to it. If f is defined in terms of arithmetic operations 

and functions with known interval extensions, then straightforward use of interval 

computation gives an interval extension F of f such that 

R(f;X) C F(X) ( 1. 2) 

for XeD. This calculation has the advantage of being completely automatic, and 

does not require knowledge of special properties of f. Unfortunately, F(X) can be 

such a gross overestimation of R(f ; X) in certain cases that it is useless for 

practical purposes. Furthermore, the quality of F(X) as an approximation to R(f;X) 

is generally unknown. 

A number of methods have been developed for obtaining better approximations to 

R(f;X), starting with the work of Moore [1]. The recent book by Ratschek and Rokne 

[5] describes a number of these techniques, and gives a substantial bibliography. 

Most of the approaches to this problem are based on transformation of F, usually 

into centered or mean-value forms [1], [5]. The method given in this paper applied 

to continuously differentiable functions f, and makes use of information about the 

monotonicity of f obtained ~ the process of automatic differentiation [2]. 
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2. Monotone functions. If the function f is nondecreasing on X, then R( f, X) is 

simply 

[f(a), feb)]. (2.1) 

Similarly, if f is nonincreasing on X, then 

[f(b), f(a)]. (2.2) 

Thus, the range of monotone functions can be determined by calculating only two 

function values. In actual practice, of course, downward rounding of the lower 

endpoint and upward rounding of the upper endpoint gives an interval inclusion of 

R(fiX) which is slightly wider than the exact range. For the time being, it will be 

assumed that function values are computed exactly. 

A sufficient condition for (2.1) to hold for differentiable f is that 

flex) ) 0, a < x < b, (2.3) 

and similarly (2.2) holds if f' (x) < 0 on X. Furthermore, suppose that f is 

continuously differentiable, and F' denotes an interval extension of f' obtained by 

interval computation. If F'(X) ) 0 (F'(X) < 0), it follows that f is nondecreasing 

(nonincreasing) on X, and R(f IX) can be calculated directly by (2.1) or (2.2), 

respectively. 

The additional information about the derivative of f needed above can also be 

obtained automatically. The values of F(X) and F' (X) can be computed by using 

interval differentiation arithmetic, as described below. All that is required is a 

formula or subroutine for fi no symbolic differentiation is necessary. If 

necessary, a bisection procedure can be applied to the interval X to find 

subintervals on which f can be guaranteed to be monotone. The resulting algorithm 

provides either the exact value of R(fiX), or else an inclusion of R(fiX) which is 

better in general than F(X). 

3. Real differentiation arithmetic. It is convenient to define interval 

differentiation arithmetic as an extension of real differentiation arithmetic. This 

arithmetic can be used to calculate the values of functions and their derivatives 

automatically, without symbolics or numerical approximations [4]. Like interval 

arithmetic, real differentiation arithmetic is an ordered-pair arithmetic, with 

R2•elements U (u,u'), V = (v,v'), ••• € The rules for this arithmetic are: 

U+V (u,u') + (v,v') (u + v, u'+ v'), (3.1)
 

U - V (u,u') - (v,v') (u - v, u' - v'), (3.2)
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u-v (u s u ' ) - (v,v' ) (u-v, u-v' + v-u'), (3.3) 

u/V (u,u' )/(v,v') (u/v, (u' - (u/v)-v')/v), v ~ o. (3.4) 

The arithmetic defined in this way forms a division ring with identity, and will be 

denoted by D. If the first element of each operand pair is interpreted as a 

function value, and the second as a derivative value, then the first element of the 

result corresponds to the evaluation of the operation, and the second to the 

evaluation of its derivative, according to the well-known rules of calculus. If 

real numbers c are identified with the pairs (c,O), then it follows from the chain 

rule of calculus that 

f«x,1» (f(x), f'(x», (3.5) 

that is, the rules of differentiation arithmetic will automatically give both the 

value and the value of the derivative of a rational function f. More generally, the 

chain rule gives 

f«u,u'» (f(u), u' -f'(u», (3.6) 

. which allows the definition of standard functions in D, for example, 

U e (3.7) 

In U In(u,u') (In u, u'/u), (3.8) 

and so on. The combination of arithmetic operations and standard functions will be 

called a computational system for differentiation arithmetic. It is simple to 

program such a computational system, particulary in a language such as Pascal-SC, 

which permits definition of operators and functions for various data types [3]. 

4. Interval differentiation arithmetic. Interval differentiation arithmetic is 

defined by the same rules as real differentiation arithmetic, starting with pairs of 

intervals instead of real numbers, and using interval arithmetic instead of real 

arithmetic inside the parentheses on the right sides of (3.1)-(3.3). with interval 

extensions of standard functions, the definitions (3.7), (3.8) and so on are used to 

construct a computational system for interval differentiation arithmetic. Once 

again, such a system is easy to program in Pascal-SC, which supports interval 

arithmetic as well as operator and function definitions for various data types [3]. 

The analog to (3.5) in interval differentiation arithmetic is 

F«X, [1,1]» (F(X), F'(X». (4.1 ) 
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Thus, by a direct evaluation process in this arithmetic, interval inclusions F(X) of 

R(f;X) and F' (X) of R(f' IX) can both be obtained automatically. Here, even if F' (X) 

is a crude approximation to the range of f' on X, the conditions F'(X) ) 0 or F'(X) 

< 0 are suf~icient to guarantee the monotonicity of f, and if f is monotone, then 

its range can be calculated exactly by (2.1) or (2.2). This observation is the 

basis of the algorithm described in the next section. 

5. An algorithm for range calculation. Of course, if the calculation of F' (X) 

shows that f is monotone on the entire interval X, then R(f;X) can be calculated at 

once. Otherwise, X will be partitioned into subinterval, and either R(f;X) or an 

approximation to it will be constructed. Let a given list of n subintervals of X be 

denoted by L = X2, ••• , and suppose that R C R(f;X) is known. On each n {X1' Xn}, 
subinterval Xi' either F(X C R, in which case R(f;Xi) makes no additionali) 
contribution to R(f;X), or f is monotone, in which case its range can be computed 

directly and R updated, or else 0 is an interior point of F'(X in which case Xii), 
may contain a critical point of f. In the latter case, Xi can be bisected and the 

resulting subintervals put on a new list for further examination. In order for the 

algorithm to terminate in a finite number of steps, a lower bound ~ is put on the 

widths of the subintervals to be considered, and an upper bound N is placed on the 

number of subintervals to be saved for further examination. For convenience, if Y,Z 

are intervals, then Y ++ z will denote the interval hull of Y and Z, that is, the 

smallest interval which contains both Y and Z. 

The algorithm consists of the following steps: 

1°. (Initialization) Take X := X, L := {X R := [f(x),f(x)], where x is1 1 1}, 
some point in X. 

2°. (Iteration) For i = 1, ••• ,n, compute (F(Xi), F' (Xi) ) 

(a) If F(X C R, then discard Xi.i) 

(b) If F' (Xi) ) 0 or F' (XI) < 0, then compute R := R ++ R(f ,Xi) and 

discard Xi­

(c) Otherwise, retain Xi­

(Termination ·or continuation) Denote the list of retained intervals by 

L • 
r 

(a) If L is empty, then the algorithm terminates with the exact value r 

R R(f;X) (5.1 ) 

of the range of f on X. 

(b) If r ) N or w(X 1) < €, then the algorithm terminates with the 
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overestimate 

R := R ++ F(X 1) ++ ••• ++ F(X r) ~ R(f;X) (5.2) 

of the range of f on X. 

(c) Otherwise, each subinterval in L is bisected to form a new list L r n 
with n 2r, and the algorithm returns to step 2°. 

6. Remarks. The algorithm given in the previous section will terminate in a finite 

number of steps with either the exact value of R(f;X) or an overestimate which is 

never worse than 

R = F(X 1) ++ ••• ++ F(X n) ~ R(f;X). (6.1) 

In general, (6. 1) is a better approximation to R(f ; X) than F (X) because of the 

convergence of united extensions to the range of a continuous function [1]. 

As a byproduct of the calculation when an overestimate is produced, the 

intervals X1' ••• 'X which are retained at the final step may contain critical pointsr 
of f, that is, points at which f' (x) = O. This information may be useful in 

optimization problems. Furthermore, if the list of retained intervals is nonempty, 

then the value R ~ R(f ; X) returned by the algorithIn is definitely known to be an 

overestimate, while if the list of retained algorithms is empty, then this value is 

exact (modulo outward rounding). Thus, the algorithm itself indicates the type of 

result (exact or an overestimate) it obtains. The knowledge that R is an 

overestimate and the list of retained intervals can be used to refine the 

calculation of R(f;X) further, if desired. Some idea of the quality of the 

overestimate can be obtained by comparing the value of R before calculating (5.2 ) 

with the final result. 

7. Numerical results. Numerical results were computed for the following functions, 

using the Pascal-Se program given in the following section. 

x - x, (7.1 ) 

(7.2) 

(x - 1).(x + 3) 
(7.3)

(x + 2) 

(7.4) 

a. For X [a,b], the naive interval extension F 1 (X) = X - X of f 1 gives 

F1( [a,b]) [a - b, b - a], while the algorithm gives R = [0,0] R(f 1;X) for 

arbitrary X. 
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b. For symmetric intervals X = [-s,s], the algorithm gives the exact value R
 

[0,s2] R(f = [-s,s] .[-s,s] = [_s2,s2]. In case X =
 2; [-s,s]), while F2([-s,s]) 
[-r,s] is nonsymmetric interval containing 0, the result of the algorithm can be of 

the form R = [-E, max{r2 ,s2}, where E > 0 is small, with a message that a small 

interval containing 0 can contain a critical point of f 2• For example, for X = 

[-7,8], one has 

X.X [-56, 64] (7.5)F2(X) 

while the algorithm gives 

R [-3.1x10-18, 64] (7.6) 

with a notation that there may be a critical point of f 2 in the retained interval 

[-1.63x10-9, 1.87x10-9]. In all other cases, the algorithm gives the exact 

result. Even if X is nonsymmetric about 0, the algorithm will give the correct 

result if 0 is a bisection point. 

c. The function f is actually monotone increasing, but has a pole at3 
x -2. The algorithm will sense the monotonicity of f 3 and give correct results if 

X is subdivided a sufficient number of times. The results are much better than the 

naive interval extension F3 ( X ) = (X - 1).(X + 3)/(X + 2) when one of the endpoints 

of X is close to -2. For example, for X = [-1.9, 98], 

[-2929, 97970], (7.7) 

while the algorithm gives 

R [-31.9, 97.97]. (7.8) 

For X [-1.999999, 98], 

(7.9) 

while the algorithm gives 

R [-3000002, 97.97]. (7. 10) 

Finally, for X = [-1.99999999999, 98], which has a lower endpoint as close to -2 as 

possible in 12-digit decimal arithmetic, one gets 

(7. 11) 
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while the algorithm gives 

R [-300000000002, 97.97] (7.12) 

d. The algorithm does not give good results for f 4 (x) = x/x, because it 

determines that every subinterval of X possibly contains a critical point of f 4 

(which in fact is true, since f 4 (x) :: 1 is constant, and f 4 I (x) :: 0). Thus, the 

algorithm computes R = [1,1] initially, and the final value is determined only by 

the united extension (6.1). Of course, the result is generally better than the 

naive interval extension F4 (X) = XIX evaluated on the entire interval X, but is 

still usually a gross overestimate. For example, for X = [0.002, 2]. 

[0.001, 1000] (7.13) 

while the algorithm gives 

R [0.203, 4.903], (7.14) 

which is still not a very good approximation to [1,1], even though it is much better 

than (7.13). Of course, the user is warned that the result may not be good by the 

fact that all subintervals are retained. Other methods usually give no warning when 

gross overestimates are produced. One way to improve the algorithm in this case, 

since interval extensions of derivatives are available, would be to use mean-value 

forms 

(7.15) 

to obtain interval extensions F of f on subintervals Xi' instead of obtaining them 

by straightforward evaluation. 

8. A Pascal-SC program. The program written below was designed to be general, so 

that the user needs to supply only subroutines for evaluation of the function f in 

ordinary interval arithmetic (IFEVAL) and in interval differentiation arithmetic 

(IDFEVAL) • The source code for these subroutines should be located in the files 

FEVAL.FUN. Examples of these subroutines for the functions discussed in §7 are 

given in §10. 

The operators for interval differentiation arithmetic given in §9 include only 

the basic arithmetic operators for type IDERIV. For a complete computational 

system, operators for mixed arithmetic between types INTEGER, REAL, and IDERIV 

should be included, as well as standard functions [3]. 

The number of subintervals allowed in a list is set by the constant DIM'in the 
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program, which can be changed by the user. The size of the smallest subintervals is 

similarly controlled by the number LIMIT of bisections allowed. Thus, if LIMIT = L, 

then 

(8.1) 

where w(X) = b - a is the width of the original interval X [a,b]. The source code 

for the Pascal-SC program follows: 

PROGRAM IRANGE(INPUT,OUTPUT);
 

CONST DIM = 256; (* Maximum number of subintervals *)
 

LIMIT 32; (* Maximum number of bisections *)
 

TYPE	 INTERVAL = RECORD INF, SUP : REAL END
 

IDERIV = RECORD X,PRIME: INTERVAL END;
 

DIMTYPE = 1•• DIM;
 

STACKTYPE = RECORD INT:INTERVAL;FUN:IDERIV END,
 

VAR X,RF,BEST,WORST: INTERVAL;
 

F: IDERIV;
 

I,NA,NB,LIM: INTEGER;
 

A,B: ARRAY[DIMTYPE]OF STACKTYPE; (* A is the list of intervals to
 

be examined, B is the list of 

retained intervals *) 

MX: REAL,
 

$INCLUDE INTERVAL.PAK; (* Makes interval arithmetic available *)
 

$INCLUDE IDERV.PAK; (* Interval differentiation arithmetic *)
 

PROCEDURE IOUT(X: INTERVAL); (* Prints endpoints in standard format *)
 

BEGIN 

WRITE ( • [ • , X. INF, • , • , X. SUP, , ] , ) ;
 

END,
 

$INCLUDE FEVAL.FUN, (* Evaluation of the function in interval and
 

and interval differentiation arithmetic *)
 

FUNCTION RMF (L,G: REAL): INTERVAL;
 

(* Bounds the range of a monotone function which assumes its least
 

value at L and its greatest value at G. *)
 

VAR D,U: INTERVAL;
 

BEGIN
 

D:=INTPT(L);U:=INTPT(G);
 

D:=IFEVAL(D),U:=IFEVAL(U);
 

D.SUP:=U.SUP;
 

RMF:=D
 

END, 
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FUNCTION MID(X: INTERVAL): REAL 1 (* Calculates midpoint of an interval *) 

V1\R A,B: ARRAY[1 •• 2]OF REAL 1 

BEGIN 

A[1]:=X.INF1B[1]:=0.S1
 

A[2]:=X.SUP,B[2]:=0.S,
 

MID:=SCALP(A,B,O)
 

END 1 

BEGIN (* Program lRANGE *) 

WRITELN('Enter initial interval X:')1 

I READ (INPUT, X) 1 

WRITE ( , X = ') 1IOUT(X) ,WRITELN; 

F:=IDFEVAL(X) , 

WORST:=F.X; 

IF (F.PRIME.INF )= 0) THEN RF:=RMF(X.INF,X.SUP) 

ELSE IF (F.PRlME.SUP <= 0) THEN RF:=RMF(X.SUP,X.INF) 

ELSE 

BEGIN (* F is not monotone *) 

NA:=11LIM:=0:
 

A[1].INT:=X1A[1].FUN:=F,
 

MX:=MID(X),
 

X:=INTPT(MX) 1
 

BEST:=IFEVAL(X) ,
 

WHILE «NA ) 0) AND (NA <= DIM DIV 2) AND (LIM < LIMIT» DO
 

BEGIN (* WHILE *)
 

LIM:=LIM+1;NB:=0;
 

FOR I:=1 TO NA DO
 

BEGIN (* STACK B *)
 

MX:=MID(A[I].INT),
 

NB:=NB+1,
 

B[NB].INT.INF:=A[I].INT.INF,
 

B[NB].INT.SUP:=MX;
 

B[NB].FUN:=IDFEVAL(B[NB].INT);
 

NB:=NB+11
 

B[NB].INT.INF:=MX;
 

B[NB].INT.SUP:=A[I].INT.SUP,
 

B[NB].FUN:=IDFEVAL(B[NB].INT)1
 

END; (* STACK B *)
 

NA:=O;
 

FOR I:=1 TO NB DO
 

BEGIN (* UNSTACK B *) 
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IF NOT (B[I].FUN.X <= BEST)
 

THEN IF (B[I].FUN.PRIME.INF >= 0)
 

THEN BEST:=BEST+*RMF(B[I].INT.INF,B[I].INT.SUP)
 

ELSE IF (B[I].FUN.PRIME.SUP <= 0)
 

THEN BEST:=BEST+*RMF(B[I].INT.SUP,B[I].INT.INF)
 

ELSE
 

BEGIN (* RESTACK A *)
 

NA:=NA+17A[NA]:=B[I]
 

END7 (* RESTACK A *)
 

END7 (* UNSTACK B *)
 

RF:=BEST7
 

FOR I:=1 TO NA DO RF:=RF+*A[I].FUN.X7
 

END7 (* WHILE *)
 

IF NA > 0 THEN
 

BEGIN (* NA > 0 *)
 

RF:=BEST7
 

WRITELN('Function may have critical points in:')7
 

FOR I:=1 TO NA DO
 

BEGIN
 

WRITE ( 'A[' ,I:2,'] ')7IOUT(A[I] .INT)7WRITELN;
 

RF:=RF+*A[I].FUN.X
 

END7
 

END7 (* NA > 0 *)
 

END7 (* F is not monotone *)
 

WRITELN('Naive interval arithmetic gives: ')7
 

WRITE( 'F(X) ') 7IOUT(WORST) 7WRITELN7
 

WRITELN('The algorithm gives: ')7
 

WRITE(' F(X) = ')1IOUT(RF)7WRITELN
 

END. (* Program IRANGE *) 

9. The operators for interval differentiation arithmetic. The six basic unary and 

binary arithmetic operators for type IDERIV are located in the file IDERIV.PAK, 

which also includes the call to the interval library for the function ISCALP to 

compute the interval scalar product. 

TYPE IVECTOR = ARRAY[1•• 2]OF INTERVAL;
 

FUNCTION ISCALP VAR A,B: I VECTOR7 DIM: INTEGER): INTERVAL7
 

EXTERNAL 88; (* Interval scalar product *)
 

OPERATOR + (U: IDERIV) RES: IDERIV,
 

BEGIN
 

RES:=U
 

END7
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OPERATOR - (U: IDERIV) RES: IDERIV; 

BEGIN
 

U.X:=-U.X;
 

U.PRIME: =-U. PRIME;
 

RES:=U
 

END; 

OPERATOR + (U,V: IDERIV) RES: IDERIV; 

BEGIN
 

U.X:=U.X+V.X;
 

U.PRIME:=U.PRIME+V.PRIME;
 

RES:=U
 

END; 

OPERATOR - (U,V: IDERIV) RES: IDERIV; 

BEGIN'
 

U.X:=U.X-V.X;
 

U.PRlME:=U.PRIME-V.PRIME;
 

RES:=U
 

ENDi 

OPERATOR * (U,V: IDERIV) RES: IDERIVi 

VAR A,B: IVECTOR; 

BEGIN 

A[1]:=U.XiB[1]:=V.PRIMEi
 

A[2]:=V.X;B[2]:=V.PRIMEi
 

U.PRIME:=ISCALP(A,B,2)i
 

U.X:=U.X*V.X;
 

RES:=U
 

END; 

OPERATOR / (U,V: IDERIV) RES: IDERIVi 

VAR A,B: IVECTORi 

C: IDERIVi 

BEGIN
 

C.X:=U.X/V.X;
 

A[1]:=INTPT(1);B[1]:=U.PRIMEi
 

A[2]:=-c.X;B[2]:=V.PRIMEi
 

C.PRIME:=ISCALP(A,B,2)/V.Xi
 

RES:=C
 

END; 
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10. Example function subroutines. (Contents of the file FEVAL.FUN.) 

(a) f = x-x.1(x) 

FUNCTION IFEVAL(X: INTERVAL): INTERVAL, 

BEGIN 

IFEVAL := X - X 

END, 

FUNCTION IDFEVAL(X: IDERIV): IDERIV, 

BEGIN 

IDFEVAL := X - X 

END, 

(b) = x-x.f 2(x) 

FUNCTION IFEVAL(X: INTERVAL): INTERVAL, 

BEGIN 

IFEVAL := X*X 

END, 

FUNCTION IDFEVAL(X: IDERIV): IDERIV, 

BEGIN 

IDFEVAL := X*X 

END 

(c) = (x - 1)-(x + 3)/(x + 2).f 3(x) 

FUNCTION IFEVAL(X: INTERVAL): INTERVAL, 

BEGIN 

IFEVAL := (X - 1)*(X + 3)/(X + 2) 

END, 

FUNCTION IDFEVAL(X: IDERIV): IDERIV, 

VAR ONE,TWO,THREE: IDERIV, 

BEGIN 

ONE.X := INTPT(1),ONE.PRIME := INTPT(O), 

TWO. X := INTPT(2) ,TWO.PRIME := INTPT(O), 

THREE.X := INTPT(3) ,THREE. PRIM := INTPT(O), 

IDFEVAL := (X - ONE)*(X + THREE)/(X + TWO) 

END, 

(d) f = x/x.4(x) 

FUNCTION IFEVAL(X: INTERVAL): INTERVAL, 

BEGIN 

IFEVAL := XIX 

END, 

FUNCTION IDFEVAL(X: IDERIV): IDERIV, 

BEGIN 
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IDFEVAL : = xIX 

END; 
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