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Abstract. The main subject of this work is mathematical and computational aspects of modeling of
static systems under interval uncertainty and/or ambiguity. A cornerstone of the new approach we
are advancing in the present paper is, first, the rigorous and consistent use of the logical quantifiers to
characterize and distinguish different kinds of interval uncertainty that occur in the course of modeling,
and, second, the systematic use of Kaucher complete interval arithmetic for the solution of problems
that are minimax by their nature. As a formalization of the mathematical problem statement, concepts
of generalized solution sesdAE-solution setto an interval system of equations, inequalities, etc.,

are introduced. The major practical result of our paper is the development of a number of techniques
for inner and outer estimation of the so-called AE-solution sets to interval systems of equations. We
work out, among otherdprmal approachgeneralized interval Gauss-Seidel iteratigeneralized
preconditioningand PPS-methodsAlong with the general nonlinear case, the linear systems are
treated more thoroughly.
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1. Introduction

What is Interval Analysis? Every scientific discipline is known to be characterized
by its separatsubject matteand specifianethod To our mind, Interval Analysis
is a joint child of mathematics and computer science

- that deals with the problems involving, on input/output or somewhere at the
intermediate stages, interval or, more generally, bounded and set-membership
uncertainties,

« whose distinctive feature is treating uncertainty sets as entire objects through
establishing arithmetical and analytical operations, relations, etc., between them.

Interval Analysis and its specific methods are thus of highest value for the problems
in which the uncertainty and ambiguity arise from the very beginning, being an
inalienable part of the problem statement. In particular, Interval Analysis is in no
way reduced to the so-called validated numerics, self-validating computations, etc.,
where the interval methods are merely an auxiliary tool for the solution of problems
that are noninterval by their nature.

It was the clear consciousness of these facts that guided the author in writing
down the present work, which is devoted, according to the formal title, to math-
ematical and computational aspects of systems modeling under uncertainty and
ambiguity represented in the interval form, but, in point of fact, the contents of
the paper is not exhausted by applied considerations. We avail ourselves of the
practical problem statement mainly as grounds for a wider discussion, refinement
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of the notions of annterval problem of a solution to an interval problerand of
other fundamental concepts, as well as a starting point for the development of a
number of powerful computational techniques for inner and outer estimation of the
solution sets to interval equations. We make an attempt to consider interval static
systems with both general nonlinear input-state-output relationship and a simpler
linear case. To some extent, this paper is a survey of earlier works by the author
and other researchers, but a considerable part of the results presented is new and
has not been published anywhere.

In our work, the main mathematical object under study isnéerval system of
equationsof the form

fi(@s, ....a, X1, ... %) = by,
fz(al, .o d, X, ,Xn) = b2, (l,l)
fm(ali---aahxll---:xn) : bm;

with intervalsay, ..., a, by, ..., bm, which we also write out in a concise from

F(ax)=b (1.2)
with
Fi(a,X) X1
Fz(a, X) X2
= . s X =
Fm(a x) Xn
and interval vectors
a bl
a b
a= _2 and b= 2
a bm

The interval systems of equations (1.1) are understood justcasds denoting
the families of the point systems of equations of the same structure constituted by
independent varying of the parameteis a., a, by, ..., by within the corresponding
intervalsay, ...,a, b1, ...,bm.

The major results presented in the paper relates not to the general nonlinear
systems of the form (1.1)—(1.2), but to a simpler (although not less significant)
interval linear systems

apXy + apXe + -- + apX, = by,
axXy + agpXp + --- + agXy = by,

(1.3)

amXy + aXg + -+ + amXn = b,
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with the intervalsa; andb;, or briefly
Ax=b (1.4)

with an interval matrixA = (g;) and interval right-hand side vectbr= (b;).

The present work is devoted to the solution of various problem statements for
the interval systems of equations (1.1)—(1.2) and (1.3)—(1.4). However, the math-
ematical results proper are prefaced by examination of the process of formulating
and posing the interval problems. The necessity to treat this issue at length, being
quite urgent indeed, is due to its poor development in modern interval analysis as
well as the general entanglement both in methodology and terminology.

The viewpoint we advocate is that, in most cases, speaking gbibbdon of an
interval equation(system of equations, inequalities, etc.) on its own is incorrect.
The right usage of words is to talk about the solution of this or firablem
statementelating to the interval equation (system of equations, inequalities, etc.).
In its turn, the formulation of an interval problem statement means specifying at
least asolution selanda way of its estimatian

In this respect, the situation in interval analysis very much resembles that e.g.
in the theory of differential equations, where one usually avoids speaking of the
solution of a differential equation on its own, in general. Instead, people consider,
investigate and solve specific problem statements, such as “initial-value problem,”
“boundary-value problem” (for ordinary differential equations), “initial-value prob-
lem,” “Dirichlet boundary-value problem,” “Neumann boundary-value problem,”
“mixed problems,” “radiation problem,” and so on (for partial differential equa-
tions).

Our notation follows mainly the internationally adopted recommendations that
has been summarized in [45]n particular, we denote intervals and interval objects
(vectors, matrices) by boldface letters (for instakceB, C, ..., X, Y, z), while under-
scores and overscorexandXx—designate the lower and upper endpoints of the
interval X.

2. Generalized Solution Sets

2.1. DESCRIPTION OF APRACTICAL SITUATION

Our main practical example will be the so-caliesierse problertt of the systems
analysis for a static (inertialess) input-state-output type system:

Given the input and output of a system,
find (or somehow estimate) its state

w

* See alstht t p: // www. cs. ut ep. edu/ i nterval - conp/ not ati ons/ suggesti on. ht n
or http://wwmv. mat. uni vi e. ac. at/ ~neum sof tware/int.
** Often referred to aglentification problem
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The peculiarity of the situation we will deal with is that the input and output of the
system are not specified exactly, they are only supposed to be within some bounds,
lower and upper, or, which is equivalent, we are given merely intervals of their
possible values (variations).

Letthe system state, input signal and output response be described by real vectors
x OR", a OR', andb O R™ respectively. In the set of all inputs, we distinguish
between

 perturbations g, ...,a;, which act within intervalsy, ...,a, independently of
our will, and

« controls a1, ..., a, which we ourselves can choose from intenals, ..., q.

The perturbations disturb the system, while appropriate controls are to compensate
them and to facilitate reaching the required functioning characteristics. In classical
control theory, all the system outputs that ought to be maintained at predetermined
value or varied according to a predetermined plan are known to be cedjelhted
outputs However, involving intervals to describe the end use of the system outputs
introduces a specific character into the situation under study. Namely, we should
divide the set of all the system outputs into

» the component$,, by, ...,bs that we must be able to transform to any values
from prescribed attainability intervalsy, ..., bs, and

« the componentsbs.+1, ...,bn that must certainly fall into some intervals
bs+1| ey bm'

The outputs of the first type may be termedcastrolled while the outputs of the
second type will be calledtabilized

The examples of the controlled outputs are coordinates of a robotic arm or of
a manipulator, which are required to “cover” with guarantee each point of a given
operating area. As this covering takes place, we usually do not mind if the arm
(manipulator) could additionally attain some other (extra) positions outside the
operating area.

The typical example of the stabilized system output is the temperature inside a
chemical reactor in a number of technological processes. It must not differ from a
nominal one[T, greater than some prescribed magnit&i@iebut every temperature
from the interval T — 0T, T + 8T] is equally acceptable and the specific value
of the actual temperaturedoes not matter provided that the membership
[T—oT, T+43T] holds true. In particular, some of the values from{ T, T+9T]
may turn out unattainable by the process in reality.

In the system under study, the input-state-output relationship is assumed to be
of the form

Fax) =b (2.1)

with a mapF : R' x R" — R™. In general,F may have quite a sophisticated
form, but in the major part of our paper we will regard the compon&t(s X),
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disturbing controlled
a, ...,ar b1,...,bs
INPUTS a X b OUTPUTS
Ar+1, .., A bs+1, ..., bm
controlling stabilized
F(a,x)

Figure 1 A structural scheme of a static control system.

i =1,2,...,m, asrational expressionghat is, as finite combinations of the variables
a, xand constants with elementary arithmetical operations (cf. [68], [69]). Also, we
suppose alF; to be continuous over their domains, that is, division by zero does not
occur inFi(a, X) within the intervalsag, ..., a and the range ofconsidered. Overall,

the situation is described by the structural scheme presented in Figure 1.

It is worth noting that the above situation in which we make use of the teoms
trol, regulation controlling, etc., does not entirely coincide with that in which these
notions are used in classical control theory. It is customary that the control theory
is applied to dynamical systems, either time-continuous or time-discrete. However,
the development of the general systems theory has lead to the understanding that
the dependence on the time variable is of secondary importance in the definitions
of “control” and “controllability” (see, e.g., [66]). That is especially pronounced
in the abstract mathematical statements of the dynamic control problems, where
phase trajectories, phase constraints, admissible control actions, etc., are elements
of functional spaces. In the most general form, the notion of controllability of a
system (of a parameterized map) is closely related to the notiattadfiability.

Namely, M. Mesarovic and Ya. Takahara [66] formulate controllability as the
condition that every element from a marked subset of the codomain of the map
can be attained (covered) provided that we appropriately chose the parameters and
arguments of the map. More precisely, let the functizo) describe a final result
of the system operation depending on the cortrdhen the system is (completely)
controllableif and only if the following condition is valid:

For every final state R from a marked set
there exists a control action C from a feasible area
such that R= ®(C).

But in such a form the controllability notion is equally applicable to static systems
as well, in which the time variable and the time interval do not figure at all (see,
e.g., [108]).

Besides, automatic control theory is not the only scientific discipline that has to
do with “controls.” In particular, the sense in which we use the term “control” (and
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related terms) is in good agreement with the terminology of operations research.
Recall the following generally adopted definition [1], [67]: aperationis a pur-
poseful action that can be characterized as

U =£(X,Y),

whereU is utility or the value of a criterion that represents quality of the system
functioning, X is a vector of variables that we caontrol, andY is a vector

of variables that canndte controlled(i.e., they are uncontrolled, or, to put this
another waygisturbing. Anyway, our use of words is quite legitimate.

Another comment. Strictly speaking, the word “uncertainty” that we use in
connection with the controlling inputs is not quite adequate to the practical sense
we mean by interval bounds of their possible variations. For example, one can hardly
speak of the “uncertainty” with respect to the intervals representing the ranges of
aircraft rudder and elevator. Still, we will further use the word “uncertainty” to keep
a uniform terminology, bearing in mind either our ignorance (lack of information)
or nonuniqueness (ambiguity) of the possible values as in the above aircraft control
example.

2.2. FRELIMINARY PROBLEM STATEMENT

Various kind of question can arise in connection with the system presented in the
preceding subsection. In our work, we study the following mathematical problem
statement—the problem of guaranteed set-membership estimation of the system
state from its inputs and outputs:

For what system states x can we choose, for any perturbations
a; O ag,...,a 0O & and for any a priori given output
values h O by, ...,bs O bs, the corresponding input controls
&+1 O &+1,...,a O @ such that the output response of (2.2)
the system &, a) would be exactly equal toib...,bs in the
controlled outputs and would be insid®., ...,by in the
stabilized outputs?

Solving set-membership identification problems in the interval (and even error-
bounded) context is not a novelty nowadays. However, the main distinctive feature
of the problems we deal with as compared with those exposed, for example, in
[127]is that we consider various and different from each other kinds of uncertainty:
controls-perturbations, etc.

If all the inputs and outputs of the system were determined precisely, the solution
of the problem (2.2) would reduce to the solution of the equation (2.1) with respect
to x. That is not at all the case when the input and output values have interval
uncertainty, but, in conformity with the terminology tradition of interval analysis,
we shall speak of the problem (2.2) that “the interval system of equations

F(a,x)=b (1.2)
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with the interval paramete = (a1, &, ...,a) ' OIR' andb = (b1, by, ...,by) " O

IR™ is under consideration.” It is necessary to stress, however, that the interval
system of equations (1.1) by itself should be understood only as a formal designation
for a collection of point systems

F(a,x)=b

with the coefficientsa O a andb O b, nothing more. In particular, we do not even
have the right to perform any transformations with it (rearrange, reduce similar terms
and such like) unless we specify what is behind a “solution” to the equation (1.1),
etc., and in what sense we ought to understand the equivalence of transformations
with (1.1). Some words clarifying the problem statement are thus indispensable at
the point, and we define first what shall be meant by the “solution set” to the system
(1.2).

Getting started, it makes sense to reformulate the verbal statement of the main
problem (2.2) in a more strict and formalized way. To do that, we shall use the lan-
guage of the first ordgaredicate calculusvith the logical quantifierst” (universal
quantifier, “for all”) and ‘0 (existential quantifier, “exists”) [20], [50]. In particular,
the condition

forany & O &,...,a Oa and for any b O by, ...,bs O bg, there exist
&+1 Oar+1, ..., Oa suchthat k(a X), ...,Fs(a x) are equal to b, ..., bs
and Fs+1(a,X), ...,Fm(a, x) are insidebs.1, ..., bm,

which is a cornerstone of the problem statement (2.2), has to be equivalently
rewritten as the following predicate (logical formula):

(Daq Oay) - - - (Oar Oay) (Oby Oby) - - - (Obs Ohg)

(Car+108¢ +1) - - - (Cay ODay) ((bs+1 Obs+1) - - - (Com Obpy) (F(a, X) = b)- (2.3)

To sum up, the set of all statessatisfying the question of the problem (2.2) (we
will designate it by=) is described as follows
=:={x0OR"|
( Oy Oay )---(Oa Da)( ObyOby )---(ObsObs)
(Cay+1 0@y +1) - - - ( oy O&y )(os+1 Obg+1) - - - (Com Obm)
(F@xX =b)},

while the main problem under consideration can be reformulated as

(2.4)

Find (or somehow estimate)
the set= defined by (2.4).

Notice that the definition (2.4), the most correct mathematically, is arranged accord-
ing to theseparation axionof the formal set theory ZFC (aft@rermelo-Fraenkel-
axiom of Choicesee, e.g., [20], [50], [54], [123]). Namely, a poiibelongs to the
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set (2.4) if and only if substituting it for the varial¥en the predicate (2.3) results

in a true proposition. In other words, the property (2.3) which is written out, as a
predicate, after the vertical line in the record (2.4) “separates” some valuesaif
constitute the solution sét.

DEFINITION 2.1. The logical formula written out after the vertical line in the
definition of the set (2.4), which thus determines a characteristic property of the
points of this set, will be calledeparating predicatef the corresponding set (2.4).

We emphasize that, apart from setting the functiorand interval vectora
andb, the keystone in the definition (2.4) is our indicating the quantifieesnd O
at various parametewsandb of the system (1.1). Another point is that the Set
determined by (2.4) has all the rights to be referred tosadution sebf the interval
system of equations (1.1) as, say, traditionally understood solution set fornadid by
the solutions to the point equationB(a, X) = b with a Daandb O b (the latter is
calledunited solution setsee Section 3.1). Basically, (2.4) is a solution set in some
generalized sense which we are going to discuss in the forthcoming sections. We
will refer to the solution sets determined by (2.4) and similar definitions involving
occurrences of different logical quantifiersgeneralized solution setsf interval
equations systems.

2.3. QUANTIFIER FORMALISM

Let us summarize what has been done in the previous subsections. Taking the
inverse system analysis problem (2.2) as a prototype, we have realized the necessity
to consider the solution set of the form (2.4). In doing that, we applied the universal
and existential quantifiers to the system inpajtavhich are only known to belong

to some intervals, to express the principal distinction between

« the inputs that are not under our will, being external uncontrolled disturbances
(this corresponds to the recordd; Oa”),

and

« the inputs that we are able to vary within prescribed intervals by our will, i.e.,
to control (this corresponds to the recordh 0 g").

With respect to the system outputs the logical quantifiers was applied to distin-
guish between

« stabilization corridors of the system within which it is required to ensure func-
tioning of the system irrespective of values of the disturbances (this corresponds
to the record by O b;"),

* Some authors use the terms “selection,” “segregation” instead of “separation.” Besides, the con-
struction we pointed out determines, strictly speaking, infinitely many “separation axioms” obtained
by fixing this or that specific predicate, so that one may read of the “separations axioms” or even
“axiom schema of separation” in the fundamental treatises on the subject.
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and

« attainability sets of the system whose every element is to be covered as the result
of an appropriate choice of the controlled factors (this corresponds to the record
“Ob; O bi").

However, the mathematical object described by the definition (2.4) has a separate
importance on its own, and one could arrive at introducing the general definition
of the solution sets (2.4) from an abstract standpoint as well, without invoking
practical analysis of intervally defined systems that we dwell on in Sections 2.1
and 2.2.

Asisfairly simpletorealize, a dual character is inherentto the very understanding
and interpretation of the interval (and, more generally, set-membership) uncertainty.
The point is that in real-life problems one is hardly interested in intervals by
themselves, as integral and undivided objects, with no further internal structure. In
most cases, we only use an intervdh connection with a property (let us denote
it by P) that can be fulfilled or not for its point members. Under the circumstances,
the following different situations may occur:

- either the propertyP(v) considered (that may be a point equation, inequality,
etc.) holds forall memberss from the given interval,

- or the propertyP(v) holds only forsomemembersv from the intervalv, not
necessarily all (maybe, only for one value).

The above stated may mean, in particular, that in the first aths&lues from an
interval are possible, while in the second case the interval means only bounds on
the (unknown) value, i.e., thaome not necessarily all, values are possible, and
these possible values belong to the given interval. The distinction between the two
types of the interval uncertainty is especially pronounced when a system has several
varying parameters that describe actions of different nature, which pursue different
goals and may conflict with each other (like disturbances-controls).

In formal writing, the above distinction is manifested in using the logical
guantifiers—either the universal quantifi€t™or the existential quantifier(?:

« in the first case, we write f{v 0 v) P(v)" and shall speak ofl-type (A-type) of
uncertainty

« in the second case, we writel}( O v) P(v)” and are going to speak aktype
(E-type) of uncertainty

(see also [99], [100], [104], [105], [107], [110]-[112], [117], [124]).

It is worthwhile to stress that our reasoning justifying the use of logical quanti-
fiers with respect to intervally uncertain parameters are equally applied not only to
interval algebraic systems of the form (1.1), but also to interval inequalities, inter-
val differential equations, integral equations and so forth. When strictly defining
solutions and solution sets to all these problems, we should consciously take into
account the difference between the interval uncertainty types. Specific examples
are in order.
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Let us consider an object described by a system of differential equations

%( = f(t,x, V), (2.5)

to0[0, T, X(0) =xo, (2.6)
where

t istime variable,
X(t) is a phase state vector,
v(t) is a control vector which is assumed to be within some
interval V OIRP, i.e.,v(t) OV for all t O[O, T].

Attainability setof the system (2.5)—(2.6) is known to be [40], [61] the set of all
the endpointx(T) of the trajectories of the system issuing from the peinand
corresponding to various possible values of the com{td] that is, the set

{X(T) | (x0) =%0) & (Ov() OV) (%= F(t.x(0), v()) }.

A more complex situation is when the object under consideration undergoes uncon-
trolled perturbation (noisa)(t) O U, U OIRY, so that its mathematical model is

dx
< = ftxuy), (2.7)
to[0,T], x(0) =xo, (2.8)

rather than (2.5)—(2.6). Itis common knowledge that controlling a dynamical object,
aimed at achieving some objectives and/or optimizing a quality criterion, can be
conducted in one of the two alternative ways. Namely,

« the control action may be taken from a predetermipasgjram calculated on
the base of aa priori information about the system,

or, otherwise,

« the control action may be formed as the result giasition-based strategy
in which the control action is calculatea posteriori relying on additional
information about the system we learn during the process.

In practice, the first of these alternatives corresponds to the control according to a
rigid scenario, while the second one is nothing but feedback regulation. Studying
and constructing position-based controls in dynamical systems is the subject matter
of differential gamesheory (see [37], [67]), an exciting (although not quite simple)
mathematical discipline into which we shall not delve deeply in our work. Still,
within the position approach the following “global” question makes sense:

What is the set of the final point§T to which, regardless of a specific
noise realization (t) O U, the initial position X0) can be transferred by
appropriate choice of the control(ty OV?



332 SERGEY P. SHARY
The set of points meeting the above requirement is exactly
{X(T) | ((0) =x0) & (Du() DU) (WD) OV)
(5= £t x(1), u@. v(v) ) |, (2.9)

that is, in fact, may be characterized as a generalized solution set, as we have defined
them, to the interval system of differential equations (2.7)—(2.8).

Summing up, we see in these examples that the control design problem can be
equivalently reformulated as the problem of finding points from the set (2.9) of
the solution, in some generalized sense, which is constructed using our quantifier
formalism. Overall, the above ideas as applied to the interval differential equations
are still waiting to be elaborated and put into practice. Some tentative, but very
promising examples of fruitful applications of the quantifier language to control
system design can be found, e.g., in [39]. Meanwhile, an experience of study of
this kind of interval inequalities and interval optimization problems does exist.

A. Vatolin [124] was the pioneer in researching interval optimization problems
with quantified interval uncertainty (see also [21]). For interval linear system of
inequalities

AX < b, (2.10)

A. Voshinin and G. Sotirov [126] seem to be the first who considered the solution
sets

(XxOR" | (x>0) & (DAOA)(CbOb) (Ax< b)},
{XxOR" | (x>0) & (DAOA)(ObOb) (Ax< b)},
(XOR" | (x>0) & (DAOA) (ChOb) (Ax< b)},
{(XxOR" | (x>0) & (AOA) (CbOb) (Ax< b)}

in connection with linear constrained optimization problems under interval uncer-
tainty. Later, J. Rohn and J. Kres®y90] studied the notions afieak solvability
andstrong solvabilityfor interval linear inequalities (2.10):

« a system (2.10) is calledieakly solvablef for eachA O A, b O b the point
systemAXx < b has a solution (which generally dependsfoandb);

» asystem (2.10) is callestrongly solvablef there exists a solutioR satisfying
the point systemi\x < b for eachAOA, b Ob.

It is not hard to see that the strong solvability of the interval inequalities system
Ax < b is nothing but the property of the set

{xOR" | (DAOA)(@ObOb) (Ax< b)},

which is one of the generalized solution seté&\to= b, to be nonempty.
Overall, the mathematical object defined by the record (2.4) has a significance
of its own, and it makes sense to single it out as a separate notion. But, before
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doing this, it should be recognized that the definition (2.4) is not the most general
one yet. Since the different quantifiers do not commute with each other, we can
form another solution sets through combining' ‘and “C" with the parameters and
changing their order!

For example, given a one-dimensional interval equation

¢p(ar, az,a3,a4,X) = b

with four interval parameters in the left-hand side function, one can consider, as a
solution set,

{X OoR" | (Oap Uap)(Oa1 Oap)(0ag Oag)(Ob Ob)(Cag O ag)
(¢(a1, @, 83,84,X) = b) },
or

{xOR" | (O Oay)(Daz Oa)(Tay O ag)(Ob Ob)(Cag O ag)
(¢(a1, @2, @3, 84,X) = b) },

and so on.

Prior to formulating the general definition, let us remind that the most profound
generalization of the concept of a system of equations (inequalities, etc.) is the so-
called constraint satisfaction problerthat emerged in the researches on artificial
intelligence [64] in the late 70s. We will need a somewhat updated definition of a
numeric constraint satisfaction problem

DEFINITION 2.2 [62]. A numerical constraint satisfaction probleia a triple
P =(V,D, C(X)) defined by

(i) a set of numeric variableg = {x, ..., Xn},

(i) a set of domaind = {Dy, ...,Dn} whereD;, a set of numeric values, is the
domain associated with the variabdg

(i) a set of constraintC(x) = {Ci(X),...,Cn(X)} where a constrain€i(x) is
determined by any numeric relation (equation, inequality, inclusion, etc.)
linking a set of variables under consideration.

A solutionto a numeric constraint satisfaction probldm= (V,D,C(x)) is an
instantiation of the variables &ffor which both inclusion in the associated domains
and all the constraint df(x) are satisfied.

All the solutions of the constraint satisfaction problem thus constitute the set
{xOD | C(x) is satisfied.

We can complicate the situation assuming that the constr&i$ entering the
Definition 2.2 depend on some paramet@rgy, ..., o about which we only know
that they may belong to the intervads, p,, ..., p;- We have thus a constraint system
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C(p.X) = {Ci(p,X), ...,Cm(p,X)} with the interval parameters, and, as a conse-
guence, annterval constraint satisfaction problenfaking into account the dual
character of interval uncertainty and our above observations, the most general
definition of the set of solutions to such interval constraint satisfaction problem
(V, D, C(p, X)) should have the form

{X ob ’ (leﬂl O pnl)(QZpTIz O prrz) e (Q| Pr U pﬂj)
(C(p,x) is satisfied},  (2.11)
where
Qi are logical quantifiers or [

p = (Pr.p2, ....p) OR'
is the vector of parameters of the constraints system considered,

P = (P1. P2 - P)) O1IR!
is the interval vector of the possible values of these parameters,

m = (m, m, ..., M)
is a permutation of the numbers2]...,I.

DEFINITION 2.3. The sets of the form (2.11) will be referred togeneralized
solution setgo the interval constraints satisfaction problevh D, C(p, X)).

In particular, for the interval systems of equations of the form (1.1) we adopt
DEFINITION 2.4. Generalized solution set® an interval equations system
F(a, X) = b are the sets of the form

{XOR" | (Qu1z, 0Z7)(Q2Zr, 023 - - - (Qi+mZnery O Zn,y) (F(@X) =)},
where

Qll QZ! --'1Q|+m
are the logical quantifiers or [

(211221 "'1Z|+m) = (a111 e a, bla ,bm) DRI+m
is the aggregated (compound) parameter vector of the system
of equations considered,

(21,22, ..., Z1+m) = (a4, ..., &, b1, ..., by) OIR'™™
is the aggregated vector of the intervals of the possible values
of these parameters,

(T[l! 7-[21 ey ni+m)
is a permutation of the integers2 ...,| + m.

The Definitions 2.2 and 2.4 are, indeed, very general. The quantifier that cor-
responds to each interval element may have two va{Ggs } and the order of
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the quantified terms in the separating predicate is also essential for the definition.
Therefore, the total number of the solution sets we can thus define for the interval
equations system (1.1) far exceed&™2 that is, 2 to the power of the “number of
interval parameters of the system.” In the general case, these solution sets can be
practically interpreted as solutions of somamesor multistep decision-making
processesinder interval uncertainty (which was first pointed out in [124]) as well

as solutions to some minimax operations research problems [99], [100].

2.4. INTERPRETATION

Game theory is widely recognized to be a method of exploration of the logic of
interaction between two or more rational actors. As a mathematical discipline, game
theory deals with both construction and investigation of models of conflict phenom-
ena, i.e., such ones that involve participants (calegterg pursuing different goals
by use of somatrategies

In game theory and in multistage decision making, we must not only describe
which parameters are controllable, but also who controls specific parameters, and
in what order. These control actions are usually caltea/esand to specify the
sequence of moves it is natural to apply the language of the graph theory. Formally,
a finite perfect information gamén the so-callecextensive formis known to be
(see, e.g., [67], [78]) a quadruple

(K, X, R, {hicbkok ),

where

K is afiniteset of players

X is afinitetree of the gamé.e, a graph that is a tree) of which
the nodes are callgabsitionsand the root is callednitial position;
for the positions, a succession relation is defined, so that the positions
that follow a given positiorx 0 X are termedlternativesof x,
while the positions that do not have alternativesfaral positions
and the paths that lead to them are capedies
the set of final positions is usually designated{y

R is a partition of the seX \ X" to n priority subsets X X, ...,
whose number is equal to the cardinality of thel§get
such that thé-th player makes a move in a position frotg

hy arepayoff functionf the game, i.e., such functions that assign
a payment of thé-th player to each final position.
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N W N W
starting position F(a, X) =p?
W N W N

Figure 2 Game trees interpreting the generalized solution sets.

The above definition is the most general and we really do not need all its features.
To interpret the generalized solution sets, it will suffice to restrict ourselves to the
simplest game in which

- there are only two players,
« the tree of the game issample path(see [91]),
- the payoff functions are Boolean-valued, and

« the interests of the players—the values of their payoff functions— are diamet-
rically opposite (such games are ternadagonistig.

We can therefore think of the possible outcorj@sl} of the game as “loss-win,”
the loss of the first player being the win of the second one and vise versa.

Given a generalized solution set to the interval system of equdfitms) = X,
let us consider such a game between the playgisature andw (We, in whichN
has at his disposal all the interval parameters having A-uncertainty, Wtdtantrols
the parameters with E-uncertainty. The players make their moves in turn, one after
the other, so that the game tree is really a simple path and looks as one of those
described at Figure 2 depending on which player makes the first move in the starting
position. The latter is prescribed, as is easily seen, by which quantifier piefiar
“[r, comes first in the separating predicate of the solution set under consideration.
The result of the game is determined by whether the equa(tyx) = b is finally
attained or not: if the playe¥W manage to get it, then he has won the game;
otherwise, when we do not have the equalif, x) = b in the final position, the
playerW has lost and the winner . Then, for example, the solution set

{xOR" | (Cap Dap)(Day D ay)(Dag Oag)(Tay Day)(Tby Oby)- -
(Fax) =b)}

can be interpreted in the following manner: there exists such a starting move of the
playerW (who begins the game) bg that, no matter how the play& moves,
W can find an appropriate reply again, etc., so that the equ&(iyx) = b will be
eventually achieved.

A specific value of the variable may be thus considered as a parameter of the
game, while the generalized solution set is nothing but the set of alhxssithat
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We defeat the Nature in the game defined by the interval system of equations (1.1)
and a specified distribution of the uncertainty types over its interval parameters.

To conclude, it is worth mentioning that in [51] V. Kreinovich et al. give a short
critical overview of the quantifier formalism we are developing, point out some
its successes and limitations. Meanwhile, some ideas concerning the distinction
between the interval uncertainty of the A-type and E-type penetrate even the com-
mercial interval Fortran 95 compiler recently released by Sun Microsystems Inc
[23]. The careful demarcation of the so-called “certain relations,” “possible rela-
tions,” and “set relations” in [23] is nothing but an attempt to classify the interval
binary relations—=", “<”, “ <", and “>"—according to the uncertainty types the
intervals under comparison bear. Namely, the “certain relations” correspond to both
compared intervals being A-uncertain, the “possible relations” correspond to the
E-uncertainty of the intervals, while the “set relations” matches the case when the
uncertainty is mixed, i.e. one of the intervals has A-uncertainty and the other has
E-uncertainty.

3. AE-Solution Sets
3.1. DEFINITIONS

In order not to be lost in a great variety of generalized solution sets, it makes sense
to somewhat confine and structurize our considerations. In this work, we are going
to treat (for the time being) mainly the solution sets of the form (2.4), or, in other
words, the generalized solution sets with the separating predicate in alhtble
occurrences of the universal quantifigrprecede the occurrences of the existential
guantifier 0 Using the terminology of the mathematical logic, we can rephrase
this condition by saying that the corresponding separating predicate must have an
AE-form

DEFINITION 3.1. AE-solution setsre generalized solution sets to interval equa-
tions (inequalities, etc.) for which the separating predicate has AE-form.

Let us consider, for the AE-solution sets, various possible ways of describing
the uncertainty types distribution with respect to the interval parameters of the
system:

1. As far as the order of the quantifiers is fixed, the simplest of such ways is
to directly point out which quantifier is applied to this or that element of the
interval system. Namely, let us introducelavectora = (a;) and anm-vector
B = (B) made up of the logical quantifiers and such that

[ if & has A-uncertainty

aj = . . (3.1)
[l if & has E-uncertainty
0 if bj has A-uncertaint

B = L ny (3.2)
[l if by has E-uncertainty
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Specifyinga andg, along with the interval system itself, completely determines
the corresponding AE-solution set.

. Another way to represent the uncertainty types corresponding to the elements
of the interval system of equations (1.1) is to trace out partitions of the index
sets of the components of both the vectarandb. More precisely, let the
entire set of the indicesof the entriesy, i.e., the sef1,2, ...,1} be divided

into two nonintersecting paris:= {y1, ..., yp} andl' := {y,, ..., Vq}, p+q=1I,

such that

g is of the interval A-uncertainty foi O f,

. . . L~ (3.3)
g is of the interval E-uncertainty for O T .

Similarly, we introduce nonintersecting_sets of the integer indices
A = {01,...,0s} andA = {61,...,6t}, A O A = {1,2,...,m}, such that, in
the right-hand side vector,

bi is of the interval A-uncertainty foi 0 A,

. . ) s (3.4)
b; is of the interval E-uncertainty for OA.

We allow the natural possibility for some of the sBtd, A, A to be empty. It
is evident that
ooifior, 0o if i 0A,
ap = L~ B = L.
Q ifiar, O if i04,
and, again, determining andr, A andA results in a complete specification of
an AE-solution set to the interval system of equations (1.1).

. The third way to describe the uncertainty types distribution for an interval
system of equations is to fidisjoint decompaositionsf both the interval vectors
aandb. Namely, we define interval vectaas = (a') anda” = (a) and interval
vectorsh” = (b’) andb"” = (bf), of the same sizes asandb, as follows:

0. ) an if o =[] o._ Ja ifa=0
& '_{O, otherwise, & = 0, otherwise, (3-5)

bi, if g= bi, if g=
by’ = { Oj othirwimse, b= { Oj othirwimse. (3:6)
Therefore,
a=a’+a", b=b"+b"
a’m’=0, b’ thy=0

for all i. The vectorsa” and b” concentrate all the interval elements of the
system that correspond to the A-uncertainty, while the veetéendb" store
all the elements that correspond to the interval E-uncertainty.
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It should be stressed that the three groups of the objects considered, which arise
in connection with an AE-solution set of an interval system (1.1), namely
1) the quantifier vectors andp,

2) decompositions of the index sets of the vecwendb to the nonintersecting
subsetd” andl", A andA,

3) disjoint decompositions of the interval vectars a” + a” andb = b” + b",

are in a one-to-one correspondence, so that pointing out any one item of the above

triple immediately determines the other two. We will extensively use all three

descriptions and change any one for another without special explanations.
Summarizing, we can give the following

DEFINITION 3.2. Let, for the interval equatidf(a, X) = b, a distribution of various
uncertainty types over its interval elements be represented by the quantifier vectors
a andp defined by (3.1)—(3.2), or, which is equivalent, by disjoint decompositions
of the index sets oh andb defined by (3.3)—(3.4). We will call the set

{xOR" |
(Oay, Oay,) -~ (Day, Day,)(Obs, Obg,) - (Obs, Obs,)
(Oay, Oay,) -~ (Oay, Day)(Chs, Obg ) - (Tbs, Obg)
(Fax) =b)}
AE-solution set of the typeB to the interval system of equatioRga, X) = b (or set
of AE-solutions of the typeB) and denote it byes(F, a, b).”

The particular cases of the above definition are the following three solution sets
which have been the subject of (more or less) active research in modern interval
analysis:

(3.7)

« United solution set
Zwi(F,ab) ={xOR" | (CaDa)(CbOb) (F(ax)=b)}, (3.8)

formed by the solutions of all point equations systét(e x) = bwith a ODaand

b O b. Itis undoubtedly the most popular of the solution sets, which is no wonder
due to historical origination of interval analysis from sensitivity probleEg;

is sometimes called simplyolution setlts analogue for dynamical systems is
the well-knownattainability set(see [40], [61]).

» Tolerable solution set
Zwi(F,ab)={xOR" | (DaDa)(ObOb) (F(ax)=b)}, (3.9)

formed by all point vectors such that the imagE(a, x) O b for anya O a (see,
e.g., [18], [48], [69], [71], [74], [119], [120]). It was actually the first of the
solution sets the definition of which involves different logical quantifiers.

* In his early papers [99], [100], [104], [105], [107], [113], the author called tlg¥solution
sets
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» Controllable solution set
Zwr(F,ab)={xOR"| (ObOb)(JaDa) (F(ax) =b)}, (3.10)

formed by all point vectors O R", such that for any desirgald b we can find
an appropriate 0 a satisfyingF(a, X) = b (see [108]).

We could have already seen a practical example of an AE-solution set in Sec-
tions 2.1 and 2.2 examining the inverse systems analysis problem. Another specific
example when a set of AE-solutions to an interval equations system naturally
comes into existence, let us consider thality control model Similar one has
been recently studied in the interval (bounded errors) context by S. Hadjihassan,
E. Walter and L. Pronzato in [30], but unlike their off-line model that examines the
quality control problem only for the design stage, we turn to a more complete and
realistic model that takes into account uncertainty (ignorance) both at the design
and manufacturing stages.

Developing Taguchi's ideas (see, e.g., [30]), it is natural to divide the set of all
factors that affect the output performance characteristics of production into three
subsets:

« design factors XIR" whose values are to be chosen at the design stage,

+ noise factors Ul RP whose values we can neither predict at the design stage nor
control during the manufacturing process, and

« manufacturing control factors V1 RY that we are able and have to use to
compensate the influence of the noise factors at the manufacturing stage to
ensure the desired output characteristics.

A typical quality control problem is to attain certain target valyesf given perfor-
mance characteristiogg, i = 1,2, ...,m, while the dependency of the performance
characteristigj; on the factor, u, vis described by a mathematical model

yi = Fi(x, u,v), i=12 ...m,

with F; being some known functiorig” x RP x RY — R.

The only available information on the fluctuation of the noise factors is assumed
to be expressed in the form of intervals of their possible valueS:u; = [u;, U],
i = 1,2, ..,p. Similarly, the manufacturing factong may not be arbitrary. One
can only take them from some intervals = [v;,V], | = 1,2, ...,q. Finally, the
substantial modification of the model we deal with as compared to the model
considered in [30] is that, instead of the point target valyéat the output of
the manufacturing process, we take entire interyals [y, yi], i =1,2,...,m, of
feasible performance characteristics, falling into them being permitted according
to the process specification and/or quality criteria. In particular, 3y, = y-, we
arrive at the traditional model.
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Under the conditions described, the main problem with the quality control is as
follows:

How can one choose the design parameters x that for any noise factors
Gy, ...,0p, which are inside the limits ofiy, ...,up respectively, such
manufacturing control factorg; O vy, ..., Vg Ovq can be selected that the
corresponding output performance characteristigéxFi, ¥) would still
remain within the process specificatiogs i = 1,2, ...,m?

It is not too hard to realize that all such desigrferm the set
{xOR"| (Ouy Oug)--- (Oup Oup)(Dvy Ovy) - - (Dvg OVvg)
(Fi(x,u,v) Oyq -+ F(x u,v) Oy b
or, if we puty = (y1, ....Ym) |,
{XxOR" | (Oup Duq)--- (Oup Oup)(Dvy Ovy) - - - (Dvg Ovg)
(Y1 0Y1) - (Ym Oy (FxuV) =y)},

which is exactly a generalized AE-solution set, as they have been defined above, to
the system of interval equations

Fi(x,u,v) = vy,
Fm(X u,v) =y,

3.2. (HARACTERIZATION OF AE-SOLUTION SETS

THEOREM 3.1.
ZeFab)= () () U U {XOR"|F@a+&x =b+b}.
ana” bob” ada” bob”
Proof. According to the definitions of intersection and union of sets

=(F,ab) = {x OR" | (D& 0a")(0b Ob”) (& Da”)(ch ObY)
(F(a+&x) =b+b)}

N () xOR"| (@Oa)hbob?) (F@a+&x =b+b)}

ana” pop®

=N N (U U {XDR”\F(é+é,X)=6+B}). O

aoa” pob?  \aoa” bob?
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The value of the next result is mainly theoretical, but it facilitates better under-
standing the essense of the generalized solution sets by exposing their minimax
nature.

THEOREM 3.2.Let the mapping F be such that each controlling parameter
a+1, ..., &, Which correspond tdttype of uncertainty, occurs in at most one of
the components;fa, x). Then the membershipX=.4(F, & b) is equivalent to the
following system of inequalities:

min max Fi(a+4a,x) > b,

apa” aoa”

max min Fi(@+ax) < b,

apa” apa” ]

—for the controlled outputs,# 1, ...,s,
_ . (3.11)

min max Fi(@+ax) > b;,

apa” aoar

max min Fi(a+3a,x) < b,

ana” apa”

—for the stabilized outputsFs+1,...,m.

Proof. Letb = (b1, by, ....bm) = b+b, bb OR™ a=4a+4 44 OR". We
perform the following equivalent transformations with the separating predicate of
the AE-solution set to the interval equation:

ED,B(F, a, b)
= {x OR" | (DaDa”)(0b Ob ) oa’)(th 0b") (F(a,x) =b)}
= {x OR"| (DaOa”)(0b Ob")(m@oad)
(Fl(a, X) = bl

Fs(a,x) = bs
Fs+1(a, X) D bS+l

R R R R Ro

Fm(@x) Obm)}
= {x OR"| (D4 Oa”)(0b 0b")(m@oad)
(Fi(@a,x) > by Fi(a x) < by &

Fs(a,x) > bs
Fs+1(a,X) > bgyq

&
&
& Fs(ax) < bg &
& Fsi(ax) <bsi1 &
&
&

Fm(a,x) > by, Fm(a,x) < bm)}
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= {x OR"| (D4 Oa”)(0bOb")
([ﬁ g aD)(Fl(a, X) > bl) & (Eﬁ DaD)(Fl(a, X) < b]_) &
&
(B 0a")(Fs(ax) > bs) & (ADaY)(Fs(ax) < bg) &
(ADaY)(Fsr(ax) > bgyy) & (DY) (Fsi(ax) < bsa) &
&
(AoDa)(Fm(ax) > b, & (A0Da)(Fm(@x) <bm)}.

The last equality is true by virtue of the restriction we impose upothe sets of
variables matching non-zero componentséthat occur in different components
of F simply do not intersect with each other, so we are allowed to “carry” the
existential quantifiers to the separate members of the conjunctions [20], [50].

Notice that for functiong which are continuous over we have the following
equivalences:

(Ca0a) (f(@ 2hb) <«  maxf(@)=h, (3.12)
(03 (f@<b) <« minf@=<b (3.13)

Hence, we may continue our transformations as follows:
ED,B(F, a, b)

= {x OR" | (Da0a”)(0b 0bY)

«%gaawzm) (min Fiax <bi) &

(gg&@@g@ (ggammgm) &

(max Fsi(a ) > by.y)
ana”

&

&

&

& ([nin I:s+1(a-i X) < Bs+1) &
aoa”

&

&

(r{'ﬂ]%%( Fn(@x) > Qm)

(miq Fm(a, x) < Bm)) }

Further,
(ObOb) (f@ >b) <«  f(@>h,
(ObODb) (f@ <b) <« f(@<Dh

so we have
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ED,B(F, a, b)

= {XDR” | (Daoa)

«%gaawz&) (min Fiax <by) &

(max F(ax) > b) (min F@x <b) &

(max Fsra(@X) > bey)
ana”

&

&

&

& ([nin I:s+1(a-i X) < Bs+1) &
aoa”

&

&

(r{'ﬂ]%%( Fn(@x) > Qm)

(min Fm(a x) < Bm)) }

ana”
Next,
(Dada) (f(@ =b) <=  minf(a)=bh,

(Dada) (f(a <hb) <« maxf@@<h,

and we get
Z.5(F.ab)
= {xOR"|
([nirﬂl max F1(a,x) > 51) & (mag min Fi(a,x) < Ql) &
ala’ aba ala- ala
&
([nirﬂl max Fs(a, x) > BS) & (rAna%( min Fs(a,x) < QS) &
ala- afda ala’ ala
(miq max Fs+1(a X) > Qs+1) & ([nag< min Fss1(aX) < Bs+1) &
ala’ aba ala- ala
&
(min max Fn(@x) > by) & (maxmin Fn(a ) <bm) },
ala- afda ala’ ala
which coincides with the system (3.11). O

3.3. QUANTIFIER FORMALISM IN THE LINEAR CASE

In the rest of our paper, we consider more thoroughly the simplest intémear
algebraic systems (ILAS)

Ax =D (3.14)
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with an intervalm x n-matrix A = (a;) and intervaim-vectorb = (b;). This kind of
problem naturally arises, for instance, in the following situation.

Let us be given a static system of the form described in Section 2, about which
the following assumptions are made:

() all the component§i(a, x) are bilinear functions ot anda, that is,
Fi@x) = > hjax
ik
with some known coefficientisyc OR,

(if) eachofg occurs only once (if at all) inat most one of the component expressions
Fi(a, X) of the above bilinear form.

The latter means, in particular, that each of the system irpujs= 1,2, ...,1, may
affect only one of the outputs;, i = 1,2, ...,m. In these conditions, the indéx
becomes unnecessary, but it makes sense to introduce an additional iodthe
inputsag;’s indicating the componerf; in which they occur. Theg;’s turn intog;’s
and one can put, without loss of generality, that all the scaling coefficigrase
equal to 1. Overall, we take

Fiax) = ajx;, i=12..m, (3.15)
j

or, which is equivalent,
F(a, x) = Ax (3.16)

with anm x n-matrix A = (g;). Accordingly, if the interval uncertainty is present

in the system inputs and/or outputs, we arrive at an interval linear system of the
form (3.14). In practice, expressions (3.15)—(3.16) may occur, for example, in linear
decision models of the form

K
ZWkaik,
k=1

wherewy are criteria weights andy may represent either partial utilities in mul-
tiattributive utility theory [46] or local priorities of alternatives in the Analytic
Hierarchy Process [94] or something else.

We reformulate the notions and concepts advanced in Section 3.1 to fit the
features of the interval linear systems of the above form.

DEFINITION 3.3. AE-solution setsire generalized solution sets to interval linear
systems for which the separating predicate has AE-form.

As in the general case treated in Section 3.1, there are three equivalent ways to
describe which uncertainty type is represented by this or that interval parameter of
the system:
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1. Thefirstway is direct pointing of the quantifiers which are applied in particular
intervals. Let the entire set of the index pairg)(of the elementsy;, that is,
the set

{(1,1),(1,2),...,(4,n),(2,1),(2,2), ...,(2,n), ...,(m 1),(m, 2), ...,(m,n) },
be divided into two nonintersecting parts
[ ={Jn...%}ON? and T :={},...V4} ONZ
p + g = mn such that
- the parametea; belongs to A-type of the interval uncertainty forjf O r,
« the parametea; belongs to E-type of the interval uncertainty fai) O .
Similarly, we introduce nonintersecting sets of integer indices
A={8;,..,6) 0N and A={5,..,5} 0N,
s+t =m, such that, in the right-hand side,
« the elemenb; is subsumed under the interval A-uncertaintyifﬁré,
« the elemenb; is subsumed under the interval E-uncertaintyifrﬁ.

Also, we allow the natural possibility for some of the sEtsT, A, A to be
empty.

2. Like for the general interval equations of the form (1.1), to visually represent
various uncertainty types that correspond to the elements of the linear system,
it is convenient to introduce the quantifierx n-matrix a = (aj;) andm-vector
B = () such that

[ if@.jor, o it inA
"l o i Gjar, "o ifioA

3. The third way to specify the uncertainty types distribution for an interval linear
system is to determine disjoint decompaositions of both the interval matrix of the
system and its right-hand side. As before, we define interval maﬁﬁ:es(a}f)
andA” = (af) and interval vectors™ = (b;’) andb” = (b;) of the same sizes
asA andb as follows:

oo @ e =0 o_ Ja ifaj=0
AT { 0, otherwise, ' )0, otherwise, (3.18)

(3.17)

bi, if B=0 bi, if g=10
b = b = 3.19
' { 0, otherwise, ' { 0, otherwise. (3.19)
Thus
A=A"+A" b=b"+b"

ayj [y =0, by’ b’=0



A NEW TECHNIQUE IN SYSTEMS ANALYSIS... 347

for all i,j, that is, the matriceA”, A” and vectors”, b" really form disjoint
decompositions foA andb respectively.

DEFINITION 3.4. Let the uncertainty types distribution over the elements of the
matrix A and right-hand sidb be described by the quantifierx n-matrixa = (ajj)
andmrvector 3 = () (defined by (3.17)), or by the equivalent decomposition of
the index sets to subsdisl, A, A. We will refer to the set

EaB(Av b)

= {xOR" |
(Oay, Oay,) ... (Oay, Day,) (Obs, Obs ) ... (Obs, Obs) (3.20)
(Cay, Day,) ... (Da;,q Dayq) (Ebél O b51) ... (Obg, Obg)

(Ax=b)},
asAE-solution set of the typ#3 to the interval linear systerix = b.

As before, the following well-known solution sets to interval linear systems—

« theunited solution sefoften called simplysolution setsee, e.g., [2], [32], [45],
[68], [69] and extensive references there)

Zumi(A,b) = {xOR" | (BAOA)(@Ob Ob) (Ax=h)},
- tolerable solution sefsee, e.g., [48], [69], [119], [120])

(A, b) = {xOR" | (DAOA)TOb Ob) (Ax=h)},
- controllable solution sefsee, e.g., [108], [114])

Zr(A,b) = {xOR" | (ObOb)(DAOA) (Ax=Db)}.

—are extreme points of a large family of®*1) all possible AE-solution sets, i.e.
having the form (3.20). The fourth extreme point of the family is the set

{xOR" | (DAOA)(@ObOb) (Ax=bh)}.

Considering it is not senseless, although mainly dull, since for the equations this
solution set is empty in most cases.

In general terms, let thi¢gh row of the matrixa entirely consists of the quantifiers
0 and the respective element of the vegtds O too. Then=,5(A, b) = 0, if there
is at least one interval with nonzero width amongst the elemais.., ain, b;.
Because of this,

<T)+@>+...+(m>=zm_1

ofthe AE-solution sets provaepriori empty for the interval linean x n-system with
the essentially interval elements. Overall, the number of “nontrivial” AE-solution
sets lessens td™¥* 1) — 2M+ 1 = 2M(2™" _ 1) + 1 for such systems.
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Figure 3  United solution seE,n and tolerable solution s& of the system (3.21).

For example, we can considef(2* — 1) + 1 = 61 generalized AE-solution sets
for an interval linear 2 2-system. Figures 3 and 4 show some solution sets to the
popular interval linear system

[ 2,4] [-21]\ . _/[-272]
(L2121 24)=(22) (3.21)
from [6] repeatedly considered by many authors.

Notice that always,s(A, b) O Zyni(A, b), that is, the united solution set is the
widest in the collection of all AE-solution sets to interval systems. This observation
can be generalized. Namely, if on the set of the logical quantifigrs } a partial
ordering <" is introduced, settingl < [, and the relationships < a', 8 < B,

aB = a'B' are understood componentwise and elementwise, then fohk amgb
there holds

aB=a'B O  Zap(A,b) 0 Zgp(A,b). (3.22)
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Figure 4 Some AE-solution sets of the interval linear system (3.21).

X1

One can easily see that in Figures 3 and 4.
The property (3.22) may turn out very helpful when examining the general-
ized solution sets to interval equations systems. If we have already found out, for
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example, that for the system (3.21)

=00 =00 ="
then, through “weakening” of quantifiers in the separating predicate, we can con-
clude that the controllable solution sgt;, for (3.21) is also empty, and such are
another 45 solution sets to the system (3.21) that may be derived from the above
three by combining the quantifiers before the elements of the matrix. The reasoning
behind the property (3.22) may be equally extended to general interval nonlinear
systems as well and, in fact, we have already done that in Theorems 6.4.

3.4. AE-SOLUTION SETS FORINTERVAL LINEAR SYSTEMS

In this subsection, we derive various equivalent characterizations (descriptions) of
the generalized AE-solution sets to interval linear systems and, relying on them,
study some simple properties of these solution sets.

Prior to getting started, it is worth noting that the interval linear system of
the form (3.14) is quite special in the sense that all its equations are independent
from each other, and every interval parameter of the system occurs in only one
equation. To exclude from our consideration the degenerate situations when all the
interval parameters of a separate equation of (3.14) have A-uncertainty, we will
take everywhere in the rest of the paper thateach i= 1,2, ..., m, there exists at
least one E-uncertain interval parameter among the entries

ailla'iZI ---aain'bi

of the system (3.14) under study
We give an obvious set-theoretical description of the AE-solution sets first.

THEOREM 3.3.
ZeAb) = () U U {XOR"| (A+A)x=b+b}.
aoa” pob? &0a” bob®
In particular, if A is a square nonsingular interval matrix, then
A= N U U A+AH~b+b).
aoa” pob” a0a” bob”
Proof. According to the definitions of intersection and unity of sets
=.5(A,b) = {x OR" | (DA 0A")(0b Ob")(0A 0 A (b Ob"
(A+A)x=b+b)}
N () XOR"| (ADA)bObY) (A+A)x=b+b)}
aoa” pob?

=N N U U {xOR"| (A+A)x=b+b}. O

aoa” pob” a0a” bob”
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In particular, for the united solution set of the interval linear system (3.14) with
the matrixA we have

Zumi(A,b) = | J {xOR"| Ax=b},

ADA bib
which explains its name.

We turn now to the analytical characterizations of the generalized AE-solution
sets to interval linear systems of the form (3.14). The fundamental result of our
theory is

THEOREM 3.4.Let, in the interval linear systerAx = b with m x n-matrix

A = (aj) and m-vectorb = (b;j), at least one of the interval elements
a1, a2, ..., ain, bj is of E-uncertainty for every £ 1,2, ...,m. Then the point x
belongs to the solution s&t,z(A, b) if and only if

A" x—b"” 0 b”"—A"x, (3.23)
where “Tis interval matrix multiplication.

Proof. Using the matricesA”, A” and vectorsh”, b" introduced by (3.18)—
(3.19), we can rewrite Definition 3.4 of the solution Sgg (A, b) in the following
equivalent form:

Z(A,b) = {xOR" | (DA DA”)(Ob Ob")(0A DA ) (b ObY)
(A+A)x=(b+b))}.

Itis not hard to complete the proof of the theorem now, transforming equivalently
the separating predicate of the solution set. We have

Z.5(A,b) = {x OR" | (OA 0A")(0b Ob")(DA O AY)(b Db")
(AX—b=b—Ax}
= {x OR" | (DA DA”)(Ob Ob") (Ax—bOb”— A"}
= {xOR"| A" x—b” O0b”— A"},
since
b”— Ax = {b— Ax| AOA"”, bOb"}
and
A" x—b” = {Ax—b|AOA", bOb"}
in view of the properties of interval matrix operations [2], [69]. O

The above result was first obtained by S. Shary [107], [112]. It is pertinent
to note that Theorem 3.4 generalizes all previously known characterizations of
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various solution sets to interval linear systems—for the united solution set (Beeck’s
characterization, see [69]), for the tolerable solution set (see, e.g., [69], [71], [119])
and controllable solution set [59], [108], [114].

The next remarkable characterization result, which is due to J. Rohn [89], refor-
mulates Theorem 3.4 in an analytical form using linear inequalities system with
moduli thus generalizing the well-known Oettli-Prager theorem for the united solu-
tion set [76] and analogous characterization for the tolerable solution set [88]:

THEOREM 3.5.The point x belongs to the solution s&fz(A, b) if and only if
|(mid A) X — mid b| < (radA” — rad A”) Ox| + (radb” — radb").  (3.24)
Proof. The inclusionp O q of interval vectorsp, g O IR" is known (see, e.g.,
[69]) to be equivalent to the inequality
|g —mid p| < radq — radp.
Hence, the characterization (3.23) can be rewritten in the following form:

I(b” — AP[X) — mid (A % — bO)|
<radp”— A"X) —rad " x— b"”).  (3.25)

Further,

rad o £ q) = radp +radq,
mid (p £ ) = mid p + mid g.

Therefore, (3.25) holds if and only if

Ib” — mid (A" x) — mid (A” x) + mid b"|

<radb”+rad A" ) — rad A" X) — radb",

which is equivalent to Rohn’s characterization (3.24) insofar as

mid (A" x) = (mid A") [, mid (A" X) = (mid A”) x
and

rad (A" (x) = (rad A”) O], rad A" x) = (rad A”) OJx. O
DEFINITION 3.5. Theverticesof an interval vectox OTR" are the vectors of the
set

vertx ;= {x OR" | x O{x,%}, =12, n}

Vertices of an interval matrix are defined in the similar way.
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THEOREM 3.6.For any quantifierso and g, the intersection of the solution set
=q5(A, b) with each orthant of the spa@€’ is a convex polyhedral set whose vertices
are the solutions of the extreme point linear systems:Axwith A O vert A and

b Overtb.

Proof. Membership of a real vectorin some orthant is determined by fixing
the signs of its components. Notice also that for any intemval n-matrix C, the
components of the produétx = ((CX)1, (CX)2, ..., (CX)m) | may be represented
as follows:

(CDYi =) cjx= [ X, > G%
=1 i=1

=1

= {anx;. anfx;] . (326)
j=1 j=1

wherecj andcj are some numbers (they may coincide) that belong to the set of
endpoints{c;, Tj } and are fixed for any separate orthant containing

Next, writing out the inclusion (3.23) in componentwise manner and changing,
on the basis of the representation (3.26), each one-dimensional inclusion by a pair
of inequalities between the endpoints of the intervals, we get a systemlioEar

inequalities

A'X > Db,
A'x < b, (3.27)
conditions on the signs of, i =1,2,...,n,

whereA’, A" Overt A andb’,b” Overtb. The inequality system (3.27) determines
a convex polyhedral set. O

Hence,=5(A,b) can be represented in general as the union of at mbst 2
convex polyhedral sets—the fact widely known for the united solution set since
the work by W. Oettli [75]. Anyway the complexity of the direct description of the
solution set& 3 (A, b) may thus grow exponentially withdespite the above simple
and geometrically vivid characterization results. So, such a description turns out
to be extremely laborious and practically useless even for moderate dimensions of
interval equations. A. Lakeyev has shown [59] that even the problems of recognition
of whether the united solution s&fhi(A, b) or controllable solution setq (A, b)
is empty or not are NP-complete, that is, in general they can hardly be solved
easier than by the time which is the exponential function of the length of their code
[29].

Because of the above, it makes good sense not to aim at finding the complete
description of=43(A, b) in practice, and the conclusion has, in fact, quite general
character, being valid for a large class of the interval problem statement. In par-
ticular, we would suffice to compute only a simply constructed approximations of
=q(A,b), and the specific problem statements will be discussed at length in the
next Section 4.
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PROPOSITION 3.1For any quantifiersa and 3, both the minimal and maximal
componentwise values of the points from the solutioEggA, b), that is,

min{X, | X 0 =4(A,b)} and max{x, | X 0=qp(A,b)},

v = 12, ...,n, are attained at the solutions of the extreme point linear systems
Ax=bwith AOvert A and bOvertb.

This is a straightforward consequence of Theorem 3.6. For the united solution
set, the result was obtained by K. Nickel in [73] in a way different from ours.

4. Posing Interval Problems
4.1. DSCUSSION

Now that we have defined what the solution sets to interval systems of equations
(inequalities, etc.) are, it is time to decide what to do with them further.

This is not an idle question. The fundamental fact about our reality is that we
can observe, use and operate objects and concepts that are finitgidtutnot too
complexas well. The finiteness of our perception, considerations, calculations, etc.,
is widely recognized by the people and does not give rise to doubt. But what is so
special with the interval problems that we have to impose the second requirement,
“not too complex™? The answer is that, entering the realm of sets taken as essentially
compound objects, made up of elementary parts, we encounter the growing (and
even dominating) role of the combinatorial effects, which hardly reveal themselves
in the usual point mathematics. The combinatorics is known to be the main source
of very large and even huge numbers that can exceed any real physical quantities.

In particular, all we have said is true in full measure for generalized solution
sets we introduces in the preceding section. Even in simple practical situations a
direct computation and description of generalized solution sets prove, as a rule,
arduous and sometimes almost impossible. For instance, the length of the exact
description of the AE-solution sets generally grows faster tHa(iHz number of
orthants ofR") in the linear case, wheR(a, x) = Ax with somem x n-matrix A
(see Section 3.4). So, such a description becomes larger than the famous “chess
number” £4 — 1 even when the dimension of the problem is equal to mere 64.
When the dimension reaches some hundreds, the number of orthants we have to list
in the exact description &,z becomes comparable with the number of elementary
particles in the Universe.One must be aware of the fact that the dimensions we
treated in these examples are very moderate numbers. To compare, the modern
economics involve thousands of participants, and even aggregated input-output
models usually consider about a hundred of industries.

* For exampleE. Borel in [13] pointed out 13° as the maximal number of elementary events
that might have took place in the Universe after the “Big Bang.” This evaluation has not considerably
increased since the time the book [13] was published.
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Summing up, one would say that the solution sets to interval systems of equations
have, in general, very large and even enorntmmplexityoften calledkolmogorov
complexity see [63]), which exponentially grows as the dimension of the system
increases. This difficulty seems to be of principal character: the recent theoretical
results by A. Lakeyev [56] show that the problems of recognition and estimation of
the AE-solution sets to interval linear systems turn out to be intractable provided
that we do not impose restrictions on the interval matrix of the system. See also
fundamental survey [51].

The practical consequence of the above stated is an inevitable necessity to
somehow coarsen the exact description of the solution sets, that is, to change the
complete and too complex description of the solution set for a simpler set — its
approximation—with less description complexity, in a way that still meets the
requirements of the practical problem under solution. Overall, such an approxima-
tion procedure should be incorporated into the problem statement while its details
are to be scrutinized and consciously taken into account.

A specific approximation criterion and the employed approximating sets are
to be determined for each particular problem. Besides, a measure (metsic)
often drawn in the consideration to evaluate the deviation (in a prescribed sense)
of the estimating set from the solution set. Finally, the distinguishing feature of
the interval problems we deal with that makes them unlike, for instance, classical
approximation problems, is the presence, apart from the mgtdtan additional
gualitative requirement that the answer to the problem must meet to, and that is
not at all related t@. This qualitative requirement is, as a rule, a condition for the
mutual position (location) of the solution set and the estimating set. For example,
when computing an enclosure of the range of values of a function, one does not
simply need some estimates of the range, no matter how close they are, but only
those evaluating the rand®mm belowandfrom abovewith guarantee. When the
latter is not the case, the interval obtained nngitbe considered a solution to the
range enclosing problem.

Further examples illustrating the peculiarity of the interval problems can be
found in the next subsection.

4.2. WWHAT IS AN INTERVAL “ESTIMATION PROBLEM™?

Gathering up the threads of the previous discussion, we arrive at the following
formalization of the concept of a class of interval analysis problems that we shall
call interval estimation problems

DEFINITION 4.1. A generidnterval estimation problem B an ordered quadruple
of the form S, &, M, o), where

S denotes damily of solution setsthat is, a mapping from an interval of R'
(or of a more general set) into a class of sEtslescribes possible values of the
parameters dP, while anindividual interval estimation problemid extracted
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from P by assigning to the variables 6f specific values that determine (as a
result of the solution process) amdividual solution se 0 S;

£ designates alass of estimating setthat is, a family of sets by which we are
going to approximate the solution sets frdm

M specifies avay of estimatiorof the solution set or, to put it otherwise, a binary
relation between elements §fand elements of that must be met according
to the sense of the problem under study;

o stands for a non-negative functional 8n< £ (metrig) that indicates the “error”
of the result, i.e., measures how close (in some sense) the estimating set is to
the true solution set determined by the problem statement.

By asolutionof the problem] we will understand an estimating s&t £ such
that the relatiors M ¢ is satisfied and, optionally, a certain condition on the value
0o(&, €) is met.

No doubt, one should clearly recognize that the interval analysis operates a
number of problem statements that do not comply with the above scheme. These
are, for instance, the problem of computing formal solutions to interval systems
of equations (see the forthcoming sections), the problem of checking whether an
interval matrix is regular or not, the problem of checking the stability (either by
Hurwitz or Schur) of an interval matrix, and so on. Definition 4.1 draws apart a
sufficiently wide and practically significant class of problems that interval analysis
works with, so that it is quite natural to name it by a special term, and so did we.

In modern interval analysis, the most commonly encountered ways of approxi-
mating a solution set are known to be

« outer interval estimationwhen we seek an interval vectBrsuch thatt O &,
and

« inner interval estimationwhen we seek an interval vectérsuch thakE O &.

The above-described outer and inner estimations, while embracing a variety
of widespread interval problems, are not at all the only possible ones. A lot of
examples of other estimation modes could be given, and they cannot be treated
only as a theoretical oddity.

Let, for instance, the estimating setsrbdimensional interval vectorg, = IR".

The outer interval estimation of a solution sgtby an intervalE is evidently
equivalent to

pri & OE;j, i=12 ..,n,

where pyis the operation of projecting onto tiith coordinate axis. Requiring the
inverse inclusions

pr; & OE;, i=12 ..,n,

for the estimating boxes, we get an example of non-traditional estimation mode,
which can be called “weak inner estimation” (see Figure 5). This kind of estimation
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A

Figure 5 Estimation of the solution set (shaded question-mark) by “outer” box (A),
“inner” box (B), and “weak inner” box (C).

is used in a number of identification problems [126], and when some one needs
to know a sharpness (an amount of overestimation) in outer estimation problems
[93].*

Sometimes, we must guarantee the enclosyré fpr E; only for some, not all,
components 0 {1, 2, ...,n}, and for the other the opposite inclusion p& O E;
is required. In other words, for some indexe®ne needs the lower estimate of
min{x, | x O &}, while for the resti it is necessary to obtain the upper esti-
mates of this value, the similar requirements being imposed on the estimation of
max{X | Xx O &}. The estimation mode defined by the above conditions can be
naturally termed “mixed estimation.”

Now, let us turn to the classes of estimating sets. In practice, in addition to the
common intervals, one-dimensional estimating sets can be represented by “inter-
vals” of Kahan arithmetic [60], multiintervals (i.e., finite unions of intervals and
infinite semi-lines [129]). In the multidimensional case, the variety of shapes of
the solution sets complicates the situation: sometimes estimating by interval boxes,
i.e. direct products of real intervals, may turn out inadequate, since provides us
with little information, producing large overestimation and/or underestimation (see
Figure 6). As a consequence, apart from the ordinary boxes, skew parallelotopes
(zonotopes) and ellipsoids are commonly used as estimating sets (the latter being

* To specify this estimation mode, S. Rump uses in [93] the term “inner inclusion,” which is, to
our mind, not quite adequate to the situation.
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X2

= X

Figure 6 Sometimes interval estimation of the solution set (long skew parallelogram),
either inner or outer, may turn out inadequate, since provides us with little information.

especially popular in solving ODEs; see [22], [15] and references there), balls
with respect to a certain norm [125], intersections of several independently found
parallelepipeds (which is taken at the final stage of the computational procedure)
[19] and so on. Aside from the classical one-dimensional complex intervals such
as rectangles and circles on a complex plane [2], circular rings [79] and circular
sectors [49] et al. can be used. The evident conclusion which can be drawn from
the above-mentioned examples is that there can be a variety of estimating sets and
possible modes of estimation of the solution sets, which results in a great variety of
interval problems statements.

Note the absolutely special role of the third member of the quadr@ple (M, o),
i.e., of the estimation moda1. We can say that it is the presence of the relation
M that primarily determines the peculiarity of the form of the interval problems.
As we have already mentioned, the solution to such a problem must first of all
satisfy someagualitative conditionexpressed by the estimation madé and only
afterward error, closeness, etc. are taken into account.

Summing up, one can say that the answer to the question “what to do with
the solution set?” depends on the problem under consideration, i.e., on the final
purposes of the system analysis as applied to our problem (2.2).

4.3. AROBLEMSTO BE CONSIDERED

In the sequel, we are going to consider the two most popular interval problems—
inner andouter, that is, estimation of the AE-solution sets to interval systems of
equations bysubsetandsupersets

Estimating by subsets is the only valid one if we are interested in getting a
collection of points that provide us with right answers to the main question (2.2).
In other words, only for subsefd O =q3(F,a,b) does our major characteristic
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solution set

inner interval estimate

X1

Figure 7. “Inner problems” are the problems ofner (interval) estimation of the solution
sets.

property—the selecting predicate of the solution set—remain satisfied for all the
pointsx O I, while the estimating sets being in any other relation with the solution
set may contain points that have nothing to do with the answers to the question
(2.2), which may turn out unacceptable in practice.

Taking the estimating subsets in the form of the axis-aligned boxes (interval
vectors), we thus arrive at the problem of inner interval estimation of the solution
sets (2.4):

For an interval equation Fa,x) = b and quantifier vectors
a and g of the same size ag and b respectively, find (4.2)
an inner interval estimate of the solution séfz(F, a, b).

Henceforward, we shall refer to this problem asitimger problemfor the interval
system(a, x) = b (as in Figure 7), pointing out, if necessary, that the distribution of
interval uncertainty types over the system parameters is described by the quantifiers
a an%B, olg, which is equivalent, by the disjoint decompositians a“ + a" and
b=b-+b".

It is very useful to show practical meaning of the problem (4.1) on particular
examples. If the tolerable solution st (F, a, b) is taken as a case in point in the
above definition, then the problem (4.1) is the classiorance problen{18],

[48], [69], [119], [120], which has numerous and fruitful practical applications.
The tolerance problem is actually the problem of stabilization of the system within
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a prescribed output corriddr for the case wheall the system parametegs are
subject to some bounded disturbances.
If some g’s have A-uncertainty while the rest of them have E-uncertainty,
that is, some parameters are disturbing and some are controllable, g@nhd-all
i =1,2,...,m then we get the stabilization problem with a control possibility, which
some of the researchers call “problem of ensuring the operation stability under large-
scale disturbances” [130]. Such is the quality control problem from [30] which we
considered in Section 3. In an important methodology paper [4], the “operation
stability” problem statement has been illustrated on concrete practical examples
from shipbuilding, toxicology, economics and electrical power engineering. The
other title of this kind of problem also extensively used in the literature on the
subject is “the problem of ensuring survival of the system” [4]. Alternately, if part
of g’s are A-parameters and a part of them are E-parameters whifg alld,
i =1,2, ...,m then we have the control problem under bounded perturbations.
Outer estimation of the generalized solution seig(F, a, b) also makes sense
in the sensitivity-like analysis of the systems, but it would be another form of the
problem (2.2), different from (4.1):

For an interval equation Ea, x) = b and quantifier vectors
a and g of the same size ag and b respectively, find 4.2)
an outer interval estimate of the solution s&iz(F, a, b).

Henceforward, we shall refer to this problem as dlger problentfor the interval
systentF(a, x) = b (as in Figure 8), pointing out, if necessary, that the distribution of
interval uncertainty types over the system parameters is described by the quantifiers
a andp, or, which is equivalent, by the disjoint decompositians a” + a" and
b=b"+b".

Since we are going to restrict ourselves mainly to the interval linear systems,
the following specific problems will be our major concern in the next sections:

For an interval linear equatiolAx = b and quantifier vectors
a andB of the same size aa@ and b respectively, find (4.3)

an inner interval estimate of the solution s&fz(A, b).

and

For an interval equation Fa, x) = b and quantifier vectors
a and g of the same size ag and b respectively, find (4.4)
an outer interval estimate of the solution s&iz(F, a, b).
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Figure 8 “Outer problems” are the problems ofiter (interval) estimation of the solution
sets.

Sometimes, itis more convenient to consider a componentwise form of the problem
(4.4):

For an interval system of linear equatiosx = b
find estimates fomin{x, | X 0 =43(A,b)} from below, (4.5)
for max{x, | x 0=,(A,b)} from above,v =1,2,...,n.

Clearly these problem statements make sense only in thescaék, b) # (), and
finding out the conditions of such nonemptyness is a separate important question.

So far, the problems analogous to (4.1)—(4.4) have been being solved only by
minimax methods of mathematical programming (see, in particular, [4], [130]).
One of the main purposes of our paper is to develop new computationally efficient
interval approaches to the analysis of static systems under interval uncertainty,
that is, to the solution of the problems (4.1) and (4.2). The principles that will
underlie our techniques are somewhat uncommon to modern interval analysis. We
develop, in particular, the so-callddrmal approachto the solution of the above
mentioned problems, and the key concept in many of our consideration is that
of formal solutionto the interval equation (sometimes referred toalgebraic
solution):

DEFINITION 4.2. An interval (interval vector, matrix, etc.) is callefbamal solu-
tion to the interval equation (system of equations, inequalities, etc.) if substituting
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this interval into the equation and executing all interval arithmetical, analytical,
etc., operations result in a valid equality.

For instance, the interval [@] is the formal solution to the interval quadratic
equation [12]x? + [—1, 1]x = [-1, 3]. The interval functiork(t) = 105[e!, e?] is a
formal solution to the interval differential equation

dx(t) _
T - [l, 2]

The interval functiorx(t) = [0, 2t] on [0,1] is a formal solution to the following
interval Fredholm integral equation of the second kind

1
X(t) + /0 (L5s+1)x(s)ds = [0, 3t + 1].

The latter (purely illustrative) examples show what is bad with the former term
algebraic solutionit emphasizes only the algebraic nature of operations that com-
pose the systems under consideration, so that speaking of “algebraic” solutions to
interval differential, integral, etc., equations is at least strange and misleading.

The notion of formal solution thus corresponds to the usual concept of a solution
to an equation, which is common to the most of mathematics in general. Such
understanding of a solution to an interval equation was originated by S. Berti
in [10], who gave no name to it and considered only one very simple equation.
Afterward, K. Nickel [72] and H. Ratschek and W. Sauer [85] considered this kind
of solution to interval linear equations and systems of such equations. H. Ratschek
and W. Sauer introduced the currently popular term “algebraic solution.”

The essence of our formal approach is to change the problems (4.1)—(4.5) to the
problem of finding formal solutions to some special equatior&incher complete
interval arithmetickKR, thus reducing the initial problem to a traditional problem of
numerical analysis. This reduction is a very attractive feature, notwithstanding that
the formal solution to the auxiliary interval equation does not need to exist even if
the corresponding original problem (4.1)—(4.5) has solutions, that is, the solution
set is not empty.

5. Kaucher CompleteInterval Arithmetic

The main tool of interval analysis is known to be the so-caieerval arithmetics

i.e. algebraic structures that formalize arithmetical operations between intervals as
entire undivided objects. Below, we give a short critical overview of the classical
interval arithmetic and afterward present a descriptiddaafcher complete interval
arithmetic which plays one of the leads in our theory, but has not been sufficiently
known to the researchers.
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5.1. DiscussION

We have already seen in Theorem 3.2 that our main problems (2.2), (4.1), and (4.2)
are minimaxby their nature, i.e., such ones that involve taking minimaxes of a
multivariable function. Then, to solve minimax problems we need a special “mini-
max” interval arithmetic, that is, an interval arithmetic implementing computation
of minimax at each elementary operation, namely addition, subtraction, multipli-
cation and division (which are multivariable functions as well). Classical interval
arithmetic and its well-known generalizations—Kahan arithmetic [60], Hansen
arithmetic (see [32]) and some others—are designed for evaluation of the range
of arithmetical operations, or alternatively, to compute pure minima and maxima.
Hence, these interval arithmetics are not suitable for our purpose.

Luckily, a “minimax” interval arithmetic does exist and we do not need to
construct it by ourselves on a bare place. IKeucher interval arithmeticalso
calledcomplete interval arithmetjavhich we have already mentioned earlier.

Classical interval arithmetitR is known to be an algebraic system of all real
intervalsx = [x,X] = {X OR | x < x < X}, with the binary arithmetical operations
defined according to the following basic principle:

Xxy={xxy|xOx, yOy} (5.1)

for all the intervals, y such thatX x y), x O {+, —, G/} makes sense for any X,
y Oy (see, e.g., [2], [32], [45], [68], [69]). The explicit formulas of the interval
arithmetical operations are
X+y = [X+¥’ X +],
X—y = [X-¥, Xyl
xy = [min{xy,xy,Xy,Xy}, max{xy.xy.Xy.Xy}],
xly = x(1/y, 11y] for y # 0.

Algebraic properties of classical interval arithmetic are meager. It is not even a
group [12] both with respect to addition and multiplication: intervals with nonzero
width, that is, the majority of elements @R, do not have algebraic opposite and
inverse ones (in the group sense). Besi@k$s not a lattice [12] with respect to the
natural set-theoretical inclusion ordering™ The first of the lattice operations

x 0Oy = igf{x,y} = [max{x,y}, min{X,y}1, (5.2)
—taking greatest lower bound with respectig—
x Oy := sup{x,y} = [min{x,y}, max{X,y}], (5.3)
- b4

—taking least upper bound with respectig—
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is not always applicable in classical interval arithmetic. For exampl@] [1[3, 5]
would have to be [2] or, in the last resort, empty set, but neither “backward”
intervals nor)) are allowed inR.

“Incompleteness” of both algebraic and order structureiRafaturally stimu-
lated attempts to complete classical interval arithmetic, to create a “more conve-
nient” interval arithmetic based dmR, and the most successful of them was due
to E. Kaucher back in 70’s. The joint order-algebraic completiofiRoarried out
in the works by E. Kaucher [42]-[44] resulted in an algebraic system that we will
call complete interval arithmeti&R, or Kaucher interval arithmeticAfterward,
E. Gardéies, M. Sainz and their co-workers studied this arithmetic (which they
calledarithmetic of modal interva)sand established some of its helpful properties,
applications as well as having implemented them in workable computer systems
[24]-[28].

5.2. DESCRIPTION OF THEARITHMETIC

Elements ofKR are pairs of real numberx,[X] that are not connected by the
obligatory conditionx < X. Thus,KR is obtained by adjoiningmproperintervals

[x,X], x > X, to the seflR = {[x,X] | X, X OR, x < X} of properintervals and real
numbers, the latter being identified with the corresponding degenerate intervals.
We will denote elements of complete interval arithmetic as well as other objects
formed of these elements by boldface letters, like the common intervals.

DEFINITION 5.1. An intervalx O KR will be calledbalanced if x = —X.*

DEFINITION 5.2. The absolute value (module) of an interval 0 KR is
x| := max{ x|, [X]}.

DEFINITION 5.3. A mapping dual KR — KR that acts as
dualx = [X,X],

reversing the endpoints of the intervals, is calliedlization

The proper and improper intervals, the two “halves”ki, change places as
the result of the dualization.

As in classical interval arithmetic, the inclusion order KR is defined as
follows:

xOy &L x>y and x<y, (5.4)

* Proper balanced intervals are usually called “symmetric,” which is really inconsistent with the
terminology in the other branches of the mathematical science. For instance, whsinisreetric
interval matrixthen? A matrix all whose entries being symmetric, in the above sense, intervals, or,
alternatively, a matrix the values of whose entries being situated symmetrically with respect to the
main diagonal? The latter is traditional understanding of the classical linear algebra, which is unlikely
to be changed.
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but complete interval arithmetikR is a distributive conditionally complete lattice
[12] with respect to this inclusion order, in contrast with classical interval arithmetic.
In other words,

Ax = inf{x, |yOr} = [igf{xy Ly 0T}, supl, | v Dr}},
yar - <

\/ %, = sup(x, | y 0T} = [Sup{xy lyOr}, inf{x, | y O r}}
yar U < =
are always elements frofiR now, provided that{x, | y O index setl'} is a
bounded family of intervals frorkKR.

Addition and multiplication by real numbers are definedkit by

X+y = [x+y, X+Y], (5.5)
[ux, ux], if u>0,

ux = _ .
[uX, ux], otherwise.

Thus, every element from KR has a unique algebraic opposite element, denoted
“opp x,” and
x+oppx=0 O opp XX =[x —X.
For example, opp [2] = [-1, —2], i.e. an improper “backward” interval. There
holds
opp (oppx) = X,
opp AX) = A oppxX, for A OR,
dual kK +y) = dualx +dualy,
opp k+y) = oppx+oppy.
Also,
xOy O —x 0 -y,
dualx O dualy,
oppx Ll oppy,
AX O Ay, for A OR.

Sometimes, we denote for brevity the inverse operation for addition, i.e. the inner
(algebraic) difference KR, by &, so that

X Oy =X+ 0ppy.

The addition (5.5) is obviously commutative and associative. Besides, with
respect to addition, complete interval arithmé{ik becomes a commutative group,
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Table 1. Multiplication in complete interval arithmetic.

O yopP yoz yo-P y Odual Z
xOP [xy, XV] [Xy X¥] [Xy, x¥] [xy,x¥]
xOZ xyxy] [MMXYXYE gy 0

max{xxviy}] - -
xO—P [xy.xy] [XV.xVy] [XY.xVy] [XV. Xyl
x Ddual Z | [xy.Xy] 0 [xy.xy] [MaXxyxy),
-7 min{xy,Xy}]

which is isomorphic to the additive group of the standard linear spgcérhe
consequence of this is, among others, the usual possibility to rearrange terms from
one side to the other side “with the opposite sign” in an interval equation (inequality,
inclusion) for which we seek a formal solution in the sense of Definition 4.2.

The following lattice operation distributivity will be useful for us, too:

x+(yDOz) = (x+y)O(x+2),
x+(yDOz) = (x+y)O(x+2).

(5.6)
(5.7)

Interval multiplication inkR is defined in a more sophisticated way. Sometimes,
the minimax representation (5.22) of Section 5.4 is taken as such a definition. As
an alternative, it makes sense to have a purely algebraic definition through the
so-calledCayley tablei.e. a square table listing all the possible combinations of
operands on inputs and the corresponding results inside the table. Let us separate

in KR the following subsets:
P = {xOKR | (x >0) & (X > 0)},
Z = {XOKR|x <0<X},
—P = {xOKR | —x OP},

dual Z := {x OKR | dualx O Z},

—positive intervals,
—zero-containing intervals,
—hegative intervals,

—intervals contained in the zero.

OverallKR = P O (—P) O Z O dual Z. Then the multiplication in complete

arithmetic is described by Table 1 [43].

As one can see, multiplication in the arithmeH® allows nontrivial zero
divisors, for instance,-{1,2] (5, —3] = 0. Additionally, multiplication is both
commutative and associative, like iR, but not every elememt of KR has its
inversex—1. That is, the group with respect to operatioff fs formed inKR only

by intervalsx with xX > 0 [42]. For example, [12]~! = [1, %], while [-2,3] 1
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does not exist. We denote for brevity the inverse operation for multiplication, i.e.
the inner (algebraic) division iKR, by ©, so that

Xy = xy L

There also holds

dualx ualy = dual ky),

oppx foppy = dual ky),
A(xy) = AX)Yy = x(Ay), for A OR.

Table 1 may turn out rather awkward to implement and study the multiplication
in the complete interval arithmetic. A. Lakeyev in [57] proposed simple global
formulas for the interval product iKR, which can be more suitable in a number of
situations. We remind the following definition [11]:

DEFINITION 5.4. For a real numbeg, the values

+

max{x, 0},
max{ —x, 0}

X

are calledpositiveandnegativeparts ofx respectively.

PROPOSITION 5.1 [57]For any intervalsx, y O KR, the following representation
holds

xy = [max{xy", X"y} - maxq{X'y ", x ¥},
max{X'y", Xy~ } — max{x’y~, X"y }.
If one of the interval, y is proper, then
xOy = [Xy"+X7y" —max{X'y", X7y},
max{X'y", xy"} - x'y" —X"y’]. (5.8)

This formula is not simplified even if we know that both interxalgare proper.
If one of the intervals, y is proper while the other is improper, then
Xy = [x

— — —+

Yy
vyl (5.9)

Xl IX

— Y+X
- x.;.y_

The advantage of Lakeyev formulas is their global character. They give us single
unified expressions for the interval producty over all of the domain of botkk
andy, while the representation through Table 1 has piecewise character. The latter
is quite embarrassing e.g. when studying differentiability properties, smoothness
and their analogues, when computing the derivatives, etc.
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Definitions of the interval subtraction and division KR are the same as in
classical interval arithmetifR:

X—y = x+(-1)0y,
x/y = x01/y,11y] for yy > 0.

Clearly, inKR one should sharply distinguish between the interval operatioris “
and 7" as well as betweend” and “—".

The property of fundamental importance is that the inclusion monotonicity holds
in complete interval arithmetic too:

xOx, yOdy O xxyOXx xy

for x O {+,—, 0V} and anyx,X',y,y' OKR.

Like in classical interval arithmetic, addition and multiplication in complete
interval arithmetic are not connected by the distributive law in general. Instead we
have weaker subdistributivity and superdistributivity properties [25], [43]:

if X is proper, then x y +z) O X[y +x [z (5.10)
—subdistributivity,
if xisimproper,then xQy +2z) O xy +x [z (5.11)
—superdistributivity.

These inclusions turn to the equalities, in particular, if the interd@dgenerate into
a point, i.ex =x OR:

XAy +2) =x0y +x[k (5.12)

Unfortunately, the distributivity of multiplication with respect to the lattice
operationglandOis not the case in general. For example,

[-1,1] 010(-1)) =0#[-1,1] = (-1, 1] () O ([~ 1, 1] (- 1)).

Nonetheless, ik is either positive or negative interval (i.e., frof O (—P)),
then

xQyOz) = (xOy) O(x ), (5.13)
xOQyOz) = (x ) O(X ). (5.14)
At the same time, ik is proper, then (5.13) is still valid, while
xQy Oz) O (x Oy) O(x ),
and ifx is improper, then (5.14) is still valid, while

Xy O02) O (x Oy) O(x ).
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Table 2. Composition of involutions afR.

) id — opp dual

id id — opp dual

— — id dual opp
opp opp dual id —
dual dual opp id

For detailed proofs see, e.g., [28].
Finally, it is quite instructive to note that the set of basic involutions of the
complete interval arithmeti@R—negation “-”, opposition “opp”, dualization

“dual” as well as identity “id"—multiply (compose) according to the Cayley table
(see Table 2).

In other words, the multiplicative structure on their set coincides with the well-
known Klein’s “four-group.”

5.3. INTERVAL VECTORS ANDMATRICES

Arithmetical operations with vectors and matrices made up of the elemeRi& of
are defined similar to those in classical interval arithmetic (see, e.g., [2], [68],
[69]).

DEFINITION5.5. The sum (difference) of the two interval matrices of identical size
is an interval matrix of the same size formed by the elementwise sums (differences)
of the operands. The product of interval matricégndY, X = (x;j) O KR™/,

Y = (y;) DKR"™", is a matrixX [ = Z = () DKR™", such that

|
Zj =) XikY- (5.15)
k=1

The well-known feature of the interval matrix multiplication is the absence of
associativity. This is also valid for the complete interval arithmetic, although for
some important particular cases the associativity still takes place. In particular, there
holds

PROPOSITION 5.21f X OR™! Y OKR'™K, Z ORK*", then
(XY)Z = X(YZ).

Proof.

((KN2)y = 20Nz = > (D XuYw ) Zy
v v u
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= Z Z (Xi[lY[lV)ZVj = Z Z Xiu(YuvZVj)
v u v u
= Z Z Xiu(Y i) © Z Xiy Z (Y wZy)
u v U v
= > Xiu(YZ), = (X(Y2));.
u
where to carry out the common multipli®y, out of the sum in the equality< we

make use of the distributivity relation (5.12). O

Additionally, we also need the operations of taking the midpoint and radius of
an interval:

mid x = (X +X),
radx := (X — ).

As usual, with respect to the interval vectors and matrices these operations, as well
as “dual”, “pro”, “opp”, will be applied componentwise and elementwise.

Inclusion ordering on the sets of interval vectors and matrices with the elements
from KR are, by definition, the direct products [12] of the one-dimensional inclusion

orders on the separate componefits so that
xOy < x 0y, foralli.

We shall therefore understand the operatior@d O applied to interval vectors in
the componentwise manner, i.e.

X1 Y1 X1 0y, X1 Y1 X1 0y,

X2 Yo X2 0y, X2 Yo X2 Oy,
A N R . and A T R .

Xn Yn Xn OYp Xn Yn Xn OYn

Also, the binary relation £” as well as the action of the operations “dual”, “pro”,
“mid”, and “rad” on interval vectors and matrices will be taken componentwise.

The distance—dist{ D—between the elements of the complete interval arith-
meticKR is known to be introduced as follows [43]:

dist(x,y) := max{|x —y|, X = ¥[} =[x ©y|.

With such metric, for any intervals,y,x',y' 0 KR the following inequalities are
valid [43]

dist (xy, xy')

dist(x +y, x' +y")

x| st (y,y"), (5.16)

<
< dist(x,x') +disty,y’). (5.17)
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As for the topology on the multidimensional interval spad@, it can be defined
in two (basically equivalent) ways. The standard way is to introduce the common
metrict

dist (x,y) := max{||x — y||, [|X — ¥I|}, X,y OKR", (5.18)

where|| 0| is an absolute vector norm @&f'. Sometimes, however, it proves helpful
and convenient to work with a vector-valued distancpseudometri@according to
the terminology by L. Collatz [18F,—which is defined o KR" as

dist (x1,y,)
Dist (x,y) := : OR" (5.19)
dist Xn, ¥,,)

All the interval arithmetic operations, matrix-vector operationski" as well

as the operationsCF, “ [, “dual”, “pro”, and “opp” turns out to be continuous
both with respect to the metric (5.18) (see, in particular, [43]) and pseudometric
(5.19).

Notice that the estimate (5.16) can be carried over to the multidimensional case
as well, if the distance betweeny O KR" is understood as the pseudometric
Dist () and the module of a matrix is taken elementwise. More precisely, there
holds

PROPOSITION 5.3For any interval matrixP = (p;) O KR"*" and any interval
vectorsx,y OKR", we have

Dist (Px, Py) < |P| [Dist (x, ). (5.20)

Proof. Indeed, in view of the inequalities (5.16)—(5.17), we can conclude that

n n
dist (ZPUXJ' Zpijyj)
i=1 =1

dist ((PX)i, (Py),)

n

<) dist (5%, PyY;)
j=1
n

< > |yl Cist ;)

j=1

foralli 0{1,2,...,n}. That provesthe multidimensional estimate (5.20). O

* For the spaceéR" this metric coincides with Hausdorff distance between the interval vectors as
axis-aligned boxes iR".
** Pseudometric spaces are often caledtimetric spacesr hypermetric spaces the modern
literature on functional analysis.
* For the case of classical interval arithmetit, the inequality (5.20) is well-known, but for
the complete interval arithmetikR it has been neither mentioned nor used by anybody in the
multidimensional case.
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5.4. KAUCHER COMPLETE ARITHMETIC IS MINIMAX INTERVAL ARITHMETIC

With the use of lattice maximum operation (5.3), we can rewrite the fundamental
property (5.1) defining classical interval arithmetic in the form:

xxy=\/\/ (xxy). (5.21)
xXOx yoy
The above facilitates recognizing the most wonderful fact with complete interval
arithmetic, which generalizes the formulas (5.1) and (5.21). Namely, foxany
{+, —, 0/}, the following relationship holds:

xxy= 7 N xew, (5.22)

xOprox yOproy
where

I/lx _ {\/, if X is proper,

A, otherwise —conditional extremum operation,

X, if X is proper, N .
prox := { prop —proper projection of the interval.

dualx, otherwise,

Discovered first by E. Kaucher [44], this representation expresses the connection
between the interval operatiorx y and the results of the point operationsy for

x O pro x andy O pro y. Notice that, as it follows from (5.22), complete interval
arithmetic is the desired minimax interval arithmetic! Indeed<inendpoints of a
resulting interval are minimax and maximin of the results of the point arithmetical
operation, if of the intervals under operation one is proper and the other is improper
For example,

(=312~ =0=] min  max, X 1A, o, )
in accordance with the multiplication table.

We now lead towards a natural interpretation of Kaucher complete interval
arithmetic. Namely, the improper intervals &R are not something exotic at all.
Taken from set-theoretical standpoint, they may be considered as usual sets of
points onR bounded by two real numbers, while their “backward” direction is only
an indication that they act in arithmetic operations, etc., in a special (“minimax”)
way, not like the classical proper intervalsI&.

Is it possible to make use of the above properties in the computation of min-
imaxes for more complex composite expressions? The answer is positive on the
whole, but it is not so simple and straightforward as for the classical interval
arithmetic and “pure” minima and maxima of the functions. The corresponding

* By the way, we formed the sign of our conditional extremum operation by coupling the symbols
“" and “" together.
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(very subtle and sophisticated) theory has been elaborated in the works of Span-
ish researchers headed by E. Géekeand M. Sainz, and its most complete and
correct exposition can be found in the recent publications [24], [122]. Although
for the elementary arithmetic operations—addition, multiplication, subtraction and
division—minimum and maximum commute with each others, they are well known
to be non-commutable for the general case of complex rational expressions. Even
imposing the stringent requirement that every variable occurs only once does not
redeem the position. The following cogent example is borrowed from the survey
[122].

We consider a function of four variables

@(X1, X2, X3, Xa) = (X1 + X2)(X3 + Xa).

If the variables have the domaing O [—2,2], X O [-1,1], x3 O [—1,1],
X4 O[—2,2], then

\/ /\ (X1, X2, X3, Xa) = B —g}
x10[—2,2], x3O0[—1,1] % 0O[—21,1], x¢0[—2,2]
/\ \/ (p(X1!X21X3!X4) = |:_gn :_;:|'

X O[—1,1], x40[—2,2] x10[—2,2], xs30[—1,1]
which differs from the result of the corresponding “natural interval extension” for
the expression under study:

o(-2.2][1,~1][-1,1],[2,-2)) = O

Still, using induction over syntactic treef the expression, it is not hard to
derive from (5.22) that, if a rational expressipfx,y) = f(X1, ....Xp, Y1, ..., ¥q) has
at most one occurrence of each of the variableg; and to the first power only,
then

VA fixy) Of (xdualy) O A\ fxy), (5.23)

XOx yOy yOy x0Ox

for any proper interval vectops O IRP, y OIRY, i.e., in the extended form,
[anDiQ max f(x.y). max min f(x y)] Of (x,dualy),

f(x.dualy) O [maxmin f(xy). min max f(xy)|.

The more complex cases which can also be proved by induction. Given a rational
expressionf(x,y) = f(X, ....Xp, Y1, ..., Yg) that has only one occurrence of each of
the variabley; (if at all) and to the first power only, for any proper interval vectors
x OIRP, y OTIRY, we have

{YPDI)I;] ryﬁx fxy), max %ly f(x, y)} Of (x,dualy). (5.24)

* Also called Kantorovich tree, see [7].
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Given a rational expressioffx,y) = f(X1, ..., Xp, Y1, .., Yg) that has only one occur-
rence of each of the variables(if at all) and to the first power only, for any proper
interval vectorsx OTRP, y OTRY, we have

[rxnmig max f(x.y). max min f(x y)} Of (x dualy). (5.25)

The relations (5.24) and (5.25) have been first obtained by E. Gesd®l. Sainz
and their co-workers (in the terms which are different from ours though), and their
detailed proofs can be found [26], [28], [122].

The history of the problem is quite amusing. In the early publications of the
Spanish researchers [25], [26], it was mistakenly stated that

V A fxy) = fx.dualy) = A\ f(xy),

XOx yay yoOy XOx

if every variablex;, y; occurs inf no more than once and to the first power. A new,
previously unknown, minimax theorem was thereby claimed! The error has been
fixed only a decade later, while the paper with the correct formulation is dated by
1999 [122]. No wonder, some people managed to make use of the wrong result in
their works.

To summarize the section, we may conclude that Kaucher complete interval
arithmetic, although not correcting all the drawbacks of classical interval arithmetic,
is still much more suitable and fitting for

1) the computation of formal solutions to interval systems of equations,
2) the solution of the minimax problems.

5.5. (HARACTERISTIC MATRIX AND RIGHT-HAND SIDE VECTOR

As an immediate demonstration of the advantages Kaucher complete interval arith-
metic grants us, we introduce

DEFINITION 5.6 [110], [117], [118]. The interval matriA‘ and interval vector
b* defined as

A° ;= A” + dual A", b® := dualb” +b",

will be called characteristicfor the AE-solution set of the interval linear system
(3514) determined by the disjoint decomposition\ab A~ andA”, of b to b™ and
b-.

The concept we have specified by Definition 5.6 is so significant in our further
theory that it makes sense to discuss it more thoroughly. We emphasize that pointing
out the characteristic interval matrix and right-hand side vector completely deter-
mines an AE-solution set to the interval linear system of equations along with the
triple described in Section 3, i.e. with the quantifier matriand vecto, partitions
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of the index sets of the interval parameter matrix and right-hand side vector as well
as their disjoint decompositions. Setting the characteristic matrix and vector gives
even more information by jointly indicating both the type of the interval uncertainty
and the values of these intervals. Therefore, it is quite correct to speak of an AE-
solution set to some interval system of equation tluetespond to a characteristic
matrix and a right-hand side vector of the interval parametans write= (A°, b°)
without explicit writing out the interval system and distribution of the uncertainty
types in it. The new concepts and terminology proves to be extremely beneficial
when applied to the interval linear systems of equations as will be showed, e.g., in
Section 7.4.

To illustrate the foregoing, we give a concise form of the main characterization
(3.23):

THEOREM 5.1.The point xJR" belongs to the solution s&s(A, b) if and only
if
A xObf (5.26)
in Kaucher complete interval arithmetic.
Proof. Notice that
opp (~v) = dualv

for any intervalv O KR. Therefore, adding (dudl” + dual (A" (X)) to both sides
of the inclusion (3.23) results in the following equivalent inclusion in the complete
interval arithmetic

A" Ix + dual A" ) O dualb” +b". (5.27)

But dual A” [x) = (dual A”) [, sincex is a point vector. Instead of (5.27) we may
thus write

A" X + (dual A”) x O dual b"” + b".

Finally, in the left-hand side we can avail ourselves of the distributivity with respect
to the point variable, arriving from (3.23) to the equivalent inclusion

(A” + dual A") x O dualb” + b",
which coincides with (5.26). O

6. Inner Estimation of the Solution Sets
6.1. FORMAL APPROACH

In the approach developed in this section to the inner estimation problem (4.1),
we change it for the problem of finding formal solutions to a special systems of
equations in complete interval arithmel®, thus reducing the original problem to

a purely algebraic problem of numerical analysis. The cornerstone of this technique,
which we will call formal approachis the following
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THEOREM 6.1 [104], [105], [107], [111], [112]Let A® andb® be the character-
istic matrix and right-hand side vector of an interval linear syst&m= b which
correspond to its AE-solution s&tg(A, b). If a proper interval vectox is a formal
solution to the equation

A° X = b, (6.1)

then x O Z,(A,b), i.e. x is an inner interval estimate of the solution set
Za(A,b).

DEFINITION 6.1. For the interval systerix = b, we will call the equation (6.1)
the dualization equatiorthat corresponds to the AE-solution set of the tygeof
the interval system\x = b, or, equivalently, to the distribution of the uncertainty
types over the interval elements specified by the quantifiersd.

Proof. Let a proper interval vector be a formal solution to the system (6.1) and
X O x. Then, in view of inclusion monotonicity of interval arithmetical operations
in KR, we have

A'X O A"x = b,
that is,X 0 =q5(A, b) by Theorem 5.1. O

It is worth listing the most significant particular cases of the above general
result:

- If a proper interval vectox is a formal solution to the equation
(dualA)x = b,

thenx O =yni(A, b), i.e.,x is an inner interval estimate of the united solution set
to the equatioAx = b.*

- If a proper interval vectox is a formal solution to the equation
Ax=Db,

thenx O = (A, b), i.e.,x is an inner interval estimate for the tolerable solution
set to the equatioAx = b (or, in other words, a solution to tiielerance problem
for the equatiolAx = b ; see also [119])r

For example, one can simply check over, by direct substitution, that the
formal solution to the model system (3.21) is the proper interval vector

1 1 1 1 T . . . .
([—5, 5}, {—5, §D . Figure 3demonstrates that it really gives a good inner approx-

imation for the tolerable solution s&tg of this system. On the other hand, if the

* This elegant and very practical result has been advanced simultaneously and independently by
the author and by L. Kupriyanova, which was revealed at the international conference INTERVAL'94,
St.-Petersburg, Russia, March 7-10, 1994 (published later in [53] and [106]).

** V. Zyuzin [131] seems to be the first who pointed to the possibility of such an estimation for
the tolerable solution set, although he had done that very briefly (in one sentence) and in an indirect
form.
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formal solution of the dualization equation (6.1) does not exist or is not entirely
proper, it does not necessarily imply that the corresponding solution set is empty
and the inner estimation problem (4.3) is incompatible.

The problem of computing formal solutions to interval linear systems in Kaucher
complete interval arithmetic turned out to be NP-hard, which was established by
A. Lakeyev in [57], [58]. Nonetheless, a number of efficient numerical methods has
been constructed for computing the formal solutions in the last decade, and they
work well enough provided the matrix of the input interval linear system is not “too
wide”. These aresubdifferential Newton methdd05], [106], [109] (which turns
into quasidifferential Newton method in the general case) and various versions of
thestationary single-step iteration methqdmth of Jacobi type [52], [65], [96] and
those based on splitting of the interval matrix of the equation [41], [105], [109],
[113]. To sum up, we can assert that, for the square interval linear systems of the
form

Cx=d, (6.2)

C OKR™",d OKR", the problem of computing the formal solutions can be solved
(more or less) satisfactotry.

It is pertinent to note that, when solving the dualization equation in the general
case, we could hardly use symbolic (computer algebra) manipulations, elimination
methods, etc. The explanation is that algebraic propertiesiofare still poor.
Though they are better than those of classical interval arithmetic, the lack of dis-
tributivity makes it impossible even such simplest operation as the reduction of
similar terms. This is the reason why all the above mentioned algorithms for com-
puting formal solutions to interval linear systems are essentmaliperical while
few attempts to develop symbolic methods for finding formal solutions (such as
e.g. [81]) were of little success.

What about interval nonlinear systems of equations? We are able to produce
immediate generalizations of Theorem 6.1 for important particular cases of the
inner estimation of the united, tolerable and controllable solution sets (3.8)—(3.10)
to interval nonlinear systems.

PROPOSITION 6.1 [99], [100]Let the mapping F be such that each of the vari-
ables a, ay, ..., a occurs only once (if at all) and to the first power in at most one of
the component expressions, F», ..., Fnn. If @ proper interval vectox is a formal
solution to the equation

F(duala,x) = b,

thenx O =ni(F, & b), i.e.,x is an inner interval estimate of the united solution set
to the equation a, x) = b.

* The author’s software which has “public domain” status can be downloaded from the server of
Institute of computational technologiestutt p: / / www. i ct . nsc.ru/ftp/ict/interval.
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PROPOSITION 6.2 [99], [100]If a proper interval vectoix is a formal solution
to the equation

F(a,x) = b,

thenx O = (F, & b), i.e.,x is an inner interval estimate for the tolerable solution
set to the equation @& x) = b (or, in other words, a solution to the tolerance
problem for the equation @, x) = b).

PROPOSITION 6.3.Let the mapping F be such that each of the variables
ai, a, ...,a occurs only once and to the first power in at most one of the com-
ponent expressions; -, ..., Fr. If a proper interval vecto is a formal solution

to the equation

F(duala, x) = dualb,

thenx O = (F, a b), i.e.,xis aninner interval estimate of the controllable solution
set to the equation (@, x) = b.

As a simplest illustrative example, we consider the interval equation of two
unknowns

[1,2]x? +y? = [4,10]. (6.3)

One can readily see that its united solution set is the circle with the rgdiGsand

the center at the origin of coordinates, with the smaller ellipse deleted, which is
depicted in Figure 9. The values= [0, 1] andy = [2, 3] provide us with the formal
solution to the dualization equation

[2,1]x% +y? = [4,10],

and Figure 9 shows that the interval vector, ([D[2,3]) " really gives an inner
interval estimate of the united solution set, even maximal with respect to inclusion
order.

Notice that in Theorem 6.1 and the above propositions we could consider, with
equal success, formal solutions of the inclusion

A*xODb°

and such like rather than those of the equation (6.1), which sometimes does make
sense indeed. On the other hand, wider vext@ads to wider producA‘ x, so as
it is intuitively clear that taking the equalities (6.1) instead of inclusions conduces
to larger size of the formal solution. The results of Section 6.2 show that, to some
extent, this is really so. The other reason why we consider mainly equations is that,
in our particular case, they are amenable to more efficient computational procedures
for finding their formal solutions.

The requirements Propositions 6.1-6.3 imposes on the occurrences of the
E-uncertain interval parameters in the equations syste(asx) = b are quite
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y

Figure 9 Inner estimation of the united solution set to the interval equation (6.3).

burdensome, so that a natural wish is to somehow relax them in order to extend
our formal approach to the widest possible class of problems. We are able, to a
certain extent, to do that by using the following trick, which we call “parameter
freezing.”

Notice that narrowing an interval of variations of any E-uncertain parameter may
only lead to the AE-solution set also making more narrow with respect to inclusion.
Additionally, an inner estimate of the narrowed solution set is an inner estimate of
the solution set to the original interval system of equations too. Furthermore, when
we squeeze the interval of an E-uncertain parametesioghe point(“freeze” the
variation of this parameter), the corresponding uncertainty disappears. As a result,
the structure of the original interval equations syst&am x) = b can get simpler, if
the corresponding interval parameter had a multiple occurrence in this system.

Successively repeating the above “freezing” procedure, we may yield eliminat-
ing, from the original system, all the interval E-uncertain parameters that occur
in more than one of the component expressiBnskF, ..., F, thus bypassing the
main obstacle of applying Propositions 6.1-6.3. Of course, for such a simplification
of the interval system we have to pay by coarsening of our inner estimation, i.e.
decreasing the size of the resulting estimate, and sometimes it can even become
empty.
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6.2. MAXIMALITY OF INNER ESTIMATES

In this subsection, we consider quality issues of the inner interval estimation by the
formal approach, or, in other words, the question about the size of the inner interval
estimate of the AE-solution sets. A remarkable feature of the formal approach, as
applied to interval linear systems, is that it almost always gives us inner interval
estimates of the generalized solution sets, whichmarimal with respect to inclu-

sion This fact was first revealed by L. Kupriyanova [53] for the united solution set
to interval linear systems. Afterward, S. Shary gave another form of that result and
proved maximality of the estimates of the tolerable and controllable solution set
obtained by the formal approach [106]. The following more general result was first
found by S. Shary in [100]:

THEOREM 6.21f a proper interval vector is an inclusion-maximal formal solution
to the dualization equation (6.1), it is also an inclusion-maximal interval vector
contained in=q3(A, b), i.e., gives an inclusion-maximal solution to the inner esti-
mation problem (4.3).

In particular, if a proper formal solution to the dualization equation is unique,
then it is an inclusion-maximal solution to the problem (4.3).

Proof. We need the following auxiliary representationvifs a proper interval
n-vector andC is an (arbitrary) intervam x n-matrix, then

co=)\/Con (6.4)

vOv

Indeed, ifCV = (C¥)1, (C v)y, ..., (C¥)m) T, then, using (5.22) and distributivity
(5.6) of addition with respect to the operatiord’,'we get

Comi = ay => \/ ay
i=1

j=1vi v

V VoV Say

Vi OV Vo v VnDOVn j=1

V 2 oay = V(Co

vov j=1 vOv

Now, let us turn to the proof of the theorem, which we will carry @uat
absurdumWe denote the proper maximal formal solution of (6.1xand assume
that, contrary to the assertion of the theorem, there exists a proper interval vector
Yy, such that
=gp(Ab) 0y Ox.
Making use of inclusion monotonicity of the interval arithmetic operations from
KR one obtains

A"y OA X =hb",
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the exact equality instead of inclusion being impossible due to the maximality of
X. Furthermore, the representation (6.4) results in

\V Ay O b, (6.5)
yoy

and we can conclude that there must be
At [j] M bC

for some (at least ong)dy. Otherwise, if we had\* 0y O b® for all y Oy, then the

inclusion that is opposite to (6.5) would be valid. However, owing to Theorem 5.1,
the relation (6.5) is equivalent §0[/ =,5(A, b), soy 1 =q5(A, b). O

An exhaustive study of the conditions under which our formal approach yields
an inclusion-maximal inner estimates for AE-solution sets has been carried out in
[97], [98]. The concluding result of these papers is

THEOREM 6.3. Irene’s theorentf the interval matrixA has, in each column, at
least one component that does not contain zero, then every proper formal solution to
the dualization equation is a maximal inner interval estimate for the corresponding
AE-solution set.

If A” = A, then the above condition is even necessary for the interval estimate
to be inclusion-maximal.

The proof of this statement is not simple, both technically and conceptually,
it requires deeper inquiring into the common inclusion monotonicity property of
interval arithmetic operations, which is resulted in the introduction of the so-called
strong inclusion monotonicityinteresting results concerning the strong inclusion
monotonicity is an important byproduct of the works [97], [98].

As an example, let us consider the formal solution of the interval systems

(H13)-(120)

([2, 4] [—2,1])X= ([—2,2])

[2,-1] [ 4,2] [—2,2]

which is the proper vector (p-1,1]) T, and, in accordance with Theorem 6.3, it
gives an inclusion-maximal inner estimate f¢f)(f)-solution set and for

(%) (5)-solution set of the model system (3.21). That it is actually so, one can
make sure from Figure 4, but “flatness” of the estimate produced in the first coor-
dinate may prove disadvantageous in practice. The rest of the AE-solution sets
depicted at Figures 3 and 4 are estimated from inside by the formal approach more
optimistically. In particular, for the interval linear systems

(o a)=(22) o

]
(b-de 4)=(33)

(6.6)
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the inner interval estimate yielded by the formal approach for the sets of
() (7)-solutions and 7 ) (7)-solutions—the vector

11
[_E’ 5}
11
[_E’ E}
—cover considerable parts of the corresponding sets indeed.
In connection with the last observation, the following important practical ques-
tion arises. Namely, how can we influence upon the location and/or size of the

interval solution to the inner estimation problem (4.1) obtained by our formal
approach? We answer that in the next subsection of the work.

6.3. (ORRECTION OFINNER ESTIMATES

The most serious shortcoming of the formal approach to the inner estimation is
that it does not allow to comprehensively examine the problem. If a solution to
the dualization equation exists and it is proper, then everything is all right and we
get the desired answer to the problem. Otherwise, if the dualization equation has
no solutions, or, alternatively, the solutions do exist, but they are not proper, we
can conclude nothing on whethggg(F, a, b) is empty or not. For example, the
one-dimensional equations

[—1,1]x=[1,2]
and
[-1,1]x=[-1,2]

do not have formal solutions at all, inasmuch as for any intexviiie product
[—1,1]x is always a balanced interval, which is equal tdX], |x|] for properx
and [-(pro x), (pro x)] for improperx. Since the right-hand sides of both above
equations are not balanced, they cannot have formal solutions. Meanwhile, the
first equation has empty tolerable solution set, but for the second one the tolerable
solution set is nonemptyE, = [—1,1].

Sometimes, either size or location of the interval solution to the inner estimation
problem produced by the formal approach may prove unacceptable. A tool for
correcting such situations is provided by the following

THEOREM 6.4. Lemma on “squeezing and inflating of parameters” for interval
linear systemslf an interval vectorx is an inner estimate of an AE-solution set
=(A",b) to an interval linear system that corresponds to the characteristic matrix
A° and right-hand side vectob®, then it is also an inner interval estimate of
an AE-solution seE(A%,b%) to an interval linear system corresponding to the
characteristic matrixA® and right-hand side vectds® such that

A OA  and b° O Db
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Proof. For any pointx, the membershix O =(A%,b®) is equivalent to the
inclusion

A‘x O bf

in the complete interval arithmetic. Making use of the condition of Theorem and
inclusion monotonicity property, we get

Ax OA XX O bSO Db,
to wit
A°x O b,

which just means that the pointbelongs to the solution s&t(A°, b%) as well.
Therefore Z(A%, b) O =(A°, b%), and the proof is complete. O

Let us turn to the previous example of the interval systert), L] x = [—1, 2]
and its tolerable solution set. If the right-hand side of this system is squeezed
to [1, 1], then the resulted equation-1, 1]x = [—1, 1] becomes solvable, and
its formal solution |1, 1] coincides with the tolerable solution set of the sys-
tem. Alternatively, we may inflate the left-hand side coefficient,[1], which has
A-uncertainty, to {1, 2] and get the same result.

Notwithstanding the triviality of the proof for Theorem 6.4, the consequences of
this result are extremely important for the computational practice. Specifically, if a
client is dissatisfied by the results of the direct (“frontal”) application of the formal
approach to the initial interval system, it makes good sense to try it with an auxiliary
interval system that has “squeezed” intervals corresponding to A-uncertainty and
“expanded” intervals corresponding to E-uncertainty. You can get something better
in location and/or size, “more solid” in particular. Sometimes, this simple technique
enables one to compute inner interval estimates of the solution sets even for the
situations, when the dualization equation that corresponds to the initial system does
not have proper solutions at all.

Let us consider specific examples. For the interval linear system

[ 2,4] [-11])  _ ([-33]
(Lo 2a)=("0 ©7)
from [71], [69], both (7)(5)-solution set (i.e., the united solution set) and
(2) (7)-solution set have butterfly-shaped forms drawn in Figure 10. When seek-
ing inner interval estimates for them, the direct use of Theorem 6.1, i.e. com-
puting formal solutions to the equations of the type (6.1), leads in both cases to

([-15,1.5],0) ", which is not very successful because of the second degenerate
component.
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Figure 10 “Almost disconnected” solution sets to the interval equation (6.7).

If we try with the same matrix and a squeezed right-hand side, s&}, Father
than [-3, 3], in the first component of the right-hand side (since the zero in the
second component cannot be changed), we get proper formal solutions

13 2 10
{Z’ E} [7’ 7}
11 11
[_é’ é} [_7’ ?}
forthe corresponding dualization equations. The above interval vectors have nonemp-
ty interiors and cover larger parts of the solution sets, which sometimes may appear
to be more advantageous for the users. Of course, we may try to vary the first com-
ponents of the right-hand side vector in another manner, combining it with varying

the matrix as well.
One more example. Suppose that, for the interval linear system

(%7 o) = (157 ¢

we are to find an inner interval estimate of the united solution set depicted at
Figure 11. The direct application of Theorem 6.1 and computing the formal solution
to the dualization equation for (6.8) leads to the interval vecte8(B], [1, —1]) T,

which has the second component improper and thus cannot be interpreted as an
inner interval estimate. However, it is quite clear that the united solution set to (6.8)
is nonempty and even its interior is nonempty as well!

The reason why the algebraic approach fails is that the solution set for the
system considered is a butterfly-shaped region with the origin of coordinates being
a “singular” point. In such situations, one should not expect to get a solution “at
one fell swoop,” since an inner estimate for the solution set may not, in principle,
be adequately represented by a single interval that covers all parts of the solution
set (which belong to different orthants). In general, AE-solution sets are proved
to be a complex non-convex set, but in the situation we deal with the solution set
is extremely non-convex, almost disconnected. More precisely, it is constituted of
the two components that touch in the only point, the origin of coordinates. Formal

and
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X2

1

X1

Figure 11 “Almost disconnected” united solution set to the interval linear system (6.8).

approach “tries” to find one interval vector that would cover all these weakly
connected regions and, naturally, fails.

How to cope with our troubles?

One had better seek the answer to the inner estimation problem in the form of the
union of several intervals (depending on the dimension of the system). Specifically,
our prescript is “divide and conquer,” keeping in mind the proposition about system
squeezing.

The major evident reasons that cause bad shape of the solution set (and conse-
guently bad results produced by formal approach) are

« “thin” zeros in the right-hand side,
« zero-containing intervals in the right-hand side, and (the least important)
« zero-containing interval entries in the matrix.

There are less evident reasons, but we skip them for simplicity. Thus,

- “divide” means “subdivide your system to squeezed systems,” to get rid of zero-
containing components combined with zeros. That must result in a simplification
of the solution set, and the “butterfly-shape” will vanish,

« “conquer” means “solve inner estimation problems for them separately,” and
afterward you can get something (more or less) suitable by gathering the separate
answers.

If, in the interval system (6.8), we change the characteristic right-hand vector to
([5,4],0)7, such that ([54],0)" 0O ([-5,5],0)", retaining the characteristic matrix
the same. Having computed the algebraic solution to the dualization equation

<[3i2] [3,12]) X= <[564] ) * 6.9)

we get a solid interval vector ([2.4],[—1, —0.8]) " as a required inner estimate of
the united solution set for (6.8). Notice that to obtain such an apt estimate we had
to change the interval uncertainty type in the second component of the right-hand
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X2

X1

Figure 12 Nonsolid united solution set to the interval linear system (6.10).

vector of the auxiliary system (6.9): it has become different from that in the original
system.

Of course, there are situations when the interior of the solution set is empty so
that a “good” inner interval estimate can be found in no way. Let us consider, for
instance, the interval linear system

[ 11)5-(09), 610

Its united solution set is a straight line segment depicted at Figure 12, for which a
solid inner estimate does not exist in principle. We have to be able to discern such
cases in practice.

6.4. EXISTENCE AND UNIQUENESS OFFORMAL SOLUTIONS

DEFINITION 6.2 [103]. Given a square matrfg OR"™", we put

Q = ( Q Q ) , (6.11)
Q| Q
wheren x n-submatriceQ* = (qi} ) andQ™~ = (q;’) are positive and negative parts

of Q, i.e. the matrices composed of the positive and negative parts of the entries of
Q respectively. The matriQ~ OR?™?" s said to beconcomitant matrixo Q.

THEOREM 6.5.For a square matrix QO R™", the following statements are
equivalent:

i) Qx =0 in the interval spacekKR" if and only if x = 0;
p y
(i) the matrix @ OR?™ 2" concomitant to Q, is regular;

(i) both the matrix Q itself and its modul®)| (i.e., the matrix made up of the
moduli of the entries) are regular matrices.
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Proof. The equivalence (i} (ii) is substantiated e.g. in [100], [103], [109].
as follows [109]. We add the first row @~ to its (n + 1)-st row, the second row to
the (h + 2)-nd one, etc., up to theth row which we add to ther2th one. Insofar
as

9" +q =|q
for each reat}, we get the following block 2 x 2n-matrix
< @ Q ) (6.12)
QI Q|

as the result of our transformations. Next, we subtractnhel)-th column of the
matrix (6.12) from its first column, the¢ 2)-nd column from the second one, etc.,
up to the 2-th column which we subtract from threth one. Insofar as

q9°-q =9
for each reaf), we get the following block-triangularm2x 2n-matrix

Q Q
(22) 69

As is known from linear algebra, our transformations do not change the property
of a matrix to be either singular or regular, so that the matrix (6.13) is singular
or regular simultaneously with the concomitant mafgX. At the same time, the
determinant of (6.13) is equal to the product of the determinan@afd|Q|. O

DEFINITION 6.3. A square matrixQ O R™" satisfying any (and, therefore, all)
of the equivalent conditions listed in Theorem 6.5 is calbemnpletely regular
(completely nonsingular)

For example, the unit matrix is completely regular, while the matrix

(43)

being regular in the usual sense, is not completely regular. It is appareatthati
a matrix is not completely regular if it is singular. Also, every nonnegative regular
matrix is completely regular.

The main results of this subsection are local existence and uniqueness theorems
for formal solutions of interval linear equations of the form (3.14).

THEOREM 6.6.1f the interval matrixC O KR™" is sufficiently narrow (i.e., if
|rad C|| is sufficiently small) andpro C—proper projection ofC—contains a
completely regular point matrix, then the equations system

* The author called such matricesonsingularin the previous papers [103], [105], [106], [113].
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Cx=d (6.2)

has a formal solution in Kaucher complete interval arithmetic for every
d OKR".

One can find the complete proof of this fact, e.g., in [109]. It is conducted by
topological methods (see, e.g., [77]), using the theory of rotation of vector fields
(or equivalent theory of topological degree of mappings).

Let us turn to the uniqueness issues of the formal solutions to square interval
linear systems of the form (6.2) in Kaucher complete interval arithmetic. The
guestions is completely solved by the “immersion theory” of [100], [103], [105],
[109] for the systems (6.2) with point matrices. Namely, the interval system

Cx=d

with a completely regular matri€ has a unique formal solution for every right-
hand side vectod O KR". As for the interval linear systems (6.2) with essentially
interval matricesC, the uniqueness of their formal solutions has been relatively
little studied for the time being.

DEFINITION 6.4.Mignitude (a) of a proper intervah is the least distance of the
points ofa to zero, i.e.

_ | min{lal,[a}, if a#0,
(@ = { 0, if a> 0.

DEFINITION 6.5. A proper interval matriA = (g;) is calledstrictly diagonally
dominantif it satisfies

(aj) > Z || fori=12,...,n (6.14)
ki

A simple particular result that may sometimes prove helpful:

THEOREM 6.7 [52], [65], [96]. For the interval linear system
Cx=d (6.2)

with C OKR™" andd O KR", the formal solution exists and is unique provided
that the proper projectiompro C is strictly diagonally dominant.

Proof. We introduce the following notation:

D is the diagonal matrix diafc1, C22, ..., Cnn},
E is the matrix obtained fror® by nullifying its diagonal entries.

Therefore,C = D + E, and the formal solution to the system (6.2) obviously
coincides with that of the system

Dx+ Ex=d,
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which in its turn is equivalent to
Dx=d o Ex

We can thus arrange the iterations
x®* = p~1(d & Ex¥)

with D! = diag{cii!, ¢t ..., i}, and they converge to a unique fixed point of
the map

x - D~}d & Ex)

due to the strict diagonal dominanceGn 0

7. Outer Estimation of the Solution Sets

In this section, we present several approaches to outer interval estimation of the
AE-solution sets to interval systems of equations. They are quite unequal both
with respect to their computational complexity and the quality of the answers
they produce. These are, on the one hand, exponentially complex methods of
Section 7.1 and Section 7.5 intended for the computation of the outer estimates
which are optimal or have guaranteed accuracy. Onthe other hand, the methods from
Section 7.2 and Section 7.3 may yield substantial overestimation of the solution
sets, but they are not so labor consuming. It should be remarked that a technique
for outer interval estimation of the AE-solution sets, which is quite similar in idea
to our “formal approach” of Section 7.2, has been recently proposed by M. Sainz
and E. Gardies in [95].

7.1. EXHAUSTIVE SEARCH LIKE METHODS

Let us turn to the outer estimation problem in the componentwise form (4.5). As we
have established in Theorem 3.6, the intersection of the AE-solutiaf,s@4, b)

to an interval linear system with every orthafit of the spaceR"” is a convex
polyhedral set (which may be empty). Computing the values

min{x, | X 0=qs(A,b) n O}, v=12..n, (7.2)

amounts therefore to a linear programming problems that may be efficiently solved,
e.g., by the widely known and well developed simplex-method. Further, we need
to look over all the orthants of the spaké and to pick out the smallest among

the computed values (7.1). In the general case, this approach is of low practical
significance due to the enormous growth of its computational complexity with the
dimension of the problem. Still, for small dimensions and for some special types of
the interval linear systems (for instance, when & jgriori known that the solution

set is situated in a limited number of orthants), the above exhaustive search can
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be successfully applied to the practical solution of the outer estimation problem
(4.4)—(4.5). For the particular case of the united solution set, this kind of method
has been considered earlier in the works [17], [75].

We are going to write down, similar to what has been done in [17], [75], the
so-calledcanonical formof the linear programming problem we have to solve to
find the values (7.1). Let us use Rohn characterization (Theorem 3.5), which gives
the description of the points from the AE-solution set through linear inequalities
with moduli:

the membership 0O =45(A, b) is equivalent to the componentwise inequality
|(mid A) X — mid b| < (radA” — rad A”) Ox| + (radb" — rad b"),
or
mid A X — midb < (radA” — rad A"”) Ox| + (radb"” — radb"),
{ —mid A x+midb < (radA” —radA") Ox| + (radb"” — radb"),
which, in its turn, is equivalent to the system

mid A [iag{sgnx, ...,sgnx,} Ox| — (rad A” — rad A”) x|
< midb+ (radb” — radb"),

—mid A [iag{sgnxg, ...,sgnx,} Ox| — (rad A” — rad A”) x|
< —mid b + (radb"” — radb"),

where diag sgnxg, ...,Sgnx,} is the diagonal matrix with sgxy, ..., sgnx, along

its main diagonal. Also, the right-hand sides of these inequalities may be further
simplified taking into account the definition of the characteristic right-hand side
vectorb*®:

mid b + (radb” — radb”) = b",
—mid b + (radb” — radb") = (=b°).
Lety be the vector of the absolute valuescpf.e.y; = |x|,i = 1,2, ...,n, and
S=diag{s1, %, ....S} § =sgnx = +1,

be the diagonal matrix formed by the signs of the interior points of the ortRant
under consideration, i.e.= Syfor x 0 O. Then the condition

xOZg(Ab) n O
is satisfied if and only if there exists0 R" such that
< mid A (85— (radA” — rad A") ) _ ( b® )
—mid A S— (rad A” — rad A") ~\(=b9) )’ (7.2)
y >0
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Table 3. Passive exhaustive-search algorithm for the outer
estimation of the AE-solution sets to interval linear systems.

Input

An interval linear systenAx = b.
An integer indexw 0{1,2,...,n}.

Output

The exact lower estimate= min{x, | x 0=q(A,b)}
of the solution seEq (A, b) along thev-th coordinate.

Algorithm
Y « +oo;
DOFORi=0TO 2"—1
solve the linear programming problem (7.2)—(7.3)
computingz «— min{x, | x 0= n Oi};
IF(y>z)y—z
END DO

Therefore, the value miix, | x O Z4(A,b) n O} is the solution to the linear
programming problem with the constraints (7.2) and the objective function

c'yy, ¢'=(,..,0s,0,..0)0OR" (7.3)

to be minimized.

Each orthant of the spa@' is completely determined by indicating the signs
of its interior points and, for the algorithmic purposes, it will be convenient for us
to enumerate all the orthants Bf' by the integers from 0 to™2— 1. That can be
done, for example, as follows: every orthant gets-algit binary number obtained
from the component signs set through replaciag for 0 and “+” for 1. Overall,
the exact outer estimate of the value fin| x 0 =43(A, b)} can be found by the
algorithm whose pseudocode is presented in Table 3 (whefarieans assigning
operator).

DEFINITION 7.1. An algorithm is callepassive if performing its every step
(information computation) does not make use of the information obtained at the
preceding steps.

An algorithm is callechdaptive if performing its every step (information com-
putation) does make use (in this or that form) of the information from the preceding
steps.

The passive algorithms are thus the algorithms with rigidly predetermined com-
putational scenarios that do not depend on individual features of the problems under
solution. On the contrary, the adaptive algorithms enable us to flexibly adapt the
solution process to each specific problem. Therefore, such algorithms are more
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preferable in the computational practice, all the other factors being edislve
can see, the technique presented in this subsection for the outer estimation of the
AE-solution sets to interval linear systems turns out to be only passive, which is
one of its major drawbacks.

A natural and promising way to modify the above approach is to examine only
the orthants whose intersections with the solution seagméori nonempty, which
is to be revealed in a special procedure not connected with the solution of the linear
programming problem (7.2)—(7.3). For the united solution set, this idea has been first
advanced and implemented by C. Jansson [38], its extension to general AE-solution
sets being quite evident. Checking nonemptyness requires additional labor, but the
efforts will be rewarded by much far less average execution complexity as compared
with that of the passive exhaustive-search algorithm of Table 3. Moreover, the new
modified algorithm becomesdaptive

7.2. FORMAL APPROACH

In this subsection, we demonstrate how the problem of outer interval estimation of
the AE-solution sets can be reduced to the problem of computing formal solutions
to a special interval system of equations. The whole idea is thus very much alike to
that of the “formal approach,” which we have applied for inner interval estimation
in Section 6. For this reason, we shall also refer to this outer estimation technique
as “formal approach”. On the other hand, in Theorems 7.2-7.4, one can easily
recognize the analogs of the classical results on outer estimation in the interval
linear systems from [2], [3].

Below, we shall need yet another characterization of the AE-solution sets to the
interval linear systems with square matrices, which has the so datkdtpoint
form, and the starting point of our consideration is the result of Theorem 5.1

X O0Z45(A,b) = A°x 0Ob".

Adding x © A°X) to both sides of the above inclusion, we get the equivalent
relation

X O X+ opp AX) +b".
But opp A‘X) = (oppA®) x for nonintervalx. Therefore,
X O X+ (oppA°) x+b",

and, again taking into account the fact tlkas a point, we can avail ourselves of
the distributivity and factor out the unknown varialxleOverall,

xOZp(Ab) «— xO(oA)x+b".

* In a sense, the distinction between the passive/adaptive algorithms corresponds to the contrast
between the program and position-based controls of a dynamic object mentioned at page 331.
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It worthwhile to note that, fox O =,5(A,b) # 0, our reasoning imply that ©
A°)x+Db‘ is a proper interval vector.
We thus arrive at

THEOREM 7.1.For the square interval linear systedix = b, a point x 0 R"
belongs to the solution sét.z(A, b) if and only if

xO (I ©A)x+b"
in Kaucher complete interval arithmetic.

Our next result is

THEOREM 7.2 Let an interval matrixC OKR"*" be such that the spectral radius
p(|CJ) of the matrix made up of the moduli of its elements is less tharhen a
formal solution to the interval linear system

X=Cx+d (7-4)

exists and is unique for any interval vecthl KR".

Proof. In the situation under study
Dist (Cx’ +d, Cx" +d) = Dist (Cx’, Cx") < |C| [Dist (x',x")

for any vectorgd, x', x" OKR" and for the pseudometric Dist introduced by (5.19).
If the spectral radius of the matriC| is less than one, we can make use of the
finite-dimensional version of Stder fixed-point theorem (see, e.qg., [2], [16], [69],

[77]). That is, the mappingR" — KR" which acts as

X1 Cx+d,

is contracting with respect to the pseudometric Dist, and thus has the only fixed
point, which is the formal solution to the interval linear system (7.4). O

THEOREM 7.3.Let, for an interval linear systerAx = b, an AE-solution set
=as(A, b) be nonempty, whild® andb® are the corresponding characteristic matrix
and right-hand side. If

o(ll © AT < 1, (7.5)
then the formal solution of the interval linear system
x=(1SA)Xx+b* (7.6)

(which exists and is unique by virtue of Theorem 7.2) is a proper interval vector
that contains the solution sét,z(A, b).

Proof. Assumingx” to be a formal solution to the interval linear system (7.6),
we are going to show th& O x" providing thatk O =,5(A, b).
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In view of Theorem 7.1, the membersh¥pO =,3(A, b) is equivalent to the
inclusion

XO( eA)K+b". (7.7)
Let us organize an iteration proceskiR" according to the following formulas

x@ — g (7.8)
x&*) — (1o AYxW +p*. (7.9)

Using induction, it is not hard to prove that all the consecutive interval vectors
generated by the process contRitndeed, that holds true fo® according to our
construction. If Ox®, then by virtue of (7.7) and the inclusion monotonicity of
arithmetic operations iR

£O00cAYK+b 001 o A)x® + b =xk+D), (7.10)

Hence % Ox® for any natural numbek.

Next, the conditiorp(| | © A®|) < 1 implies convergence of the iteration process
defined by the formulas (7.8)—(7.9): Skler fixed-point theorem (see [2], [16], [69],
[77]) works again! So, the sequenc® converges to the unique formal solution of
the equation (7.6), that is, t". Since the membership x® is equivalent to the
system of & nonstrict inequalities, it must hold after passing to the limit:

%0 lim x® =x5

k— oo
which completes the proof. O

We will also call the interval equations of the form (7di)alization equations
that correspond to this or that AE-solution set of the interval linear system (1.3)—
(1.4), stressing, if necessary, that the outer estimation mode is meant.

Now, it is time to remind the following

DEFINITION 7.2 (see [9], [69]). A matribA O R™" is termed arM-matrix, if it
satisfies any one of the following equivalent conditions:

(i) A=sl— P, whereP is a nonnegative matrix arg> p(P);
(i) off-diagonal entries of the matriA are non-positive and—* > 0;

(iii) off-diagonal entries of the matriA are non-positive and there
exists a vectou > 0 such thafAu > O;

(iv) ..., etcr

* Forinstance, A. Berman and R. Plemmons [9] list 50 conditions equivalent to the statement “the
matrix A is anM-matrix.”
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DEFINITION 7.3 [6]. Aninterval matriA OIR"*"istermed amterval M-matrix
if every point matrixA O A is anM-matrix.

There holds

THEOREM 7.4 [109].Let, for an interval linear systerAx = b, an AE-solution
set=q3(A, b) be nonempty, whild® and b® are the corresponding characteristic
matrix and right-hand side. IA is an intervalM-matrix and no component d&f
contain zero in its interior, then the formal solution of the interval linear system

x=(oA)x+b"
exists, is unique and provides us with the interval hull of the solutioB €A, b),
i.e., the best possible solution to the outer estimation problem (4.4).

As an illustrative example, we can compute an enclosurg pf)-solution set
to the interval linear system (6.7). First, let us scale the system through multiplying

both the matrix and right-hand side %yWe get

1 11
24 43
11 1
%3 3
The corresponding dualization equation (7.6) to enclosgthg)-solution set for
(7.11) has the form

1 1 1
o3 33
11 1 X+ '
il (03] 0
and its formal solution is (check that!) the interval vector
33
[_E’ E}
33
-2
It really includes the(f) ()-solution set of the interval linear systems (6.7) and
(7.11), as one can easily see from Figure 10.

We conclude the subsection with a commentary on the practical implementation
of the above formal approach for outer interval estimation of the solution sets.
Theorems 7.2—7.3 give, as a matter of fact, a theoretical foundation for constructing
stationary single-step iterative techniques based ond8ehffixed-point theorem.
Namely, under conditions of Theorem 7.3 we can organize iterating according to the
formula (7.9) (or some its modification), which will really converge to an enclosure

of the AE-solution seEz(A,b) from any starting approximatior©. In doing
so, the most convenient choice o) is a vector that is guaranteed to contain

3 3
X = ol . (7.11)



396 SERGEY P. SHARY

=4s(A,b), since then (7.10) implies that every iteratie® contains the solution

set under estimation too. For instance, we can take(®san enclosure of the
united solution set, its computation being a well-elaborate numerical problem (see,
e.g., [2], [32], [45], [69], [87]).

Another opportunity to find the desired formal solution to (7.&vibdifferential
Newton methogtl03], [109] whose applicability is currently substantiated for the
equations (7.6) with the matricés having either all proper or all improper entries
along each row. However, numerical experiments show that the method works well
for general interval linear systems, when proper and improper entriésaire arbi-
trarily mixed (although it igyuasidifferentialNewton method, not subdifferential,
in such cases).

Finally, the requirement

p(l oA <1 (7.5)

that an interval linear system is amenable to our formal approach appears to be quite
burdensome. Below, in Section 7.4, we will discuss a way to partially overcome the
inequality (7.5) through the so-callgaleconditioning

7.3. INTERVAL GAUSS SEIDEL METHOD

Interval Gauss-Seidel methaglknown to be one of the most efficient and popular
algorithms for the computation of the outer interval estimates (enclosures) of the
united solution set to interval linear systems of equations. It is usually used after
preliminary preconditioningof the interval systems (see, e.g., [45], [69]). The
purpose of this section is to adapt the interval Gauss-Seidel iteration to the problems
of outer interval estimation of the generalized solution sets to interval linear systems.
Below, we suppose that the interval matfixs nonsingular, i.e., that all the point
matricesA O A are nonsingular. One can achieve then, after suitable permutation
of the equations (matrix rows), that the diagonal entags = 1,2, ...,n, do not
contain zeros.

The basis of the point Gauss-Seidel method is writing out the system of equations
Ax = bin the explicit componentwise manner

n
Zainiji, i=1,...,n,
j=1

and further solving thé-th equation with respect tg assuming thag; # 0. To
construct the interval method, we shall act in a similar way.

Let us make use of the characterization of the AE-solution sets to the interval
linear systems presented by Theorem 5.1:

XOZg(Ab)  «  AxObE (5.26)

* Again, one can find some of the author’s “public domain” implementations of the methods under
discussion ahtt p: //www. i ct. nsc.ru/ftp/ict/interval.
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Breaking down the inclusion (5.26) componentwise, we get

n
Zaﬁxj 0bf, i=1..,n,
=1

which is equivalent to

aix Dopp(Zaﬁx,-) +bf, i=1..n
j#i

Suppose that we are already given an interval vextopntaining the solution

set=q5(A,b), i.e.x O Zqa(A,b). Then, forx O =4(A, b) the following chain of

relations should be valid

x O (a)~* | opp ZaﬁXﬁbf)
j#i

@)1 [ D opp(afx) + bf)
j#

@)t [ D (oppaf)x + bf) —since allx; are noninterval
j#i
— arithmetic operations KR

) sincex; 0x; and interval
are inclusion monotonic.

0 (af)~* (Z(Opp af) xj + by
j#i

Therefore, if the interval vectdris determined by the componentwise equalities

%= @)t (Z(oppaﬁ)xj +bi‘), i=1,...n, (7.12)
j#i
it thereby

« must be a proper interval, in spite of the possible presence of improper intervals
aj andby in the expression (7.12),

« provides us with an outer interval estimate of the solutiorEggfA, b) too.
So, the natural idea is to take the intersection

XnXO EGB(A,b),

which may prove a more narrow estimate than eacharidX on its own.
Finally, to make the best use of the information obtained during the runtime,
we can, similar to the classical Gauss-Seidel method, immediately involve the new
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Table 4. Generalized interval Gauss-Seidel method for outer estimation of the AE-solution
sets of interval linear system.

Input
Characteristic matrid’ OKR™ and right-hand side vectéd 0KR" that correspond
to the AE-solution seE;(A, b) estimated of an interval systefix = b.

An interval vectorx = (X1, ..., Xn) | OIR" that bounds the desired portion of the
solution se€qg(A, b).
A prescribed accuracy > 0.

Output

Either the information “the solution sé&i;(A, b) does not intersect’ or
new outer estimat® = (%1, ..., %) " 0 Z45(A,b) n x.

Algorithm
d « +oo;
DO WHI LE (d>¢)
DO FORi=1TO n

i—1 n
%i (a‘i)1<2(0ppa‘j)>"<j +) (oppay) X + bf);
j=1 jEi+l
I F (X% isanimproper intervalJHEN
STOP, signaling “the solution sef,g(A, b) does not interseot’
END | F
)N(i «— X n )N(i;
I F (X% =0) THEN
STOP, signaling “the solution sef,g(A, b) does not interseot’
END | F
END DO
d « distance betweexand¥;
X — X;
END DO

estimate of each component (which is at least as good as the old one) into the
computation. Theé-th component of the new estimatds thus to be computed in
accordance with the formula (7.12) relying on the already found componefits of
with the numbers 2, ..., (i — 1) and the i(+ 1)-st ...,n-th components of the old
estimatex.

The overall computational scheme of the interval Gauss-Seidel iteration for
computing the enclosures of the AE-solution sets to interval linear systems is
presented in Table 4. E43(A,b) n x # (), then the result of the execution of the
algorithm is a sequencgk} of proper nested intervals that must have a limit in
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IR" (see [2], [45], [69]). The stopping criteria for the above iteration is, as usual,
attaining sufficient closeness (in some interval metric) between the two successive
approximations.

To start our interval Gauss-Seidel method we need an initial interval vector
X O =Zqs(A,b). For the generalized solution sets, we can always take it as an
enclosure of the united solution s&t,;(A, b) for the corresponding interval linear
system (sincé&, is the widest among the solution sets), applying any one of the
numerous techniques that have been elaborated for this purpose [2], [32], [69].

As a specific example, we consider again the interval linear system

[ 2,4] [-1,1] _([-33]
( 11 24 ) %= o (6.7)
from [69], [71] and the outer estimation of ifg) (7)-solution set. Straightforward
applying the generalized interval Gauss-Seidel iteration results in

33
33 '
[_Z’ Z}
the tightest possible enclosure for t{t) (7)-solution set (see Figure 10), which
coincides with what we get by the formal approach in Section 7.2.

W. Barth and W. Nuding [6] and afterward A. Neumaier [69], [70] gave a
profound investigation of the interval Gauss-Seidel method for the classical case of
enclosing the united solution set to interval linear systems. The theory developed
by Barth-Nuding and Neumaier can be partly transferred to the generalized interval
Gauss-Seidel method we have just derived. That has been done in [109], [110],
although changing accents and interpretation of some results as compared with
Neumaier’s theory [69], [70].

The key point in the considerations of A. Neumaier is the concepts of
H-matrix:

DEFINITION 7.4 [69], [70]. For a proper interval matri& = (g;) O IR"™", its
comparison matrixs termed the matrixA) OR"" such that

(&), ifi=],
—layl, i i#].

DEFINITION 7.5 [69], [70]. A proper interval square matrix is called anH-
matrix, if its comparison matrix is aM-matrix.

theij-th entry of (A) := {

In particular, strictly diagonally dominant interval matrices Hrenatrices.

THEOREM 7.5.1f x"is the limit of the generalized Gauss-Seidel method applied
to an interval linear systerA x = b, then

(A) x5 < D). (7.13)
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If A is an interval H-matrix, then

X" < (A)Lb). (7.14)

Proof. We consider only nonsingular interval matric&s assuming without
loss in generality that @7 a;;. The formulas specifying the generalized interval
Gauss-Seidel method thus imply

X' O (a‘i)‘l<2(oppa§)xjm+ by )
j#i
so that

i < <an>1<z Jay| Ixj] + Ibi|>

j#i
since both sides of the above inclusion are proper intervals. We get therefore

@i X < D lag| Ix(T + [bil,
j#i
which is equivalent to
((A) X < |bil

foralli =12, ...,n, thatis, coincides with (7.13).
If Ais an intervaH-matrix, then(A) is anM-matrix, so(A) ~* > 0. Multiplying
both sides of (7.13) byA) 1, we arrive at (7.14). O

It follows from the inequality (7.14) that any sufficiently large initial box is
improved (i.e., is decreased in size) by the generalized Gauss-Seidel iteration pro-
viding that the matridXA is anH-matrix. On the contrary, iA is not anH-matrix,
we cannot draw such a conclusion. Under these circumstances, A. Neumaier in
[69] even proved the following showy result for the classical version of the interval
Gauss-Seidel iteration:

THEOREM 7.6 [69]. If a proper interval nx n-matrixA = (g;) is not an H-matrix,

then there exist arbitrary large proper interval vectors that cannot be improved by
Gauss-Seidel iteration as applied for outer estimation of the united solution set of
the interval systemAx = 0.

For the generalized interval Gauss-Seidel method under study, the above theorem
is not valid any longer in case the characteristic mafixcontains at least one
proper interval in each row, i.e. the original interval linear system has at least one
A-uncertain interval parameter in each row of the matrix. The reason is simple:
the magnitude of the interval product is not equal to the product of the factors’
magnitudes in Kaucher complete interval arithmetic.
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As an example, one can take the interval linear system
[ 214] [_21 1] — [_212]
(1221 2a)*= (122 (3.21)
and the outer estimation of i ) (5)-solution set. The interval matrix of the system
(3.21) is not arH-matrix insofar as its comparison matrix

22

(22)
is singular. Still, the generalized interval Gauss-Seidel iterations converge, from
any sufficiently large box, to the interval enclosure-1[1],[-1,1]) " of the
(3) (5)-solution set (see Figure 4). Moreover, when enclosing the same solution
set to the interval linear system with the matrix from (3.21) and zero right-hand
side vector, the generalized interval Gauss-Seidel method also produces the correct
answer—zero vector—starting from any zero-containing initial box.

To resume, the generalized version of the interval Gauss-Seidel iteration may
behave itself much better than its classical prototype, which is especially pro-
nounced when the number of the A-uncertain parameters in the matrix becomes
substantial.

One of the most remarkable facts with the interval Gauss-Seidel iteration as
applied to the united solution set is the following optimality propeiftthe matrix
of the interval linear system is an interval M-matrix, the method produces the
interval hull of the solution sefThis fact has been first revealed by W. Barth and
W. Nuding [6]. We managed to generalize this classical result as the following
weaker

THEOREM 7.7 [109].1f, in an interval linear systerAx = b, the matrixA = (a;)

is an interval M-matrix and no component ofcontain zero in its interior, then the
generalized interval Gauss-Seidel iteration applied to this system converges to the
interval hull of the AE-solution set.

7.4. FRECONDITIONING

The techniques we have developed in two preceding sections for the outer estimation
of the AE-solution sets to interval linear systems—formal approach and interval
Gauss-Seidel iteration—have substantial restrictions on their applicability scopes.
The keypoint of the feasibility of the formal approach is the reduction of the original
linear system (1.3)—(1.4) to the form (7.6) so that the conditighc A°|) < 1 is
fulfilled. In its turn, a good work of the interval Gauss-Seidel iteration requires that
the interval linear system has &hmatrix. These conditions are quite burdensome
being obviously not always the case. How can we compute outer estimates of the
AE-solution sets to interval linear systems in general?

In the classical problem of outer interval estimation of the united solution set the
above difficulty is usually overcome by the so-calfgdconditionindirst suggested
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by E. Hansen and R. Smith [33] (see also [2], [45], [§9Bimilar to the classical
computational linear algebra, preconditioning of an interval system amounts to
multiplying both its sides, from the left, by a point matrix (often taken as the
inverse to the midpoint matrix of the interval system). So, for s@mg R™",
instead of the original system

Ax=b (1.4)
we arrive at thepreconditioned interval system
(AA)x = Ab, (7.15)

its united solution set being almost always wider than that for (1.4). On the other
hand, the properties of the interval matrix of the preconditioned system improve
(see [69]). Unfortunately, this prescription, which we are going to refer raag
preconditioningcannot be directly applied to the outer estimation of the generalized
solution sets.

When simply multiplying, from the left, the interval matrix and right-hand side
vector by a point matrix, the generalized solution sets do not necessarily widen, but
can change in quite a sophisticated way. To visually demonstrate that, we consider
the interval linear system

[ 24] [-21]\ . _ /[1.2]
<[—1,2] [ 2,4]> X= ([1,2])’ (7.16)
for which
3 -2 12 2
midA = | ; . (midA)t= _317 i_; ,
2 37 37

while the interval system “naively preconditioned” by the midpoint inverse is

[ 11,26] [-10,10]\ _ _ 2 [ [7,14]
= < [-10,10] [ 11 26]) X=g ([4, 11]) : (7.17)

We can see from the lower left picture of Figure 13 that the set of
() (7)-solutions of the “naively preconditioned” system (7.17) does not contain, in
the first orthant, the verte<<‘§‘, g) and the adjacent part (e.g., the pointl(l’) of
the set of(7) (7)-solutions to the original system (7.16). Moreover, the lower bound
of the second coordinate of the points from this solution set, which is equal to zero
and reached at the verte@,o) for the original system, increases as the result of

the naive preconditioning!
To summarize, the solution sets of the “naively preconditioned” interval linear
system do not necessarily contain the solution sets of the original interval system,

* Alefeld and Herzberger even call preconditioning “Hansen method” in their book [2, Chapter 16].
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X2

X1

X2 X2

X1 X1

Figure 13 The upper picture shows the set((ﬁ) G) -solutions for (7.16), while the lower

left one is the set o(j]f]) (g) -solutions for (7.17) and the lower right one is the solution set
corresponding to the characteristic matrix and right-hand side vector (7.18).

while an outer estimate of the solution set to the “naively preconditioned” interval
system may not be an outer estimate of the corresponding solution set for the
original interval system. Still, an outcome from the above difficulty does exist and
is as follows:we should precondition the characteristic matrix and characteristic
right-hand side vector corresponding to the solution set under considenattbar
than the interval system on its own.

Let us turn again to Theorem 5.1 that gives a very convenient characterization
of the AE-solution sets to interval linear systems:

xOZgp(Ab) — A xXObS,

A" andb® being the characteristic matrix and right-hand side that correspond to
the solution seE.z(A, b). If A is a square point x n-matrix, then the inclusion
A°x 0 b yields

A(ASX) O Ab°.
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Multiplication of the interval matrices is known to be non-associative in general,
but, for pointA andx, we can avail ourselves of the result of Proposition 5.2:

A(A°X) = (ANA) x.

Therefore, we arrive at the implication
XxOZg(Ab) = (AA)XOADb,

the sense of which can be interpreted as follows:

THEOREM 7.8.1f A O R™" is a square point matrix, then the AE-solution set
=(A", b°) for the interval linear system (1.4), which corresponds to the characteristic
matrix A° and characteristic right-hand vectds, is included in the AE-solution
set corresponding to the characteristic mathA® and right-hand side vectokb®,

that is, in=(AA°, Ab°®).

We shall call multiplying, from the left, both the characteristic matrix and right-
hand side vectogeneralized preconditioningf the interval linear system (or just
preconditioningif that does not confuse). According to Theorem 7.8, it can result
only in extending (if any) of the solution set, but the new characteristic interval
matrix may satisfy the condition

p(l e A) < 1,

which is so crucial for the applicability of our techniques. The initial problem of
the outer estimation of an AE-solution set could thus be changed to the other outer
estimation problem which corresponds to the preconditioned characteristic matrix
and right-hand side and which is computationally tractable.

For example, the characteristic matrix and right-hand side vector of the set of
() (7)-solutions to the interval linear system (7.16) are

“=(e-dw ) v=(i2a)

so that

(mid A)2A° = 3(

[14, 23] [10, —10] )
37 !

[ 8,-8] [26, 11]

e —14,14
(mid A)~1p° = 3£7<{_14’14}>.

(7.18)

The AE-solutions that set corresponding to the characteristic matrix and right-hand
side vector (7.18) is exhibited at the lower right picture of Figure 13, and it includes
all the (%) (5)-solutions of the original interval linear system (7.16) as one can make
sure of from comparison with the upper picture of this figure.
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Furthermore,

. —1pc; - 1 9 20
[l © (mid A) A‘_3_7(16 15),

the eigenvalues of this matrix are equalgt)c(lz + /329), and the condition (7.5)

of Theorem 7.3 is fulfilled indeed allowing one to make use of the formal approach
for the outer estimation problem. At the same time, this condition does not hold for
the interval matrix of the original system (7.16).

For the reader’s convenience, we reformulate the main results of the formal
approach of Section 7.2 in the form that explicitly takes into account the precondi-
tioning matrixA.

THEOREM 7.9.Let A be a square point matrix. If a point X R" belongs to the
solution seE,z3(A, b), then

xO( © AA)x+ Ab°.

Notice that the above result, as opposed to Theorem 7.1, is only a necessary
condition of the membershipO =,5(A, b).

THEOREM 7.10.Let, for an interval linear systetAx = b and its solution set
=as(A, b) corresponding to the characteristic matéX and right-hand side vector
b®, there exist a square point matrix such that

p(Jl ©AA")) < L. (7.19)
Then a formal solution to the interval linear system
x= (I © AA")x+ Ab* (7.20)

exists iNKR" and is unique. If, additionally, the solution s&f5(A, b) is not empty,
then the formal solution to the interval system (7.20) is a proper interval vector
that contains=,3(A, b).

Proofs of these statements are completely analogous to the proofs of Theo-
rems 7.1-7.3 so that we skip them. O

Preconditioning procedure for the classical case of the united solution set to
interval linear systems has been examined by A. Neumaier in [69], [70], and a short
summary of Neumaier's theory follows.

THEOREM 7.11 [86].If an interval matrixA OTR"*"is such thatmid A is regular
and|(mid A)~!| (rad A has spectral radius <, thenA is regular.

Theorem 7.11 gives thereby only a sufficient condition for the regularity. Never-
theless, the class of interval matrices determined by this condition proves so useful
and important that it deserves to be classified as an independent concept:
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DEFINITION 7.6 [69]. We shall say that an interval matrik O IR™" is
strongly regular (strongly nonsingular) if regular is the matrix mi& and
p(/(mid A)~1|radA) < 1.

Every strongly regular matrix is thus just regular (nonsingular), but the reverse
is not true. Neumaier matrix (see [69])

3 [0,2] [0,2]

[0,2] 3 0,2
[0,2] [0,2] 3

may serve as a counterexample. The question on how the regularity and strong

regularity relate to each other proved to be not so easy [92], and its complete
solution has been recently obtained by A. Lakeyev in [55].

THEOREM 7.12 [69].If a matrix A O IR™" is strongly regular, then any matrix
B O A is also strongly regular.

THEOREM 7.13 [69].Every interval H-matrix (and hence every M-matrix) is
strongly regular.

The class of strongly regular matrices is interesting for us since this is a simply
described class of the interval matrices for which the preconditioning enables to
attain satisfiability of the conditions (7.5) and (7.19).

DEFINITION 7.7. For a vectou O R", u > 0, we shall callu-scaled maximum-
normof the matrixA = (a;) OKR"*" the value

1 n
IAllu:= max (Ui JZ; En u,-) :

The above definition is a natural extension of the corresponding concept for
the point case. As is known from the classical matrix theory (see, e.qg., [36], [69]),
the spectral radius of a matrix is always no greater than any norm of the matrix.
Therefore, for every interval matri& O KR™",

PUAD < A= TTA]u-

THEOREM 7.14. [69]Let the interval matrixA OTIR™" be such that its midpoint
matrix mid A is regular. Then the following conditions are equivalent to each
other:

(i) the matrixA is strongly regular,

(i) p(](mid A)~ radA) < 1,
(i) ||l — (mid A)~*A||, < 1for some u >0,
(iv) the product(mid A) A is an H-matrix.
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So, if the interval matrix is strongly regular in the interval linear system under
consideration, then we can meet the requirement (7.5) through preconditioning by
the midpoint inverse.

THEOREM 7.15. [69]Let an interval matrixA 0O IR™" and a point matrix
A O R™" be such that their producfA is an H-matrix. TherA is strongly
regular.

For the classical problem of outer interval estimation of the united solution set,
the most popular choice of the preconditioned matrix is the “midpoint inverse,”
i.e. A = (mid A)~1. Such a prescription is very attractive due to some useful
properties of the preconditioned matrix: it has the identity matrix as its middle,
while optimal bounds of the preconditioned united solution set can be found after
only one matrix inversion [31], [87], etc. There are even a number of results showing
certain optimality of the preconditioning by the midpoint inverse.

THEOREM 7.16 [70].If
B:= I - CAly< 1

in some u-scaled maximum-norm, th@erakes its minimal value for the choice
C=(midA)~L

Ris-Neumaier's theory proves to be even excessive for the above developed gen-
eralized preconditioning, since the presence of both proper and improper intervals
in KR may lead to decreasing of the width of intervals during arithmetic operations.
Anyway, for the strongly regular matrices preconditioning by the midpoint inverse
makes the condition (7.5) as well as (7.19) fulfilled, ensuring good work of the
interval Gauss-Seidel iteration too.

However, improving the properties of the interval system through precondition-
ing is not achieved free of charge. The unavoidable price we have to pay for that is
the enlargement of the solution set as compared with the original interval system,
so that, using preconditioning, we almost always make the outer estimates of the
solution set more crude. The amount of such undesirable widening is larger, the
greater the preconditioned matrix differ from the diagonal form.

The remarkable fact with the nonsingular diagonal mafris that there holds
the exact equality

AH = {AH | H OH},

whatever the interval matrid of the corresponding size is. For nonsingular diagonal
matrices/\, we can therefore conduct the reasoning of the type

H OH is equivalent toAH OAH, (7.21)

while the preconditioning by such matrices retain the solution set to interval linear
system unchanged. In the general case, whés not diagonal nonsingular, we
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may realize only the implication from left to right in the logical formula (7.21),
and, as a result, the solution set of the interval linear system so preconditioned will
not coincide with the original solution set.

On the other hand, having more detailed information on either the interval linear
system or the algorithm, it is possible to construct better preconditioners than the
midpoint inverse. For example, for the classical interval Gauss-Seidel method even
optimal (in some natural sense) preconditioners can be constructed, which are
recalculated at every algorithm step [45]. As for our formal approach, a promising
idea is to consider preconditioners that are intermediate between the pure diagonal
and midpoint inverse. Then the solution set would not be distorted much, while
still conforming the feasibility condition (7.5). The corresponding rigorous theory
is still expecting to be constructed.

7.5. RARAMETERPARTITION METHOD FORINTERVAL LINEAR SYSTEMS

In this subsection, we treat the componentwise form (4.5) of the outer estimation
problem and concentrate on computing fxn| x 0 =,5(A, b)} for a fixed integer
indexv 0{1,2,...,n}, since

max{X, | X 0=gp(A,b)} = —min{x, | x O=s(A, —b)}.
Let

Encl be a method of outer interval estimation of the AE-solution sets (we shall
call it basic methoj

Encl @Q,r) be an interval outer estimate, produced by the method Encl, of the
solution seE3(Q, r) to the systenQx =r, that is, EnclQ,r) OIR" and

Encl@Q.r) 0 Z4(Q.r),

Y(Q,r) be thev-th component lower endpoint of the interval enclosure of the
solution seE,3(Q, r) obtained by the method Encl, that is,

Y(Q.r) = (Encl@,r)), . (7.22)

We require that the basic method should satisfy the condition:

The estimateY(Q,r) is inclusion monotonic
with respect to the matrix) and vectorr,
i.e., forallQ', Q" OIR™"andr’, r" OIR",
Q' UQ"andr' Or" implies the inequality

Y(Q",r") <Y(Q'.r).

(7.23)
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For the techniques we have developed in the preceding subsections for the out-
er interval estimation of the AE-solution set to interval linear systems—formal
approach and interval Gauss-Seidel iteration—the fulfillment of (7.23) can be easi-
ly derived from the inclusion monotonicity of the interval arithmetic operations.

To go further, we need to remind the result of Corollary to Theorem 3.6: both
minimal and maximal componentwise values of the points from the solution set
are attained at the so-calledtremematrices and right-hand side vectors, such that
made up of thendpointsof A andb. In other words, for any = 1,2, ...,n,

min{x, | X 0=qs(A,b)} = (A~1b),

with a point matrixA 0 R™" and a point vectob 0O R" whose elements are the
endpoints of the interval entries of the matfixand vectob respectively. It is also
worth noting that

Y(A b) < (A~1h),

due to the very definition of the estimateAssuming that an entrg; of the matrix
A has nonzero width, we denote

by A’ andA" the matrices obtained from through
replacing the entrg; for a; andaj respectively,
by A" andA” the matrices obtained frodthrough (7.24)
replacing the entrg; for a; anda; respectively.
Inasmuch as
A'OA OA, A" OA" OA,
andb O b, the condition (7.23) implies the inequalities
Y(A,b) < Y(A',b) < Y(A', b)
and
Y(A,b) < Y(A",b) < Y(A", D).
Therefore, taking the minima of the corresponding inequality sides, we arrive at
Y(A,b) < min{Y{A’",b), Y(A",b)} < min{Y{A",b), Y(A",b)}.
Additionally,
min{Y(A",b), Y(A",b)} < Y(A,b) < (A~1b), = min{x, | x OZ(A,b)}.
Comparing the two above inequality chains results in the relation
Y(A,b) < min{Y(A",b), YTA",b)} < min{x, | x O =4s(A,b)},

and, as a consequence, in the following practical prescription:
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Having solved the two interval “systems-descendam{sX = b andA"x = b
defined by (7.24) we can get better estimatenfam{x, | x O =,5(A,b)} from
below as

min{Y(A",b), Y(A",b)}.

In the right-hand side vectds, breaking an interval elemeft; up into its
endpointsb; andb; has the similar effect. For uniformity, we will designate by
A'x = b"andA"x = b" the interval “systems-descendants” we get frAm= b
after having bisected an interval element of either the matroe right-hand side
vectorb.

To further improve the estimate for n{in, | x O =q5(A, b)}, it makes sense
to repeat the above described subdivision procedure applying it to the “systems-
descendantsA'x = b’ and A"x = b", and then to bisect the descendants of
A'x=Db"andA"x = b" again to get even better estimate, and so forth. We arrange
the whole process of the successive step-by-step improvement of the estimate for
min{x, | X 0 =qg(A,b)} in accordance with the well-known “branch-and-bound”
technique, similar to that implemented in the popular interval global optimization
methods from [32], [45], [84]:

first, all the interval systen@x = r emerging as the result of the subdivision of the
original system (3.14) as well as their estimaté®, r) are stored in avorking
list £;

second, at every step of our algorithm, the interval system subject to bisection is
that providing the smallest current estimai®, r);

third, the interval element to be bisected in the sys@xe r is the one having
the maximal width.

The execution of the algorithm thus amounts to maintaining thedjstvhich
consists of records having the formtaples

(Q.r.Y(Q.r)), (7.25)
where

Q is anintervaln x n-matrix,Q O A,
r is an intervain-vector,r O b.

Besides, the records forming the working I&twill be ordered with respect
to the values of the estimatgqQ,r), while the first record ofL as well as the
corresponding interval syste@x = r and the estimate (the smallest in the list)
will be calledleadingones at the current step of the method. Table 5 summarizes
the overall pseudocode of the new algorithm, which we are going to refer to as
the simplestparameter partition methodollowing the terminology tradition of
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Table 5. The simplest PPS-method for interval linear systems.

Input

An interval linear systenAx = b.
An integer indexw 0{L2, ...,n}.
A method Encl that produces the estim#iby the rule (7.22).

Output

An estimateZ for min{x, | x 0=q(A, b)} from below.

Algorithm

assignQ «— A andr «— b;
compute the estimatgQ, r), assignu — Y(Q,r);
initialize the listZ, i.e assign «— {(Q,r,v)};

DO WHI LE (the systemQx =r is interval)

in the matrixQ = (q;) and vector = (ri), choose
an interval elemenh having the maximal width;

generate interval systen@@x =r’ andQ” x =r" so that
if h =q, for somek 1 0{1,2, ...,n}, then set
Oj — & —a;  for (i.j) # (K1),
Ui — Gy O =T 11" <1,
if h=ry forsomek 0{1,2,...,n}, then set
Q«—Q" —Q Ik, r«Tk
ri—ri—r for i #k;
compute the estimates < Y(Q',r’) andv” «— Y(Q",r");
delete the former leading recor@|(r, v) from the listL;

put the records@’,r’,v") and Q" ,r",uv") into £ so that
the values of the third field of the recordsdnincreases;

denote the first record of the ligtby (Q,r, v);
END DO

Z «— v,

deterministic global optimization [35]. Another suitable name for the new method
is PPS-method-after Partitioning Parameter Set The main idea of this kind of
method, first presented by the author in [101], can be partially extended to general
nonlinear interval systems of equations, although the result of the bisection of each

* The more so that there exists a dual class of PS$wdst[115], which exploit the idea of
Partitioning Solution Set
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interval parameter will béwo subintervalgather than the endpoints as it is in the
linear case.

If T is the total number of interval (with nonzero widths) elements in the matrix
A and right-hand side vectdr of the original interval system (3.14) (in general,
T < (n+1)n), then the algorithm of Table 1 stops after at mossgps, producing
an estimate for mifx, | x 0 =,3(A, b)} from below. How close the computed result
is to the exact value of miix, | x 0 =45(A, b)} depends mainly on the way we find
the estimatex(Q, r), that is, on the choice of the basic method Encl. In particular,
for the computed result to be optimal (exactly equal tofmjn x 0 =.s(A, b)}) it
is necessary and sufficient that the following condition holds:

The estimater(Q, r) is exact
for point linear systems

Anyway, if the dimension of the system under solution is sufficiently largefand
exceeds mere several tens, then, on modern medium class computers, the simplest
parameter partition method will never work till its natural completion, so that it
makes good sense to consider it astarative one.

To conclude, it is worth noting that for the classical problem of outer interval
estimation of the united solution set, PPS-method can be further modernized using
the information on the monotonicity of the outer estimate and subtle combinatorial
properties of the united solution set, which result in extremely efficient numerical
algorithms, the best in their class [102].

8. Conclusion

In our work, we have presented a new technique for analyzing and working out the
systems under interval uncertainty and ambiguity, its distinctive features being

« a broad use of the logical quantifies and language of the predicate calculus to
describe the system’s objectives, functioning, operational use and to demarcate
between different types of the system inputs and outputs;

« using Kaucher complete interval arithmetic to solve various mathematical prob-
lems that arise during the system analysis process.

What are the advantages and benefits of each of the above innovations? And
why are they necessary at all? The fact is, applying a formal language to describe
a system becomes indispensable when the number of its inputs and outputs grows
as well as the requirements on some of these inputs/outputs are not fixed and they
can change during the design stage and operational use.

In the problems traditionally considered by classical control theory, the overall
number of inputs/outputs is not big, so that working with usual verbal (expressed
in words) problem statements encounters no obstacles. The main source of math-
ematical difficulties, as classical control theory perceives them, is the complex
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relationship between the components and parameters of the object under study,
e.g., its dynamic character, nonsmoothness of the parameters, instabilities and sin-
gularities, etc.

However, if the quantity of inputs/outputs increases, we arrive at a qualitatively
new situation when the verbal description becomes hard to write out, understand
and operate with. As the result, it is quite easy to mix up which input or output
corresponds to this or that uncertainty type, through which input the disturbances
act on the system and which ones we can control by ourselves, etc. The latter is
especially pronounced for multistage control processes under uncertainty. In these
circumstances, the use of a formal language proves inevitable, and in our paper we
are simply making this natural step to fill the gap formed in large-scale systems
analysis.

As for Kaucher complete interval arithmetic, its promotion also turns out
unavoidable as far as we are involved into the study of essentially minimax prob-
lems. Additionally, it is an interval arithmetic with good both algebraic and order
properties, embracing classical interval arithmetic, so that its wide recognition by
the researchers and engineers is only a matter of time.

The proposed formal approach enables us to reduce the problems of inner and
outer interval estimation of the generalized solution sets to solving one non-interval
equation—dualization equation,—i.e., to a traditional numerical analysis problem.
One would naturally like to have this reduction available for the widest possible
class of nonlinear mappings and not only for those with simple occurrences
of the control variables as specified in Propositions 6.1-6.3. Enlarging the set of
mappingsF for which the main problems (4.1) and (4.2) can be solved, either by
the formal approach or by its extensions, is an interesting open problem, and some
recent advances in its solution can be found in [95].

Much of the results presented in the paper composed an interval analysis special
course given at the University of Girona, Spain, in the fall semester of 2000. The
author is indebted to the listeners of this course for their attention and stimulating
guestions.

The author is also grateful to Hoon Hong and Miguel Sainz for unforgettable
discussions on some results exposed in the paper, and to Andreas Frommer, Josep
Vehi, and Ivan Golosov for supporting this research.
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