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Abstract. The main subject of this work is mathematical and computational aspects of modeling of
static systems under interval uncertainty and/or ambiguity. A cornerstone of the new approach we
are advancing in the present paper is, first, the rigorous and consistent use of the logical quantifiers to
characterize and distinguish different kinds of interval uncertainty that occur in the course of modeling,
and, second, the systematic use of Kaucher complete interval arithmetic for the solution of problems
that are minimax by their nature. As a formalization of the mathematical problem statement, concepts
of generalized solution setsandAE-solution setsto an interval system of equations, inequalities, etc.,
are introduced. The major practical result of our paper is the development of a number of techniques
for inner and outer estimation of the so-called AE-solution sets to interval systems of equations. We
work out, among others,formal approach, generalized interval Gauss-Seidel iteration, generalized
preconditioningand PPS-methods. Along with the general nonlinear case, the linear systems are
treated more thoroughly.
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1. Introduction

What is Interval Analysis? Every scientific discipline is known to be characterized
by its separatesubject matterand specificmethod. To our mind, Interval Analysis
is a joint child of mathematics and computer science

• that deals with the problems involving, on input/output or somewhere at the
intermediate stages, interval or, more generally, bounded and set-membership
uncertainties,

• whose distinctive feature is treating uncertainty sets as entire objects through
establishing arithmetical and analytical operations, relations, etc., between them.

Interval Analysis and its specific methods are thus of highest value for the problems
in which the uncertainty and ambiguity arise from the very beginning, being an
inalienable part of the problem statement. In particular, Interval Analysis is in no
way reduced to the so-called validated numerics, self-validating computations, etc.,
where the interval methods are merely an auxiliary tool for the solution of problems
that are noninterval by their nature.

It was the clear consciousness of these facts that guided the author in writing
down the present work, which is devoted, according to the formal title, to math-
ematical and computational aspects of systems modeling under uncertainty and
ambiguity represented in the interval form, but, in point of fact, the contents of
the paper is not exhausted by applied considerations. We avail ourselves of the
practical problem statement mainly as grounds for a wider discussion, refinement
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of the notions of aninterval problem, of a solution to an interval problemand of
other fundamental concepts, as well as a starting point for the development of a
number of powerful computational techniques for inner and outer estimation of the
solution sets to interval equations. We make an attempt to consider interval static
systems with both general nonlinear input-state-output relationship and a simpler
linear case. To some extent, this paper is a survey of earlier works by the author
and other researchers, but a considerable part of the results presented is new and
has not been published anywhere.

In our work, the main mathematical object under study is aninterval system of
equationsof the form



ƒ1(a1, …,al , x1, …,xn) = b1,
ƒ2(a1, …,al , x1, …,xn) = b2,

...
ƒm(a1, …,al , x1, …,xn) = bm,

(1.1)

with intervalsa1, …,al , b1, …,bm, which we also write out in a concise from

F(a, x) = b (1.2)

with

F =




F1(a, x)
F2(a, x)

...
Fm(a, x)


 , x =




x1

x2
...

xn




and interval vectors

a =




a1

a2
...

al


 and b =




b1

b2
...

bm


 .

The interval systems of equations (1.1) are understood just asrecords denoting
the families of the point systems of equations of the same structure constituted by
independent varying of the parameters a1, …,al , b1, …,bm within the corresponding
intervalsa1, …,al , b1, …,bm.

The major results presented in the paper relates not to the general nonlinear
systems of the form (1.1)–(1.2), but to a simpler (although not less significant)
interval linear systems



a11x1 + a12x2 + · · · + a1nxn = b1,
a21x1 + a22x2 + · · · + a2nxn = b2,

...
.. .

...
an1x1 + an2x2 + · · · + amnxn = bm,

(1.3)
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with the intervalsaij andbi, or briefly

Ax = b (1.4)

with an interval matrixA = (aij ) and interval right-hand side vectorb = (bi).
The present work is devoted to the solution of various problem statements for

the interval systems of equations (1.1)–(1.2) and (1.3)–(1.4). However, the math-
ematical results proper are prefaced by examination of the process of formulating
and posing the interval problems. The necessity to treat this issue at length, being
quite urgent indeed, is due to its poor development in modern interval analysis as
well as the general entanglement both in methodology and terminology.

The viewpoint we advocate is that, in most cases, speaking of thesolution of an
interval equation(system of equations, inequalities, etc.) on its own is incorrect.
The right usage of words is to talk about the solution of this or thatproblem
statementrelating to the interval equation (system of equations, inequalities, etc.).
In its turn, the formulation of an interval problem statement means specifying at
least asolution setanda way of its estimation.

In this respect, the situation in interval analysis very much resembles that e.g.
in the theory of differential equations, where one usually avoids speaking of the
solution of a differential equation on its own, in general. Instead, people consider,
investigate and solve specific problem statements, such as “initial-value problem,”
“boundary-value problem” (for ordinary differential equations), “initial-value prob-
lem,” “Dirichlet boundary-value problem,” “Neumann boundary-value problem,”
“mixed problems,” “radiation problem,” and so on (for partial differential equa-
tions).

Our notation follows mainly the internationally adopted recommendations that
has been summarized in [45].� In particular, we denote intervals and interval objects
(vectors, matrices) by boldface letters (for instance,A, B, C, …,x, y, z), while under-
scores and overscores—x andx—designate the lower and upper endpoints of the
intervalx.

2. Generalized Solution Sets

2.1. DESCRIPTION OF APRACTICAL SITUATION

Our main practical example will be the so-calledinverse problem�� of the systems
analysis for a static (inertialess) input-state-output type system:

Given the input and output of a system,
find (or somehow estimate) its states.

� See alsohttp://www.cs.utep.edu/interval-comp/notations/suggestion.html
or http://www.mat.univie.ac.at/~neum/software/int.

�� Often referred to asidentification problem.
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The peculiarity of the situation we will deal with is that the input and output of the
system are not specified exactly, they are only supposed to be within some bounds,
lower and upper, or, which is equivalent, we are given merely intervals of their
possible values (variations).

Let the system state, input signal and output response be described by real vectors
x ∈ R

n, a ∈ R
l, andb ∈ R

m respectively. In the set of all inputs, we distinguish
between

• perturbations a1, …,ar , which act within intervalsa1, …,ar independently of
our will, and

• controls ar +1, …,al , which we ourselves can choose from intervalsar +1, …,al .

The perturbations disturb the system, while appropriate controls are to compensate
them and to facilitate reaching the required functioning characteristics. In classical
control theory, all the system outputs that ought to be maintained at predetermined
value or varied according to a predetermined plan are known to be calledregulated
outputs. However, involving intervals to describe the end use of the system outputs
introduces a specific character into the situation under study. Namely, we should
divide the set of all the system outputs into

• the componentsb1, b2, …,bs that we must be able to transform to any values
from prescribed attainability intervalsb1, …,bs, and

• the componentsbs+1, …,bm that must certainly fall into some intervals
bs+1, …,bm.

The outputs of the first type may be termed ascontrolledwhile the outputs of the
second type will be calledstabilized.

The examples of the controlled outputs are coordinates of a robotic arm or of
a manipulator, which are required to “cover” with guarantee each point of a given
operating area. As this covering takes place, we usually do not mind if the arm
(manipulator) could additionally attain some other (extra) positions outside the
operating area.

The typical example of the stabilized system output is the temperature inside a
chemical reactor in a number of technological processes. It must not differ from a
nominal one,T, greater than some prescribed magnitudeδT, but every temperature
from the interval [T − δT, T + δT] is equally acceptable and the specific value
of the actual temperaturet does not matter provided that the membershipt ∈
[T−δT, T+δT] holds true. In particular, some of the values from [T−δT, T+δT]
may turn out unattainable by the process in reality.

In the system under study, the input-state-output relationship is assumed to be
of the form

F(a, x) = b (2.1)

with a mapF : R
l × R

n → R
m. In general,F may have quite a sophisticated

form, but in the major part of our paper we will regard the componentsFi(a, x),
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✲

✲

✲
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a bx

F(a, x)

OUTPUTSINPUTS

controlling

ar+1, …,al

disturbing

a1, …,ar

stabilized

bs+1, …,bm

controlled

b1, …,bs

Figure 1. A structural scheme of a static control system.

i = 1, 2, …,m, asrational expressions, that is, as finite combinations of the variables
a, x and constants with elementary arithmetical operations (cf. [68], [69]). Also, we
suppose allFi to be continuous over their domains, that is, division by zero does not
occur inFi(a, x) within the intervalsa1, …,al and the range ofxconsidered. Overall,
the situation is described by the structural scheme presented in Figure 1.

It is worth noting that the above situation in which we make use of the termscon-
trol, regulation, controlling, etc., does not entirely coincide with that in which these
notions are used in classical control theory. It is customary that the control theory
is applied to dynamical systems, either time-continuous or time-discrete. However,
the development of the general systems theory has lead to the understanding that
the dependence on the time variable is of secondary importance in the definitions
of “control” and “controllability” (see, e.g., [66]). That is especially pronounced
in the abstract mathematical statements of the dynamic control problems, where
phase trajectories, phase constraints, admissible control actions, etc., are elements
of functional spaces. In the most general form, the notion of controllability of a
system (of a parameterized map) is closely related to the notion ofattainability.

Namely, M. Mesarovic and Ya. Takahara [66] formulate controllability as the
condition that every element from a marked subset of the codomain of the map
can be attained (covered) provided that we appropriately chose the parameters and
arguments of the map. More precisely, let the functionΦ(c) describe a final result
of the system operation depending on the controlc. Then the system is (completely)
controllable if and only if the following condition is valid:

For every final state R from a marked set
there exists a control action C from a feasible area
such that R= Φ(C).

But in such a form the controllability notion is equally applicable to static systems
as well, in which the time variable and the time interval do not figure at all (see,
e.g., [108]).

Besides, automatic control theory is not the only scientific discipline that has to
do with “controls.” In particular, the sense in which we use the term “control” (and
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related terms) is in good agreement with the terminology of operations research.
Recall the following generally adopted definition [1], [67]: anoperationis a pur-
poseful action that can be characterized as

U = ƒ(X, Y),

whereU is utility or the value of a criterion that represents quality of the system
functioning, X is a vector of variables that we cancontrol, and Y is a vector
of variables that cannotbe controlled(i.e., they are uncontrolled, or, to put this
another way,disturbing). Anyway, our use of words is quite legitimate.

Another comment. Strictly speaking, the word “uncertainty” that we use in
connection with the controlling inputs is not quite adequate to the practical sense
we mean by interval bounds of their possible variations. For example, one can hardly
speak of the “uncertainty” with respect to the intervals representing the ranges of
aircraft rudder and elevator. Still, we will further use the word “uncertainty” to keep
a uniform terminology, bearing in mind either our ignorance (lack of information)
or nonuniqueness (ambiguity) of the possible values as in the above aircraft control
example.

2.2. PRELIMINARY PROBLEM STATEMENT

Various kind of question can arise in connection with the system presented in the
preceding subsection. In our work, we study the following mathematical problem
statement—the problem of guaranteed set-membership estimation of the system
state from its inputs and outputs:

For what system states x can we choose, for any perturbations
a1 ∈ a1, …,ar ∈ ar and for any a priori given output
values b1 ∈ b1, …,bs ∈ bs, the corresponding input controls
ar +1 ∈ ar +1, …,al ∈ al such that the output response of
the system F(x, a) would be exactly equal to b1, …,bs in the
controlled outputs and would be insidebs+1, …,bm in the
stabilized outputs?

(2.2)

Solving set-membership identification problems in the interval (and even error-
bounded) context is not a novelty nowadays. However, the main distinctive feature
of the problems we deal with as compared with those exposed, for example, in
[127] is that we consider various and different from each other kinds of uncertainty:
controls-perturbations, etc.

If all the inputs and outputs of the system were determined precisely, the solution
of the problem (2.2) would reduce to the solution of the equation (2.1) with respect
to x. That is not at all the case when the input and output values have interval
uncertainty, but, in conformity with the terminology tradition of interval analysis,
we shall speak of the problem (2.2) that “the interval system of equations

F(a, x) = b (1.1)
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with the interval parametersa = (a1, a2, …,al)� ∈ IR
l andb = (b1, b2, …,bm)� ∈

IR
m is under consideration.” It is necessary to stress, however, that the interval

system of equations (1.1) by itself should be understood only as a formal designation
for a collection of point systems

F(a, x) = b

with the coefficientsa ∈ a andb ∈ b, nothing more. In particular, we do not even
have the right to perform any transformations with it (rearrange, reduce similar terms
and such like) unless we specify what is behind a “solution” to the equation (1.1),
etc., and in what sense we ought to understand the equivalence of transformations
with (1.1). Some words clarifying the problem statement are thus indispensable at
the point, and we define first what shall be meant by the “solution set” to the system
(1.1).

Getting started, it makes sense to reformulate the verbal statement of the main
problem (2.2) in a more strict and formalized way. To do that, we shall use the lan-
guage of the first orderpredicate calculuswith the logical quantifiers “∀ ” (universal
quantifier, “for all”) and “∃ (existential quantifier, “exists”) [20], [50]. In particular,
the condition

for any a1 ∈ a1, …,ar ∈ ar and for any b1 ∈ b1, …,bs ∈ bs, there exist
ar +1 ∈ ar +1, …,al ∈ al such that F1(a, x), …,Fs(a, x) are equal to b1, …,bs

and Fs+1(a, x), …,Fm(a, x) are insidebs+1, …,bm,

which is a cornerstone of the problem statement (2.2), has to be equivalently
rewritten as the following predicate (logical formula):

(∀ a1 ∈ a1) · · · (∀ ar ∈ ar ) (∀ b1 ∈ b1) · · · (∀ bs ∈ bs)

(∃ ar +1 ∈ ar +1) · · · (∃ al ∈ al) (∃ bs+1 ∈ bs+1) · · · (∃ bm ∈ bm)
(
F(a, x) = b

)
. (2.3)

To sum up, the set of all statesx satisfying the question of the problem (2.2) (we
will designate it byΞ) is described as follows

Ξ := { x ∈ R
n |

( ∀ a1 ∈ a1 ) · · · (∀ ar ∈ ar )( ∀ b1 ∈ b1 ) · · · ( ∀ bs ∈ bs )

(∃ ar +1 ∈ ar +1) · · · ( ∃ al ∈ al )(∃ bs+1 ∈ bs+1) · · · (∃ bm ∈ bm)(
F(a, x) = b

)
},

(2.4)

while the main problem under consideration can be reformulated as

Find (or somehow estimate)
the setΞ defined by (2.4).

Notice that the definition (2.4), the most correct mathematically, is arranged accord-
ing to theseparation axiomof the formal set theory ZFC (afterZermelo-Fraenkel-
axiom of Choice, see, e.g., [20], [50], [54], [123]). Namely, a pointx̃ belongs to the
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set (2.4) if and only if substituting it for the variablex in the predicate (2.3) results
in a true proposition. In other words, the property (2.3) which is written out, as a
predicate, after the vertical line in the record (2.4) “separates” some values ofx that
constitute the solution set.�

DEFINITION 2.1. The logical formula written out after the vertical line in the
definition of the set (2.4), which thus determines a characteristic property of the
points of this set, will be calledseparating predicateof the corresponding set (2.4).

We emphasize that, apart from setting the functionF and interval vectorsa
andb, the keystone in the definition (2.4) is our indicating the quantifiers∀ and∃
at various parametersa andb of the system (1.1). Another point is that the setΞ
determined by (2.4) has all the rights to be referred to as asolution setof the interval
system of equations (1.1) as, say, traditionally understood solution set formed byall
the solutionsx to the point equationsF(a, x) = b with a ∈ a andb ∈ b (the latter is
calledunited solution set, see Section 3.1). Basically, (2.4) is a solution set in some
generalized sense which we are going to discuss in the forthcoming sections. We
will refer to the solution sets determined by (2.4) and similar definitions involving
occurrences of different logical quantifiers asgeneralized solution setsof interval
equations systems.

2.3. QUANTIFIER FORMALISM

Let us summarize what has been done in the previous subsections. Taking the
inverse system analysis problem (2.2) as a prototype, we have realized the necessity
to consider the solution set of the form (2.4). In doing that, we applied the universal
and existential quantifiers to the system inputsaj , which are only known to belong
to some intervals, to express the principal distinction between

• the inputs that are not under our will, being external uncontrolled disturbances
(this corresponds to the record “∀ aj ∈ aj”),

and

• the inputs that we are able to vary within prescribed intervals by our will, i.e.,
to control (this corresponds to the record “∃ aj ∈ aj”).

With respect to the system outputsbi , the logical quantifiers was applied to distin-
guish between

• stabilization corridors of the system within which it is required to ensure func-
tioning of the system irrespective of values of the disturbances (this corresponds
to the record “∃ bi ∈ bi”),

� Some authors use the terms “selection,” “segregation” instead of “separation.” Besides, the con-
struction we pointed out determines, strictly speaking, infinitely many “separation axioms” obtained
by fixing this or that specific predicate, so that one may read of the “separations axioms” or even
“axiom schema of separation” in the fundamental treatises on the subject.
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and

• attainability sets of the system whose every element is to be covered as the result
of an appropriate choice of the controlled factors (this corresponds to the record
“ ∀ bi ∈ bi”).

However, the mathematical object described by the definition (2.4) has a separate
importance on its own, and one could arrive at introducing the general definition
of the solution sets (2.4) from an abstract standpoint as well, without invoking
practical analysis of intervally defined systems that we dwell on in Sections 2.1
and 2.2.

As is fairly simple to realize, a dual character is inherent to the very understanding
and interpretation of the interval (and, more generally, set-membership) uncertainty.
The point is that in real-life problems one is hardly interested in intervals by
themselves, as integral and undivided objects, with no further internal structure. In
most cases, we only use an intervalv in connection with a property (let us denote
it by P) that can be fulfilled or not for its point members. Under the circumstances,
the following different situations may occur:

• either the propertyP(v) considered (that may be a point equation, inequality,
etc.) holds forall membersv from the given intervalv,

• or the propertyP(v) holds only forsomemembersv from the intervalv, not
necessarily all (maybe, only for one value).

The above stated may mean, in particular, that in the first caseall values from an
interval are possible, while in the second case the interval means only bounds on
the (unknown) value, i.e., thatsome, not necessarily all, values are possible, and
these possible values belong to the given interval. The distinction between the two
types of the interval uncertainty is especially pronounced when a system has several
varying parameters that describe actions of different nature, which pursue different
goals and may conflict with each other (like disturbances-controls).

In formal writing, the above distinction is manifested in using the logical
quantifiers—either the universal quantifier “∀ ” or the existential quantifier “∃ ”:

• in the first case, we write “(∀ v ∈ v) P(v)” and shall speak of∀ -type (A-type) of
uncertainty,

• in the second case, we write “(∃ v ∈ v) P(v)” and are going to speak of∃ -type
(E-type) of uncertainty

(see also [99], [100], [104], [105], [107], [110]–[112], [117], [124]).
It is worthwhile to stress that our reasoning justifying the use of logical quanti-

fiers with respect to intervally uncertain parameters are equally applied not only to
interval algebraic systems of the form (1.1), but also to interval inequalities, inter-
val differential equations, integral equations and so forth. When strictly defining
solutions and solution sets to all these problems, we should consciously take into
account the difference between the interval uncertainty types. Specific examples
are in order.
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Let us consider an object described by a system of differential equations

dx
dt

= ƒ(t, x, v), (2.5)

t ∈ [0, T], x(0) = x0, (2.6)

where

t is time variable,
x(t) is a phase state vector,
v(t) is a control vector which is assumed to be within some

intervalV ∈ IR
p, i.e.,v(t) ∈ V for all t ∈ [0, T].

Attainability setof the system (2.5)–(2.6) is known to be [40], [61] the set of all
the endpointsx(T) of the trajectories of the system issuing from the pointx0 and
corresponding to various possible values of the controlv(t), that is, the set{

x(T) |
(
x(0) = x0

)
&

(
∃ v(t) ∈ V

) (
ẋ = ƒ

(
t, x(t), v(t)

))}
.

A more complex situation is when the object under consideration undergoes uncon-
trolled perturbation (noise)u(t) ∈ U, U ∈ IR

q, so that its mathematical model is

dx
dt

= ƒ(t, x, u, v), (2.7)

t ∈ [0, T], x(0) = x0, (2.8)

rather than (2.5)–(2.6). It is common knowledge that controlling a dynamical object,
aimed at achieving some objectives and/or optimizing a quality criterion, can be
conducted in one of the two alternative ways. Namely,

• the control action may be taken from a predeterminedprogramcalculated on
the base of ana priori information about the system,

or, otherwise,

• the control action may be formed as the result of aposition-based strategy
in which the control action is calculateda posteriori, relying on additional
information about the system we learn during the process.

In practice, the first of these alternatives corresponds to the control according to a
rigid scenario, while the second one is nothing but feedback regulation. Studying
and constructing position-based controls in dynamical systems is the subject matter
of differential gamestheory (see [37], [67]), an exciting (although not quite simple)
mathematical discipline into which we shall not delve deeply in our work. Still,
within the position approach the following “global” question makes sense:

What is the set of the final points x(T) to which, regardless of a specific
noise realization u(t) ∈ U, the initial position x(0) can be transferred by
appropriate choice of the control v(t) ∈ V?
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The set of points meeting the above requirement is exactly{
x(T) |

(
x(0) = x0

)
&

(
∀ u(t) ∈ U

)(
∃ v(t) ∈ V

)
(
ẋ = ƒ

(
t, x(t), u(t), v(t)

))}
, (2.9)

that is, in fact, may be characterized as a generalized solution set, as we have defined
them, to the interval system of differential equations (2.7)–(2.8).

Summing up, we see in these examples that the control design problem can be
equivalently reformulated as the problem of finding points from the set (2.9) of
the solution, in some generalized sense, which is constructed using our quantifier
formalism. Overall, the above ideas as applied to the interval differential equations
are still waiting to be elaborated and put into practice. Some tentative, but very
promising examples of fruitful applications of the quantifier language to control
system design can be found, e.g., in [39]. Meanwhile, an experience of study of
this kind of interval inequalities and interval optimization problems does exist.

A. Vatolin [124] was the pioneer in researching interval optimization problems
with quantified interval uncertainty (see also [21]). For interval linear system of
inequalities

Ax≤ b, (2.10)

A. Voshinin and G. Sotirov [126] seem to be the first who considered the solution
sets

{x ∈ R
n | (x≥ 0) & (∀ A ∈ A) (∀ b ∈ b) (Ax≤ b)},

{x ∈ R
n | (x≥ 0) & (∃ A ∈ A) (∀ b ∈ b) (Ax≤ b)},

{x ∈ R
n | (x≥ 0) & (∀ A ∈ A) (∃ b ∈ b) (Ax≤ b)},

{x ∈ R
n | (x≥ 0) & (∃ A ∈ A) (∃ b ∈ b) (Ax≤ b)}

in connection with linear constrained optimization problems under interval uncer-
tainty. Later, J. Rohn and J. Kreslová [90] studied the notions ofweak solvability
andstrong solvabilityfor interval linear inequalities (2.10):

• a system (2.10) is calledweakly solvableif for eachA ∈ A, b ∈ b the point
systemAx≤ b has a solution (which generally depends onA andb);

• a system (2.10) is calledstrongly solvableif there exists a solutioñx satisfying
the point systemAx≤ b for eachA ∈ A, b ∈ b.

It is not hard to see that the strong solvability of the interval inequalities system
Ax≤ b is nothing but the property of the set

{x ∈ R
n | (∀ A ∈ A)(∀ b ∈ b) (Ax≤ b)},

which is one of the generalized solution sets toAx = b, to be nonempty.
Overall, the mathematical object defined by the record (2.4) has a significance

of its own, and it makes sense to single it out as a separate notion. But, before
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doing this, it should be recognized that the definition (2.4) is not the most general
one yet. Since the different quantifiers do not commute with each other, we can
form another solution sets through combining “∀ ” and “∃ ” with the parameters and
changing their order!

For example, given a one-dimensional interval equation

φ(a1, a2, a3, a4, x) = b

with four interval parameters in the left-hand side function, one can consider, as a
solution set,

{x ∈ R
n | (∃ a2 ∈ a2)(∀ a1 ∈ a1)(∀ a4 ∈ a4)(∀ b ∈ b)(∃ a3 ∈ a3)(

ϕ(a1, a2, a3, a4, x) = b
)
},

or

{x ∈ R
n | (∀ a1 ∈ a1)(∀ a2 ∈ a2)(∃ a4 ∈ a4)(∀ b ∈ b)(∃ a3 ∈ a3)(

ϕ(a1, a2, a3, a4, x) = b
)
},

and so on.
Prior to formulating the general definition, let us remind that the most profound

generalization of the concept of a system of equations (inequalities, etc.) is the so-
calledconstraint satisfaction problemthat emerged in the researches on artificial
intelligence [64] in the late 70s. We will need a somewhat updated definition of a
numeric constraint satisfaction problem:

DEFINITION 2.2 [62]. A numerical constraint satisfaction problemis a triple
P = (V, D, C(x)) defined by

(i) a set of numeric variablesV = {x1, …,xn},
(ii) a set of domainsD = {D1, …,Dn} whereDi, a set of numeric values, is the

domain associated with the variablex1,

(iii) a set of constraintsC(x) = {C1(x), …,Cm(x)} where a constraintCi(x) is
determined by any numeric relation (equation, inequality, inclusion, etc.)
linking a set of variables under consideration.

A solution to a numeric constraint satisfaction problemP = (V,D, C(x)) is an
instantiation of the variables ofV for which both inclusion in the associated domains
and all the constraint ofC(x) are satisfied.

All the solutions of the constraint satisfaction problem thus constitute the set

{x ∈ D | C(x) is satisfied}.

We can complicate the situation assuming that the constraintsCi(x) entering the
Definition 2.2 depend on some parametersp1, p2, …,pl about which we only know
that they may belong to the intervalsp1, p2, …,pl. We have thus a constraint system
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C(p, x) = {C1(p, x), …,Cm(p, x)} with the interval parameters, and, as a conse-
quence, aninterval constraint satisfaction problem. Taking into account the dual
character of interval uncertainty and our above observations, the most general
definition of the set of solutions to such interval constraint satisfaction problem
(V, D,C(p, x)) should have the form

{x ∈ D | (Q1pπ1 ∈ pπ1
)(Q2pπ2 ∈ pπ2

) · · · (Ql pπl ∈ pπl
)(

C(p, x) is satisfied
)
}, (2.11)

where

Qi are logical quantifiers∀ or ∃ ,

p = (p1, p2, …,pl) ∈ R
l

is the vector of parameters of the constraints system considered,

p = (p1, p2, …,pl) ∈ IR
l

is the interval vector of the possible values of these parameters,

π = (π1, π2, …,πl)

is a permutation of the numbers 1, 2, …, l.

DEFINITION 2.3. The sets of the form (2.11) will be referred to asgeneralized
solution setsto the interval constraints satisfaction problem (V,D, C(p, x)).

In particular, for the interval systems of equations of the form (1.1) we adopt

DEFINITION 2.4. Generalized solution setsto an interval equations system
F(a, x) = b are the sets of the form

{x ∈ R
n | (Q1zπ1 ∈ zπ1)(Q2zπ2 ∈ zπ2) · · · (Ql +mzπl+m ∈ zπl+m)

(
F(a, x) = b

)
},

where

Q1, Q2, …,Ql +m

are the logical quantifiers∀ or ∃ ,

(z1, z2, …,zl +m) := (a11, …,al , b1, …,bm) ∈ R
l +m

is the aggregated (compound) parameter vector of the system

of equations considered,

(z1, z2, …,zl +m) := (a1, …,al , b1, …,bm) ∈ IR
l +m

is the aggregated vector of the intervals of the possible values

of these parameters,

(π1, π2, …,πl +m)

is a permutation of the integers 1, 2, …, l + m.

The Definitions 2.2 and 2.4 are, indeed, very general. The quantifier that cor-
responds to each interval element may have two values{∀, ∃ } and the order of
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the quantified terms in the separating predicate is also essential for the definition.
Therefore, the total number of the solution sets we can thus define for the interval
equations system (1.1) far exceeds 2l +m, that is, 2 to the power of the “number of
interval parameters of the system.” In the general case, these solution sets can be
practically interpreted as solutions of somegamesor multistep decision-making
processesunder interval uncertainty (which was first pointed out in [124]) as well
as solutions to some minimax operations research problems [99], [100].

2.4. INTERPRETATION

Game theory is widely recognized to be a method of exploration of the logic of
interaction between two or more rational actors. As a mathematical discipline, game
theory deals with both construction and investigation of models of conflict phenom-
ena, i.e., such ones that involve participants (calledplayers) pursuing different goals
by use of somestrategies.

In game theory and in multistage decision making, we must not only describe
which parameters are controllable, but also who controls specific parameters, and
in what order. These control actions are usually calledmovesand to specify the
sequence of moves it is natural to apply the language of the graph theory. Formally,
a finiteperfect information game(in the so-calledextensive form) is known to be
(see, e.g., [67], [78]) a quadruple

〈K, X,R,{hk}k ∈ K〉,

where

K is a finiteset of players;

X is a finitetree of the game(i.e, a graph that is a tree) of which

the nodes are calledpositionsand the root is calledinitial position;

for the positions, a succession relation is defined, so that the positions

that follow a given positionx ∈ X are termedalternativesof x,

while the positions that do not have alternatives arefinal positions,

and the paths that lead to them are calledparties;

the set of final positions is usually designated byX∗ ;

R is a partition of the setX \ X∗ to n priority subsets X1, X2, …,

whose number is equal to the cardinality of the setK,

such that thek-th player makes a move in a position fromXk;

hk arepayoff functionsof the game, i.e., such functions that assign

a payment of thek-th player to each final position.
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F(a, x) = b?

Figure 2. Game trees interpreting the generalized solution sets.

The above definition is the most general and we really do not need all its features.
To interpret the generalized solution sets, it will suffice to restrict ourselves to the
simplest game in which

• there are only two players,

• the tree of the game is asimple path(see [91]),

• the payoff functions are Boolean-valued, and

• the interests of the players—the values of their payoff functions— are diamet-
rically opposite (such games are termedantagonistic).

We can therefore think of the possible outcomes{0, 1} of the game as “loss-win,”
the loss of the first player being the win of the second one and vise versa.

Given a generalized solution set to the interval system of equationsF(a, x) = x,
let us consider such a game between the playersN (Nature) andW (We), in whichN
has at his disposal all the interval parameters having A-uncertainty, whileW controls
the parameters with E-uncertainty. The players make their moves in turn, one after
the other, so that the game tree is really a simple path and looks as one of those
described at Figure 2 depending on which player makes the first move in the starting
position. The latter is prescribed, as is easily seen, by which quantifier prefix, “∀ ” or
“ ∃ ”, comes first in the separating predicate of the solution set under consideration.
The result of the game is determined by whether the equalityF(a, x) = b is finally
attained or not: if the playerW manage to get it, then he has won the game;
otherwise, when we do not have the equalityF(a, x) = b in the final position, the
playerW has lost and the winner isN. Then, for example, the solution set

{x ∈ R
n | (∃ a2 ∈ a2)(∀ a1 ∈ a1)(∀ a3 ∈ a3)(∃ a4 ∈ a4)(∀ b2 ∈ b2) · · ·(

F(a, x) = b
)
}

can be interpreted in the following manner: there exists such a starting move of the
playerW (who begins the game) bya2 that, no matter how the playerN moves,
W can find an appropriate reply again, etc., so that the equalityF(a, x) = b will be
eventually achieved.

A specific value of the variablex may be thus considered as a parameter of the
game, while the generalized solution set is nothing but the set of all suchx’s that
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We defeat the Nature in the game defined by the interval system of equations (1.1)
and a specified distribution of the uncertainty types over its interval parameters.

To conclude, it is worth mentioning that in [51] V. Kreinovich et al. give a short
critical overview of the quantifier formalism we are developing, point out some
its successes and limitations. Meanwhile, some ideas concerning the distinction
between the interval uncertainty of the A-type and E-type penetrate even the com-
mercial interval Fortran 95 compiler recently released by Sun Microsystems Inc
[23]. The careful demarcation of the so-called “certain relations,” “possible rela-
tions,” and “set relations” in [23] is nothing but an attempt to classify the interval
binary relations—“>”, “ <”, “≤”, and “≥”—according to the uncertainty types the
intervals under comparison bear. Namely, the “certain relations” correspond to both
compared intervals being A-uncertain, the “possible relations” correspond to the
E-uncertainty of the intervals, while the “set relations” matches the case when the
uncertainty is mixed, i.e. one of the intervals has A-uncertainty and the other has
E-uncertainty.

3. AE-Solution Sets

3.1. DEFINITIONS

In order not to be lost in a great variety of generalized solution sets, it makes sense
to somewhat confine and structurize our considerations. In this work, we are going
to treat (for the time being) mainly the solution sets of the form (2.4), or, in other
words, the generalized solution sets with the separating predicate in whichall the
occurrences of the universal quantifier∀ precede the occurrences of the existential
quantifier ∃ . Using the terminology of the mathematical logic, we can rephrase
this condition by saying that the corresponding separating predicate must have an
AE-form.

DEFINITION 3.1.AE-solution setsare generalized solution sets to interval equa-
tions (inequalities, etc.) for which the separating predicate has AE-form.

Let us consider, for the AE-solution sets, various possible ways of describing
the uncertainty types distribution with respect to the interval parameters of the
system:

1. As far as the order of the quantifiers is fixed, the simplest of such ways is
to directly point out which quantifier is applied to this or that element of the
interval system. Namely, let us introduce anl-vectorα = (αi) and anm-vector
β = (βi) made up of the logical quantifiers and such that

αi :=

{
∀, if ai has A-uncertainty,
∃, if ai has E-uncertainty,

(3.1)

βi :=

{
∀, if bi has A-uncertainty,
∃, if bi has E-uncertainty.

(3.2)
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Specifyingα andβ, along with the interval system itself, completely determines
the corresponding AE-solution set.

2. Another way to represent the uncertainty types corresponding to the elements
of the interval system of equations (1.1) is to trace out partitions of the index
sets of the components of both the vectorsa and b. More precisely, let the
entire set of the indicesi of the entriesai , i.e., the set{1, 2, …, l} be divided
into two nonintersecting partŝΓ := {γ̂1, …, γ̂p} andΓ̆ := {γ̆1, …, γ̆q}, p+ q = l,
such that

ai is of the interval A-uncertainty fori ∈ Γ̂,

ai is of the interval E-uncertainty fori ∈ Γ̆.
(3.3)

Similarly, we introduce nonintersecting sets of the integer indices
∆̂ := {δ̂1, …, δ̂s} and ∆̆ := {δ̆1, …, δ̆t}, ∆̂ ∪ ∆̆ = {1, 2, …,m}, such that, in
the right-hand side vector,

bi is of the interval A-uncertainty fori ∈ ∆̂,

bi is of the interval E-uncertainty fori ∈ ∆̆.
(3.4)

We allow the natural possibility for some of the setsΓ̂, Γ̆, ∆̂, ∆̆ to be empty. It
is evident that

αi =

{
∀, if i ∈ Γ̂,

∃, if i ∈ Γ̆,
βi =

{
∀, if i ∈ ∆̂,

∃, if i ∈ ∆̆,

and, again, determininĝΓ andΓ̆, ∆̂ and∆̆ results in a complete specification of
an AE-solution set to the interval system of equations (1.1).

3. The third way to describe the uncertainty types distribution for an interval
system of equations is to fixdisjoint decompositionsof both the interval vectors
a andb. Namely, we define interval vectorsa∀ = (a∀

i ) anda ∃ = (a ∃
i ) and interval

vectorsb∀ = (b∀
i ) andb ∃ = (b ∃

i ), of the same sizes asa andb, as follows:

a∀
i :=

{
ai , if αi = ∀,
0, otherwise,

a∃
i :=

{
ai , if αi = ∃,
0, otherwise,

(3.5)

b∀
i :=

{
bi , if βi = ∀,
0, otherwise,

b ∃
i :=

{
bi , if βi = ∃,
0, otherwise.

(3.6)

Therefore,

a = a∀ + a ∃ , b = b∀ + b ∃ ,

a ∀
i ⋅ a ∃

i = 0, b ∀
i ⋅ b∃

i = 0

for all i. The vectorsa∀ and b∀ concentrate all the interval elements of the
system that correspond to the A-uncertainty, while the vectorsa∃ andb ∃ store
all the elements that correspond to the interval E-uncertainty.
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It should be stressed that the three groups of the objects considered, which arise
in connection with an AE-solution set of an interval system (1.1), namely

1) the quantifier vectorsα andβ,

2) decompositions of the index sets of the vectorsa andb to the nonintersecting
subsetŝΓ andΓ̆, ∆̂ and∆̆,

3) disjoint decompositions of the interval vectorsa = a∀ + a ∃ andb = b∀ + b ∃ ,

are in a one-to-one correspondence, so that pointing out any one item of the above
triple immediately determines the other two. We will extensively use all three
descriptions and change any one for another without special explanations.

Summarizing, we can give the following

DEFINITION 3.2. Let, for the interval equationF(a, x) = b, a distribution of various
uncertainty types over its interval elements be represented by the quantifier vectors
α andβ defined by (3.1)–(3.2), or, which is equivalent, by disjoint decompositions
of the index sets ofa andb defined by (3.3)–(3.4). We will call the set

{x ∈ R
n |

(∀ aγ̂1 ∈ aγ̂1) · · · (∀ aγ̂p ∈ aγ̂p)(∀ bδ̂1
∈ bδ̂1

) · · · (∀ bδ̂s
∈ bδ̂s

)

( ∃ aγ̆1
∈ aγ̆1

) · · · ( ∃ aγ̆q
∈ aγ̆q

)( ∃ bδ̆1
∈ bδ̆1

) · · · ( ∃ bδ̆t
∈ bδ̆t

)(
F(a, x) = b

)
}

(3.7)

AE-solution set of the typeαβ to the interval system of equationsF(a, x) = b (or set
of AE-solutions of the typeαβ ) and denote it byΞαβ (F, a, b).�

The particular cases of the above definition are the following three solution sets
which have been the subject of (more or less) active research in modern interval
analysis:

• United solution set

Ξuni(F, a, b) = {x ∈ R
n | (∃ a ∈ a)(∃ b ∈ b)

(
F(a, x) = b

)
}, (3.8)

formed by the solutions of all point equations systemsF(a, x) = b with a ∈ a and
b ∈ b. It is undoubtedly the most popular of the solution sets, which is no wonder
due to historical origination of interval analysis from sensitivity problems.Ξuni

is sometimes called simplysolution set. Its analogue for dynamical systems is
the well-knownattainability set(see [40], [61]).

• Tolerable solution set

Ξtol(F, a, b) = {x ∈ R
n | (∀ a ∈ a)(∃ b ∈ b)

(
F(a, x) = b

)
}, (3.9)

formed by all point vectorsx such that the imageF(a, x) ∈ b for anya ∈ a (see,
e.g., [18], [48], [69], [71], [74], [119], [120]). It was actually the first of the
solution sets the definition of which involves different logical quantifiers.

� In his early papers [99], [100], [104], [105], [107], [113], the author called themαβ-solution
sets.
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• Controllable solution set

Ξctr(F, a, b) = {x ∈ R
n | (∀ b ∈ b)(∃ a ∈ a)

(
F(a, x) = b

)
}, (3.10)

formed by all point vectorsx ∈ R
n, such that for any desiredb ∈ b we can find

an appropriatea ∈ a satisfyingF(a, x) = b (see [108]).

We could have already seen a practical example of an AE-solution set in Sec-
tions 2.1 and 2.2 examining the inverse systems analysis problem. Another specific
example when a set of AE-solutions to an interval equations system naturally
comes into existence, let us consider thequality control model. Similar one has
been recently studied in the interval (bounded errors) context by S. Hadjihassan,
E. Walter and L. Pronzato in [30], but unlike their off-line model that examines the
quality control problem only for the design stage, we turn to a more complete and
realistic model that takes into account uncertainty (ignorance) both at the design
and manufacturing stages.

Developing Taguchi’s ideas (see, e.g., [30]), it is natural to divide the set of all
factors that affect the output performance characteristics of production into three
subsets:

• design factors x∈ R
n whose values are to be chosen at the design stage,

• noise factors u∈ R
p whose values we can neither predict at the design stage nor

control during the manufacturing process, and

• manufacturing control factors v∈ R
q that we are able and have to use to

compensate the influence of the noise factors at the manufacturing stage to
ensure the desired output characteristics.

A typical quality control problem is to attain certain target valuesy∗
i of given perfor-

mance characteristicsyi , i = 1, 2, …,m, while the dependency of the performance
characteristicyi on the factorsx, u, v is described by a mathematical model

yi = Fi(x, u, v), i = 1, 2, …,m,

with Fi being some known functionsRn × R
p × R

q → R.
The only available information on the fluctuation of the noise factors is assumed

to be expressed in the form of intervals of their possible values:ui ∈ ui = [ui , ui ],
i = 1, 2, …,p. Similarly, the manufacturing factorsvi may not be arbitrary. One
can only take them from some intervalsvi = [vi , vi], i = 1, 2, …,q. Finally, the
substantial modification of the model we deal with as compared to the model
considered in [30] is that, instead of the point target valuesy∗

i at the output of
the manufacturing process, we take entire intervalsyi = [y

i
, yi ], i = 1, 2, …,m, of

feasible performance characteristics, falling into them being permitted according
to the process specification and/or quality criteria. In particular, ify

i
= yi = y∗

i , we
arrive at the traditional model.
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Under the conditions described, the main problem with the quality control is as
follows:

How can one choose the design parameters x that for any noise factors
ũ1, …, ũp, which are inside the limits ofu1, …,up respectively, such
manufacturing control factors̃v1 ∈ v1, …, ṽq ∈ vq can be selected that the
corresponding output performance characteristics Fi(x, ũ, ṽ) would still
remain within the process specificationsyi , i = 1, 2, …,m?

It is not too hard to realize that all such designsx form the set

{x ∈ R
n | (∀ u1 ∈ u1) · · · (∀ up ∈ up)(∃ v1 ∈ v1) · · · (∃ vq ∈ vq)(

F1(x, u, v) ∈ y1 · · ·Fm(x, u, v) ∈ ym

)
},

or, if we puty = (y1, …,ym)�,

{x ∈ R
n | (∀ u1 ∈ u1) · · · (∀ up ∈ up)(∃ v1 ∈ v1) · · · (∃ vq ∈ vq)

(∃ y1 ∈ y1) · · · (∃ ym ∈ ym)
(
F(x, u, v) = y

)
},

which is exactly a generalized AE-solution set, as they have been defined above, to
the system of interval equations


F1(x, u, v) = y1,

...

Fm(x, u, v) = ym.

3.2. CHARACTERIZATION OF AE-SOLUTION SETS

THEOREM 3.1.

Ξαβ (F, a, b) =
⋂

â ∈ a∀

⋂
b̂ ∈ b∀

⋃
ă∈ a∃

⋃
b̆∈ b∃

{x ∈ R
n | F(â + ă, x) = b̂ + b̆}.

Proof.According to the definitions of intersection and union of sets

Ξαβ (F, a, b) = {x ∈ R
n | (∀ â ∈ a∀ )(∀ b̂ ∈ b∀ )(∃ ă ∈ a ∃ )(∃ b̆ ∈ b∃ )(

F(â + ă, x) = b̂ + b̆
)
}

=
⋂

â ∈ a∀

⋂
b̂ ∈ b∀

{x ∈ R
n | (∃ ă ∈ a ∃ )(∃ b̆ ∈ b ∃ )

(
F(â + ă, x) = b̂ + b̆

)
}

=
⋂

â ∈ a∀

⋂
b̂ ∈ b∀


 ⋃

ă∈ a∃

⋃
b̆∈ b∃

{x ∈ R
n | F(â + ă, x) = b̂ + b̆}


 . ✷
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The value of the next result is mainly theoretical, but it facilitates better under-
standing the essense of the generalized solution sets by exposing their minimax
nature.

THEOREM 3.2. Let the mapping F be such that each controlling parameter
ak+1, …,al, which correspond to∃ -type of uncertainty, occurs in at most one of
the components Fi(a, x). Then the membership x∈ Ξαβ (F, a, b) is equivalent to the
following system of inequalities:






min
â ∈ a∀

max
ă∈ a∃

Fi(â + ă,x) ≥ bi ,

max
â∈ a∀

min
ă∈ a∃

Fi(â + ă, x) ≤ bi ,

—for the controlled outputs, i= 1, …,s,


min
â ∈ a∀

max
ă∈ a∃

Fi(â + ă,x) ≥ bi ,

max
â∈ a∀

min
ă∈ a∃

Fi(â + ă, x) ≤ bi ,

—for the stabilized outputs, i= s+ 1, …,m.

(3.11)

Proof. Let b = (b1, b2, …,bm) = b̂ + b̆, b̂, b̆ ∈ R
m, a = â + ă, â, ă ∈ R

l . We
perform the following equivalent transformations with the separating predicate of
the AE-solution set to the interval equation:

Ξαβ (F, a, b)

= {x ∈ R
n | ( ∀ â ∈ a∀ )(∀ b̂ ∈ b∀ )(∃ ă ∈ a∃ )(∃ b̆ ∈ b ∃ )

(
F(a, x) = b

)
}

= {x ∈ R
n | (∀ â ∈ a∀ )(∀ b̂ ∈ b∀ )(∃ ă ∈ a ∃ )(

F1(a, x) = b1 &

· · · &

Fs(a, x) = bs &

Fs+1(a, x) ∈ bs+1 &

· · · &

Fm(a, x) ∈ bm
)
}

= {x ∈ R
n | (∀ â ∈ a∀ )(∀ b̂ ∈ b∀ )(∃ ă ∈ a ∃ )(

F1(a, x) ≥ b1 & F1(a, x) ≤ b1 &

· · · &

Fs(a, x) ≥ bs & Fs(a, x) ≤ bs &

Fs+1(a, x) ≥ bs+1 & Fs+1(a, x) ≤ bs+1 &

· · · &

Fm(a, x) ≥ bm & Fm(a, x) ≤ bm
)
}
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= {x ∈ R
n | (∀ â ∈ a∀ )(∀ b̂ ∈ b∀ )

(∃ ă ∈ a∃ )
(
F1(a, x) ≥ b1

)
& ( ∃ ă ∈ a∃ )

(
F1(a, x) ≤ b1

)
&

· · · &

(∃ ă ∈ a∃ )
(
Fs(a, x) ≥ bs

)
& ( ∃ ă ∈ a∃ )

(
Fs(a, x) ≤ bs

)
&

(∃ ă ∈ a∃ )
(
Fs+1(a, x) ≥ bs+1

)
& ( ∃ ă ∈ a∃ )

(
Fs+1(a, x) ≤ bs+1

)
&

· · · &

(∃ ă ∈ a∃ )
(
Fm(a, x) ≥ bm

)
& ( ∃ ă ∈ a∃ )

(
Fm(a, x) ≤ bm

)
}.

The last equality is true by virtue of the restriction we impose uponF: the sets of
variables matching non-zero components ofa ∃ that occur in different components
of F simply do not intersect with each other, so we are allowed to “carry” the
existential quantifiers to the separate members of the conjunctions [20], [50].

Notice that for functionsƒ which are continuous overa we have the following
equivalences:

(∃ a ∈ a)
(
ƒ(a) ≥ b

)
⇐⇒ max

a∈ a
ƒ(a) ≥ b, (3.12)

(∃ a ∈ a)
(
ƒ(a) ≤ b

)
⇐⇒ min

a∈ a
ƒ(a) ≤ b. (3.13)

Hence, we may continue our transformations as follows:

Ξαβ (F, a, b)

=
{

x ∈ R
n | (∀ â ∈ a∀ )(∀ b̂ ∈ b∀ )((

max
ă∈ a∃

F1(a, x) ≥ b1

)
&

(
min
ă∈ a∃

F1(a, x) ≤ b1

)
&

· · · &(
max
ă∈ a∃

Fs(a, x) ≥ bs

)
&

(
min
ă∈ a∃

Fs(a, x) ≤ bs

)
&(

max
ă∈ a∃

Fs+1(a, x) ≥ bs+1

)
&

(
min
ă∈ a∃

Fs+1(a, x) ≤ bs+1

)
&

· · · &(
max
ă∈ a∃

Fm(a, x) ≥ bm

)
&

(
min
ă∈ a∃

Fm(a, x) ≤ bm

))}
.

Further,

(∀ b ∈ b)
(
ƒ(a) ≥ b

)
⇐⇒ ƒ(a) ≥ b,

(∀ b ∈ b)
(
ƒ(a) ≤ b

)
⇐⇒ ƒ(a) ≤ b,

so we have
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Ξαβ (F, a, b)

=
{

x ∈ R
n | (∀ â ∈ a∀ )((

max
ă∈ a∃

F1(a, x) ≥ b1

)
&

(
min
ă∈ a∃

F1(a, x) ≤ b1

)
&

· · · &(
max
ă∈ a∃

Fs(a, x) ≥ bs

)
&

(
min
ă∈ a∃

Fs(a, x) ≤ bs

)
&(

max
ă∈ a∃

Fs+1(a, x) ≥ bs+1

)
&

(
min
ă∈ a∃

Fs+1(a, x) ≤ bs+1

)
&

· · · &(
max
ă∈ a∃

Fm(a, x) ≥ bm

)
&

(
min
ă∈ a∃

Fm(a, x) ≤ bm

))}
.

Next,

(∀ a ∈ a)
(
ƒ(a) ≥ b

)
⇐⇒ min

a∈ a
ƒ(a) ≥ b,

(∀ a ∈ a)
(
ƒ(a) ≤ b

)
⇐⇒ max

a∈ a
ƒ(a) ≤ b,

and we get

Ξαβ (F, a, b)

=
{

x ∈ R
n |(
min
â∈ a∀

max
ă ∈ a∃

F1(a, x) ≥ b1

)
&

(
max
â ∈ a∀

min
ă ∈ a∃

F1(a, x) ≤ b1

)
&

· · · &(
min
â∈ a∀

max
ă ∈ a∃

Fs(a, x) ≥ bs

)
&

(
max
â ∈ a∀

min
ă ∈ a∃

Fs(a, x) ≤ bs

)
&(

min
â∈ a∀

max
ă ∈ a∃

Fs+1(a, x) ≥ bs+1

)
&

(
max
â ∈ a∀

min
ă ∈ a∃

Fs+1(a, x) ≤ bs+1

)
&

· · · &(
min
â∈ a∀

max
ă ∈ a∃

Fm(a, x) ≥ bm

)
&

(
max
â ∈ a∀

min
ă ∈ a∃

Fm(a, x) ≤ bm

)}
,

which coincides with the system (3.11). ✷

3.3. QUANTIFIER FORMALISM IN THE LINEAR CASE

In the rest of our paper, we consider more thoroughly the simplest intervallinear
algebraic systems (ILAS)

Ax = b (3.14)
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with an intervalm × n-matrix A = (aij ) and intervalm-vectorb = (bi). This kind of
problem naturally arises, for instance, in the following situation.

Let us be given a static system of the form described in Section 2, about which
the following assumptions are made:

(i) all the componentsFi(a, x) are bilinear functions ofx anda, that is,

Fi(a, x) =
∑
j, k

hijkajxk

with some known coefficientshijk ∈ R,

(ii) each ofaj occurs only once (if at all) in at most one of the component expressions
Fi(a, x) of the above bilinear form.

The latter means, in particular, that each of the system inputsaj , j = 1, 2, …, l, may
affect only one of the outputsFi , i = 1, 2, …,m. In these conditions, the indexk
becomes unnecessary, but it makes sense to introduce an additional indexi for the
inputsaj ’s indicating the componentFi in which they occur. Thenaj ’s turn intoaij ’s
and one can put, without loss of generality, that all the scaling coefficientshij are
equal to 1. Overall, we take

Fi(a, x) =
∑

j

aij xj , i = 1, 2, …,m, (3.15)

or, which is equivalent,

F(a, x) = Ax (3.16)

with anm × n-matrix A = (aij ). Accordingly, if the interval uncertainty is present
in the system inputs and/or outputs, we arrive at an interval linear system of the
form (3.14). In practice, expressions (3.15)–(3.16) may occur, for example, in linear
decision models of the form

K∑
k= 1

wkaik,

wherewk are criteria weights andaik may represent either partial utilities in mul-
tiattributive utility theory [46] or local priorities of alternatives in the Analytic
Hierarchy Process [94] or something else.

We reformulate the notions and concepts advanced in Section 3.1 to fit the
features of the interval linear systems of the above form.

DEFINITION 3.3.AE-solution setsare generalized solution sets to interval linear
systems for which the separating predicate has AE-form.

As in the general case treated in Section 3.1, there are three equivalent ways to
describe which uncertainty type is represented by this or that interval parameter of
the system:
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1. The first way is direct pointing of the quantifiers which are applied in particular
intervals. Let the entire set of the index pairs (i, j) of the elementsaij , that is,
the set

{(1, 1), (1, 2), …, (1, n), (2, 1), (2, 2), …, (2, n), …, (m, 1), (m,2), …, (m, n)},

be divided into two nonintersecting parts

Γ̂ = {γ̂1, …, γ̂p} ⊂ N
2 and Γ̆ := {γ̆1, …, γ̆q} ⊂ N

2,

p + q = mn, such that

• the parameteraij belongs to A-type of the interval uncertainty for (i, j) ∈ Γ̂,

• the parameteraij belongs to E-type of the interval uncertainty for (i, j) ∈ Γ̆.

Similarly, we introduce nonintersecting sets of integer indices

∆̂ = {δ̂1, …, δ̂s} ⊂ N and ∆̆ = {δ̆1, …, δ̆t} ⊂ N,

s+ t = m, such that, in the right-hand side,

• the elementbi is subsumed under the interval A-uncertainty fori ∈ ∆̂,

• the elementbi is subsumed under the interval E-uncertainty fori ∈ ∆̆.

Also, we allow the natural possibility for some of the setsΓ̂, Γ̆, ∆̂, ∆̆ to be
empty.

2. Like for the general interval equations of the form (1.1), to visually represent
various uncertainty types that correspond to the elements of the linear system,
it is convenient to introduce the quantifierm × n-matrix α = (αij ) andm-vector
β = (βi) such that

αij =

{
∀, if ( i, j) ∈ Γ̂,

∃, if ( i, j) ∈ Γ̆,
βi =

{
∀, if i ∈ ∆̂,

∃, if i ∈ ∆̆.
(3.17)

3. The third way to specify the uncertainty types distribution for an interval linear
system is to determine disjoint decompositions of both the interval matrix of the
system and its right-hand side. As before, we define interval matricesA∀ = (a∀

ij )

andA∃ = (a ∃
ij ) and interval vectorsb∀ = (b∀

i ) andb ∃ = (b ∃
i ) of the same sizes

asA andb as follows:

a∀
ij =

{
aij , if αij = ∀,
0, otherwise,

a∃
ij =

{
aij , if αij = ∃,
0, otherwise,

(3.18)

b∀
i =

{
bi , if βi = ∀,
0, otherwise,

b ∃
i =

{
bi , if βi = ∃,
0, otherwise.

(3.19)

Thus

A = A∀ + A∃ , b = b∀ + b ∃ ,

a ∀
ij ⋅ a ∃

ij = 0, b ∀
i ⋅ b ∃

i = 0
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for all i, j, that is, the matricesA∀ , A∃ and vectorsb∀ , b ∃ really form disjoint
decompositions forA andb respectively.

DEFINITION 3.4. Let the uncertainty types distribution over the elements of the
matrixA and right-hand sideb be described by the quantifierm × n-matrixα = (αij )
andm-vectorβ = (βi) (defined by (3.17)), or by the equivalent decomposition of
the index sets to subsetsΓ̂, Γ̆, ∆̂, ∆̆. We will refer to the set

Ξαβ (A, b)

= {x ∈ R
n |

(∀ aγ̂1 ∈ aγ̂1) … (∀ aγ̂p ∈ aγ̂p) (∀ bδ̂1
∈ bδ̂1

) … (∀ bδ̂s
∈ bδ̂s

)

(∃ aγ̆1
∈ aγ̆1

) … (∃ aγ̆q
∈ aγ̆q

) (∃ bδ̆1
∈ bδ̆1

) … (∃ bδ̆t
∈ bδ̆t

)

(Ax = b)},

(3.20)

asAE-solution set of the typeαβ to the interval linear systemAx = b.

As before, the following well-known solution sets to interval linear systems—

• theunited solution set(often called simplysolution set, see, e.g., [2], [32], [45],
[68], [69] and extensive references there)

Ξuni(A, b) = {x ∈ R
n | (∃ A ∈ A)(∃ b ∈ b) (Ax = b)},

• tolerable solution set(see, e.g., [48], [69], [119], [120])

Ξtol(A, b) = {x ∈ R
n | (∀ A ∈ A)(∃ b ∈ b) (Ax = b)},

• controllable solution set(see, e.g., [108], [114])

Ξctr(A, b) = {x ∈ R
n | (∀ b ∈ b)(∃ A ∈ A) (Ax = b)}.

—are extreme points of a large family of 2m(n+1) all possible AE-solution sets, i.e.
having the form (3.20). The fourth extreme point of the family is the set

{x ∈ R
n | (∀ A ∈ A)(∀ b ∈ b) (Ax = b)}.

Considering it is not senseless, although mainly dull, since for the equations this
solution set is empty in most cases.

In general terms, let theith row of the matrixα entirely consists of the quantifiers
∀ and the respective element of the vectorβ is ∀ too. ThenΞαβ (A, b) = ∅, if there
is at least one interval with nonzero width amongst the elementsa1j , …,ain, bi .
Because of this,(

m
1

)
+
(

m
2

)
+ · · · +

(
m
m

)
= 2m− 1

of the AE-solution sets provea priori empty for the interval linearm × n-system with
the essentially interval elements. Overall, the number of “nontrivial” AE-solution
sets lessens to 2m(n + 1)− 2m + 1 = 2m(2mn− 1) + 1 for such systems.



348 SERGEY P. SHARY

✲

✻

✟✟✟✟✟✟✟✟✟✟✟✟✟✟

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

✟✟✟✟✟✟✟✟✟✟✟✟✟✟

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❆

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❆

x1

x2

3

3

Ξuni

Ξtol

Ξctr = ∅

�����

Figure 3. United solution setΞuni and tolerable solution setΞtol of the system (3.21).

For example, we can consider 22(24− 1) + 1 = 61 generalized AE-solution sets
for an interval linear 2× 2-system. Figures 3 and 4 show some solution sets to the
popular interval linear system

(
[ 2, 4] [−2, 1]
[−1, 2] [ 2, 4]

)
x =

(
[−2, 2]
[−2, 2]

)
(3.21)

from [6] repeatedly considered by many authors.
Notice that alwaysΞαβ (A, b) ⊆ Ξuni(A, b), that is, the united solution set is the

widest in the collection of all AE-solution sets to interval systems. This observation
can be generalized. Namely, if on the set of the logical quantifiers{∀, ∃ } a partial
ordering “�” is introduced, setting∀ � ∃ , and the relationshipsα � α ′ , β � β ′ ,
αβ � α ′β ′ are understood componentwise and elementwise, then for anyA andb
there holds

αβ � α ′β ′ ⇒ Ξαβ (A, b) ⊆ Ξα′β′ (A, b). (3.22)
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Figure 4. Some AE-solution sets of the interval linear system (3.21).

One can easily see that in Figures 3 and 4.
The property (3.22) may turn out very helpful when examining the general-

ized solution sets to interval equations systems. If we have already found out, for
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example, that for the system (3.21)

Ξ(∃∃
∃∃

)(
∀
∃

) = Ξ(∃ ∀
∀∃

)(
∃
∀

) = ∅,

then, through “weakening” of quantifiers in the separating predicate, we can con-
clude that the controllable solution setΞctr for (3.21) is also empty, and such are
another 45 solution sets to the system (3.21) that may be derived from the above
three by combining the quantifiers before the elements of the matrix. The reasoning
behind the property (3.22) may be equally extended to general interval nonlinear
systems as well and, in fact, we have already done that in Theorems 6.4.

3.4. AE-SOLUTION SETS FORINTERVAL LINEAR SYSTEMS

In this subsection, we derive various equivalent characterizations (descriptions) of
the generalized AE-solution sets to interval linear systems and, relying on them,
study some simple properties of these solution sets.

Prior to getting started, it is worth noting that the interval linear system of
the form (3.14) is quite special in the sense that all its equations are independent
from each other, and every interval parameter of the system occurs in only one
equation. To exclude from our consideration the degenerate situations when all the
interval parameters of a separate equation of (3.14) have A-uncertainty, we will
take everywhere in the rest of the paper that,for each i= 1, 2, …,m, there exists at
least one E-uncertain interval parameter among the entries

ai1, ai2, …,ain, bi

of the system (3.14) under study.
We give an obvious set-theoretical description of the AE-solution sets first.

THEOREM 3.3.

Ξαβ (A, b) =
⋂

â ∈ a∀

⋂
b̂∈ b∀

⋃
ă ∈ a∃

⋃
b̆ ∈ b∃

{x ∈ R
n | (Â + Ă) x = b̂ + b̆}.

In particular, if A is a square nonsingular interval matrix, then

Ξαβ (A, b) =
⋂

â ∈ a∀

⋂
b̂∈ b∀

⋃
ă ∈ a∃

⋃
b̆ ∈ b∃

(Â + Ă)−1(b̂ + b̆).

Proof. According to the definitions of intersection and unity of sets

Ξαβ (A, b) = {x ∈ R
n | (∀ Â ∈ A∀ )(∀ b̂ ∈ b∀ )(∃ Ă ∈ A∃ )(∃ b̆ ∈ b ∃ )(

(Â + Ă) x = b̂ + b̆
)
}

=
⋂

â ∈ a∀

⋂
b̂∈ b∀

{x ∈ R
n | (∃ Ă ∈ A∃ )(∃ b̆ ∈ b ∃ )

(
(Â + Ă) x = b̂ + b̆

)
}

=
⋂

â ∈ a∀

⋂
b̂∈ b∀

⋃
ă ∈ a∃

⋃
b̆ ∈ b∃

{x ∈ R
n | (Â + Ă) x = b̂ + b̆}. ✷
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In particular, for the united solution set of the interval linear system (3.14) with
the matrixA we have

Ξuni(A, b) =
⋃

A ∈ A

⋃
b∈ b

{x ∈ R
n | Ax = b},

which explains its name.

We turn now to the analytical characterizations of the generalized AE-solution
sets to interval linear systems of the form (3.14). The fundamental result of our
theory is

THEOREM 3.4.Let, in the interval linear systemAx = b with m × n-matrix
A = (aij ) and m-vectorb = (bi), at least one of the interval elements
ai1, ai2, …,ain, bi is of E-uncertainty for every i= 1, 2, …,m. Then the point x
belongs to the solution setΞαβ (A, b) if and only if

A∀ ⋅ x− b∀ ⊆ b ∃ − A∃ ⋅ x, (3.23)

where “⋅” is interval matrix multiplication.

Proof. Using the matricesA∀ , A∃ and vectorsb∀ , b∃ introduced by (3.18)–
(3.19), we can rewrite Definition 3.4 of the solution setΞαβ (A, b) in the following
equivalent form:

Ξαβ (A, b) = {x ∈ R
n | (∀ Â ∈ A∀ )(∀ b̂ ∈ b∀ )(∃ Ă ∈ A∃ )(∃ b̆ ∈ b∃ )(

(Â + Ă)x = (b̂ + b̆)
)
}.

It is not hard to complete the proof of the theorem now, transforming equivalently
the separating predicate of the solution set. We have

Ξαβ (A, b) = {x ∈ R
n | (∀ Â ∈ A∀ )(∀ b̂ ∈ b∀ )(∃ Ă ∈ A∃ )(∃ b̆ ∈ b∃ )

(Âx− b̂ = b̆− Ăx)}
= {x ∈ R

n | (∀ Â ∈ A∀ )(∀ b̂ ∈ b∀ ) (Âx− b̂ ∈ b ∃ − A∃ ⋅ x)}
= {x ∈ R

n | A∀ ⋅ x− b∀ ⊆ b ∃ − A∃ ⋅ x},

since

b ∃ − A∃ ⋅ x = {b̆− Ăx | Ă ∈ A∃ , b̆ ∈ b∃ }

and

A∀ ⋅ x− b∀ = {Âx− b̂ | Â ∈ A∀ , b̂ ∈ b∀ }

in view of the properties of interval matrix operations [2], [69]. ✷

The above result was first obtained by S. Shary [107], [112]. It is pertinent
to note that Theorem 3.4 generalizes all previously known characterizations of
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various solution sets to interval linear systems—for the united solution set (Beeck’s
characterization, see [69]), for the tolerable solution set (see, e.g., [69], [71], [119])
and controllable solution set [59], [108], [114].

The next remarkable characterization result, which is due to J. Rohn [89], refor-
mulates Theorem 3.4 in an analytical form using linear inequalities system with
moduli thus generalizing the well-known Oettli-Prager theorem for the united solu-
tion set [76] and analogous characterization for the tolerable solution set [88]:

THEOREM 3.5.The point x belongs to the solution setΞαβ (A, b) if and only if

|(mid A) ⋅ x−mid b| ≤ (radA∃ − radA∀ ) ⋅ |x| + (radb ∃ − radb∀ ). (3.24)

Proof. The inclusionp ⊆ q of interval vectorsp, q ∈ IR
n is known (see, e.g.,

[69]) to be equivalent to the inequality

|q−mid p| ≤ radq− radp.

Hence, the characterization (3.23) can be rewritten in the following form:

|(b ∃ − A∃ ⋅ x)−mid(A∀ ⋅ x− b∀ )|
≤ rad(b ∃ − A∃ ⋅ x)− rad(A∀ ⋅ x− b∀ ). (3.25)

Further,

rad (p ± q) = radp + radq,
mid (p ± q) = mid p ± mid q.

Therefore, (3.25) holds if and only if

|b ∃ − mid(A∃ ⋅ x)−mid(A∀ ⋅ x) + mid b∀ |
≤ radb∃ + rad(A∃ ⋅ x)− rad(A∀ ⋅ x)− radb∀ ,

which is equivalent to Rohn’s characterization (3.24) insofar as

mid(A∃ ⋅ x) = (mid A∃ ) ⋅ x, mid(A∀ ⋅ x) = (mid A∀ ) ⋅ x

and

rad(A∃ ⋅ x) = (radA∃ ) ⋅ |x|, rad(A∀ ⋅ x) = (radA∀ ) ⋅ |x|. ✷

DEFINITION 3.5. Theverticesof an interval vectorx ∈ IR
n are the vectors of the

set

vert x :=
{

x ∈ R
n | xi ∈ {xi , xi}, i = 1, 2, …,n

}
.

Vertices of an interval matrix are defined in the similar way.
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THEOREM 3.6.For any quantifiersα and β, the intersection of the solution set
Ξαβ (A, b) with each orthant of the spaceRn is a convex polyhedral set whose vertices
are the solutions of the extreme point linear systems Ax= b with A ∈ vert A and
b ∈ vert b.

Proof. Membership of a real vectorx in some orthant is determined by fixing
the signs of its components. Notice also that for any intervalm × n-matrix C, the
components of the productC ⋅x = ((C ⋅x)1, (C ⋅x)2, …, (C ⋅x)m)� may be represented
as follows:

(C ⋅ x)i =
n∑

j =1

cij xj =


 n∑

j = 1

cij xj ,
n∑

j = 1

cij xj


 =


 n∑

j =1

c′ij xj ,
n∑

j =1

c′′ij xj


 , (3.26)

wherec′ij andc′′ij are some numbers (they may coincide) that belong to the set of
endpoints{cij , cij} and are fixed for any separate orthant containingx.

Next, writing out the inclusion (3.23) in componentwise manner and changing,
on the basis of the representation (3.26), each one-dimensional inclusion by a pair
of inequalities between the endpoints of the intervals, we get a system of 3n linear
inequalities




A′x ≥ b′ ,
A′′ x ≤ b′′ ,
conditions on the signs ofxi , i = 1, 2, …,n,

(3.27)

whereA′ ,A′′ ∈ vert A andb′ , b′′ ∈ vert b. The inequality system (3.27) determines
a convex polyhedral set. ✷

Hence,Ξαβ (A, b) can be represented in general as the union of at most 2n

convex polyhedral sets—the fact widely known for the united solution set since
the work by W. Oettli [75]. Anyway the complexity of the direct description of the
solution setsΞαβ (A, b) may thus grow exponentially withndespite the above simple
and geometrically vivid characterization results. So, such a description turns out
to be extremely laborious and practically useless even for moderate dimensions of
interval equations. A. Lakeyev has shown [59] that even the problems of recognition
of whether the united solution setΞuni(A, b) or controllable solution setΞctr(A, b)
is empty or not are NP-complete, that is, in general they can hardly be solved
easier than by the time which is the exponential function of the length of their code
[29].

Because of the above, it makes good sense not to aim at finding the complete
description ofΞαβ (A, b) in practice, and the conclusion has, in fact, quite general
character, being valid for a large class of the interval problem statement. In par-
ticular, we would suffice to compute only a simply constructed approximations of
Ξαβ (A, b), and the specific problem statements will be discussed at length in the
next Section 4.
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PROPOSITION 3.1.For any quantifiersα and β, both the minimal and maximal
componentwise values of the points from the solution setΞαβ (A, b), that is,

min{xν | x ∈ Ξαβ (A, b)} and max{xν | x ∈ Ξαβ (A, b)},

ν = 1, 2, …,n, are attained at the solutions of the extreme point linear systems
Ax = b with A ∈ vert A and b∈ vert b.

This is a straightforward consequence of Theorem 3.6. For the united solution
set, the result was obtained by K. Nickel in [73] in a way different from ours.

4. Posing Interval Problems

4.1. DISCUSSION

Now that we have defined what the solution sets to interval systems of equations
(inequalities, etc.) are, it is time to decide what to do with them further.

This is not an idle question. The fundamental fact about our reality is that we
can observe, use and operate objects and concepts that are not justfinite, butnot too
complexas well. The finiteness of our perception, considerations, calculations, etc.,
is widely recognized by the people and does not give rise to doubt. But what is so
special with the interval problems that we have to impose the second requirement,
“not too complex”? The answer is that, entering the realm of sets taken as essentially
compound objects, made up of elementary parts, we encounter the growing (and
even dominating) role of the combinatorial effects, which hardly reveal themselves
in the usual point mathematics. The combinatorics is known to be the main source
of very large and even huge numbers that can exceed any real physical quantities.

In particular, all we have said is true in full measure for generalized solution
sets we introduces in the preceding section. Even in simple practical situations a
direct computation and description of generalized solution sets prove, as a rule,
arduous and sometimes almost impossible. For instance, the length of the exact
description of the AE-solution sets generally grows faster than 2n (the number of
orthants ofRn) in the linear case, whenF(a, x) = Ax with somem × n-matrix A
(see Section 3.4). So, such a description becomes larger than the famous “chess
number” 264 − 1 even when the dimension of the problem is equal to mere 64.
When the dimension reaches some hundreds, the number of orthants we have to list
in the exact description ofΞαβ becomes comparable with the number of elementary
particles in the Universe.� One must be aware of the fact that the dimensions we
treated in these examples are very moderate numbers. To compare, the modern
economics involve thousands of participants, and even aggregated input-output
models usually consider about a hundred of industries.

� For example,́E. Borel in [13] pointed out 10200 as the maximal number of elementary events
that might have took place in the Universe after the “Big Bang.” This evaluation has not considerably
increased since the time the book [13] was published.



A NEW TECHNIQUE IN SYSTEMS ANALYSIS... 355

Summing up, one would say that the solution sets to interval systems of equations
have, in general, very large and even enormouscomplexity(often calledKolmogorov
complexity, see [63]), which exponentially grows as the dimension of the system
increases. This difficulty seems to be of principal character: the recent theoretical
results by A. Lakeyev [56] show that the problems of recognition and estimation of
the AE-solution sets to interval linear systems turn out to be intractable provided
that we do not impose restrictions on the interval matrix of the system. See also
fundamental survey [51].

The practical consequence of the above stated is an inevitable necessity to
somehow coarsen the exact description of the solution sets, that is, to change the
complete and too complex description of the solution set for a simpler set – its
approximation,—with less description complexity, in a way that still meets the
requirements of the practical problem under solution. Overall, such an approxima-
tion procedure should be incorporated into the problem statement while its details
are to be scrutinized and consciously taken into account.

A specific approximation criterion and the employed approximating sets are
to be determined for each particular problem. Besides, a measure (metric)� is
often drawn in the consideration to evaluate the deviation (in a prescribed sense)
of the estimating set from the solution set. Finally, the distinguishing feature of
the interval problems we deal with that makes them unlike, for instance, classical
approximation problems, is the presence, apart from the metric�, of an additional
qualitative requirement that the answer to the problem must meet to, and that is
not at all related to�. This qualitative requirement is, as a rule, a condition for the
mutual position (location) of the solution set and the estimating set. For example,
when computing an enclosure of the range of values of a function, one does not
simply need some estimates of the range, no matter how close they are, but only
those evaluating the rangefrom belowand from abovewith guarantee. When the
latter is not the case, the interval obtained mustnot be considered a solution to the
range enclosing problem.

Further examples illustrating the peculiarity of the interval problems can be
found in the next subsection.

4.2. WHAT IS AN INTERVAL “ESTIMATION PROBLEM”?

Gathering up the threads of the previous discussion, we arrive at the following
formalization of the concept of a class of interval analysis problems that we shall
call interval estimation problems:

DEFINITION 4.1. A genericinterval estimation problem Pis an ordered quadruple
of the form (S ,E ,M,�), where

S denotes afamily of solution sets, that is, a mapping from an intervalΠ of R
r

(or of a more general set) into a class of sets;Π describes possible values of the
parameters ofP, while anindividual interval estimation problem Jis extracted
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from P by assigning to the variables ofS specific values that determine (as a
result of the solution process) anindividual solution setS ∈ S;

E designates aclass of estimating sets, that is, a family of sets by which we are
going to approximate the solution sets fromS;

M specifies away of estimationof the solution set or, to put it otherwise, a binary
relation between elements ofS and elements ofE that must be met according
to the sense of the problem under study;

� stands for a non-negative functional onS × E (metric) that indicates the “error”
of the result, i.e., measures how close (in some sense) the estimating set is to
the true solution set determined by the problem statement.

By asolutionof the problemJ we will understand an estimating setE ∈ E such
that the relationSME is satisfied and, optionally, a certain condition on the value
�(S, E) is met.

No doubt, one should clearly recognize that the interval analysis operates a
number of problem statements that do not comply with the above scheme. These
are, for instance, the problem of computing formal solutions to interval systems
of equations (see the forthcoming sections), the problem of checking whether an
interval matrix is regular or not, the problem of checking the stability (either by
Hurwitz or Schur) of an interval matrix, and so on. Definition 4.1 draws apart a
sufficiently wide and practically significant class of problems that interval analysis
works with, so that it is quite natural to name it by a special term, and so did we.

In modern interval analysis, the most commonly encountered ways of approxi-
mating a solution setS are known to be

• outer interval estimation, when we seek an interval vectorE such thatE ⊇ S,
and

• inner interval estimation, when we seek an interval vectorE such thatE ⊆ S.

The above-described outer and inner estimations, while embracing a variety
of widespread interval problems, are not at all the only possible ones. A lot of
examples of other estimation modes could be given, and they cannot be treated
only as a theoretical oddity.

Let, for instance, the estimating sets ben-dimensional interval vectors,E = IR
n.

The outer interval estimation of a solution setS by an intervalE is evidently
equivalent to

pri S ⊆ Ei , i = 1, 2, …,n,

where pri is the operation of projecting onto thei-th coordinate axis. Requiring the
inverse inclusions

pri S ⊇ Ei , i = 1, 2, …,n,

for the estimating boxes, we get an example of non-traditional estimation mode,
which can be called “weak inner estimation” (see Figure 5). This kind of estimation
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✲

✻

A

B

C

Figure 5. Estimation of the solution set (shaded question-mark) by “outer” box (A),
“inner” box (B), and “weak inner” box (C).

is used in a number of identification problems [126], and when some one needs
to know a sharpness (an amount of overestimation) in outer estimation problems
[93].�

Sometimes, we must guarantee the enclosure pri S ⊆ Ei only for some, not all,
componentsi ∈ {1, 2, …,n}, and for the otheri the opposite inclusion pri S ⊇ Ei

is required. In other words, for some indexesi, one needs the lower estimate of
min{xi | x ∈ S}, while for the resti it is necessary to obtain the upper esti-
mates of this value, the similar requirements being imposed on the estimation of
max{xi | x ∈ S}. The estimation mode defined by the above conditions can be
naturally termed “mixed estimation.”

Now, let us turn to the classes of estimating sets. In practice, in addition to the
common intervals, one-dimensional estimating sets can be represented by “inter-
vals” of Kahan arithmetic [60], multiintervals (i.e., finite unions of intervals and
infinite semi-lines [129]). In the multidimensional case, the variety of shapes of
the solution sets complicates the situation: sometimes estimating by interval boxes,
i.e. direct products of real intervals, may turn out inadequate, since provides us
with little information, producing large overestimation and/or underestimation (see
Figure 6). As a consequence, apart from the ordinary boxes, skew parallelotopes
(zonotopes) and ellipsoids are commonly used as estimating sets (the latter being

� To specify this estimation mode, S. Rump uses in [93] the term “inner inclusion,” which is, to
our mind, not quite adequate to the situation.
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Figure 6. Sometimes interval estimation of the solution set (long skew parallelogram),
either inner or outer, may turn out inadequate, since provides us with little information.

especially popular in solving ODEs; see [22], [15] and references there), balls
with respect to a certain norm [125], intersections of several independently found
parallelepipeds (which is taken at the final stage of the computational procedure)
[19] and so on. Aside from the classical one-dimensional complex intervals such
as rectangles and circles on a complex plane [2], circular rings [79] and circular
sectors [49] et al. can be used. The evident conclusion which can be drawn from
the above-mentioned examples is that there can be a variety of estimating sets and
possible modes of estimation of the solution sets, which results in a great variety of
interval problems statements.

Note the absolutely special role of the third member of the quadruple (S, E ,M,�),
i.e., of the estimation modeM. We can say that it is the presence of the relation
M that primarily determines the peculiarity of the form of the interval problems.
As we have already mentioned, the solution to such a problem must first of all
satisfy somequalitative conditionexpressed by the estimation modeM and only
afterward error, closeness, etc. are taken into account.

Summing up, one can say that the answer to the question “what to do with
the solution set?” depends on the problem under consideration, i.e., on the final
purposes of the system analysis as applied to our problem (2.2).

4.3. PROBLEMSTO BE CONSIDERED

In the sequel, we are going to consider the two most popular interval problems—
inner andouter, that is, estimation of the AE-solution sets to interval systems of
equations bysubsetsandsupersets.

Estimating by subsets is the only valid one if we are interested in getting a
collection of points that provide us with right answers to the main question (2.2).
In other words, only for subsetsΠ ⊆ Ξαβ (F, a, b) does our major characteristic
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Figure 7. “Inner problems” are the problems ofinner (interval) estimation of the solution
sets.

property—the selecting predicate of the solution set—remain satisfied for all the
pointsx ∈ Π, while the estimating sets being in any other relation with the solution
set may contain points that have nothing to do with the answers to the question
(2.2), which may turn out unacceptable in practice.

Taking the estimating subsets in the form of the axis-aligned boxes (interval
vectors), we thus arrive at the problem of inner interval estimation of the solution
sets (2.4):

For an interval equation F(a, x) = b and quantifier vectors

α andβ of the same size asa and b respectively, find

an inner interval estimate of the solution setΞαβ (F, a, b).

(4.1)

Henceforward, we shall refer to this problem as theinner problemfor the interval
systemF(a, x) = b (as in Figure 7), pointing out, if necessary, that the distribution of
interval uncertainty types over the system parameters is described by the quantifiers
α andβ, or, which is equivalent, by the disjoint decompositionsa = a∀ + a∃ and
b = b∀ + b ∃ .

It is very useful to show practical meaning of the problem (4.1) on particular
examples. If the tolerable solution setΞtol(F, a, b) is taken as a case in point in the
above definition, then the problem (4.1) is the classicaltolerance problem[18],
[48], [69], [119], [120], which has numerous and fruitful practical applications.
The tolerance problem is actually the problem of stabilization of the system within
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a prescribed output corridorb for the case whenall the system parametersai are
subject to some bounded disturbances.

If some ai ’s have A-uncertainty while the rest of them have E-uncertainty,
that is, some parameters are disturbing and some are controllable, and allβi = ∃ ,
i = 1, 2, …,m, then we get the stabilization problem with a control possibility, which
some of the researchers call “problem of ensuring the operation stability under large-
scale disturbances” [130]. Such is the quality control problem from [30] which we
considered in Section 3. In an important methodology paper [4], the “operation
stability” problem statement has been illustrated on concrete practical examples
from shipbuilding, toxicology, economics and electrical power engineering. The
other title of this kind of problem also extensively used in the literature on the
subject is “the problem of ensuring survival of the system” [4]. Alternately, if part
of ai ’s are A-parameters and a part of them are E-parameters while allβi = ∀ ,
i = 1, 2, …,m, then we have the control problem under bounded perturbations.

Outer estimation of the generalized solution setsΞαβ (F, a, b) also makes sense
in the sensitivity-like analysis of the systems, but it would be another form of the
problem (2.2), different from (4.1):

For an interval equation F(a, x) = b and quantifier vectors

α andβ of the same size asa and b respectively, find

an outer interval estimate of the solution setΞαβ (F, a, b).

(4.2)

Henceforward, we shall refer to this problem as theouter problemfor the interval
systemF(a, x) = b (as in Figure 8), pointing out, if necessary, that the distribution of
interval uncertainty types over the system parameters is described by the quantifiers
α andβ, or, which is equivalent, by the disjoint decompositionsa = a∀ + a∃ and
b = b∀ + b ∃ .

Since we are going to restrict ourselves mainly to the interval linear systems,
the following specific problems will be our major concern in the next sections:

For an interval linear equationAx = b and quantifier vectors

α andβ of the same size asa and b respectively, find

an inner interval estimate of the solution setΞαβ (A, b).

(4.3)

and

For an interval equation F(a, x) = b and quantifier vectors

α andβ of the same size asa and b respectively, find

an outer interval estimate of the solution setΞαβ (F, a, b).

(4.4)
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Figure 8. “Outer problems” are the problems ofouter (interval) estimation of the solution
sets.

Sometimes, it is more convenient to consider a componentwise form of the problem
(4.4):

For an interval system of linear equationsAx = b

find estimates formin{xν | x ∈ Ξαβ (A, b)} from below,

for max{xν | x ∈ Ξαβ (A, b)} from above,ν = 1, 2, …,n.

(4.5)

Clearly these problem statements make sense only in the caseΞαβ (A, b) �= ∅, and
finding out the conditions of such nonemptyness is a separate important question.

So far, the problems analogous to (4.1)–(4.4) have been being solved only by
minimax methods of mathematical programming (see, in particular, [4], [130]).
One of the main purposes of our paper is to develop new computationally efficient
interval approaches to the analysis of static systems under interval uncertainty,
that is, to the solution of the problems (4.1) and (4.2). The principles that will
underlie our techniques are somewhat uncommon to modern interval analysis. We
develop, in particular, the so-calledformal approachto the solution of the above
mentioned problems, and the key concept in many of our consideration is that
of formal solution to the interval equation (sometimes referred to asalgebraic
solution):

DEFINITION 4.2. An interval (interval vector, matrix, etc.) is called aformal solu-
tion to the interval equation (system of equations, inequalities, etc.) if substituting
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this interval into the equation and executing all interval arithmetical, analytical,
etc., operations result in a valid equality.

For instance, the interval [0, 1] is the formal solution to the interval quadratic
equation [1, 2]x2 + [−1, 1]x = [−1, 3]. The interval functionx(t) = 10.5[et, e2t] is a
formal solution to the interval differential equation

dx(t)
dt

= [1, 2].

The interval functionx(t) = [0, 2t] on [0,1] is a formal solution to the following
interval Fredholm integral equation of the second kind

x(t) +
∫ 1

0
(1.5s+ t) x(s) ds = [0, 3t + 1].

The latter (purely illustrative) examples show what is bad with the former term
algebraic solution: it emphasizes only the algebraic nature of operations that com-
pose the systems under consideration, so that speaking of “algebraic” solutions to
interval differential, integral, etc., equations is at least strange and misleading.

The notion of formal solution thus corresponds to the usual concept of a solution
to an equation, which is common to the most of mathematics in general. Such
understanding of a solution to an interval equation was originated by S. Berti
in [10], who gave no name to it and considered only one very simple equation.
Afterward, K. Nickel [72] and H. Ratschek and W. Sauer [85] considered this kind
of solution to interval linear equations and systems of such equations. H. Ratschek
and W. Sauer introduced the currently popular term “algebraic solution.”

The essence of our formal approach is to change the problems (4.1)–(4.5) to the
problem of finding formal solutions to some special equations inKaucher complete
interval arithmeticKR, thus reducing the initial problem to a traditional problem of
numerical analysis. This reduction is a very attractive feature, notwithstanding that
the formal solution to the auxiliary interval equation does not need to exist even if
the corresponding original problem (4.1)–(4.5) has solutions, that is, the solution
set is not empty.

5. Kaucher Complete Interval Arithmetic

The main tool of interval analysis is known to be the so-calledinterval arithmetics,
i.e. algebraic structures that formalize arithmetical operations between intervals as
entire undivided objects. Below, we give a short critical overview of the classical
interval arithmetic and afterward present a description ofKaucher complete interval
arithmetic, which plays one of the leads in our theory, but has not been sufficiently
known to the researchers.
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5.1. DISCUSSION

We have already seen in Theorem 3.2 that our main problems (2.2), (4.1), and (4.2)
are minimaxby their nature, i.e., such ones that involve taking minimaxes of a
multivariable function. Then, to solve minimax problems we need a special “mini-
max” interval arithmetic, that is, an interval arithmetic implementing computation
of minimax at each elementary operation, namely addition, subtraction, multipli-
cation and division (which are multivariable functions as well). Classical interval
arithmetic and its well-known generalizations—Kahan arithmetic [60], Hansen
arithmetic (see [32]) and some others—are designed for evaluation of the range
of arithmetical operations, or alternatively, to compute pure minima and maxima.
Hence, these interval arithmetics are not suitable for our purpose.

Luckily, a “minimax” interval arithmetic does exist and we do not need to
construct it by ourselves on a bare place. It isKaucher interval arithmetic, also
calledcomplete interval arithmetic, which we have already mentioned earlier.

Classical interval arithmeticIR is known to be an algebraic system of all real
intervalsx = [x, x] = {x ∈ R | x ≤ x ≤ x}, with the binary arithmetical operations
defined according to the following basic principle:

x � y = {x � y | x ∈ x, y ∈ y} (5.1)

for all the intervalsx, y such that (x � y), � ∈ {+,−, ⋅, /} makes sense for anyx ∈ x,
y ∈ y (see, e.g., [2], [32], [45], [68], [69]). The explicit formulas of the interval
arithmetical operations are

x + y := [x + y, x + y],

x− y := [x− y, x− y],

x ⋅ y := [min{x y, x y, x y, x y}, max{x y, x y, x y, x y}],
x / y := x ⋅ [1 / y, 1 / y] for y �� 0.

Algebraic properties of classical interval arithmetic are meager. It is not even a
group [12] both with respect to addition and multiplication: intervals with nonzero
width, that is, the majority of elements ofIR, do not have algebraic opposite and
inverse ones (in the group sense). Besides,IR is not a lattice [12] with respect to the
natural set-theoretical inclusion ordering “⊆ ”. The first of the lattice operations

x ∧ y := inf
⊆
{x, y} = [max{x, y}, min{x, y}], (5.2)

—taking greatest lower bound with respect to⊆ ,—

x ∨ y := sup
⊆
{x, y} = [min{x, y}, max{x, y}], (5.3)

—taking least upper bound with respect to⊆ ,—
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is not always applicable in classical interval arithmetic. For example, [1, 2] ∧ [3, 5]
would have to be [3, 2] or, in the last resort, empty set, but neither “backward”
intervals nor∅ are allowed inIR.

“Incompleteness” of both algebraic and order structures ofIR naturally stimu-
lated attempts to complete classical interval arithmetic, to create a “more conve-
nient” interval arithmetic based onIR, and the most successful of them was due
to E. Kaucher back in 70’s. The joint order-algebraic completion ofIR carried out
in the works by E. Kaucher [42]–[44] resulted in an algebraic system that we will
call complete interval arithmeticKR, or Kaucher interval arithmetic. Afterward,
E. Gardẽnes, M. Sainz and their co-workers studied this arithmetic (which they
calledarithmetic of modal intervals) and established some of its helpful properties,
applications as well as having implemented them in workable computer systems
[24]–[28].

5.2. DESCRIPTION OF THEARITHMETIC

Elements ofKR are pairs of real numbers [x, x] that are not connected by the
obligatory conditionx ≤ x. Thus,KR is obtained by adjoiningimproper intervals
[x, x], x > x, to the setIR = {[x, x] | x, x ∈ R, x ≤ x} of proper intervals and real
numbers, the latter being identified with the corresponding degenerate intervals.
We will denote elements of complete interval arithmetic as well as other objects
formed of these elements by boldface letters, like the common intervals.

DEFINITION 5.1. An intervalx ∈ KR will be calledbalanced, if x = −x.�

DEFINITION 5.2. The absolute value (module) of an intervalx ∈ KR is
|x| := max{|x|, |x|}.

DEFINITION 5.3. A mapping dual :KR → KR that acts as

dualx := [x, x],

reversing the endpoints of the intervals, is calleddualization.

The proper and improper intervals, the two “halves” ofKR, change places as
the result of the dualization.

As in classical interval arithmetic, the inclusion order onKR is defined as
follows:

x ⊆ y def⇐⇒ x ≥ y and x ≤ y, (5.4)

� Proper balanced intervals are usually called “symmetric,” which is really inconsistent with the
terminology in the other branches of the mathematical science. For instance, what is asymmetric
interval matrixthen? A matrix all whose entries being symmetric, in the above sense, intervals, or,
alternatively, a matrix the values of whose entries being situated symmetrically with respect to the
main diagonal? The latter is traditional understanding of the classical linear algebra, which is unlikely
to be changed.
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but complete interval arithmeticKR is a distributive conditionally complete lattice
[12] with respect to this inclusion order, in contrast with classical interval arithmetic.
In other words,

∧
γ ∈ Γ

xγ := inf
⊆
{xγ | γ ∈ Γ} =

[
inf
≤
{xγ | γ ∈ Γ} , sup

≤
{xγ | γ ∈ Γ}

]
,

∨
γ ∈ Γ

xγ := sup
⊆
{xγ | γ ∈ Γ} =

[
sup
≤
{xγ | γ ∈ Γ} , inf

≤
{xγ | γ ∈ Γ}

]

are always elements fromKR now, provided that{xγ | γ ∈ index setΓ} is a
bounded family of intervals fromKR.

Addition and multiplication by real numbers are defined onKR by

x + y := [x + y, x + y], (5.5)

µ ⋅ x :=

{
[µ x, µ x], if µ ≥ 0,
[µ x, µ x], otherwise.

Thus, every elementx from KR has a unique algebraic opposite element, denoted
“opp x,” and

x + oppx = 0 ⇒ opp [x, x] = [−x,−x].

For example, opp [1, 2] = [−1,−2], i.e. an improper “backward” interval. There
holds

opp (oppx) = x,
opp (λ x) = λ oppx, for λ ∈ R,

dual (x + y) = dualx + dualy,
opp (x + y) = oppx + oppy.

Also,

x ⊆ y ⇒ −x ⊆ −y,
dualx ⊇ dualy,
oppx ⊇ oppy,

λ x ⊆ λ y, for λ ∈ R.

Sometimes, we denote for brevity the inverse operation for addition, i.e. the inner
(algebraic) difference inKR, by�, so that

x� y := x + oppy.

The addition (5.5) is obviously commutative and associative. Besides, with
respect to addition, complete interval arithmeticKR becomes a commutative group,
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Table 1. Multiplication in complete interval arithmetic.

⋅ y ∈ P y ∈ Z y ∈ −P y ∈ dualZ

x ∈ P [x y, x y] [x y, x y] [x y, x y] [x y, x y]

x ∈ Z [x y, x y] [min{x y, x y},
max{x y, x y}]

[x y, x y] 0

x ∈ −P [x y, x y] [x y, x y] [x y, x y] [x y, x y]

x ∈ dualZ [x y, x y] 0 [x y, x y] [max{x y, x y},
min{x y, x y}]

which is isomorphic to the additive group of the standard linear spaceR
2. The

consequence of this is, among others, the usual possibility to rearrange terms from
one side to the other side “with the opposite sign” in an interval equation (inequality,
inclusion) for which we seek a formal solution in the sense of Definition 4.2.

The following lattice operation distributivity will be useful for us, too:

x + (y ∨ z) = (x + y) ∨ (x + z), (5.6)

x + (y ∧ z) = (x + y) ∧ (x + z). (5.7)

Interval multiplication inKR is defined in a more sophisticated way. Sometimes,
the minimax representation (5.22) of Section 5.4 is taken as such a definition. As
an alternative, it makes sense to have a purely algebraic definition through the
so-calledCayley table, i.e. a square table listing all the possible combinations of
operands on inputs and the corresponding results inside the table. Let us separate
in KR the following subsets:

P := {x ∈ KR | (x ≥ 0) & (x ≥ 0)}, —positive intervals,

Z := {x ∈ KR | x ≤ 0≤ x}, —zero-containing intervals,

−P := {x ∈ KR | −x ∈ P}, —negative intervals,

dualZ := {x ∈ KR | dualx ∈ Z}, —intervals contained in the zero.

Overall KR = P ∪ (−P) ∪ Z ∪ dual Z. Then the multiplication in complete
arithmetic is described by Table 1 [43].

As one can see, multiplication in the arithmeticKR allows nontrivial zero
divisors, for instance, [−1, 2] ⋅ [5,−3] = 0. Additionally, multiplication is both
commutative and associative, like inIR, but not every elementx of KR has its
inversex−1. That is, the group with respect to operation “⋅ ” is formed inKR only

by intervalsx with x x > 0 [42]. For example, [1, 2]−1 = [1, 1
2
], while [−2, 3]−1
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does not exist. We denote for brevity the inverse operation for multiplication, i.e.
the inner (algebraic) division inKR, by�, so that

x� y := x ⋅ y−1.

There also holds

dualx ⋅ dualy = dual (xy),
oppx ⋅ oppy = dual (xy),

λ (xy) = (λ x) y = x (λ y), for λ ∈ R.

Table 1 may turn out rather awkward to implement and study the multiplication
in the complete interval arithmetic. A. Lakeyev in [57] proposed simple global
formulas for the interval product inKR, which can be more suitable in a number of
situations. We remind the following definition [11]:

DEFINITION 5.4. For a real numberx, the values

x+ := max{x, 0},
x− := max{−x, 0}

are calledpositiveandnegativeparts ofx respectively.

PROPOSITION 5.1 [57].For any intervalsx, y ∈ KR, the following representation
holds

x ⋅ y = [max{x+y+, x−y−} −max{x+y−, x−y+},

max{x+y+, x−y−} −max{x+y−, x−y+}].

If one of the intervalsx, y is proper, then

x ⋅ y = [ x+y+ + x−y− −max{x+y−, x−y+},

max{x+y+, x−y−} − x+y− − x−y+]. (5.8)

This formula is not simplified even if we know that both intervalsx, y are proper.
If one of the intervalsx, y is proper while the other is improper, then

x ⋅ y = [x+y+ + x−y− − x+y− − x−y+,

x+y+ + x−y− − x+y− − x−y+]. (5.9)

The advantage of Lakeyev formulas is their global character. They give us single
unified expressions for the interval productx ⋅ y over all of the domain of bothx
andy, while the representation through Table 1 has piecewise character. The latter
is quite embarrassing e.g. when studying differentiability properties, smoothness
and their analogues, when computing the derivatives, etc.
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Definitions of the interval subtraction and division inKR are the same as in
classical interval arithmeticIR:

x− y := x + (−1) ⋅ y,

x / y := x ⋅ [1 / y, 1 / y] for y y > 0.

Clearly, inKR one should sharply distinguish between the interval operations “�”
and “/” as well as between “�” and “−”.

The property of fundamental importance is that the inclusion monotonicity holds
in complete interval arithmetic too:

x ⊆ x ′ , y ⊆ y ′ ⇒ x � y ⊆ x ′ � y ′

for � ∈ {+,−, ⋅, /} and anyx, x′ , y, y ′ ∈ KR.
Like in classical interval arithmetic, addition and multiplication in complete

interval arithmetic are not connected by the distributive law in general. Instead we
have weaker subdistributivity and superdistributivity properties [25], [43]:

if x is proper, then x ⋅ (y + z) ⊆ x ⋅ y + x ⋅ z (5.10)

—subdistributivity,

if x is improper, then x ⋅ (y + z) ⊇ x ⋅ y + x ⋅ z (5.11)

—superdistributivity.

These inclusions turn to the equalities, in particular, if the intervalx degenerate into
a point, i.e.x = x ∈ R:

x ⋅ (y + z) = x ⋅ y + x ⋅ z. (5.12)

Unfortunately, the distributivity of multiplication with respect to the lattice
operations∨ and∧ is not the case in general. For example,

[−1, 1] ⋅
(
1 ∧ (−1)

)
= 0 �= [−1, 1] = ([−1, 1] ⋅ 1) ∧

(
[−1, 1] ⋅ (−1)

)
.

Nonetheless, ifx is either positive or negative interval (i.e., fromP ∪ (−P)),
then

x ⋅ (y ∨ z) = (x ⋅ y) ∨ (x ⋅ z), (5.13)

x ⋅ (y ∧ z) = (x ⋅ y) ∧ (x ⋅ z). (5.14)

At the same time, ifx is proper, then (5.13) is still valid, while

x ⋅ (y ∧ z) ⊆ (x ⋅ y) ∧ (x ⋅ z),

and if x is improper, then (5.14) is still valid, while

x ⋅ (y ∨ z) ⊇ (x ⋅ y) ∨ (x ⋅ z).
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Table 2. Composition of involutions ofKR.

◦ id − opp dual

id id − opp dual

− − id dual opp

opp opp dual id −

dual dual opp − id

For detailed proofs see, e.g., [28].
Finally, it is quite instructive to note that the set of basic involutions of the

complete interval arithmeticKR—negation “−”, opposition “opp”, dualization
“dual” as well as identity “id”—multiply (compose) according to the Cayley table
(see Table 2).

In other words, the multiplicative structure on their set coincides with the well-
known Klein’s “four-group.”

5.3. INTERVAL VECTORS ANDMATRICES

Arithmetical operations with vectors and matrices made up of the elements ofKR

are defined similar to those in classical interval arithmetic (see, e.g., [2], [68],
[69]).

DEFINITION 5.5. The sum (difference) of the two interval matrices of identical size
is an interval matrix of the same size formed by the elementwise sums (differences)
of the operands. The product of interval matricesX and Y, X = (xij ) ∈ KR

m× l ,
Y = (yij ) ∈ KR

l ×n, is a matrixX ⋅ Y = Z = (zij ) ∈ KR
m×n, such that

zij =
l∑

k= 1

xikykj. (5.15)

The well-known feature of the interval matrix multiplication is the absence of
associativity. This is also valid for the complete interval arithmetic, although for
some important particular cases the associativity still takes place. In particular, there
holds

PROPOSITION 5.2.If X ∈ R
m× l , Y ∈ KR

l ×k, Z ∈ R
k × n, then

(XY)Z = X(YZ).

Proof.

(
(XY)Z

)
ij =

∑
ν

(XY)iνZνj =
∑

ν

(∑
µ

XiµYµν

)
Zνj
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=
∑

ν

∑
µ

(XiµYµν)Zνj =
∑

ν

∑
µ

Xiµ(YµνZνj)

=
∑

µ

∑
ν

Xiµ(YµνZνj)
(∗)
=

∑
µ

Xiµ
∑

ν
(YµνZνj)

=
∑

µ
Xiµ(YZ)µj =

(
X(YZ)

)
ij ,

where to carry out the common multiplierXiµ out of the sum in the equality (∗) we
make use of the distributivity relation (5.12). ✷

Additionally, we also need the operations of taking the midpoint and radius of
an interval:

mid x := 1
2
(x + x),

radx := 1
2
(x− x).

As usual, with respect to the interval vectors and matrices these operations, as well
as “dual”, “pro”, “opp”, will be applied componentwise and elementwise.

Inclusion ordering on the sets of interval vectors and matrices with the elements
fromKR are, by definition, the direct products [12] of the one-dimensional inclusion
orders on the separate componentsKR, so that

x ⊆ y ⇐⇒ xi ⊆ yi for all i.

We shall therefore understand the operations∨ and∧ applied to interval vectors in
the componentwise manner, i.e.


x1

x2
...

xn


 ∨




y1
y2
...

yn


 =




x1 ∨ y1
x2 ∨ y2

...
xn ∨ yn


 and




x1

x2
...

xn


 ∧




y1
y2
...

yn


 =




x1 ∧ y1
x2 ∧ y2

...
xn ∧ yn


 .

Also, the binary relation “≤” as well as the action of the operations “dual”, “pro”,
“mid”, and “rad” on interval vectors and matrices will be taken componentwise.

The distance—dist (⋅ , ⋅)—between the elements of the complete interval arith-
meticKR is known to be introduced as follows [43]:

dist (x, y) := max{|x− y|, |x− y|} = |x� y|.

With such metric, for any intervalsx, y, x′ , y′ ∈ KR the following inequalities are
valid [43]

dist (xy, xy ′) ≤ |x| ⋅ dist (y, y ′), (5.16)

dist (x + y, x′ + y′) ≤ dist (x, x′) + dist (y, y ′). (5.17)
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As for the topology on the multidimensional interval spaceKR
n, it can be defined

in two (basically equivalent) ways. The standard way is to introduce the common
metric�

dist (x, y) := max{‖x− y‖, ‖x− y‖}, x, y ∈ KR
n, (5.18)

where‖ ⋅‖ is an absolute vector norm onRn. Sometimes, however, it proves helpful
and convenient to work with a vector-valued distance,—pseudometricaccording to
the terminology by L. Collatz [16]��,—which is defined onKR

n as

Dist (x, y) :=




dist (x1, y1)
...

dist (xn, yn)


 ∈ R

n. (5.19)

All the interval arithmetic operations, matrix-vector operations onKR
n as well

as the operations “∨ ”, “ ∧ ”, “dual”, “pro”, and “opp” turns out to be continuous
both with respect to the metric (5.18) (see, in particular, [43]) and pseudometric
(5.19).

Notice that the estimate (5.16) can be carried over to the multidimensional case
as well, if the distance betweenx, y ∈ KR

n is understood as the pseudometric
Dist (⋅, ⋅) and the module of a matrix is taken elementwise. More precisely, there
holds

PROPOSITION 5.3.For any interval matrixP = (pij ) ∈ KR
n×n and any interval

vectorsx, y ∈ KR
n, we have

Dist (Px, Py) ≤ |P| ⋅ Dist (x, y). (5.20)

Proof. Indeed, in view of the inequalities (5.16)–(5.17), we can conclude that

dist
(
(Px)i , (Py)i

)
= dist


 n∑

j = 1

pij xj ,
n∑

j =1

pij yj




≤
n∑

j =1

dist (pij xj , pij yj)

≤
n∑

j =1

|pij | ⋅ dist (xj , yj)

for all i ∈ {1, 2, …,n}. That proves‡ the multidimensional estimate (5.20). ✷

� For the spaceIRn this metric coincides with Hausdorff distance between the interval vectors as
axis-aligned boxes inRn.

�� Pseudometric spaces are often calledmultimetric spacesor hypermetric spacesin the modern
literature on functional analysis.

‡ For the case of classical interval arithmeticIR, the inequality (5.20) is well-known, but for
the complete interval arithmeticKR it has been neither mentioned nor used by anybody in the
multidimensional case.
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5.4. KAUCHER COMPLETEARITHMETIC IS MINIMAX INTERVAL ARITHMETIC

With the use of lattice maximum operation (5.3), we can rewrite the fundamental
property (5.1) defining classical interval arithmetic in the form:

x � y =
∨
x ∈ x

∨
y∈ y

(x � y). (5.21)

The above facilitates recognizing the most wonderful fact with complete interval
arithmetic, which generalizes the formulas (5.1) and (5.21). Namely, for any� ∈
{+,−, ⋅, /}, the following relationship holds:

x � y = ✔✔
x ∈ pro x

x

✔✔
y∈ pro y

y
(x � y), (5.22)

where

✔✔
x

:=

{ ∨
, if x is proper,∧
, otherwise,

—conditional extremum operation,

pro x :=

{
x, if x is proper,

dualx, otherwise,
—proper projection of the interval.

Discovered first by E. Kaucher [44], this representation expresses the connection
between the interval operationx � y and the results of the point operationsx� y for
x ∈ pro x andy ∈ pro y. Notice that, as it follows from (5.22), complete interval
arithmetic is the desired minimax interval arithmetic! Indeed, inKR endpoints of a
resulting interval are minimax and maximin of the results of the point arithmetical
operation, if of the intervals under operation one is proper and the other is improper.
For example,

[−3, 5] ⋅ [2,−1] = 0 =
[

min
x ∈ [−3, 5]

max
y∈ [−1, 2]

x ⋅ y, max
x ∈ [−3, 5]

min
y∈ [−1, 2]

x ⋅ y
]
,

in accordance with the multiplication table.�

We now lead towards a natural interpretation of Kaucher complete interval
arithmetic. Namely, the improper intervals ofKR are not something exotic at all.
Taken from set-theoretical standpoint, they may be considered as usual sets of
points onR bounded by two real numbers, while their “backward” direction is only
an indication that they act in arithmetic operations, etc., in a special (“minimax”)
way, not like the classical proper intervals ofIR.

Is it possible to make use of the above properties in the computation of min-
imaxes for more complex composite expressions? The answer is positive on the
whole, but it is not so simple and straightforward as for the classical interval
arithmetic and “pure” minima and maxima of the functions. The corresponding

� By the way, we formed the sign of our conditional extremum operation by coupling the symbols
“ ∨ ” and “∧ ” together.
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(very subtle and sophisticated) theory has been elaborated in the works of Span-
ish researchers headed by E. Gardeñes and M. Sainz, and its most complete and
correct exposition can be found in the recent publications [24], [122]. Although
for the elementary arithmetic operations—addition, multiplication, subtraction and
division—minimum and maximum commute with each others, they are well known
to be non-commutable for the general case of complex rational expressions. Even
imposing the stringent requirement that every variable occurs only once does not
redeem the position. The following cogent example is borrowed from the survey
[122].

We consider a function of four variables
φ(x1, x2, x3, x4) = (x1 + x2)(x3 + x4).

If the variables have the domainsx1 ∈ [−2, 2], x2 ∈ [−1, 1], x3 ∈ [−1, 1],
x4 ∈ [−2, 2], then∨

x1 ∈ [−2, 2], x3 ∈ [−1, 1]

∧
x2 ∈ [−1, 1], x4 ∈ [−2, 2]

φ(x1, x2, x3, x4) =
[

3
2
, −3

2

]
,

∧
x2 ∈ [−1, 1], x4 ∈ [−2, 2]

∨
x1 ∈ [−2, 2], x3 ∈ [−1, 1]

φ(x1, x2, x3, x4) =
[
−3

2
, 3

2

]
,

which differs from the result of the corresponding “natural interval extension” for
the expression under study:

φ([−2, 2], [1,−1], [−1, 1], [2,−2]) = 0.

Still, using induction over syntactic tree� of the expression, it is not hard to
derive from (5.22) that, if a rational expressionƒ(x, y) = ƒ(x1, …,xp, y1, …,yq) has
at most one occurrence of each of the variablesxi , yj and to the first power only,
then ∨

x ∈ x

∧
y∈ y

ƒ(x, y) ⊆ ƒ (x, dualy) ⊆
∧
y∈ y

∨
x ∈ x

ƒ(x, y), (5.23)

for any proper interval vectorsx ∈ IR
p, y ∈ IR

q, i.e., in the extended form,[
min
x ∈ x

max
y∈ y

ƒ(x, y), max
x ∈ x

min
y∈ y

ƒ(x, y)
]

⊆ ƒ (x, dualy),

ƒ(x, dualy) ⊆
[
max
x ∈ x

min
y∈ y

ƒ(x, y), min
x ∈ x

max
y∈ y

ƒ(x, y)
]
.

The more complex cases which can also be proved by induction. Given a rational
expressionƒ(x, y) = ƒ(x1, …,xp, y1, …,yq) that has only one occurrence of each of
the variablesyi (if at all) and to the first power only, for any proper interval vectors
x ∈ IR

p, y ∈ IR
q, we have[

min
x ∈ x

max
y∈ y

ƒ(x, y), max
x ∈ x

min
y∈ y

ƒ(x, y)
]

⊆ ƒ (x, dualy). (5.24)

� Also called Kantorovich tree, see [7].
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Given a rational expressionƒ(x, y) = ƒ(x1, …,xp, y1, …,yq) that has only one occur-
rence of each of the variablesxi (if at all) and to the first power only, for any proper
interval vectorsx ∈ IR

p, y ∈ IR
q, we have[

min
x ∈ x

max
y∈ y

ƒ(x, y), max
x ∈ x

min
y∈ y

ƒ(x, y)
]

⊇ ƒ (x, dualy). (5.25)

The relations (5.24) and (5.25) have been first obtained by E. Gardeñes, M. Sainz
and their co-workers (in the terms which are different from ours though), and their
detailed proofs can be found [26], [28], [122].

The history of the problem is quite amusing. In the early publications of the
Spanish researchers [25], [26], it was mistakenly stated that∨

x ∈ x

∧
y∈ y

ƒ(x, y) = ƒ(x, dualy) =
∧
y∈ y

∨
x ∈ x

ƒ(x, y),

if every variablexi , yi occurs inƒ no more than once and to the first power. A new,
previously unknown, minimax theorem was thereby claimed! The error has been
fixed only a decade later, while the paper with the correct formulation is dated by
1999 [122]. No wonder, some people managed to make use of the wrong result in
their works.

To summarize the section, we may conclude that Kaucher complete interval
arithmetic, although not correcting all the drawbacks of classical interval arithmetic,
is still much more suitable and fitting for

1) the computation of formal solutions to interval systems of equations,

2) the solution of the minimax problems.

5.5. CHARACTERISTICMATRIX AND RIGHT-HAND SIDE VECTOR

As an immediate demonstration of the advantages Kaucher complete interval arith-
metic grants us, we introduce

DEFINITION 5.6 [110], [117], [118]. The interval matrixAc and interval vector
bc defined as

Ac := A∀ + dualA∃ , bc := dualb∀ + b ∃ ,

will be calledcharacteristicfor the AE-solution set of the interval linear system
(3.14) determined by the disjoint decompositions ofA to A∀ andA∃ , of b to b∀ and
b ∃ .

The concept we have specified by Definition 5.6 is so significant in our further
theory that it makes sense to discuss it more thoroughly. We emphasize that pointing
out the characteristic interval matrix and right-hand side vector completely deter-
mines an AE-solution set to the interval linear system of equations along with the
triple described in Section 3, i.e. with the quantifier matrixα and vectorβ, partitions
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of the index sets of the interval parameter matrix and right-hand side vector as well
as their disjoint decompositions. Setting the characteristic matrix and vector gives
even more information by jointly indicating both the type of the interval uncertainty
and the values of these intervals. Therefore, it is quite correct to speak of an AE-
solution set to some interval system of equation thatcorrespond to a characteristic
matrix and a right-hand side vector of the interval parametersand writeΞ (Ac, bc)
without explicit writing out the interval system and distribution of the uncertainty
types in it. The new concepts and terminology proves to be extremely beneficial
when applied to the interval linear systems of equations as will be showed, e.g., in
Section 7.4.

To illustrate the foregoing, we give a concise form of the main characterization
(3.23):

THEOREM 5.1.The point x∈ R
n belongs to the solution setΞαβ (A, b) if and only

if

Ac ⋅ x ⊆ bc (5.26)

in Kaucher complete interval arithmetic.

Proof. Notice that

opp (−v) = dualv

for any intervalv ∈ KR. Therefore, adding (dualb∀ + dual (A∃ ⋅ x)) to both sides
of the inclusion (3.23) results in the following equivalent inclusion in the complete
interval arithmetic

A∀ ⋅ x + dual (A∃ ⋅ x) ⊆ dualb∀ + b ∃ . (5.27)

But dual (A∃ ⋅ x) = (dualA∃ ) ⋅ x, sincex is a point vector. Instead of (5.27) we may
thus write

A∀ ⋅ x + (dualA∃ ) ⋅ x ⊆ dualb∀ + b ∃ .

Finally, in the left-hand side we can avail ourselves of the distributivity with respect
to the point variablex, arriving from (3.23) to the equivalent inclusion

(A∀ + dualA∃ ) ⋅ x ⊆ dualb∀ + b∃ ,

which coincides with (5.26). ✷

6. Inner Estimation of the Solution Sets

6.1. FORMAL APPROACH

In the approach developed in this section to the inner estimation problem (4.1),
we change it for the problem of finding formal solutions to a special systems of
equations in complete interval arithmeticKR, thus reducing the original problem to
a purely algebraic problem of numerical analysis. The cornerstone of this technique,
which we will call formal approach, is the following
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THEOREM 6.1 [104], [105], [107], [111], [112].Let Ac and bc be the character-
istic matrix and right-hand side vector of an interval linear systemAx = b which
correspond to its AE-solution setΞαβ (A, b). If a proper interval vectorx is a formal
solution to the equation

Ac x = bc, (6.1)

then x ⊆ Ξαβ (A, b), i.e. x is an inner interval estimate of the solution set
Ξαβ (A, b).

DEFINITION 6.1. For the interval systemAx = b, we will call the equation (6.1)
thedualization equationthat corresponds to the AE-solution set of the typeαβ of
the interval systemAx = b, or, equivalently, to the distribution of the uncertainty
types over the interval elements specified by the quantifiersα andβ.

Proof. Let a proper interval vectorx be a formal solution to the system (6.1) and
x̃ ∈ x. Then, in view of inclusion monotonicity of interval arithmetical operations
in KR, we have

Ac ⋅ x̃ ⊆ Ac ⋅ x = bc,

that is,x̃ ∈ Ξαβ (A, b) by Theorem 5.1. ✷

It is worth listing the most significant particular cases of the above general
result:

• If a proper interval vectorx is a formal solution to the equation

(dualA) x = b,

thenx ⊆ Ξuni(A, b), i.e.,x is an inner interval estimate of the united solution set
to the equationAx = b.�

• If a proper interval vectorx is a formal solution to the equation

Ax = b,

thenx ⊆ Ξtol(A, b), i.e.,x is an inner interval estimate for the tolerable solution
set to the equationAx = b (or, in other words, a solution to thetolerance problem
for the equationAx = b ; see also [119]).��

For example, one can simply check over, by direct substitution, that the
formal solution to the model system (3.21) is the proper interval vector([
−1

3
, 1

3

]
,
[
−1

3
, 1

3

])�
. Figure 3 demonstrates that it really gives a good inner approx-

imation for the tolerable solution setΞtol of this system. On the other hand, if the
� This elegant and very practical result has been advanced simultaneously and independently by

the author and by L. Kupriyanova, which was revealed at the international conference INTERVAL’94,
St.-Petersburg, Russia, March 7-10, 1994 (published later in [53] and [106]).

�� V. Zyuzin [131] seems to be the first who pointed to the possibility of such an estimation for
the tolerable solution set, although he had done that very briefly (in one sentence) and in an indirect
form.
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formal solution of the dualization equation (6.1) does not exist or is not entirely
proper, it does not necessarily imply that the corresponding solution set is empty
and the inner estimation problem (4.3) is incompatible.

The problem of computing formal solutions to interval linear systems in Kaucher
complete interval arithmetic turned out to be NP-hard, which was established by
A. Lakeyev in [57], [58]. Nonetheless, a number of efficient numerical methods has
been constructed for computing the formal solutions in the last decade, and they
work well enough provided the matrix of the input interval linear system is not “too
wide”. These aresubdifferential Newton method[105], [106], [109] (which turns
into quasidifferential Newton method in the general case) and various versions of
thestationary single-step iteration methods, both of Jacobi type [52], [65], [96] and
those based on splitting of the interval matrix of the equation [41], [105], [109],
[113]. To sum up, we can assert that, for the square interval linear systems of the
form

Cx = d, (6.2)

C ∈ KR
n×n, d ∈ KR

n, the problem of computing the formal solutions can be solved
(more or less) satisfactory.�

It is pertinent to note that, when solving the dualization equation in the general
case, we could hardly use symbolic (computer algebra) manipulations, elimination
methods, etc. The explanation is that algebraic properties ofKR are still poor.
Though they are better than those of classical interval arithmetic, the lack of dis-
tributivity makes it impossible even such simplest operation as the reduction of
similar terms. This is the reason why all the above mentioned algorithms for com-
puting formal solutions to interval linear systems are essentiallynumerical, while
few attempts to develop symbolic methods for finding formal solutions (such as
e.g. [81]) were of little success.

What about interval nonlinear systems of equations? We are able to produce
immediate generalizations of Theorem 6.1 for important particular cases of the
inner estimation of the united, tolerable and controllable solution sets (3.8)–(3.10)
to interval nonlinear systems.

PROPOSITION 6.1 [99], [100].Let the mapping F be such that each of the vari-
ables a1, a2, …,al occurs only once (if at all) and to the first power in at most one of
the component expressions F1, F2, …,Fm. If a proper interval vectorx is a formal
solution to the equation

F(duala, x) = b,

thenx ⊆ Ξuni(F, a, b), i.e.,x is an inner interval estimate of the united solution set
to the equation F(a,x) = b.

� The author’s software which has “public domain” status can be downloaded from the server of
Institute of computational technologies athttp://www.ict.nsc.ru/ftp/ict/interval.
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PROPOSITION 6.2 [99], [100].If a proper interval vectorx is a formal solution
to the equation

F(a, x) = b,

thenx ⊆ Ξtol(F, a, b), i.e.,x is an inner interval estimate for the tolerable solution
set to the equation F(a, x) = b (or, in other words, a solution to the tolerance
problem for the equation F(a,x) = b).

PROPOSITION 6.3.Let the mapping F be such that each of the variables
a1, a2, …,al occurs only once and to the first power in at most one of the com-
ponent expressions F1, F2, …,Fm. If a proper interval vectorx is a formal solution
to the equation

F(duala, x) = dualb,

thenx ⊆ Ξctr(F, a, b), i.e.,x is an inner interval estimate of the controllable solution
set to the equation F(a, x) = b.

As a simplest illustrative example, we consider the interval equation of two
unknowns

[1, 2] x2 + y2 = [4, 10]. (6.3)

One can readily see that its united solution set is the circle with the radius
√

10 and
the center at the origin of coordinates, with the smaller ellipse deleted, which is
depicted in Figure 9. The valuesx = [0, 1] andy = [2, 3] provide us with the formal
solution to the dualization equation

[2, 1] x2 + y2 = [4, 10],

and Figure 9 shows that the interval vector ([0, 1], [2, 3])� really gives an inner
interval estimate of the united solution set, even maximal with respect to inclusion
order.

Notice that in Theorem 6.1 and the above propositions we could consider, with
equal success, formal solutions of the inclusion

Ac x ⊆ bc

and such like rather than those of the equation (6.1), which sometimes does make
sense indeed. On the other hand, wider vectorx leads to wider productAc x, so as
it is intuitively clear that taking the equalities (6.1) instead of inclusions conduces
to larger size of the formal solution. The results of Section 6.2 show that, to some
extent, this is really so. The other reason why we consider mainly equations is that,
in our particular case, they are amenable to more efficient computational procedures
for finding their formal solutions.

The requirements Propositions 6.1–6.3 imposes on the occurrences of the
E-uncertain interval parameters in the equations systemsF(a, x) = b are quite
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Figure 9. Inner estimation of the united solution set to the interval equation (6.3).

burdensome, so that a natural wish is to somehow relax them in order to extend
our formal approach to the widest possible class of problems. We are able, to a
certain extent, to do that by using the following trick, which we call “parameter
freezing.”

Notice that narrowing an interval of variations of any E-uncertain parameter may
only lead to the AE-solution set also making more narrow with respect to inclusion.
Additionally, an inner estimate of the narrowed solution set is an inner estimate of
the solution set to the original interval system of equations too. Furthermore, when
we squeeze the interval of an E-uncertain parameter to asingle point(“freeze” the
variation of this parameter), the corresponding uncertainty disappears. As a result,
the structure of the original interval equations systemF(a,x) = b can get simpler, if
the corresponding interval parameter had a multiple occurrence in this system.

Successively repeating the above “freezing” procedure, we may yield eliminat-
ing, from the original system, all the interval E-uncertain parameters that occur
in more than one of the component expressionsF1, F2, …,Fn thus bypassing the
main obstacle of applying Propositions 6.1–6.3. Of course, for such a simplification
of the interval system we have to pay by coarsening of our inner estimation, i.e.
decreasing the size of the resulting estimate, and sometimes it can even become
empty.
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6.2. MAXIMALITY OF INNER ESTIMATES

In this subsection, we consider quality issues of the inner interval estimation by the
formal approach, or, in other words, the question about the size of the inner interval
estimate of the AE-solution sets. A remarkable feature of the formal approach, as
applied to interval linear systems, is that it almost always gives us inner interval
estimates of the generalized solution sets, which aremaximal with respect to inclu-
sion. This fact was first revealed by L. Kupriyanova [53] for the united solution set
to interval linear systems. Afterward, S. Shary gave another form of that result and
proved maximality of the estimates of the tolerable and controllable solution set
obtained by the formal approach [106]. The following more general result was first
found by S. Shary in [100]:

THEOREM 6.2.If a proper interval vector is an inclusion-maximal formal solution
to the dualization equation (6.1), it is also an inclusion-maximal interval vector
contained inΞαβ (A, b), i.e., gives an inclusion-maximal solution to the inner esti-
mation problem (4.3).

In particular, if a proper formal solution to the dualization equation is unique,
then it is an inclusion-maximal solution to the problem (4.3).

Proof. We need the following auxiliary representation: ifv is a proper interval
n-vector andC is an (arbitrary) intervalm × n-matrix, then

C ⋅ v =
∨
v∈ v

C ⋅ v. (6.4)

Indeed, ifC⋅v = ((C⋅v)1, (C ⋅ v)2, …, (C⋅v)m)�, then, using (5.22) and distributivity
(5.6) of addition with respect to the operation “∨ ”, we get

(C ⋅ v)i =
n∑

j =1

aij vj =
n∑

j =1

∨
vj ∈ vj

aij vj

=
∨

v1 ∈ v1

∨
v2 ∈ v2

· · ·
∨

vn ∈ vn

n∑
j =1

aij vj

=
∨
v∈ v

n∑
j = 1

aij vj =
∨
v∈ v

(C ⋅ v)i .

Now, let us turn to the proof of the theorem, which we will carry outad
absurdum. We denote the proper maximal formal solution of (6.1) byx and assume
that, contrary to the assertion of the theorem, there exists a proper interval vector
y, such that

Ξαβ (A, b) ⊇ y ⊃ x.

Making use of inclusion monotonicity of the interval arithmetic operations from
KR one obtains

Ac ⋅ y ⊃ Ac ⋅ x = bc,
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the exact equality instead of inclusion being impossible due to the maximality of
x. Furthermore, the representation (6.4) results in∨

y∈ y
Ac ⋅ y ⊃ bc, (6.5)

and we can conclude that there must be

Ac ⋅ ỹ �⊆ bc

for some (at least one)̃y ∈ y. Otherwise, if we hadAc ⋅ y ⊆ bc for all y ∈ y, then the
inclusion that is opposite to (6.5) would be valid. However, owing to Theorem 5.1,
the relation (6.5) is equivalent tõy �∈ Ξαβ (A, b), soy �⊆ Ξαβ (A, b). ✷

An exhaustive study of the conditions under which our formal approach yields
an inclusion-maximal inner estimates for AE-solution sets has been carried out in
[97], [98]. The concluding result of these papers is

THEOREM 6.3. Irene’s theorem.If the interval matrixA has, in each column, at
least one component that does not contain zero, then every proper formal solution to
the dualization equation is a maximal inner interval estimate for the corresponding
AE-solution set.

If A∃ = A, then the above condition is even necessary for the interval estimate
to be inclusion-maximal.

The proof of this statement is not simple, both technically and conceptually,
it requires deeper inquiring into the common inclusion monotonicity property of
interval arithmetic operations, which is resulted in the introduction of the so-called
strong inclusion monotonicity. Interesting results concerning the strong inclusion
monotonicity is an important byproduct of the works [97], [98].

As an example, let us consider the formal solution of the interval systems(
[ 2, 4] [−2, 1]
[−1, 2] [ 4, 2]

)
x =

(
[−2, 2]
[−2, 2]

)
and

(
[2, 4] [−2, 1]
[2,−1] [ 4, 2]

)
x =

(
[−2, 2]
[−2, 2]

) (6.6)

which is the proper vector (0, [−1, 1])�, and, in accordance with Theorem 6.3, it
gives an inclusion-maximal inner estimate for

(
∀∀
∀ ∃

)(
∃
∃

)
-solution set and for(

∀∀
∃ ∃

)(
∃
∃

)
-solution set of the model system (3.21). That it is actually so, one can

make sure from Figure 4, but “flatness” of the estimate produced in the first coor-
dinate may prove disadvantageous in practice. The rest of the AE-solution sets
depicted at Figures 3 and 4 are estimated from inside by the formal approach more
optimistically. In particular, for the interval linear systems(

[ 2, 4] [1,−2]
[−1, 2] [4, 2]

)
x =

(
[−2, 2]
[−2, 2]

)
and

(
[2, 4] [1,−2]
[2,−1] [2, 4]

)
x =

(
[−2, 2]
[−2, 2]

)
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the inner interval estimate yielded by the formal approach for the sets of(
∀∃
∀∃

)(
∃
∃

)
-solutions and

(
∀ ∃
∃ ∀

)(
∃
∃

)
-solutions—the vector


[
−1

2
, 1

2

]
[
−1

2
, 1

2

]



—cover considerable parts of the corresponding sets indeed.
In connection with the last observation, the following important practical ques-

tion arises. Namely, how can we influence upon the location and/or size of the
interval solution to the inner estimation problem (4.1) obtained by our formal
approach? We answer that in the next subsection of the work.

6.3. CORRECTION OFINNER ESTIMATES

The most serious shortcoming of the formal approach to the inner estimation is
that it does not allow to comprehensively examine the problem. If a solution to
the dualization equation exists and it is proper, then everything is all right and we
get the desired answer to the problem. Otherwise, if the dualization equation has
no solutions, or, alternatively, the solutions do exist, but they are not proper, we
can conclude nothing on whetherΞαβ (F, a, b) is empty or not. For example, the
one-dimensional equations

[−1, 1] x = [1, 2]

and

[−1, 1] x = [−1, 2]

do not have formal solutions at all, inasmuch as for any intervalx the product
[−1, 1] x is always a balanced interval, which is equal to [−|x|, |x|] for proper x
and [−〈pro x〉, 〈pro x〉] for improperx. Since the right-hand sides of both above
equations are not balanced, they cannot have formal solutions. Meanwhile, the
first equation has empty tolerable solution set, but for the second one the tolerable
solution set is nonempty:Ξtol = [−1, 1].

Sometimes, either size or location of the interval solution to the inner estimation
problem produced by the formal approach may prove unacceptable. A tool for
correcting such situations is provided by the following

THEOREM 6.4. Lemma on “squeezing and inflating of parameters” for interval
linear systems.If an interval vectorx is an inner estimate of an AE-solution set
Ξ(Ac, bc) to an interval linear system that corresponds to the characteristic matrix
Ac and right-hand side vectorbc, then it is also an inner interval estimate of
an AE-solution setΞ(Ãc, b̃c) to an interval linear system corresponding to the
characteristic matrixAc and right-hand side vectorbc such that

Ãc ⊆ Ac and bc ⊆ b̃c.
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Proof. For any pointx, the membershipx ∈ Ξ(Ac, bc) is equivalent to the
inclusion

Ac ⋅ x ⊆ bc

in the complete interval arithmetic. Making use of the condition of Theorem and
inclusion monotonicity property, we get

Ãc ⋅ x ⊆ Ac ⋅ x ⊆ bc ⊆ b̃c,

to wit

Ãc ⋅ x ⊆ b̃c,

which just means that the pointx belongs to the solution setΞ(Ãc, b̃c) as well.
Therefore,Ξ(Ac, bc) ⊆ Ξ(Ãc, b̃c), and the proof is complete. ✷

Let us turn to the previous example of the interval system [−1, 1] x = [−1, 2]
and its tolerable solution set. If the right-hand side of this system is squeezed
to [−1, 1], then the resulted equation [−1, 1] x = [−1, 1] becomes solvable, and
its formal solution [−1, 1] coincides with the tolerable solution set of the sys-
tem. Alternatively, we may inflate the left-hand side coefficient [−1, 1], which has
A-uncertainty, to [−1, 2] and get the same result.

Notwithstanding the triviality of the proof for Theorem 6.4, the consequences of
this result are extremely important for the computational practice. Specifically, if a
client is dissatisfied by the results of the direct (“frontal”) application of the formal
approach to the initial interval system, it makes good sense to try it with an auxiliary
interval system that has “squeezed” intervals corresponding to A-uncertainty and
“expanded” intervals corresponding to E-uncertainty. You can get something better
in location and/or size, “more solid” in particular. Sometimes, this simple technique
enables one to compute inner interval estimates of the solution sets even for the
situations, when the dualization equation that corresponds to the initial system does
not have proper solutions at all.

Let us consider specific examples. For the interval linear system

(
[ 2, 4] [−1, 1]
[−1, 1] [ 2, 4]

)
x =

(
[−3, 3]

0

)
(6.7)

from [71], [69], both
(

∃∃
∃∃

)(
∃
∃

)
-solution set (i.e., the united solution set) and(

∃∀
∃ ∃

)(
∃
∃

)
-solution set have butterfly-shaped forms drawn in Figure 10. When seek-

ing inner interval estimates for them, the direct use of Theorem 6.1, i.e. com-
puting formal solutions to the equations of the type (6.1), leads in both cases to
([−1.5, 1.5], 0)�, which is not very successful because of the second degenerate
component.
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Figure 10. “Almost disconnected” solution sets to the interval equation (6.7).

If we try with the same matrix and a squeezed right-hand side, say, [1, 3], rather
than [−3, 3], in the first component of the right-hand side (since the zero in the
second component cannot be changed), we get proper formal solutions


[

1
4
, 3

2

]
[
−1

8
, 1

8

]

 and




[
2
7
, 10

7

]
[
−1

7
, 1

7

]



for the corresponding dualization equations. The above interval vectors have nonemp-
ty interiors and cover larger parts of the solution sets, which sometimes may appear
to be more advantageous for the users. Of course, we may try to vary the first com-
ponents of the right-hand side vector in another manner, combining it with varying
the matrix as well.

One more example. Suppose that, for the interval linear system(
[2, 3] 1

1 [2, 3]

)
x =

(
[−5, 5]

0

)
, (6.8)

we are to find an inner interval estimate of the united solution set depicted at
Figure 11. The direct application of Theorem 6.1 and computing the formal solution
to the dualization equation for (6.8) leads to the interval vector ([−3, 3], [1,−1])�,
which has the second component improper and thus cannot be interpreted as an
inner interval estimate. However, it is quite clear that the united solution set to (6.8)
is nonempty and even its interior is nonempty as well!

The reason why the algebraic approach fails is that the solution set for the
system considered is a butterfly-shaped region with the origin of coordinates being
a “singular” point. In such situations, one should not expect to get a solution “at
one fell swoop,” since an inner estimate for the solution set may not, in principle,
be adequately represented by a single interval that covers all parts of the solution
set (which belong to different orthants). In general, AE-solution sets are proved
to be a complex non-convex set, but in the situation we deal with the solution set
is extremely non-convex, almost disconnected. More precisely, it is constituted of
the two components that touch in the only point, the origin of coordinates. Formal
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Figure 11. “Almost disconnected” united solution set to the interval linear system (6.8).

approach “tries” to find one interval vector that would cover all these weakly
connected regions and, naturally, fails.

How to cope with our troubles?
One had better seek the answer to the inner estimation problem in the form of the

union of several intervals (depending on the dimension of the system). Specifically,
our prescript is “divide and conquer,” keeping in mind the proposition about system
squeezing.

The major evident reasons that cause bad shape of the solution set (and conse-
quently bad results produced by formal approach) are

• “thin” zeros in the right-hand side,

• zero-containing intervals in the right-hand side, and (the least important)

• zero-containing interval entries in the matrix.

There are less evident reasons, but we skip them for simplicity. Thus,

• “divide” means “subdivide your system to squeezed systems,” to get rid of zero-
containing components combined with zeros. That must result in a simplification
of the solution set, and the “butterfly-shape” will vanish,

• “conquer” means “solve inner estimation problems for them separately,” and
afterward you can get something (more or less) suitable by gathering the separate
answers.

If, in the interval system (6.8), we change the characteristic right-hand vector to
([5, 4], 0)�, such that ([5, 4], 0)� ⊆ ([−5, 5], 0)�, retaining the characteristic matrix
the same. Having computed the algebraic solution to the dualization equation

(
[3, 2] 1

1 [3, 2]

)
x =

(
[5, 4]

0

)
, (6.9)

we get a solid interval vector ([2, 2.4], [−1,−0.8])� as a required inner estimate of
the united solution set for (6.8). Notice that to obtain such an apt estimate we had
to change the interval uncertainty type in the second component of the right-hand
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Figure 12. Nonsolid united solution set to the interval linear system (6.10).

vector of the auxiliary system (6.9): it has become different from that in the original
system.

Of course, there are situations when the interior of the solution set is empty so
that a “good” inner interval estimate can be found in no way. Let us consider, for
instance, the interval linear system

(
1 1

− 1 1

)
x =

(
[0, 4]

1

)
. (6.10)

Its united solution set is a straight line segment depicted at Figure 12, for which a
solid inner estimate does not exist in principle. We have to be able to discern such
cases in practice.

6.4. EXISTENCE AND UNIQUENESS OFFORMAL SOLUTIONS

DEFINITION 6.2 [103]. Given a square matrixQ ∈ R
n×n, we put

Q˜ :=


 Q+ Q−

Q− Q+


 , (6.11)

wheren × n-submatricesQ+ = (q+
ij ) andQ− = (q−

ij ) are positive and negative parts
of Q, i.e. the matrices composed of the positive and negative parts of the entries of
Q respectively. The matrixQ˜ ∈ R

2n×2n is said to beconcomitant matrixto Q.

THEOREM 6.5.For a square matrix Q∈ R
n×n, the following statements are

equivalent:

(i) Qx = 0 in the interval spaceKR
n if and only if x = 0;

(ii) the matrix Q̃ ∈ R
2n×2n , concomitant to Q, is regular;

(iii) both the matrix Q itself and its module|Q| (i.e., the matrix made up of the
moduli of the entries) are regular matrices.
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Proof. The equivalence (i)⇔(ii) is substantiated e.g. in [100], [103], [109].
To prove the equivalence (ii)⇔(iii), let us transform the concomitant matrixQ˜

as follows [109]. We add the first row ofQ˜ to its (n + 1)-st row, the second row to
the (n + 2)-nd one, etc., up to then-th row which we add to the 2n-th one. Insofar
as

q+ + q− = |q|

for each realq, we get the following block 2n × 2n-matrix(
Q+ Q−

|Q| |Q|

)
(6.12)

as the result of our transformations. Next, we subtract the (n + 1)-th column of the
matrix (6.12) from its first column, the (n+ 2)-nd column from the second one, etc.,
up to the 2n-th column which we subtract from then-th one. Insofar as

q+ − q− = q

for each realq, we get the following block-triangular 2n × 2n-matrix(
Q Q−

0 |Q|

)
. (6.13)

As is known from linear algebra, our transformations do not change the property
of a matrix to be either singular or regular, so that the matrix (6.13) is singular
or regular simultaneously with the concomitant matrixQ˜. At the same time, the
determinant of (6.13) is equal to the product of the determinants ofQ and|Q|. ✷

DEFINITION 6.3. A square matrixQ ∈ R
n×n satisfying any (and, therefore, all)

of the equivalent conditions listed in Theorem 6.5 is calledcompletely regular
(completely nonsingular).�

For example, the unit matrix is completely regular, while the matrix(
1 1

−1 1

)
,

being regular in the usual sense, is not completely regular. It is apparent thata priori
a matrix is not completely regular if it is singular. Also, every nonnegative regular
matrix is completely regular.

The main results of this subsection are local existence and uniqueness theorems
for formal solutions of interval linear equations of the form (3.14).

THEOREM 6.6.If the interval matrixC ∈ KR
n×n is sufficiently narrow (i.e., if

‖rad C‖ is sufficiently small) andpro C—proper projection ofC—contains a
completely regular point matrix, then the equations system

� The author called such matricesı-nonsingularin the previous papers [103], [105], [106], [113].
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Cx = d (6.2)

has a formal solution in Kaucher complete interval arithmetic for every
d ∈ KR

n.

One can find the complete proof of this fact, e.g., in [109]. It is conducted by
topological methods (see, e.g., [77]), using the theory of rotation of vector fields
(or equivalent theory of topological degree of mappings).

Let us turn to the uniqueness issues of the formal solutions to square interval
linear systems of the form (6.2) in Kaucher complete interval arithmetic. The
questions is completely solved by the “immersion theory” of [100], [103], [105],
[109] for the systems (6.2) with point matrices. Namely, the interval system

Cx = d

with a completely regular matrixC has a unique formal solution for every right-
hand side vectord ∈ KR

n. As for the interval linear systems (6.2) with essentially
interval matricesC, the uniqueness of their formal solutions has been relatively
little studied for the time being.

DEFINITION 6.4.Mignitude〈a〉 of a proper intervala is the least distance of the
points ofa to zero, i.e.

〈a〉 :=

{
min{|a|, |a|}, if a �� 0,

0, if a � 0.

DEFINITION 6.5. A proper interval matrixA = (aij ) is calledstrictly diagonally
dominantif it satisfies

〈aii 〉 >
∑
k �= i

|aik| for i = 1, 2, …,n. (6.14)

A simple particular result that may sometimes prove helpful:

THEOREM 6.7 [52], [65], [96].For the interval linear system

Cx = d (6.2)

with C ∈ KR
n×n and d ∈ KR

n, the formal solution exists and is unique provided
that the proper projectionpro C is strictly diagonally dominant.

Proof. We introduce the following notation:

D is the diagonal matrix diag{c11, c22, …,cnn},
E is the matrix obtained fromC by nullifying its diagonal entries.

Therefore,C = D + E, and the formal solution to the system (6.2) obviously
coincides with that of the system

Dx + Ex = d,
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which in its turn is equivalent to

Dx = d� Ex.

We can thus arrange the iterations

x(k+1) = D−1(d �Ex(k))

with D−1 = diag{c−1
11 , c−1

22 , …,c−1
nn }, and they converge to a unique fixed point of

the map

x �→ D−1(d�Ex)

due to the strict diagonal dominance inC. ✷

7. Outer Estimation of the Solution Sets

In this section, we present several approaches to outer interval estimation of the
AE-solution sets to interval systems of equations. They are quite unequal both
with respect to their computational complexity and the quality of the answers
they produce. These are, on the one hand, exponentially complex methods of
Section 7.1 and Section 7.5 intended for the computation of the outer estimates
which are optimal or have guaranteed accuracy. On the other hand, the methods from
Section 7.2 and Section 7.3 may yield substantial overestimation of the solution
sets, but they are not so labor consuming. It should be remarked that a technique
for outer interval estimation of the AE-solution sets, which is quite similar in idea
to our “formal approach” of Section 7.2, has been recently proposed by M. Sainz
and E. Gardẽnes in [95].

7.1. EXHAUSTIVE SEARCH LIKE METHODS

Let us turn to the outer estimation problem in the componentwise form (4.5). As we
have established in Theorem 3.6, the intersection of the AE-solution setΞαβ (A, b)
to an interval linear system with every orthantO of the spaceRn is a convex
polyhedral set (which may be empty). Computing the values

min{xν | x ∈ Ξαβ (A, b) ∩ O}, ν = 1, 2, …,n, (7.1)

amounts therefore to a linear programming problems that may be efficiently solved,
e.g., by the widely known and well developed simplex-method. Further, we need
to look over all the orthants of the spaceR

n and to pick out the smallest among
the computed values (7.1). In the general case, this approach is of low practical
significance due to the enormous growth of its computational complexity with the
dimension of the problem. Still, for small dimensions and for some special types of
the interval linear systems (for instance, when it isa priori known that the solution
set is situated in a limited number of orthants), the above exhaustive search can
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be successfully applied to the practical solution of the outer estimation problem
(4.4)–(4.5). For the particular case of the united solution set, this kind of method
has been considered earlier in the works [17], [75].

We are going to write down, similar to what has been done in [17], [75], the
so-calledcanonical formof the linear programming problem we have to solve to
find the values (7.1). Let us use Rohn characterization (Theorem 3.5), which gives
the description of the points from the AE-solution set through linear inequalities
with moduli:

the membershipx ∈ Ξαβ (A, b) is equivalent to the componentwise inequality

|(mid A) ⋅ x−mid b| ≤ (radA∃ − radA∀ ) ⋅ |x| + (radb ∃ − radb∀ ),

or {
mid A ⋅ x−mid b ≤ (radA∃ − radA∀ ) ⋅ |x| + (radb ∃ − radb∀ ),

−mid A ⋅ x + mid b ≤ (radA∃ − radA∀ ) ⋅ |x| + (radb ∃ − radb∀ ),

which, in its turn, is equivalent to the system


mid A ⋅ diag{sgnx1, …,sgnxn} ⋅ |x| − (radA∃ − radA∀ ) ⋅ |x|
≤ mid b + (radb ∃ − radb∀ ),

−mid A ⋅ diag{sgnx1, …,sgnxn} ⋅ |x| − (radA∃ − radA∀ ) ⋅ |x|
≤ −mid b + (radb ∃ − radb∀ ),

where diag{sgnx1, …,sgnxn} is the diagonal matrix with sgnx1, …,sgnxn along
its main diagonal. Also, the right-hand sides of these inequalities may be further
simplified taking into account the definition of the characteristic right-hand side
vectorbc:

mid b + (radb ∃ − radb∀ ) = bc,

−mid b + (radb ∃ − radb∀ ) = (−bc).

Let y be the vector of the absolute values ofx, i.e.yi = |xi |, i = 1, 2, …,n, and

S= diag{s1, s2, …,sn}, si = sgnxi = ±1,

be the diagonal matrix formed by the signs of the interior points of the orthantO
under consideration, i.e.x = Syfor x ∈ O. Then the condition

x ∈ Ξαβ (A, b) ∩ O

is satisfied if and only if there existsy ∈ R
n such that



(
mid A ⋅ S− (radA∃ − radA∀ )

−mid A ⋅ S− (radA∃ − radA∀ )

)
y ≤

(
bc

(−bc)

)
,

y ≥ 0.

(7.2)
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Table 3. Passive exhaustive-search algorithm for the outer
estimation of the AE-solution sets to interval linear systems.

Input

An interval linear systemAx = b.

An integer indexν ∈ {1, 2, …,n}.

Output

The exact lower estimatey = min{xν | x ∈ Ξαβ (A, b)}
of the solution setΞαβ (A, b) along theν-th coordinate.

Algorithm

y← +∞;

DO FOR i = 0 TO 2n − 1

solve the linear programming problem (7.2)–(7.3)

computingz← min{xν | x ∈ Ξαβ ∩ Oi};
IF ( y > z ) y← z;

END DO

Therefore, the value min{xν | x ∈ Ξαβ (A, b) ∩ O} is the solution to the linear
programming problem with the constraints (7.2) and the objective function

c�y, c� = (0, …,0, sν , 0, …,0) ∈ R
n, (7.3)

to be minimized.
Each orthant of the spaceRn is completely determined by indicating the signs

of its interior points and, for the algorithmic purposes, it will be convenient for us
to enumerate all the orthants ofR

n by the integers from 0 to 2n − 1. That can be
done, for example, as follows: every orthant gets ann-digit binary number obtained
from the component signs set through replacing “−” for 0 and “+” for 1. Overall,
the exact outer estimate of the value min{xν | x ∈ Ξαβ (A, b)} can be found by the
algorithm whose pseudocode is presented in Table 3 (where “←” means assigning
operator).

DEFINITION 7.1. An algorithm is calledpassive, if performing its every step
(information computation) does not make use of the information obtained at the
preceding steps.

An algorithm is calledadaptive, if performing its every step (information com-
putation) does make use (in this or that form) of the information from the preceding
steps.

The passive algorithms are thus the algorithms with rigidly predetermined com-
putational scenarios that do not depend on individual features of the problems under
solution. On the contrary, the adaptive algorithms enable us to flexibly adapt the
solution process to each specific problem. Therefore, such algorithms are more
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preferable in the computational practice, all the other factors being equal.� As we
can see, the technique presented in this subsection for the outer estimation of the
AE-solution sets to interval linear systems turns out to be only passive, which is
one of its major drawbacks.

A natural and promising way to modify the above approach is to examine only
the orthants whose intersections with the solution set area priori nonempty, which
is to be revealed in a special procedure not connected with the solution of the linear
programming problem (7.2)–(7.3). For the united solution set, this idea has been first
advanced and implemented by C. Jansson [38], its extension to general AE-solution
sets being quite evident. Checking nonemptyness requires additional labor, but the
efforts will be rewarded by much far less average execution complexity as compared
with that of the passive exhaustive-search algorithm of Table 3. Moreover, the new
modified algorithm becomesadaptive.

7.2. FORMAL APPROACH

In this subsection, we demonstrate how the problem of outer interval estimation of
the AE-solution sets can be reduced to the problem of computing formal solutions
to a special interval system of equations. The whole idea is thus very much alike to
that of the “formal approach,” which we have applied for inner interval estimation
in Section 6. For this reason, we shall also refer to this outer estimation technique
as “formal approach”. On the other hand, in Theorems 7.2–7.4, one can easily
recognize the analogs of the classical results on outer estimation in the interval
linear systems from [2], [3].

Below, we shall need yet another characterization of the AE-solution sets to the
interval linear systems with square matrices, which has the so calledfixed-point
form, and the starting point of our consideration is the result of Theorem 5.1:

x ∈ Ξαβ (A, b) ⇐⇒ Ac x ⊆ bc.

Adding (x � Acx) to both sides of the above inclusion, we get the equivalent
relation

x ⊆ x + opp (Acx) + bc.

But opp (Acx) = (oppAc) x for nonintervalx. Therefore,

x ⊆ x + (oppAc) x + bc,

and, again taking into account the fact thatx is a point, we can avail ourselves of
the distributivity and factor out the unknown variablex. Overall,

x ∈ Ξαβ (A, b) ⇐⇒ x ⊆ (I � Ac) x + bc.

� In a sense, the distinction between the passive/adaptive algorithms corresponds to the contrast
between the program and position-based controls of a dynamic object mentioned at page 331.
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It worthwhile to note that, forx ∈ Ξαβ (A, b) �= ∅, our reasoning imply that (I �
Ac) x + bc is a proper interval vector.

We thus arrive at

THEOREM 7.1.For the square interval linear systemAx = b, a point x ∈ R
n

belongs to the solution setΞαβ (A, b) if and only if

x ⊆ (I � Ac) x + bc

in Kaucher complete interval arithmetic.

Our next result is

THEOREM 7.2.Let an interval matrixC ∈ KR
n×n be such that the spectral radius

ρ(|C|) of the matrix made up of the moduli of its elements is less than1. Then a
formal solution to the interval linear system

x = Cx + d (7.4)

exists and is unique for any interval vectord ∈ KR
n.

Proof. In the situation under study

Dist (Cx′ + d, Cx ′′ + d) = Dist (Cx′ , Cx ′′ ) ≤ |C| ⋅ Dist (x ′ , x ′′ )

for any vectorsd, x′ , x′′ ∈ KR
n and for the pseudometric Dist introduced by (5.19).

If the spectral radius of the matrix|C| is less than one, we can make use of the
finite-dimensional version of Shröder fixed-point theorem (see, e.g., [2], [16], [69],
[77]). That is, the mappingKR

n → KR
n which acts as

x �→ Cx + d,

is contracting with respect to the pseudometric Dist, and thus has the only fixed
point, which is the formal solution to the interval linear system (7.4). ✷

THEOREM 7.3.Let, for an interval linear systemAx = b, an AE-solution set
Ξαβ (A, b) be nonempty, whileAc andbc are the corresponding characteristic matrix
and right-hand side. If

ρ(|I � Ac|) < 1, (7.5)

then the formal solution of the interval linear system

x = (I � Ac) x + bc (7.6)

(which exists and is unique by virtue of Theorem 7.2) is a proper interval vector
that contains the solution setΞαβ (A, b).

Proof. Assumingx ∗ to be a formal solution to the interval linear system (7.6),
we are going to show thatx̃ ∈ x ∗ providing thatx̃ ∈ Ξαβ (A, b).
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In view of Theorem 7.1, the membershipx̃ ∈ Ξαβ (A, b) is equivalent to the
inclusion

x̃ ⊆ (I � Ac) x̃ + bc. (7.7)

Let us organize an iteration process inKR
n according to the following formulas

x(0) ← x̃, (7.8)

x(k+1) ← (I � Ac) x(k) + bc. (7.9)

Using induction, it is not hard to prove that all the consecutive interval vectors
generated by the process containx̃. Indeed, that holds true forx(0) according to our
construction. Ifx̃ ∈ x(k), then by virtue of (7.7) and the inclusion monotonicity of
arithmetic operations inKR

x̃ ⊆ (I � Ac) x̃ + bc ⊆ (I � Ac) x(k) + bc = x(k+1). (7.10)

Hence,x̃ ∈ x(k) for any natural numberk.
Next, the conditionρ(| I �Ac|) < 1 implies convergence of the iteration process

defined by the formulas (7.8)–(7.9): Shröder fixed-point theorem (see [2], [16], [69],
[77]) works again! So, the sequencex(k) converges to the unique formal solution of
the equation (7.6), that is, tox ∗ . Since the membershipx ∈ x(k) is equivalent to the
system of 2n nonstrict inequalities, it must hold after passing to the limit:

x̃ ∈ lim
k→∞

x(k) = x ∗ ,

which completes the proof. ✷

We will also call the interval equations of the form (7.6)dualization equations
that correspond to this or that AE-solution set of the interval linear system (1.3)–
(1.4), stressing, if necessary, that the outer estimation mode is meant.

Now, it is time to remind the following

DEFINITION 7.2 (see [9], [69]). A matrixA ∈ R
n×n is termed anM-matrix, if it

satisfies any one of the following equivalent conditions:

(i) A = sI− P, whereP is a nonnegative matrix ands > ρ(P);

(ii) off-diagonal entries of the matrixA are non-positive andA−1 ≥ 0;

(iii) off-diagonal entries of the matrixA are non-positive and there
exists a vectoru > 0 such thatAu > 0;

(iv) …, etc.�

� For instance, A. Berman and R. Plemmons [9] list 50 conditions equivalent to the statement “the
matrix A is anM-matrix.”
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DEFINITION 7.3 [6]. An interval matrixA ∈ IR
n×n is termed aninterval M-matrix

if every point matrixA ∈ A is anM-matrix.

There holds

THEOREM 7.4 [109].Let, for an interval linear systemAx = b, an AE-solution
setΞαβ (A, b) be nonempty, whileAc and bc are the corresponding characteristic
matrix and right-hand side. IfA is an intervalM-matrix and no component ofb
contain zero in its interior, then the formal solution of the interval linear system

x = (I � Ac) x + bc

exists, is unique and provides us with the interval hull of the solution setΞαβ (A, b),
i.e., the best possible solution to the outer estimation problem (4.4).

As an illustrative example, we can compute an enclosure of
(

∃∀
∃ ∃

)(
∃
∃

)
-solution set

to the interval linear system (6.7). First, let us scale the system through multiplying

both the matrix and right-hand side by1
4
. We get




[
1
2
, 1
] [

−1
4
, 1

4

]
[
−1

4
, 1

4

] [
1
2
, 1
]


 x =




[
−3

4
, 3

4

]
0


 . (7.11)

The corresponding dualization equation (7.6) to enclose the
(

∃∀
∃ ∃

)(
∃
∃

)
-solution set for

(7.11) has the form

x =




[
0, 1

2

] [
1
4
,−1

4

]
[
−1

4
, 1

4

] [
0, 1

2

]

 x +




[
−3

4
, 3

4

]
0


 ,

and its formal solution is (check that!) the interval vector


[
−3

2
, 3

2

]
[
−3

4
, 3

4

]

 .

It really includes the
(

∃∀
∃ ∃

)(
∃
∃

)
-solution set of the interval linear systems (6.7) and

(7.11), as one can easily see from Figure 10.
We conclude the subsection with a commentary on the practical implementation

of the above formal approach for outer interval estimation of the solution sets.
Theorems 7.2–7.3 give, as a matter of fact, a theoretical foundation for constructing
stationary single-step iterative techniques based on Schröder fixed-point theorem.
Namely, under conditions of Theorem 7.3 we can organize iterating according to the
formula (7.9) (or some its modification), which will really converge to an enclosure
of the AE-solution setΞαβ (A, b) from any starting approximationx(0). In doing
so, the most convenient choice forx(0) is a vector that is guaranteed to contain
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Ξαβ (A, b), since then (7.10) implies that every iterationx(k) contains the solution
set under estimation too. For instance, we can take, asx(0), an enclosure of the
united solution set, its computation being a well-elaborate numerical problem (see,
e.g., [2], [32], [45], [69], [87]).

Another opportunity to find the desired formal solution to (7.6) issubdifferential
Newton method[103], [109] whose applicability is currently substantiated for the
equations (7.6) with the matricesAc having either all proper or all improper entries
along each row. However, numerical experiments show that the method works well
for general interval linear systems, when proper and improper entries inAc are arbi-
trarily mixed (although it isquasidifferentialNewton method, not subdifferential,
in such cases).�

Finally, the requirement

ρ(|I � Ac|) < 1 (7.5)

that an interval linear system is amenable to our formal approach appears to be quite
burdensome. Below, in Section 7.4, we will discuss a way to partially overcome the
inequality (7.5) through the so-calledpreconditioning.

7.3. INTERVAL GAUSS-SEIDEL METHOD

Interval Gauss-Seidel methodis known to be one of the most efficient and popular
algorithms for the computation of the outer interval estimates (enclosures) of the
united solution set to interval linear systems of equations. It is usually used after
preliminary preconditioningof the interval systems (see, e.g., [45], [69]). The
purpose of this section is to adapt the interval Gauss-Seidel iteration to the problems
of outer interval estimation of the generalized solution sets to interval linear systems.
Below, we suppose that the interval matrixA is nonsingular, i.e., that all the point
matricesA ∈ A are nonsingular. One can achieve then, after suitable permutation
of the equations (matrix rows), that the diagonal entriesaii , i = 1, 2, …,n, do not
contain zeros.

The basis of the point Gauss-Seidel method is writing out the system of equations
Ax = b in the explicit componentwise manner

n∑
j = 1

aij xj = bi , i = 1, …,n,

and further solving thei-th equation with respect toxi assuming thataii �= 0. To
construct the interval method, we shall act in a similar way.

Let us make use of the characterization of the AE-solution sets to the interval
linear systems presented by Theorem 5.1:

x ∈ Ξαβ (A, b) ⇐⇒ Ac x ⊆ bc. (5.26)

� Again, one can find some of the author’s “public domain” implementations of the methods under
discussion athttp://www.ict.nsc.ru/ftp/ict/interval.
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Breaking down the inclusion (5.26) componentwise, we get

n∑
j = 1

ac
ij xj ⊆ bc

i , i = 1, …,n,

which is equivalent to

ac
ii xi ⊆ opp

(∑
j �= i

ac
ij xj

)
+ bc

i , i = 1, …,n.

Suppose that we are already given an interval vectorx containing the solution
setΞαβ (A, b), i.e. x ⊇ Ξαβ (A, b). Then, forx ∈ Ξαβ (A, b) the following chain of
relations should be valid

xi ∈ (ac
ii )

−1


opp

∑
j �= i

ac
ij xj + bc

i




= (ac
ii )

−1


∑

j �= i

opp
(
ac

ij xj
)

+ bc
i




= (ac
ii )

−1


∑

j �= i

(oppac
ij ) xj + bc

i


 —since allxj are noninterval

⊆ (ac
ii )

−1


∑

j �= i

(oppac
ij ) xj + bc

i


 —

sincexj ∈ xj and interval

arithmetic operations inKR

are inclusion monotonic.

Therefore, if the interval vector̃x is determined by the componentwise equalities

x̃i := (ac
ii )

−1


∑

j �= i

(oppac
ij ) xj + bc

i


 , i = 1, …,n, (7.12)

it thereby

• must be a proper interval, in spite of the possible presence of improper intervals
ac

ij andbc
i in the expression (7.12),

• provides us with an outer interval estimate of the solution setΞαβ (A, b) too.

So, the natural idea is to take the intersection

x ∩ x̃ ⊇ Ξαβ (A, b),

which may prove a more narrow estimate than each ofx andx̃ on its own.
Finally, to make the best use of the information obtained during the runtime,

we can, similar to the classical Gauss-Seidel method, immediately involve the new
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Table 4. Generalized interval Gauss-Seidel method for outer estimation of the AE-solution
sets of interval linear system.

Input

Characteristic matrixAc ∈ KR
n×n and right-hand side vectorbc ∈ KR

n that correspond
to the AE-solution setΞαβ (A, b) estimated of an interval systemAx = b.

An interval vectorx = (x1, …, xn)� ∈ IR
n that bounds the desired portion of the

solution setΞαβ (A, b).

A prescribed accuracyε > 0.

Output

Either the information “the solution setΞαβ (A, b) does not intersectx” or
new outer estimatẽx = (x̃1, …, x̃n)� ⊇ Ξαβ (A, b) ∩ x.

Algorithm

d← +∞;

DO WHILE (d ≥ ε)

DO FOR i = 1 TO n

x̃i ← (ac
ii )

−1

(
i−1∑
j=1

(oppac
ij ) x̃j +

n∑
j=i+1

(oppac
ij ) xj + bc

i

)
;

IF (x̃i is an improper interval)THEN

STOP, signaling “the solution setΞαβ (A, b) does not intersectx”

END IF

x̃i ← xi ∩ x̃i ;

IF (x̃i = ∅) THEN

STOP, signaling “the solution setΞαβ (A, b) does not intersectx”

END IF

END DO

d← distance betweenx andx̃;

x← x̃;

END DO

estimate of each component (which is at least as good as the old one) into the
computation. Thei-th component of the new estimatex̃ is thus to be computed in
accordance with the formula (7.12) relying on the already found components ofx̃
with the numbers 1, 2, …, (i − 1) and the (i + 1)-st, …,n-th components of the old
estimatex.

The overall computational scheme of the interval Gauss-Seidel iteration for
computing the enclosures of the AE-solution sets to interval linear systems is
presented in Table 4. IfΞαβ (A, b) ∩ x �= ∅, then the result of the execution of the
algorithm is a sequence{x̃} of proper nested intervals that must have a limit in
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IR
n (see [2], [45], [69]). The stopping criteria for the above iteration is, as usual,

attaining sufficient closeness (in some interval metric) between the two successive
approximations.

To start our interval Gauss-Seidel method we need an initial interval vector
x ⊇ Ξαβ (A, b). For the generalized solution sets, we can always take it as an
enclosure of the united solution setΞuni(A, b) for the corresponding interval linear
system (sinceΞuni is the widest among the solution sets), applying any one of the
numerous techniques that have been elaborated for this purpose [2], [32], [69].

As a specific example, we consider again the interval linear system(
[ 2, 4] [−1, 1]
[−1, 1] [ 2, 4]

)
x =

(
[−3, 3]

0

)
(6.7)

from [69], [71] and the outer estimation of its
(

∃∀
∃ ∃

)(
∃
∃

)
-solution set. Straightforward

applying the generalized interval Gauss-Seidel iteration results in


[
−3

2
, 3

2

]
[
−3

4
, 3

4

]

 ,

the tightest possible enclosure for the
(

∃∀
∃ ∃

)(
∃
∃

)
-solution set (see Figure 10), which

coincides with what we get by the formal approach in Section 7.2.
W. Barth and W. Nuding [6] and afterward A. Neumaier [69], [70] gave a

profound investigation of the interval Gauss-Seidel method for the classical case of
enclosing the united solution set to interval linear systems. The theory developed
by Barth-Nuding and Neumaier can be partly transferred to the generalized interval
Gauss-Seidel method we have just derived. That has been done in [109], [110],
although changing accents and interpretation of some results as compared with
Neumaier’s theory [69], [70].

The key point in the considerations of A. Neumaier is the concepts of
H-matrix:

DEFINITION 7.4 [69], [70]. For a proper interval matrixA = (aij ) ∈ IR
n×n, its

comparison matrixis termed the matrix〈A〉 ∈ R
n×n such that

the ij -th entry of 〈A〉 :=

{
〈 aij 〉, if i = j,
−| aij |, if i �= j.

DEFINITION 7.5 [69], [70]. A proper interval square matrixA is called anH-
matrix, if its comparison matrix is anM-matrix.

In particular, strictly diagonally dominant interval matrices areH-matrices.

THEOREM 7.5.If x ∗ is the limit of the generalized Gauss-Seidel method applied
to an interval linear systemA x = b, then

〈A〉 |x ∗ | ≤ |b|. (7.13)
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If A is an interval H-matrix, then

|x ∗ | ≤ 〈A〉−1|b|. (7.14)

Proof. We consider only nonsingular interval matricesA, assuming without
loss in generality that 0�∈ aii . The formulas specifying the generalized interval
Gauss-Seidel method thus imply

x ∗
i ⊆ (ac

ii )
−1

(∑
j �= i

(oppac
ij ) x ∗

j + bc
i

)
,

so that

|x ∗
i | ≤ 〈aii 〉−1

(∑
j �= i

|aij | |x ∗
j | + |bi |

)

since both sides of the above inclusion are proper intervals. We get therefore

〈aii 〉|x ∗
i | ≤

∑
j �= i

|aij | |x ∗
j | + |bi |,

which is equivalent to

(〈A〉 |x ∗ |)i ≤ |bi |

for all i = 1, 2, …,n, that is, coincides with (7.13).
If A is an intervalH-matrix, then〈A〉 is anM-matrix, so〈A〉−1 ≥ 0. Multiplying

both sides of (7.13) by〈A〉−1, we arrive at (7.14). ✷

It follows from the inequality (7.14) that any sufficiently large initial box is
improved (i.e., is decreased in size) by the generalized Gauss-Seidel iteration pro-
viding that the matrixA is anH-matrix. On the contrary, ifA is not anH-matrix,
we cannot draw such a conclusion. Under these circumstances, A. Neumaier in
[69] even proved the following showy result for the classical version of the interval
Gauss-Seidel iteration:

THEOREM 7.6 [69]. If a proper interval n× n-matrixA = (aij ) is not an H-matrix,
then there exist arbitrary large proper interval vectors that cannot be improved by
Gauss-Seidel iteration as applied for outer estimation of the united solution set of
the interval systemAx = 0.

For the generalized interval Gauss-Seidel method under study, the above theorem
is not valid any longer in case the characteristic matrixAc contains at least one
proper interval in each row, i.e. the original interval linear system has at least one
A-uncertain interval parameter in each row of the matrix. The reason is simple:
the magnitude of the interval product is not equal to the product of the factors’
magnitudes in Kaucher complete interval arithmetic.
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As an example, one can take the interval linear system(
[ 2, 4] [−2, 1]
[−1, 2] [ 2, 4]

)
x =

(
[−2, 2]
[−2, 2]

)
(3.21)

and the outer estimation of its
(

∀∀
∀ ∃

)(
∃
∃

)
-solution set. The interval matrix of the system

(3.21) is not anH-matrix insofar as its comparison matrix(
2 2
2 2

)

is singular. Still, the generalized interval Gauss-Seidel iterations converge, from
any sufficiently large box, to the interval enclosure ([−1, 1], [−1, 1])� of the(

∀∀
∀ ∃

)(
∃
∃

)
-solution set (see Figure 4). Moreover, when enclosing the same solution

set to the interval linear system with the matrix from (3.21) and zero right-hand
side vector, the generalized interval Gauss-Seidel method also produces the correct
answer—zero vector—starting from any zero-containing initial box.

To resume, the generalized version of the interval Gauss-Seidel iteration may
behave itself much better than its classical prototype, which is especially pro-
nounced when the number of the A-uncertain parameters in the matrix becomes
substantial.

One of the most remarkable facts with the interval Gauss-Seidel iteration as
applied to the united solution set is the following optimality property:if the matrix
of the interval linear system is an interval M-matrix, the method produces the
interval hull of the solution set. This fact has been first revealed by W. Barth and
W. Nuding [6]. We managed to generalize this classical result as the following
weaker

THEOREM 7.7 [109].If, in an interval linear systemAx = b, the matrixA = (aij )
is an interval M-matrix and no component ofb contain zero in its interior, then the
generalized interval Gauss-Seidel iteration applied to this system converges to the
interval hull of the AE-solution set.

7.4. PRECONDITIONING

The techniques we have developed in two preceding sections for the outer estimation
of the AE-solution sets to interval linear systems—formal approach and interval
Gauss-Seidel iteration—have substantial restrictions on their applicability scopes.
The keypoint of the feasibility of the formal approach is the reduction of the original
linear system (1.3)–(1.4) to the form (7.6) so that the conditionρ(|I � Ac|) < 1 is
fulfilled. In its turn, a good work of the interval Gauss-Seidel iteration requires that
the interval linear system has anH-matrix. These conditions are quite burdensome
being obviously not always the case. How can we compute outer estimates of the
AE-solution sets to interval linear systems in general?

In the classical problem of outer interval estimation of the united solution set the
above difficulty is usually overcome by the so-calledpreconditioningfirst suggested



402 SERGEY P. SHARY

by E. Hansen and R. Smith [33] (see also [2], [45], [69]�). Similar to the classical
computational linear algebra, preconditioning of an interval system amounts to
multiplying both its sides, from the left, by a point matrix (often taken as the
inverse to the midpoint matrix of the interval system). So, for someΛ ∈ R

n×n,
instead of the original system

Ax = b (1.4)

we arrive at thepreconditioned interval system

(ΛA) x = Λb, (7.15)

its united solution set being almost always wider than that for (1.4). On the other
hand, the properties of the interval matrix of the preconditioned system improve
(see [69]). Unfortunately, this prescription, which we are going to refer to asnaive
preconditioning, cannot be directly applied to the outer estimation of the generalized
solution sets.

When simply multiplying, from the left, the interval matrix and right-hand side
vector by a point matrix, the generalized solution sets do not necessarily widen, but
can change in quite a sophisticated way. To visually demonstrate that, we consider
the interval linear system(

[ 2, 4] [−2, 1]
[−1, 2] [ 2, 4]

)
x =

(
[1, 2]
[1, 2]

)
, (7.16)

for which

mid A =


 3 −1

2

1
2

3


 , (mid A)−1 =




12
37

2
37

− 2
37

12
37


 ,

while the interval system “naively preconditioned” by the midpoint inverse is

2
37

(
[ 11, 26] [−10, 10]
[−10, 10] [ 11, 26]

)
x = 2

37

(
[7, 14]
[4, 11]

)
. (7.17)

We can see from the lower left picture of Figure 13 that the set of(
∀∃
∃ ∃

)(
∃
∃

)
-solutions of the “naively preconditioned” system (7.17) does not contain, in

the first orthant, the vertex
(

4
3
, 5

3

)
and the adjacent part (e.g., the point (1, 1)�) of

the set of
(

∀∃
∃ ∃

)(
∃
∃

)
-solutions to the original system (7.16). Moreover, the lower bound

of the second coordinate of the points from this solution set, which is equal to zero

and reached at the vertex
(

1
2
, 0
)

for the original system, increases as the result of

the naive preconditioning!
To summarize, the solution sets of the “naively preconditioned” interval linear

system do not necessarily contain the solution sets of the original interval system,

� Alefeld and Herzberger even call preconditioning “Hansen method” in their book [2, Chapter 16].
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Figure 13. The upper picture shows the set of
(

∀∃
∃ ∃

)(
∃
∃

)
-solutions for (7.16), while the lower

left one is the set of
(

∀∃
∃ ∃

)(
∃
∃

)
-solutions for (7.17) and the lower right one is the solution set

corresponding to the characteristic matrix and right-hand side vector (7.18).

while an outer estimate of the solution set to the “naively preconditioned” interval
system may not be an outer estimate of the corresponding solution set for the
original interval system. Still, an outcome from the above difficulty does exist and
is as follows:we should precondition the characteristic matrix and characteristic
right-hand side vector corresponding to the solution set under considerationrather
than the interval system on its own.

Let us turn again to Theorem 5.1 that gives a very convenient characterization
of the AE-solution sets to interval linear systems:

x ∈ Ξαβ (A, b) ⇐⇒ Ac ⋅ x ⊆ bc,

Ac and bc being the characteristic matrix and right-hand side that correspond to
the solution setΞαβ (A, b). If Λ is a square pointn × n-matrix, then the inclusion
Ac x ⊆ bc yields

Λ(Ac x) ⊆ Λbc.



404 SERGEY P. SHARY

Multiplication of the interval matrices is known to be non-associative in general,
but, for pointΛ andx, we can avail ourselves of the result of Proposition 5.2:

Λ(Ac x) = (ΛAc) x.

Therefore, we arrive at the implication

x ∈ Ξαβ (A, b) =⇒ (ΛAc) x ⊆ Λbc,

the sense of which can be interpreted as follows:

THEOREM 7.8.If Λ ∈ R
n×n is a square point matrix, then the AE-solution set

Ξ(Ac, bc) for the interval linear system (1.4), which corresponds to the characteristic
matrix Ac and characteristic right-hand vectorbc, is included in the AE-solution
set corresponding to the characteristic matrixΛAc and right-hand side vectorΛbc,
that is, inΞ(ΛAc, Λbc).

We shall call multiplying, from the left, both the characteristic matrix and right-
hand side vectorgeneralized preconditioningof the interval linear system (or just
preconditioningif that does not confuse). According to Theorem 7.8, it can result
only in extending (if any) of the solution set, but the new characteristic interval
matrix may satisfy the condition

ρ(|I � Ac|) < 1,

which is so crucial for the applicability of our techniques. The initial problem of
the outer estimation of an AE-solution set could thus be changed to the other outer
estimation problem which corresponds to the preconditioned characteristic matrix
and right-hand side and which is computationally tractable.

For example, the characteristic matrix and right-hand side vector of the set of(
∀∃
∃ ∃

)(
∃
∃

)
-solutions to the interval linear system (7.16) are

Ac =
(

[2, 4] [1,−2]
[2,−1] [4, 2]

)
, bc =

(
[−2, 2]
[−2, 2]

)
,

so that

(mid A)−1Ac = 2
37

(
[14, 23] [10,−10]
[ 8,−8] [26, 11]

)
,

(mid A)−1bc = 2
37

(
[−14, 14]
[−14, 14]

)
.

(7.18)

The AE-solutions that set corresponding to the characteristic matrix and right-hand
side vector (7.18) is exhibited at the lower right picture of Figure 13, and it includes
all the

(
∀∃
∃ ∃

)(
∃
∃

)
-solutions of the original interval linear system (7.16) as one can make

sure of from comparison with the upper picture of this figure.
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Furthermore,

|I � (mid A)−1Ac| = 1
37

(
9 20

16 15

)
,

the eigenvalues of this matrix are equal to1
37

(12 ±
√

329), and the condition (7.5)

of Theorem 7.3 is fulfilled indeed allowing one to make use of the formal approach
for the outer estimation problem. At the same time, this condition does not hold for
the interval matrix of the original system (7.16).

For the reader’s convenience, we reformulate the main results of the formal
approach of Section 7.2 in the form that explicitly takes into account the precondi-
tioning matrixΛ.

THEOREM 7.9.Let Λ be a square point matrix. If a point x∈ R
n belongs to the

solution setΞαβ (A, b), then

x ∈ (I � ΛAc) x + Λbc.

Notice that the above result, as opposed to Theorem 7.1, is only a necessary
condition of the membershipx ∈ Ξαβ (A, b).

THEOREM 7.10.Let, for an interval linear systemAx = b and its solution set
Ξαβ (A, b) corresponding to the characteristic matrixAc and right-hand side vector
bc, there exist a square point matrixΛ such that

ρ(|I � ΛAc|) < 1. (7.19)

Then a formal solution to the interval linear system

x = (I � ΛAc) x + Λbc (7.20)

exists inKR
n and is unique. If, additionally, the solution setΞαβ (A, b) is not empty,

then the formal solution to the interval system (7.20) is a proper interval vector
that containsΞαβ (A, b).

Proofs of these statements are completely analogous to the proofs of Theo-
rems 7.1–7.3 so that we skip them. ✷

Preconditioning procedure for the classical case of the united solution set to
interval linear systems has been examined by A. Neumaier in [69], [70], and a short
summary of Neumaier’s theory follows.

THEOREM 7.11 [86].If an interval matrixA ∈ IR
n×n is such thatmid A is regular

and |(mid A)−1| ⋅ radA has spectral radius <1, thenA is regular.

Theorem 7.11 gives thereby only a sufficient condition for the regularity. Never-
theless, the class of interval matrices determined by this condition proves so useful
and important that it deserves to be classified as an independent concept:
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DEFINITION 7.6 [69]. We shall say that an interval matrixA ∈ IR
n×n is

strongly regular (strongly nonsingular) if regular is the matrix midA and
ρ(|(mid A)−1| radA) < 1.

Every strongly regular matrix is thus just regular (nonsingular), but the reverse
is not true. Neumaier matrix (see [69])

 3 [0, 2] [0, 2]
[0, 2] 3 [0, 2]
[0, 2] [0, 2] 3




may serve as a counterexample. The question on how the regularity and strong
regularity relate to each other proved to be not so easy [92], and its complete
solution has been recently obtained by A. Lakeyev in [55].

THEOREM 7.12 [69].If a matrix A ∈ IR
n×n is strongly regular, then any matrix

B ⊆ A is also strongly regular.

THEOREM 7.13 [69].Every interval H-matrix (and hence every M-matrix) is
strongly regular.

The class of strongly regular matrices is interesting for us since this is a simply
described class of the interval matrices for which the preconditioning enables to
attain satisfiability of the conditions (7.5) and (7.19).

DEFINITION 7.7. For a vectoru ∈ R
n, u > 0, we shall callu-scaled maximum-

normof the matrixA = (aij ) ∈ KR
n×n the value

‖A‖u := max
1≤ i≤n


 1

ui

n∑
j =1

|aij |uj


 .

The above definition is a natural extension of the corresponding concept for
the point case. As is known from the classical matrix theory (see, e.g., [36], [69]),
the spectral radius of a matrix is always no greater than any norm of the matrix.
Therefore, for every interval matrixA ∈ KR

n×n,

ρ(|A|) ≤ ‖ |A| ‖u = ‖A‖u.

THEOREM 7.14. [69]Let the interval matrixA ∈ IR
n×n be such that its midpoint

matrix mid A is regular. Then the following conditions are equivalent to each
other:

(i) the matrixA is strongly regular,

(ii) ρ
(
| (mid A)−1| ⋅ radA

)
< 1,

(iii) ‖I − (mid A)−1A‖u < 1 for some u >0,

(iv) the product(mid A)−1A is an H-matrix.
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So, if the interval matrix is strongly regular in the interval linear system under
consideration, then we can meet the requirement (7.5) through preconditioning by
the midpoint inverse.

THEOREM 7.15. [69]Let an interval matrixA ∈ IR
n×n and a point matrix

Λ ∈ R
n×n be such that their productΛA is an H-matrix. ThenA is strongly

regular.

For the classical problem of outer interval estimation of the united solution set,
the most popular choice of the preconditioned matrix is the “midpoint inverse,”
i.e. Λ = (mid A)−1. Such a prescription is very attractive due to some useful
properties of the preconditioned matrix: it has the identity matrix as its middle,
while optimal bounds of the preconditioned united solution set can be found after
only one matrix inversion [31], [87], etc. There are even a number of results showing
certain optimality of the preconditioning by the midpoint inverse.

THEOREM 7.16 [70].If

β := ‖I − CA‖u < 1

in some u-scaled maximum-norm, thenβ takes its minimal value for the choice
C = (mid A)−1.

Ris-Neumaier’s theory proves to be even excessive for the above developed gen-
eralized preconditioning, since the presence of both proper and improper intervals
in KR may lead to decreasing of the width of intervals during arithmetic operations.
Anyway, for the strongly regular matrices preconditioning by the midpoint inverse
makes the condition (7.5) as well as (7.19) fulfilled, ensuring good work of the
interval Gauss-Seidel iteration too.

However, improving the properties of the interval system through precondition-
ing is not achieved free of charge. The unavoidable price we have to pay for that is
the enlargement of the solution set as compared with the original interval system,
so that, using preconditioning, we almost always make the outer estimates of the
solution set more crude. The amount of such undesirable widening is larger, the
greater the preconditioned matrix differ from the diagonal form.

The remarkable fact with the nonsingular diagonal matrixΛ is that there holds
the exact equality

ΛH = {ΛH | H ∈ H},

whatever the interval matrixH of the corresponding size is. For nonsingular diagonal
matricesΛ, we can therefore conduct the reasoning of the type

H ∈ H is equivalent toΛH ∈ ΛH, (7.21)

while the preconditioning by such matrices retain the solution set to interval linear
system unchanged. In the general case, whenΛ is not diagonal nonsingular, we
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may realize only the implication from left to right in the logical formula (7.21),
and, as a result, the solution set of the interval linear system so preconditioned will
not coincide with the original solution set.

On the other hand, having more detailed information on either the interval linear
system or the algorithm, it is possible to construct better preconditioners than the
midpoint inverse. For example, for the classical interval Gauss-Seidel method even
optimal (in some natural sense) preconditioners can be constructed, which are
recalculated at every algorithm step [45]. As for our formal approach, a promising
idea is to consider preconditioners that are intermediate between the pure diagonal
and midpoint inverse. Then the solution set would not be distorted much, while
still conforming the feasibility condition (7.5). The corresponding rigorous theory
is still expecting to be constructed.

7.5. PARAMETERPARTITION METHOD FORINTERVAL LINEAR SYSTEMS

In this subsection, we treat the componentwise form (4.5) of the outer estimation
problem and concentrate on computing min{xν | x ∈ Ξαβ (A, b)} for a fixed integer
indexν ∈ {1, 2, …,n}, since

max{xν | x ∈ Ξαβ (A, b)} = −min{xν | x ∈ Ξαβ (A,−b)}.

Let

Encl be a method of outer interval estimation of the AE-solution sets (we shall
call it basic method),

Encl (Q, r) be an interval outer estimate, produced by the method Encl, of the
solution setΞαβ (Q, r) to the systemQx = r, that is, Encl (Q, r) ∈ IR

n and

Encl (Q, r) ⊇ Ξαβ (Q, r),

ϒ(Q, r) be theν-th component lower endpoint of the interval enclosure of the
solution setΞαβ (Q, r) obtained by the method Encl , that is,

ϒ(Q, r) :=
(
Encl (Q, r)

)
ν . (7.22)

We require that the basic method should satisfy the condition:

The estimateϒ(Q, r) is inclusion monotonic

with respect to the matrixQ and vectorr,

i.e., for allQ ′ , Q ′′ ∈ IR
n×n andr ′ , r′′ ∈ IR

n,

Q ′ ⊆ Q ′′ and r′ ⊆ r′′ implies the inequality

ϒ(Q ′′ , r ′′ ) ≤ ϒ(Q ′ , r′).

(7.23)
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For the techniques we have developed in the preceding subsections for the out-
er interval estimation of the AE-solution set to interval linear systems—formal
approach and interval Gauss-Seidel iteration—the fulfillment of (7.23) can be easi-
ly derived from the inclusion monotonicity of the interval arithmetic operations.

To go further, we need to remind the result of Corollary to Theorem 3.6: both
minimal and maximal componentwise values of the points from the solution set
are attained at the so-calledextremematrices and right-hand side vectors, such that
made up of theendpointsof A andb. In other words, for anyν = 1, 2, …,n,

min{xν | x ∈ Ξαβ (A, b)} = (Ã−1b̃)ν

with a point matrixÃ ∈ R
n×n and a point vector̃b ∈ R

n whose elements are the
endpoints of the interval entries of the matrixA and vectorb respectively. It is also
worth noting that

ϒ(Ã, b̃) ≤ (Ã−1b̃)ν

due to the very definition of the estimateϒ. Assuming that an entryaij of the matrix
A has nonzero width, we denote

by A ′ andA ′′ the matrices obtained fromA through
replacing the entryaij for aij andaij respectively,

by A′ andA′′ the matrices obtained from̃A through
replacing the entrỹaij for aij andaij respectively.

(7.24)

Inasmuch as

A′ ⊆ A ′ ⊆ A, A′′ ⊆ A ′′ ⊆ A,

andb̃ ⊆ b, the condition (7.23) implies the inequalities

ϒ(A, b) ≤ ϒ(A ′ , b) ≤ ϒ(A′ , b̃)

and

ϒ(A, b) ≤ ϒ(A ′′ , b) ≤ ϒ(A′′ , b̃).

Therefore, taking the minima of the corresponding inequality sides, we arrive at

ϒ(A, b) ≤ min{ϒ(A ′ , b), ϒ(A ′′ , b)} ≤ min{ϒ(A′ , b̃), ϒ(A′′ , b̃)}.

Additionally,

min{ϒ(A′ , b̃), ϒ(A′′ , b̃)} ≤ ϒ(Ã, b̃) ≤ (Ã−1b̃)ν = min{xν | x ∈ Ξαβ (A, b)}.

Comparing the two above inequality chains results in the relation

ϒ(A, b) ≤ min{ϒ(A ′ , b), ϒ(A ′′ , b)} ≤ min{xν | x ∈ Ξαβ (A, b)},

and, as a consequence, in the following practical prescription:
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Having solved the two interval “systems-descendants”A ′x = b and A ′′ x = b
defined by (7.24) we can get better estimate formin{xν | x ∈ Ξαβ (A, b)} from
below as

min{ϒ(A ′ , b), ϒ(A ′′ , b)}.

In the right-hand side vectorb, breaking an interval elementbi up into its
endpointsbi and bi has the similar effect. For uniformity, we will designate by
A ′x = b ′ andA ′′ x = b ′′ the interval “systems-descendants” we get fromAx = b
after having bisected an interval element of either the matrixA or right-hand side
vectorb.

To further improve the estimate for min{xν | x ∈ Ξαβ (A, b)}, it makes sense
to repeat the above described subdivision procedure applying it to the “systems-
descendants”A ′x = b′ and A ′′ x = b ′′ , and then to bisect the descendants of
A ′x = b′ andA′′ x = b ′′ again to get even better estimate, and so forth. We arrange
the whole process of the successive step-by-step improvement of the estimate for
min{xν | x ∈ Ξαβ (A, b)} in accordance with the well-known “branch-and-bound”
technique, similar to that implemented in the popular interval global optimization
methods from [32], [45], [84]:

first, all the interval systemsQx = r emerging as the result of the subdivision of the
original system (3.14) as well as their estimatesϒ(Q, r) are stored in aworking
list L;

second, at every step of our algorithm, the interval system subject to bisection is
that providing the smallest current estimateϒ(Q, r);

third, the interval element to be bisected in the systemQx = r is the one having
the maximal width.

The execution of the algorithm thus amounts to maintaining the listL, which
consists of records having the form oftriples(

Q, r, ϒ(Q, r)
)
, (7.25)

where

Q is an intervaln × n-matrix,Q ⊆ A,

r is an intervaln-vector,r ⊆ b.

Besides, the records forming the working listL will be ordered with respect
to the values of the estimateϒ(Q, r), while the first record ofL as well as the
corresponding interval systemQx = r and the estimate (the smallest in the list)
will be called leadingones at the current step of the method. Table 5 summarizes
the overall pseudocode of the new algorithm, which we are going to refer to as
the simplestparameter partition methodfollowing the terminology tradition of
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Table 5. The simplest PPS-method for interval linear systems.

Input

An interval linear systemAx = b.

An integer indexν ∈ {1, 2, …,n}.
A method Encl that produces the estimateϒby the rule (7.22).

Output

An estimateZ for min{xν | x ∈ Ξαβ (A, b)} from below.

Algorithm

assignQ← A and r← b ;

compute the estimateϒ(Q, r), assignυ ← ϒ(Q, r);

initialize the listL, i.e assignL ← {(Q, r, υ)};

DO WHILE (the systemQx = r is interval)

in the matrixQ = (qij ) and vectorr = (ri), choose
an interval elementh having the maximal width;

generate interval systemsQ′x = r′ andQ′′ x = r′′ so that

if h = qkl for somek, l ∈ {1, 2, …,n}, then set

q′ij ← q′′ij ← qij for (i, j) �= (k, l),

q′kl ← q
kl
, q′′kl ← qkl, r′ ← r′′ ← r;

if h = rk for somek ∈ {1, 2, …,n}, then set

Q′ ← Q′′ ← Q, r′k ← rk, r′′k ← rk,

r′i ← r′′i ← ri for i �= k;

compute the estimatesυ′ ← ϒ(Q′ , r′ ) andυ′′ ← ϒ(Q′′ , r′′ );

delete the former leading record (Q, r, υ) from the listL;

put the records (Q′ , r′ , υ′ ) and (Q′′ , r′′ , υ′′ ) intoL so that

the values of the third field of the records inL increases;

denote the first record of the listL by (Q, r, υ);

END DO

Z← υ;

deterministic global optimization [35]. Another suitable name for the new method
is PPS-method—after Partitioning Parameter Set.� The main idea of this kind of
method, first presented by the author in [101], can be partially extended to general
nonlinear interval systems of equations, although the result of the bisection of each

� The more so that there exists a dual class of PSS-methods [115], which exploit the idea of
Partitioning Solution Set.
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interval parameter will betwo subintervalsrather than the endpoints as it is in the
linear case.

If T is the total number of interval (with nonzero widths) elements in the matrix
A and right-hand side vectorb of the original interval system (3.14) (in general,
T ≤ (n+ 1)n), then the algorithm of Table 1 stops after at most 2T steps, producing
an estimate for min{xν | x ∈ Ξαβ (A, b)} from below. How close the computed result
is to the exact value of min{xν | x ∈ Ξαβ (A, b)} depends mainly on the way we find
the estimateϒ(Q, r), that is, on the choice of the basic method Encl. In particular,
for the computed result to be optimal (exactly equal to min{xν | x ∈ Ξαβ (A, b)}) it
is necessary and sufficient that the following condition holds:

The estimateϒ(Q, r) is exact

for point linear systems

Anyway, if the dimension of the system under solution is sufficiently large andT
exceeds mere several tens, then, on modern medium class computers, the simplest
parameter partition method will never work till its natural completion, so that it
makes good sense to consider it as aniterativeone.

To conclude, it is worth noting that for the classical problem of outer interval
estimation of the united solution set, PPS-method can be further modernized using
the information on the monotonicity of the outer estimate and subtle combinatorial
properties of the united solution set, which result in extremely efficient numerical
algorithms, the best in their class [102].

8. Conclusion

In our work, we have presented a new technique for analyzing and working out the
systems under interval uncertainty and ambiguity, its distinctive features being

• a broad use of the logical quantifies and language of the predicate calculus to
describe the system’s objectives, functioning, operational use and to demarcate
between different types of the system inputs and outputs;

• using Kaucher complete interval arithmetic to solve various mathematical prob-
lems that arise during the system analysis process.

What are the advantages and benefits of each of the above innovations? And
why are they necessary at all? The fact is, applying a formal language to describe
a system becomes indispensable when the number of its inputs and outputs grows
as well as the requirements on some of these inputs/outputs are not fixed and they
can change during the design stage and operational use.

In the problems traditionally considered by classical control theory, the overall
number of inputs/outputs is not big, so that working with usual verbal (expressed
in words) problem statements encounters no obstacles. The main source of math-
ematical difficulties, as classical control theory perceives them, is the complex
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relationship between the components and parameters of the object under study,
e.g., its dynamic character, nonsmoothness of the parameters, instabilities and sin-
gularities, etc.

However, if the quantity of inputs/outputs increases, we arrive at a qualitatively
new situation when the verbal description becomes hard to write out, understand
and operate with. As the result, it is quite easy to mix up which input or output
corresponds to this or that uncertainty type, through which input the disturbances
act on the system and which ones we can control by ourselves, etc. The latter is
especially pronounced for multistage control processes under uncertainty. In these
circumstances, the use of a formal language proves inevitable, and in our paper we
are simply making this natural step to fill the gap formed in large-scale systems
analysis.

As for Kaucher complete interval arithmetic, its promotion also turns out
unavoidable as far as we are involved into the study of essentially minimax prob-
lems. Additionally, it is an interval arithmetic with good both algebraic and order
properties, embracing classical interval arithmetic, so that its wide recognition by
the researchers and engineers is only a matter of time.

The proposed formal approach enables us to reduce the problems of inner and
outer interval estimation of the generalized solution sets to solving one non-interval
equation—dualization equation,—i.e., to a traditional numerical analysis problem.
One would naturally like to have this reduction available for the widest possible
class of nonlinear mappingsF and not only for those with simple occurrences
of the control variables as specified in Propositions 6.1–6.3. Enlarging the set of
mappingsF for which the main problems (4.1) and (4.2) can be solved, either by
the formal approach or by its extensions, is an interesting open problem, and some
recent advances in its solution can be found in [95].

Much of the results presented in the paper composed an interval analysis special
course given at the University of Girona, Spain, in the fall semester of 2000. The
author is indebted to the listeners of this course for their attention and stimulating
questions.

The author is also grateful to Hoon Hong and Miguel Sainz for unforgettable
discussions on some results exposed in the paper, and to Andreas Frommer, Josep
Veh́ı, and Ivan Golosov for supporting this research.
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95. Sainz, M.Á. and Gardẽnes, E.: Interval Estimation of Solution Sets to Real-Valued Systems of

Linear or Nonlinear Equations,Reliable Computing8 (4) (2002), pp. 283–305.
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