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1. INTRODUCTION

In this contribution we address to the matrix eigenproblem and to related topics such
as the generalized eigenproblem, the singular value problem and the inverse eigenvalue
problem.

As is well-known, the matriz eigenproblem for an n X n matrix A consists in finding
numbers A" and associated vectors z* # 0 such that the equation

Az = Az (1)

holds for A = A* and = = z*. Often A is specialized to be a Hessenberg matrix or a
band matrix, or to be symmetric, Hermitian, positive definite, or tridiagonal. There are
many methods to solve (1) iteratively partly depending on these properties. Among them
can be found the von Mises iteration, Wielandt’s inverse iteration, the QR method, the
Jacobi method, Hyman’s method and the bisection method based on Sturm sequences. For
details we refer to [44], [99], [124], [139], [140] or any other textbook in numerical analysis.
Based on these methods software packages such as EISPACK [40], [120], LAPACK [16] or
the NAG-Library [101] provide algorithms to compute approximations A, # of eigenvalues
A* and eigenvectors x*, respectively. Shifting and balancing (permutations, scalings) is
incorporated in these algorithms in order to increase their efficiency.

Although the matrix eigenproblem (1) has to be handled on the field of complex numbers
0
-1
matrices A, real eigenvalues A* and real eigenvectors z*. Therefore, we restrict ourselves
in the main sections of our paper to such matrices and eigenvalues adding, however,
references and remarks if A or A* are complex. We want to consider the following problems:

for full generality (as is seen, e.g., by A = (1) >) most applications deal with real

1. Find an interval [A] which contains at least one (or exactly one) real eigenvalue \*

of A. In particular, find [A] such that the bounds A, X of [A] differ only in the
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last few digits. In this case their common leading digits coincide with those of A*.
This aspect is particularly important if one wants to control rounding errors when
approximating A* on a computer.

2. Find interval enclosures [A]; simultaneously for all real eigenvalues A; of A.

3. Find an interval vector [z] which contains at least one (or exactly one) eigenvector
z* associated with an eigenvalue A\*. Again tight bounds z, T are required in order
to guarantee digits of z*.

4. Find the interval quantities in 1.-3. when A is replaced there by an interval matrix
[A] € M,,,(I(R)). In this case [A] means an interval which contains for each A € [A]
at least one (or exactly one) eigenvalue of A; [z] means an interval vector with the
following property:

For any A* € [A] and any A € [A] for which A* is an eigenvalue, the vector [z]
contains at least one (or exactly one) eigenvector of A associated with A*.

Most of these items can be handled (more or less well) by means of classical existence
theorems and error estimates. Therefore, after a section with preliminaries and a section
on quadratic systems, we repeat some of these classical results in Section 4. Some of the
results are also used for the interval methods to be described later on. For the matrix
eigenproblem we have divided these methods in two major parts: In Section 5 we present a
method for general matrices with simple, double or nearly double eigenvalues; in Section
6 we specialize A to be symmetric, allowing now multiple eigenvalues and clusters of
eigenvalues. In Section 7 we consider the generalized eigenproblem and in Section 8 we
derive a method to verify and enclose singular values and singular vectors. Section 9
describes an inverse eigenvalue problem for which the methods of the Sections 5 and 6
apply. In Section 10 we briefly outline additional topics in result verification for eigenpairs,
and we make brief bibliographical remarks on the results of the previous sections in which
we mostly dispensed with references.

All our numerical examples are programmed in PASCAL-XSC (or its predecessor
PASCAL-SC). Cf. [67] for a description of this language.

2. PRELIMINARIES

In this section we list some notations, and we recall some auxiliary results used later
on.

For the standard notations such as for vectors, matrices, interval quantities and their
entries we refer to the contribution [55] in this book.

By spec(A) and p(A) we denote the spectrum and the spectral radius, respectively, of a
matrix A € M,,(C), by pa()) we abbreviate its characteristic polynomial det(A — AI).
The algebraic multiplicity of an eigenvalue X* of A is its multiplicity as a zero of pa(}},
the geometric multiplicity is the dimension of the corresponding eigenspace.

By a cluster of eigenvalues we mean a set of eigenvalues which lie close together. Mul-
tiple eigenvalues are allowed.
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Instead of I we mostly use I, for the n x n identity matrix. We write e for the vector
e=(1,1,....,1)T € Vo(R) and €® for the i~th column of I, with n depending on the
context.

We define A € My, (C) to be irreducible if for each index pair (2, j) with ¢, j € {1,...,n}
there is a finite sequence ai,, @ii,, @iyi,..., @;; of non—vanishing entries of A, where !
depends on (3, 7).

It is easily seen that A is irreducible if and only if there is no permutation matrix

P € M,,(R) such that PAPT has the block form ( Cu O

Ca Cy
blocks 0117 sz.

We call A € M,,.(R) nonnegative writing A > 0, if this inequality holds entrywise.
Analogously we introduce nonnegative vectors. We call z € V,(R) positive using the
notation x > 0, if #; > 0, ¢ = 1,...,n. The partial orderings ‘<’, ‘>’ on M,,,.(R) are
defined by A< B B> A<= B—-A>0.

By ||lz]l2, l|zllso, ||All2, and ||A]l we mean the Euclidean norm of z € V,(C), its
mazimum norm, the spectral norm of A € M,,,(C), and its row sum norm, respectively.

Our first theorem considers the smoothness of eigenvalues and eigenvectors with respect
to changes in the matrix entries. In order to make the eigenvector z* unique we assume
here that z* is normalized by

z; =1 (2)

) with quadratic diagonal

where %y denotes a fixed component.

Theorem 1 Let A € M,..,(C).
a) The eigenvalues of A depend continuously on the entries a;;.

b) All algebraic simple eigenvalues of A and the corresponding eigenvectors (normalized
by (2)) are infinitely often continuously differentiable with respect to the entries aj;.

Proof.
a) Since, by construction, the coefficients of p4(}) depend analytically on aj; it suffices
to prove that the zeros Ai(ao,...,a,), i =1,...,n, of a polynomial
p(Aag, ..., a,) = Zaj)\j, an 0, n > 1, (3)
5=0

depend continuously on its coefficients a;. To this end assume that the zeros of
p do not behave continuously at some point (a3, ...,aZ), and denote the zeros of
p(Ajag,...,a5) by AT, i =1,...,n. Then there are a real number ¢ > 0, a zero A*

of p(A;a,...,a;) and a sequence {(agk), ., a2 such that for all £ € N the
inequalities

I .
k)ma;‘§E7 ]:0,1,...,77,,

o]
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and

i@l aPy =X > i=1,... n,

hold. Letting k tend to infinity in the inequality

lp(A%s . )] = [a® TT 1% = M@l ...,a®)] > [a®)]e”
Za

yields the contradiction

0 =|p(A%;ag,-..,a5)] > |aZ|e™ > 0.

The smoothness of algebraic simple eigenvalues A\* follows immediately from the
implicit function theorem [135], applied to the polynomial p in (3), since

Ip(A*;ao, ..., an -
l(-_._%):\'__*a'—):p(/\;aoa"')an)¢0 (4)

for simple zeros A* of p.

To prove the smoothness of the corresponding normalized eigenvectors z* we assume
w.lo.g. o =nin (2). Then trivially z; = 27, ..., z,y = zy_; is a solution of the
linear system

n—1

E(a,‘j - 61“)\*)2]' = —(ain — (5,' A*), 1= 1, ey Ny, (5)

i=1

where é;; denotes the Kronecker symbol. Since 3* is a simple eigenvalue, the solu-
tion of (5) is unique, hence the n x (n — 1) coefficient matrix of (5) has rank n — 1.
Therefore, one can delete some equation & of (5) such that the modified system re-
mains uniquely solvable. To facilitate the notation we assume k = n. Consider now
the matrices A + E with E € M,,(C) and let A(E) be an eigenvalue of A + E such
that limg_.o A(E) = A* holds. For ||E||o being sufficiently small, A(E) is a simple

eigenvalue (which follows from (4) and from the continuity of p’ (X a0y - . ,az)), and
the system
n—1

(a,']‘ + €5 — 5,]/\(E))Z] = —(am + ein — 5,‘ /\(E)), 1= 1, Y 1, (6)

1

<.
I

has a nonsingular (n — 1) x (n — 1) coefficient matrix B(E). Let z(E) be an
eigenvalue of A + E associated with A(E). Then z,(E) # 0 since otherwise
B(E)(z\(E),...,z4-1(E))T = 0 which implies z(E) = 0. Therefore, we can as-
sume that z(E) is normalized according to (2) with ic = n. In this case z, =
z1(E), ..., 2p0 = Tn_1(E) is the unique solution of (6). By Cramer’s rule, this
solution is a rational function of aij + €;; and A(E), hence the theorem is proved by
the smoothness property of such functions and of A(E).

]
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Note that for multiple eigenvalues the corresponding eigenvectors need not behave con-
tinuously, as is seen in [98], Ex. 3.1.5, p. 47.

Our next theorem characterizes algebraic simple eigenvalues. It is used as an auxiliary
result in Section 4.

Theorem 2 Let (z*,\*) be an eigenpair of A € M, (C), let e(™ denote the n—th column
of the n x n identity matriz I, and write (A — A1), for the i-th column of A — A"I.

a) If 2% # 0 then the follwing assertions are equivalent.

(i) A* is an algebraic simple eigenvalue.

(1) B* := ( /?e?"));TI _(;t ) is nonsingular.

(3i) (B*) := (A= XI)ut,..., (A= X*)yn_1, —2) is nonsingular.

"

b) If (z*)"a* = 1 then \* is an algebraic simple eigenvalue if and only if (B*)" :=
A—X T —z*\ . .
2z )H 0 is nonsingular.

Proof.

a) (i) = (i)

Assume B* to be singular with

for some z € V,,1(C)\{0}. With z we construct the vector 2 := (z1,.. L z)T € V,(C).
From (7) we get

(A=X1)2 =24y 2" (8)
and
z, = 0. 9)

(
By (8), 2 # 0. Otherwise (8) implies the contradiction z = 0. If zo41 = 0 then (8), (9)
and z* # 0 show that # and z* are linearly independent eigenvectors of A. If 2,41 # 0
then (8) yields

2 <

(A—X1I) =0
Zn41
hence . is a principal vector of A. Thus in both cases A* is an algebraic multiple
n+1

eigenvalue. This contradicts the assumption.

(i) = (iii)
follows by evaluating det(B*) along the (n + 1)-st row which gives — det(B*)".
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(iil) = (i)

Assume that A* is an algebraic multiple eigenvalue. Then A has a left eigenvector y~
which is associated with this eigenvalue and which satisfies (y*)#z* = 0. This can easily
be seen by going back to the Jordan normal form of A. Since (y*)¥(B*)' = 0, the matrix
(B*)' is singular contradicting the assumption.

b) ” :> ”
follows nearly literally as ‘(i) = (i)’ in a). Replace (9) by (z*)#2 = 0 only.

” <: »

follows as ‘(iii) = (i)’ in a) with (y*)¥(B*)’ = 0 being replaced by ((y*)¥,0)(B*)" = 0.
: g
In Section 4 we will deal with normal matrices A which are defined by the property

AAH = AH A
We recall one of the standard results for such matrices.

Theorem 3 A € M,,(C) is unitarily similar to a diagonal matriz if and only of A is
normal. In particular, normal matrices are ezactly those that possess an orthonormal
basis of eigenvectors.

Proof. See [125], p. 311 .

3. QUADRATIC SYSTEMS

In this section, we consider functions f of the form

] Va(R) - Vu(R)
f{ z — f(z):=r+Sz+Tz* (10)

Va(R) x Vo(R) — V.(R)

. n o n

T (z,y) — (Z > ti:‘kﬁk?ﬁ) ’
j=1 k=1

and Tz? := T(z,z). The matrix S represents a linear mapping whereas T is a bilinear
one. We identify 7" with the three dimensional array (tix) € Mpnn(R). By means of
the given quantities r;, s;; and ¢;;x we want to construct an interval vector which, under
weak conditions, contains a fixed point of f. Since for the eigenproblem as well as for
the singular value problem there are functions of the form (10) for which a fixed point is
a pair of an eigenvalue/eigenvector, and of a singular value/singular vector, respectively,
one then has automatically a verification method for each of these problems.

Note that the system z = f(z) is equivalent to the quadratic system z — f(z) = 0 which
justifies the title of this section. '
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Theorem 4 Let f be defined as in (10), and let

pi= rlles @ 2= 1Shor 7= ITo 1= max {ZkZItm!}, (11
7=1k=1
0<1, A:=(1—-0)~4pr >0, (12)
B = (1‘0_\/5)/(27):2P/(1—U+\/Z)7} (13)
B* = (1-o+VA)/(2r)
a) Forany B € [8~, B*] the function f has at least one fized point £~ in [z]° := [~ 8, Ble,

and the iteration

(2% = f([2]®), k=0,1,..., (14)
converges to some interval vector [z]* with

e[z Clz]® Clel*VC...C ], ke N. (15)

b) Forany B € [B~,(B~ + B*%)/2) the function f has a unique fized point z* in [2]©@ .=
[—8, Ble, and (15) holds with [z]* = [z*,2*], i. e., (14) converges to z”.

¢) For any B € (8™, %) and [z] := [—B, Ble the function f satisfies
f([=]) € int([z]). (16)
Proof.
a) Let

T((e], o) == 30 3 tislelely);

s=1 k=1
We show that [z] := [, B]e satisfies
f(le)) = r + Sle] + T[z]” € [2] (17)
whenever § € [8~, 3%]. Then Brouwer’s fixed point theorem yields the first part of

the assertion, since trivially f(z) € f([z]) holds for all z € [z].
The inclusion (17) is equivalent to

(-8, 8le

J

rt (z ) 3 tanl-8.81-5, ﬂl) (18)

7=1k=1

r+[—8,8]|Sle + 5% BT |e?
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with the bilinear operator |T| := (|t:;x]). Since for two intervals [a], [8] the inclusion
[a] C [8] holds if and only if |mid([a]) — mid([8])| + jw([a]) < Fw([b)) is valid, (18)

is equivalent to

Ir| + B1Sle + B%|T|e* < Be . (19)
The inequality (19) certainly holds if

p+Bo+ < B

whence 3 € (87, 87].
The second part of a) follows easily from (17).

b) Let [z]* be the limit of (14). Then we get for the widths

w(lz]") = w(f([=]"))

1S]w((z]") + (Z 3 |ti,-k|w([x]z[x];>) ,

and with
oo = [lw({e]") e
and
w(lelilzl;) < w(lzl=l] + lelilw((=];)
< B{w(=]z) + w((=]7)}
we obtain
Weo < OWeo + 26T, - (20)

If we, > 0 then (20) implies 1 < o 4 287 , hence

8> l-0 _Bitb

- 27 2
which contradicts our assumption. Thus, w,, = 0, and z* € [z]* yields [z]" =
[z*, z*].

Since each fixed point of f which is contained in [¢](®), remains in [z]®, k € N,
the uniqueness of z* follows from we, = 0.
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¢) Since [a] C int([8]) holds for two intervals [a], (8] if and only if |mid([a]) —mid([b])| +
%w([a]) < %w([b]), one can proceed as in a) ending up with

p+Bo+ i< B

which means 8 € (37, 8%).

0

The assumptions (12) are necessary for the existence of 87, #*, and for 4~ > 0. In
our applications we shall have p ~ 0, o & 0 so that these assumptions are fulfilled.

Instead of one quadratic system one sometimes has to consider the interval arithmetic
evaluation of f with respect to z, r, S and T, i.e., interval functions defined by

f([21, [7], [S), [T]) 2= [r] + [S][z] + (T[]’ 7
with [r] € V,(I(R)), [S] € Mu(I(R)), and [T] = ([t]ijx) € Mnna(I(R)). It is clear that
an interval vector [z], which satisfies

S]], [81,11) € =]

contains for each function f(z,r,S,T) :=r + Sz + T2? withr € [r], S € [S], T € [T]
at least one fixed point. We leave it to the reader as an easy problem to reformulate
Theorem 4 for interval data. We only mention that p, ¢, 7 have to be replaced by

n

p =11l Hleor @ 2= IS floor 7 2= lrg%{zintmn} :

j=1k=1

4. ESTIMATES FOR EIGENVALUES AND EIGENVECTORS

We recall here some existence theorems for eigenvalues A* and corresponding eigenvec-
tors z*, respectively, which also yield bounds for A* and z*.
Probably the most famous estimate is contained in the following theorem.

Theorem 5 Let A € M,,(C), A\* € spec(A). Then |A\*| < ||All, where || . || is allowed to

be any (submultiplicative) matric norm. In particular,

p(A) < |IA]l . (21)
Proof.

For any z € C" let (z,0,...,0) € C™" be the matrix of which the columns two up to n
are zero. It is easily seen that || . ||, defined by ||z|, := ||(=,0,...,0)]| is a vector norm.

Applying this norm on the equation Az* = A*z*, z* # 0, and using the submultiplicativity
of the matrix norm || . || yields

el = Az, < 1A]HI(e, 0, 0)if = (1Al ]l
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whence the assertion follows.
0
We remark that Theorem 5 holds, in particular, for any operator norm since such norms
are always submultiplicative; cf. [124].
Let SAS~! be the Jordan normal form of A € M,,(C) and let D, := diag(e,€?,...,e") €
M,..(R) for € > 0. Then

Al == || D7 ' SAS™ D, || (22)

is an operator norm which is generated by the vector norm ||z|| := || D15z, = € C™.
The particular form of the entries of D7*SAS™!D, yields at once the inequality ||A| <
p(A) + ¢, i.e., p(A) can be approximated arbitrarily well by some appropriate matrix
norm. Nevertheless this does not mean that there is always a matrix norm for which
equality holds in (21). As a counter-example consider the matrix

‘A=(8(1)>, (23)

for which p(A) = 0, but ||A|| > 0 for each matrix norm || - || because of A # 0.

For particular norms, equality holds in (21) if A is diagonalizable (symmetric or normal,
e.g.). This is easily proved using (22) with ¢ = 1.

Normally, p(A) is not an eigenvalue of A. In some cases, however, p(A) € spec(A)
can be guaranteed. For nonnegative matrices this is valid by the subsequent Theorem of
Perron and Frobenius.

Theorem 6 Let 0 < A € M,,(R) be irreducible. Then the following assertions hold.
a) p(A) is an eigenvalue of A.

b) There is a positive eigenvector =% associated with p(A). (Frequently, z% is called a
Perron vector of A.)

¢) If A< B for some B € M,,(R)\{A}, then p(A) < p(B).

Proof. See [133], pp. 28-31, e. g.
|
If one drops the irreducibility of A then z > 0 in b) must be weakened to x > 0, and
the strict inequality in c) must be replaced be ‘<’ as is seen by the matrices 4 and 24
with A from (23). Cf. [133] for details. With Theorem 6 one can prove the following
comparison result for the spectral radii.

Theorem 7 [183], p. 47.
Let 0 < |B| < A € My, (R). Then p(B) < p(A).

For nonnegative matrices (21) can be specialized in the following way.
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Theorem 8 Let0 < A€ M,,(R), 0<z€V,(R), 0<acR.If
Az < ax (24)
holds, then p(A) < o . If strict inequality holds in (24) then p(A) < a .

Proof.
The inequality (24) implies

max (Az), <a. (25)
1<i<n ;4
Since the lefthand side of (25) equals the weighted row sum norm ||D;'AD.|ls with

D, := diag(z;,...,x,) the assertion follows from Theorem 5.
0
If one restricts A to be Hermitian or normal, the estimate in Theorem 5 can be con-
siderably sharpened if one only looks for bounds of single eigenvalues. In this case we are
going to prove several classical estimates in a unified way following the lines given in [94].
The crucial toel is the subsequent lemma.

Lemma 9 Let A= A¥ € M,,.(C) and let h be a rational function with real coefficients,
for which h(A) exists. If z € V,(C)\{0} is a vector such that

2 h(A)z <0 (26)
holds, then there is at least one eigenvalue \* of A which satisfies h(\*) < 0.

Proof.

The matrix A(A) is Hermitian but not positive definite by (26). Therefore, (A) has at

least one eigenvalue p* < 0. Since the eigenvalues of A(A) are given by h()), A € spec(A),
the assertion follows.

0
To formulate the announced collection of estimates, we need the following definitions.

Definition 10 Let a € C, z € V,(C)\{0}, A € M,.,(C). Define

m; = zHAlx,

my = (Az)(Az) |
m m

R, = %=1 (Rayleigh quotient)
Moo Mo

my — am
T(a) = —L 2701 , (Temple quotient)
M10 — XMoo

myy my0Mo1 mi
e = — - —22=-—"_|R|’¢R.
Moo mOO ™Moo
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Note, that for Hermitian matrices A, the Rayleigh quotient is real and T, (o) =

mo — ammy

my — QMg

€ R, provided that o € R.

Theorem 11 Let A = A¥ € M,,(C), a € R, z € V,(C)\{0}. Furthermore, let f
be a rational function with real coefficients, for which f(A) exzists. Then the following

assertions hold.

Ar —
a) I X" €spec(A): A —q| < Lfm% (Walker/Weston [134])
2
M —a| Az — azl; ‘
b) 3 A\* € spec(A): < , provided Az # 0
) W= |
(Stummel/Hainer [126], p. 222)
¢) 3 M espec(A): |f(A)] < u%%g_l)l—%ll—z (Stoer/Bulirsch [124], p. 392)
2
d) 3 A" €spec(A): |\ —R;<e, (Krylou/Bogolyubov [7{], Weinstein [136])

e) 3 A* € spec(A) :

f) 3 X € spec(A) :

A* lies between a and T(a)

(Temple [128], Wielandt [137])

H

, zfz
A* lies between a and 7.(a) == a+ (A al) iz
(Léwdin [78])
min (Az), A" < fi:= max (Az), , provided A €
- 1<i<n 14 1<i<n Iy

g) 3 M € spec(A) : pu: <
M,.(R) and z; € R\{0}, I=1,...,n .

Proof. [94]

(Collatz [28])

a) - f) Apply Lemma 9 with A(t) as listed below with b denoting the bound of the respective
inequality which is to be shown. Then zHh(A)z = 0 by straight forward computations,
and Lemma 9 proves the assertion.

a) h(t) :== (t — a)? — b%;

b) h(t) := (t — a)? — 22
&) h(t) := J(t) 82

d) h(t) = (t = Re)? — 2 ;
&) h(t) = (1~ b)(t —a)
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g) Choose h(t) := (t — p)(t — _) in Lemma 9. Then
#Hh(A)z = Ej: ((Aa:)1> - ﬁ(—A—le - u@ﬂ + —} z)”

23 B
xr Ty Ty

=% (’:’) ﬁ) ((-’%)l—p)x,?go.

=1
Hence there is an eigenvalue A\* of A satisfying h(A*) = (A* — p)(A* — %) < 0 which proves
the assertion.

Q0
Note that Theorem 1lg) does no longer hold if z; = 0 is permitted and g, 7 are
built only with the non-vanishing components of z. This is shown by the example A =
( 1 i ) and z = ( (1] , since then spec(A) = {0,2} and p =7 = 1.
We now generalize Theorem 11 to normal matrices and & € C. To this end we need
the following analogue of Lemma 9.

Lemma 12 Let A € M, (C) be normal, and let h be a rational function in the variables
s, t, for which h(A¥, A) exists. If z € V,(C)\{0} is a vector such that

Re{z"h(A" A)z} <0 (27)

then there is at least one eigenvalue \* of A which satisfies Re{h(X,A)} < 0.

Proof.
By Theorem 3 there is a basis of orthonormal eigenvectors (z*)*,...,(z*)* of A corre-
sponding to the eigenvalues A},..., A%, with which z can be represented as

n
z= Z a;(z”)
=1
Taking into account that A is normal, we get

3 () ROE A el

=1

i

Hp(AH A)z

n

= ATl

=1

Then (27) yields

ERe{h AN P <0,

which proves the assertion.

0

Theorem 13 Let A € M,,(C) be normal, @ € C, z € V,(C)\{0}. Furthermore, let f
be a rational function, for which f(A) ezists. Then the assertions a) — d) of Theorem 11
remain valid. The assertions €) - g) change as follows:
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If Kr, K. and K,, respectively, are closed discs in the complex plane which contain

(Az

a, Te(a), and o, (), and all y; := )l, respectively, then each of these discs contains
z

[ .
at least one eigenvalue of A. In g) only the restriction z; € C\{0}, | = 1,...,n, is
required.

Proof.
a) — d) are proved by means of Lemma 12 analogously to Theorem 11 using the following
functions k. Again, b denotes the bound of the respective inequality.

a) h(s,t):=(s—a)(t—a)—b;

b) h(s,t):=(s —@)(t —a) — st ;

c) h(s,t):=f(s)f(t) - ;
d) h(s,t):=(s— R;)(t— R;)—¢€2.

e) Let h(s,t) := k(s — Tu(a))(t — a) with £ € C\{0} at the moment being arbitrary.
Then a simple computation yields z#h(AH A)xz = 0, hence by Lemma 12 there is an
eigenvalue A* of A such that

Re {x (3 - To(a)) A~ @)} <0 (28)
holds. W.l.o.g. we can assume that o and T.(a) do not belong to spec(A). Then (28) is
equivalent to

Re{nﬁ’%—z%ﬁ} <0, (29)

with « differing from T,(a), since o = T;( ) yields the contradiction
0= my; — @mg — amye + a@meg = ”A.’E - az”g 5

i.e., a € spec(A). Let K C Ky be a closed disc containing «, T,(a) on its boundary
OK. Choose vy € 0K \{«, T,(«)} such that , «, T;() are met in this order when running
through 3K in a positively oriented sense. Fix now k by k := ¢ e—targ (v — o) /(v — Tuo(a)))
Then the linear fractional transformation

) z—a

w=g(z) =k ——r

I z—Ty(e)

maps «, v, I;(c) into the points 0, 7 —7-;:;—%—) , oo of the imaginary axis. Hence, by
Y= izl

the usual properties of linear fractional transformations (cf. [2], e. g.), K is mapped onto
the closed left half plane, which, by (29), also contains g(A\*). Since g is bijective, A" is

contained in K and therefore in Kr.

t— .
f) follows analogously to €) with h(s,t) := & 5 T(a), and an appropriate . Here, A
a
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does not depend explicitly on s.

g) Let 8, v, & be three different points of K, which are met in this order when running
through 6K in a positively oriented sense. Let 3, 7, & differ from uy, I =1,...,n, and
assume w.l.o.g. ¢ & spec(A). Then, analogously to e), the transformation

w=g(z):= n—z—«_——@ with x:=1 e—iarg(('y =B/ (y—¢6))

z —

maps K, 1-1 onto the closed left half plane. Defining &(s,t) := k(s — §)(t — B) yields

eHh(AH, A)e = &3 (Tm — b — B + 8B) ||

=
n

= > & — 8w - B)lzl

=1
n

= Y gl — 6%z .
=1

—

Since u; € K, implies Re{g(u;)} < 0, we obtain Re{z#h(A¥, A)z} < 0, hence by Lemma
12 there is an eigenvalue A\* of A which satisfies

0> Re{h(3*,\")} = Re{s(X* = &)\ — )} ,

whence Re{g(A*)} <0 and M € K,,.
O

In our next theorem we put together several variants of the classical theorem of Gersh-
gorin. To formulate them we recall the definition of a Gershgorin disc.

Definition 14 Let A € M,,,(C), r; := z |as;] -
J=1

J#E
Then K, (ai;) :={z € C| |z — ai| < r;} is called Gershgorin disc, K,,(a;) N R is called
Gershgorin interval. The set K(A) is defined by

IX’(A) = U Kr'(ai,') .
i=1

Theorem 15 Let A € M,,,(C). Then the following assertions hold.

a) K(A) contains all eigenvalues of A.

b) If the union M, := U K,,.k(a,-k,-k) and the union My = K(A)\M, of the remain-
k=1
ing Gershgorin discs are disjoint, then My contains eractly m eigenvalues and M,

contains n —m eigenvalues.

¢) If A is irreducible and if \* is an eigenvalue of A which lies on the boundary K (A)
of K(A), then X* lies on the boundary of each Gershgorin disc.

d) If A is normal then each Gershgorin disc contains at least one eigenvalue of A.
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Proof.

a) Let

Az* = M\*z* with |z} = max |z}|=1. (30)
1<i<n

Then by (30) we get

n

Jass = 3| = |2z} = X'z3| < 3 lags| 23] <74 (31)
j=1
I#s

hence A* € K, (a,s).

b) W.lo.g. assumei; = k,i.e., My = Up, K, (aks). Let D := diag(a1, a2, .- 0nn), C 1=
A—D, A.:=D +¢eC. Then

K(A)CK(A),0<e<1. (32)

M; contains exactly the m eigenvalues aq, a3, .., amm of Ap. Letting € tend from 0 to
1 the assertion follows from (32) and Theorem la).

c) If » € OK(A) then A\* € 9K, (a,;) with s from (30). Hence equality holds in (31)
implying

|z;] =1 for each j with a,; # 0. (33)

Choose now k € {1,...,n}. By theirreducibility of A there is a sequence ai, , @iy, - - - , Gisk
of non-vanishing entries of A. In particular, ay, # 0, hence |z;| = 1 by (33), and the
steps of this proof can be repeated first with s being replaced by ¢;, then with 7, replacing
i1, etc., yielding |zx| = 1 and A* € 3K, (ak) at the end. Since k was arbitrary, the
assertion is proved.

d) follows from Theorem 13d) with = being the 1—th column of the identity matrix. Then

Rz = aq; and 62 = Z |a,~j|2"§ 7‘?.
=
a
Theorem 15d) need not be true for non-normal matrices, as is shown by the example
1 . . .o
A= ( 4 } ) where both eigenvalues —1 and 3 are not contained in Kq(1).
We conclude this section by a result of Wilkinson [138], III, 49., which yields bounds

for eigenpairs.

Theorem 16 Let A = AT € M,.(R), 7 € V,(R)\{0}, X € R, r:= ||A% — Ai|5. Then
the following assertions hold.

contains at least one eigenvalue of A.

a) The interval [5\ - -r—,;\ + ;
[1Z]I2 [1Z]l2
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b) Ifa > r, ||#]l2 = 1, and if [\ — a, X + a] contains a simple eigenvalue A\* but no
more eigenvalues of A, then there is an eigenvector z* associated with \*, satisfying
lz*]|2 =1 and

r2 F2\1/2 2
R T () I A (34)
a a

In particular, one gets z* € 7 + [—¢,¢] (1,...,1)T.
Proof.

a) W.lo.g. we assume A & spec(A) = {\I,...,\2}. Let U € M,,(R) be an orthogonal
matrix which transforms A to diagonal form, i.e., UAUT = D := diag(A},..., A). Then,
with z := AZ — AZ, we get

Uz =UAUTU: — AUz = (D = A)U3% ,

whence

i =UT(D-X)"'Uz

and

I2ll. < IWUT(D —1i1)-1Uuz r=(D=X)zr
- 1<i<n B—:‘WW

Thus

min |Af — A| <

1<i<n I || ||

which proves a).

b) We adopt the notation of a), denoting by u’ the columns of U and assuming w.l.o.g.
A* = ). Let Z be represented as

rz—sz—al Al — A +Za /\)2 f()\’l’—j\)2+a22a?2azzaf
=2 =2
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hence

n 2
Yol (35)
=2

This yields

2

L= f#l} =Y o <ol +

=1
and
2 1/2
(1 - Z—2> , (36)
whence
22\ 1/2
1—a1§1—(1——2) . (37)
a
By (35) and (37) we finally get
||§:—u1||§ = (e —1)2+Ea? < et (38)
1=2
0

Note that ||Z]|; = 1 enters only in the last four inequalities of the proof. If ||Z||2 # 1 in
Theorem 16b) then (34) can be generalized to

2 2\ 1/2
z z 2 2 max 1 Zil2 ’ 1 z 2 2

provided the square root exists. This follows from
- 12 2, T
&~ wll < (on = 17+ 5 (39)

which is independent from the value of ||Z||;. For ay > 1 we have ||£]|2 > a3 > 1, hence
(39) yields

2
- - r
12— wll; < (2 = D* + — -

2 2\1/2
For 0 < oy < 1 and ||&|2 — 53 > 0, we get 1 > (||Z]I3 — L2 analogously to (36).
2T 2 g 27T,

A similar conclusion as for (38) proves then

2
: r2 ) F2\ 12
e —ulf < o4 {1 ~(lez-5%) " f
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5. GENERAL MATRICES

To verify simple real eigenvalues and corresponding real eigenvectors of general real
matrices (cf. Section 5.1) one starts with the function

Az — Az

Tp —

ey = ( ) aro, (10
the zeros (z*, A*) of which are eigenpairs of A, with the eigenvector 2* being normalized
to

=a. (41)

In this way, the eigenvector becomes unique, provided A\* is (at least geometric) simple.
The reason why the n~th component of z* is normalized has purely notational character.
Replacing z,, — o in {40) by z, — & yields a normalization for the s—th component. If (41)
is changed to

(z) 2" =a (42)

then (40) has to be modified accordingly. In this case (and for simple eigenvalues) the
eigenvector is still ambiguous; it can be made unique by prescribing, e. g., a sign of one
of its non-zero components. We will return to (42) later on in Section 5.1.

There is no need in (40) to restrict A a priori to be real and A to be real and simple.
In fact, the method to be derived can be applied for A € M,,(C) and for A € C. For
multiple eigenvalues, however, it has to be modified in order to guarantee success in the
verification process. We shall present such a modification for double or nearly double
eigenvalues in Section 5.2. In the sequel we shall also touch the eigenproblem for interval
data which occurs, e. g., in practical computation when A is not representable in the given
floating point system.

5.1. Simple eigenvalues ;
Let A € M,.(R), and let (z,)) € V,(R) x R be any approximation of an unknown
elgenpair (z*, \*) € V,,(R) x R satisfying

Fn=a. (43)

Imagine, e. g., that (&, )) is computed by some standard software package. At this moment
it is not yet relevant that X\* is simple. It will turn out, however, that A* must be simple
if the crucial assumption (49) of our first theorem is to be fulfilled. To derive the method,
expand f from (40) into its Taylor series at (#, A), and introduce the differences

Az:=z—&, Ad:=X—1X. (44)
Then (40) reads

e =+ (G ) (an) - (44 ). (45)
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Note that fn41(Z,A) = 0 and that the Taylor expansion is finite due to the particular
nonlinearity Az of f. Multiplying (45) by a preconditioning matrix —C € Mny1n41(R),

and adding ( A on both sides, yields the righthand side function ¢ : Vot (R) —

T
AX
Vit1(R) which is given by

% A=), —&-Az Az
9Bz, A) = —Cf(&,3) + {In+1 - ( T )} ( AX ) ! (16)
and which has the error
(A", AX) :=(z — 2", A — )\")

as a fixed point. It is easily seen that (46) can be interpreted as the Taylor expansion at
(Z, A) of the function s defined by ‘

s(z,x);z(”;:f>—Cf(z,x):<§§>—0f(z,x). (47)
Therefore, trivially,

(D, AN) = sz, \) | (48)
holds.

With [z] € VL(I(R)), [\] € I(R) we define
[Az] :=[2] — &, [AN:=[\]—X.
For the interval arithmetic evaluation of g we obtain one of the main results of this article.

Theorem 17 Let A € M,,(R), MeER, ie Va(R), C € Myy1,n41(R), and define g by
(46). Let  be normalized by (43). If g fulfills the inclusion

o([Aa], [AN) C int([Aa]T, [AN)T (49)
then the following assertions hold.

a) C is nonsingular.

b) There exists ezactly one eigenvector z* € T + [Az] which is normalized by (41).

¢) There exists exactly one eigenvalue \* € X + [A)] .

d} Az* = X*z*  (with z* from b) and \* from ¢) ).

e) X* is a geometric simple eigenvalue.

f) If (&,)) are sufficiently good approzimations of (z*,A*) then it can be guaranteed
that X* is algebraic simple.
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g) If one starts the iteration

[Az]+D)
( [A)\](Hl)

) = s(aa1®, 1409, k=01 (50)
with

([82)?,[AN©®) = ([Ag], [AN)

from ({9) then the iterates converge satisfying

([Az) D, [AN®) € ([A2)®, [AN®), k=0,1,...,

and

(2%, 3%) € (&, ) + ((Az] B JAN®)), k=0,1,... .

0

To prove Theorem 17 we need several auxiliary results which we are now going to state.
Lemma 18 With the notations of Theorem 17 the assumption (49) implies that C and

(A—Mn —F-Az

(el)T 0 ) are nonsingular for all Az € [Az].

Proof.
By (49) we get for the widths

w (9([Az], [AA]))
A=, —%—[Az Az
w0 (30)
A-XI, —-i—Az [Az]
e (oo 0% )| (187)
for all Az € [Az]. Hence the Theorems 7 and 8 imply

A=), -i—Az
p(1n+1 ‘C( (e(n))T 0 )) <1

whence the assertion follows.

(S
—
S
28,
~——
\

v

v

0

Lemma 19 Let (z*,\*) be an eigenpair of A € My, (R) with Az* € [Az] € Vo.(I(R)).
Then (49) implies x}, #0.
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Proof.
Assume that z = 0 holds. Then

A_j‘%n —z” [ Az*— Nz —0
(e(")) 0 AN )T 0 o

and Lemma 18 implies the contradiction z* = 0.

Lemma 20 Let (z*, \*) be an eigenpair of A € M,.,(R) with Az* € [Az] € V,(I(R)), =7,
a. Then (49) implies AX* € [A)].

Proof.
With s, g from (46), (47) define p as the projection

P(AN) i= gapr(Az™, AX) = snp1 (2", ) = {( NG ) - Cf(z*,A)} .
n+1

Then, by (49), we have p(AX) € int([AA]) for all AX € [A)]. Hence Brouwer’s fixed point
theorem guarantees a fixed point Ad € int ([AX]) of p. We will show that Al = AN
holds. Let A := A + A}, define Aj € V, (R) by the equation

Ag
saxah - (31)
and assume for the moment A # AX*, or, equivalently, A # A*. With (46) we get
Ay _ Az* — Az*
(A:\) g(Az*, A)) = s(z*, }) ( ) ( 0 )
Az* .3 z
= (&7)-0-ue(J)
Therefore,
)y 1 *—g
(V) -55007) o

and with A := X + A\ we have
« . _ Az* Az* — Az~
e U R
z

_ (A N-afe g
T\ Ax > — A 0 '
This implies the contradiction

P(AX) = A) = goyi(Az™, AX) € int([AN]) ,
whence AX* = A} € [AN].
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Lemma 21 Let (z*,)*) be an eigenpair of A € Myu,(R) with AN € [AX]. Then (49)
implies the ezistence of some vector Ay* € [Az] such that (y*,\*) = (& + Ay™, \*) is an
eigenpair satisfying Ay* == y* — I € [Az] end (Ay*). = 0.

Proof.

Similarly to the previous proof start with a projection p which this time is defined by
gl(A(L'.A/\*) S](.T,)\*)

p(Az) = : = :
gDz, AX) sn(z, A%)

For all Ar € [Az] the inclusion (49) implies

p(Az) € int([Az]) (52)
hence Brouwer’s fixed point theorem guarantees a fixed point Aj € int([Az]) of p. Let
§:= Z + Aj, define AX by the equation

st =oan.an) = (31 (53)

and assume for the moment

AN £ AN, (54)
or, equivalently, A # A*. Let

u(t) := (1 — z3t)§ + atz™ = § + t{oz™ — 2,,9)

and Au(t) := ( ) —
faz*—zg=0 then x* # 0 because of z* # 0. Hence §j = — z*. This implies §, = a
T

and, by (53), "

(AL ) =i =saian = (37 )

contradicting (54).

Let now az* — 25§ # 0. Then lim;_e ||Au(t)||o = 00 and Au(0) = Aj € [Az]. Hence
there exists a real number i such that Au(f) lies on the boundary 9[Az] of [Az]. By (52)
we get

p(Au(d)) € int([Az]) . (55)

On the other hand we obtain

s(u(B), ) = (Ag‘ff))—c((( z31)(Aj - X)) )

)y, + atz) —a

-
- (AA“A(f)>+(1—x;t~) {—C ( A;ﬂ’_i: )+(£§’* ) - ( AAf* )}
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- () +a-an {seon - (A4}
(20) -0 {(31)- (&)

- (AAilA(f))Jr((l—z:f())(i—A*))‘

This implies
p(Au(?)) = Au(f) € 9[Az]

contradicting (55).
a

Lemma 22 If (49) is valid then there is exactly one eigenpair (z*,\*) € (&,1X)
+([Az],[A)]) of A with z* being normalized by x% = o.

Proof.
The existence of (z*, A*) follows at once from Lemma 18 and from Brouwer’s fixed point
theorem applied to g or s from (46) and (47), respectively.

To prove the uniqueness assume that there is a second eigenpair (y*, u*) of A satisfying
Yo =0, y" # 2" and

(Ay", Ap™) = (y" — &,4" — X) € ([Az],[AN]) .

Casel : A #p~ } 3
First we will show that A* and p* differ both from A. To this end assume A* = . Then

(18 ) (525 -( )

and Lemma 18 implies u* = X. Our assumption then yields the contradiction p* = A=A
Therefore, A* # A. Analogously one shows u* # A.
In the sequel we will use the function kb which is defined by the expression

ht):i=(1—t)(p" = V) +t(A =X =p* — A+t —p*), teR.
We note that

pr=A
ll‘*_/\*

R(t) =0 is equivalent to t= (56)

with ¢ differing from zero by the previous conclusions. In addition, we define for z € R
and t € R the expressions

. A=}, —z z
0:(Az,A,N) = s(fv,A)+‘{1n+1—C( (ew)i 0 )}(ix) ’
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u(t) = @iy ),
s AT L,
oft) = = +tW(y -z'),
M-, . -
Au(t) = u(t)-z,
Av(t) = v(t)—3%,
Ao(t) = o(t)=X.

Then we obtain

Av(t) — do(t) — (o — A)u(t)

-

=X+ t%(“;ji(ﬂ*y* - Xt =t - tA;z(t) A=)
”%@X‘(w =M+ 1y~ 2")}
- A;z(:))\ {27 (1) = " + 8 = "+ Xt = ) 497 (tn7 — ¢h =t — M)}
ba(t) — @ = 0,

which implies

due (Av(t), Ac(t)) = s(& %)+ ( ﬁzgg)
_C(A?ﬂjéwﬂ2&g:§?_%a—?m?f)
- zc(?ﬁ)_i )*(ﬁﬁﬁg)w(“g”)
N
T\ Ac(e)

By (49) we get
<2§: ) = s(z", X") = g(Ac*, AN) € int ( {iﬂ) (57)

whence Au(0) = Az* € int ([Az]).

Analogously, Au(1) = Ay* € int ([Az]).

Therefore, there are real numbers ¢t < 0, ¥ > 1 such that Au(t), Au(%) lie on the
boundary 9[Az] of [Az] with Au(t) € int (Az) for t < ¢ < 1.

We will show now, that

( ﬁzgg ) € int( [[ﬁﬁ ) for all t € [t,7] . (58)
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This relation is certainly true for ¢ = 0 because of (Av(0), Ac(0)) = (Az*, AX*) and (57).
Assuming

(55 ) o (15]) owome s "

yields the contradiction
( Av(?) ) = 6w (B0(d), Ac(D) € g([Ad),[AN]) C int <[Ax])
Ao(d) 9. (Av(t), Ao g([Az], C in (ay ) -

Thus, (58) is valid.
We remark that

p=A
A (60)

* )

— \*

holds. Otherwise let t tend to - which is different from zero since u* # A by the

arguments at the beginning of this proof. Then k() tends to zero whence ||Av(#)0
tends to infinity contradicting (58). Therefore, (60) is valid. Together with (56) it implies
h(ty#£0fort <t <t Wlo.g let h(t)>0fort <t <1.

We will next prove the inequality

-

A= .
t I <t<Lt. 1
t<t 0 <t for t<t<t (61)

By the definition of ¢, %, the inequality (61) is certainly fulfilled for £ = 0. Assume that
there is a real number ¢; € [t,] such that tlu < t holds. Since (61) holds for ¢t = 0,

) h{ty)
there is some ¢ € [t, ] satisfying

This yields
Av(l) = Az* + t(y* — z*) = Au(t) € d([Az])

contradicting (58). Thus the left inequality of (61) holds. The right inequality can be
proven analogously.
Choose now ¢ := ¢t in (61). Taking into account ¢ < 0, A(t) > 0 this implies

t<ti\-*_/\
T h(Y)

= (=)@ =N+t =X)>r -3

= (-t =3 >[1-A = 1)
= > (62)
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Choosing t := 1 in (61) yields analogously

AP RPN =A< (=D =N+ = 1)
= (=D =X < (1= - X)
= X =A>pr - )
= N> ut

contradicting (62).
Case2 : A= 3
Analogously to case 1 one proves A # A* = u* and with

h(t) := A" —X= constant #0,
u(t) = o(t):=z" —t(y* —z*),
o(t) := X = constant,
Ault) = Av(t) = (t) -
Ac(t) = o(t)— A

one can repeat all the steps of the previous case up to (59) which yields

contradicting
( 238 ) ( AUEt:)) ) = gu@ (Av(), Ao(D)) € g([A), [AN]) C int ( [[ﬁﬂ ) _

We are now ready to prove Theorem 17.
Proof of Theorem 17.

a) is contained in Lemma 18.

b) The existence of 2* € Z + [Az], z = a, follows from Lemma 22.

In order to prove the uniqueness, assume first, that there are two independent
eigenvectors z*, y* € & 4 [Az] which are normalized according to (41) and which
are associated thh two eigenvalues \* and p* of A. By Lemma 20, both eigenvalues
necessarily are contained in A + [AA], hence Lemma 22 implies A* = y* and z* = y*
contradicting the linear independency of z*,y*.

¢) The existence of \* € A + [A)] follows again from Lemma 22. If there is a second
eigenvalue p* which differs from A* and which is also contained in A + [A)], then
the Lemmas 21 and 22 yield the contradiction A* = p*.

d) follows from Lemma 22 and b), c).
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e) If \* is not geometric simple, then there are two linearly independent eigenvectors
z*, y* associated with \*, with z* being normalized by (40) and z* € & + [Az]
taking into account Lemma 22. For ¢ > 0 sufficiently small, the vector

. {z*-}-s(ai—x*) ,ifyr #0
z= Yn

*+ey* iy =0
is an eigenvector of A associated with A* which is linearly independent of z* and

which satisfies z* € # + [Az] and 2} = o. This contradicts b).

f) By Lemma 18, the matrix

A-\, —z*
()T 0

) is nonsingular.
. NPT A- M1, —z
Hence for sufficiently good approximations A & A* the same holds for (et)T 0

because of Theorem 1a). Then Theorem 2 proves the assertion.

g) follows from (49) and from the inclusion monotonocity of the interval arithmetic.
a

Note that Theorem 17 neither gives a hint how to construct ([Az], [AA]) such that (49)
holds nor does it guarantee that the iterates from (50) converge to the error (Az*, AX*).
Both items are handled in the following theorem which is a direct consequence of Theo-
rem 4.

Theorem 23 With the notations of Theorem 17 define
A% — i
R G

and assume

A-X, -i .
In+1 -C ( (e(n))T 0 ) Hoov T = HCHOO (63)

o<1, A= (1-0a)—4pr >0. (64)

Then the numbers

B = (=0~ VE(r) = e,
B+ = (1- o+ VA)/(2r)

are nonnegative, and the condition ({9) of Theorem 17 is fulfilled for ([Az]T,[AN)T =
[—8,8le € Voy1(I(R)) with arbitrary § € (87,6%). In particular, all the assertions of
that theorem hold.

If B is restricted to [37,(8~ + B%)/2) then the iterates of (49) converge to the error

Az*
AN

)
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Proof.
Note that o < 1 implies that C is nonsmgular Now apply Theorem 4 with

Az — Az A-A, -3
r:=—C< 0 ),51=In+1‘c((e(n))T 0)’

P R ifje{l,....n}and k=n+1
k=10  otherwise

and note that

g([Az], [AN]) C r+5( {ﬁﬂ ) +C{( 3 [on] ) ( {iﬂ )}

holds because of the subdistributivity of the interval arithmetic and because

(P@D[z] € P([Ql[2])

holds for matrices P € My y1041(R), [Q] € My, n+1(I( )) and vectors [2] € V41 (I(R)).

Denote the quantities in (11) and (13) by p,8,%, 8, B* to distinguish them from those

in Theorem 23. Then p = j, 0 = &, 7 > #, hence =~ < -, f*+ < B+, and Theorem 4
proves the assertion.

0

Another possibility to achieve (60) consists in applying epsilon-inflation starting with

( [Az] ) = 0. See [48], [86], [90], [116], e. g.

[AA]
As preconditioning matrix C one normally chooses C' := B-! with
5 A=), -%
B:= ( (T g ) ) (65)

or at least an approximation to B~'. Then ¢ of Theorem 23 is zero or will at least be
small, and so is p, provided (%, :\) approximates (z*, A*) sufficiently well. Hence, in this
case the assumptions (64) of Theorem 23 will certainly hold.

By the Theorems 1 and 2 the inverse B! exists by continuity if, again, the approxima-
tions #, A are sufficiently good. However, due to rounding errors, B-1 normally cannot
be computed exactly. Defining C nevertheless by C' := B~! means that ¢ = 0 and that
C in the expressions for p and 7 in (63) has to be replaced by a computable enclosure of
B~'. This can be done by enclosing the solutions z = 2(") of the n linear systems

Bz:e(', 1=1,...,n

Such supersets can be obtained by using, e. g., the interval Gaussian algorithm or Krawczyk’s
method. See [12] or [85] for details.

We will add now another remark unifying two verification methods which, at a first
glance, seem to be quite different. To this end, let again C := B~! hold. Then C has the
block form

Cn Ciy
c=| o 1 ‘ (66)
021 022
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with Cyy € M1 .(R), C12 € R, Cy € M, ,(R), Cy2 € R. This can be seen, e.g., by
inspecting the adjoints. Any preconditioning matrix C of the form (66) effects

gn([Az],[AN]) =0, (67)
if Z is normalized by Z, = . In particular, this means
[Az)*Y =0, k=0,1,...,

in (50). Therefore it seems reasonable to allow only starting vectors [Az](® with [Az]© =
0. In this case, the blocks C;2, Cs; do not influence the values of ¢ since they are multiplied
by zero. Therefore, one can shrink the whole problem to an n~dimensional one, deleting

On ) € M,.(R) instead of C.

the n-th component of g and of [Az] and using C = ( c
22

This results in a new function g, defined by

s e =023 )} (3)

with

Az = (Azy,. .., Axn_l)T

and

B:=((A=AD)uy,..., (A= X)p-1,—7) (68)

where (A — :\I)*,j denotes the j—th column of A— AJ. Because of det(C) = —det(C) it is
clear that C is nonsingular if and only if C has this property.

Theorem 17 remains valid for the new situation, the proof can be reduced to the former
one: Reconstruct g from § via (66), (67) with Ciz = Coy := 0; let

aat ) cint (151

hold and set [Az] := ( [[__A:];] ), € > 0. For sufficiently small ¢ we get
gi([Az],[AA]) Cint ([Az)), i=1,...,n—1,
gn1([Az], [AN]) Cint ([AN])
and, by (67),
0 = ga((Aa), [AN]) C int ([Acl,) = (~¢,)

Hence (49) is fulfilled for ([Az],[A)]). Taking into account z¥ = #, = « and Az} =0
one can replace {Az], by [Az], = 0 in Theorem 17b). With these remarks the analogue
of Theorem 17 is easily seen.

The assertions of Theorem 23 remain also true. One only has to replace p,a, 7 by

p =00~ Ad)leo s o= [=CBlloo, 7:=Cleo, (69)
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and [Az] by [AZ] € V,_1(I(R)). C1. [4] or [88] for details.

The complex case A € M,,(C) is considered in [88] and [117]. Here, the complex
interval arithmetic is needed as described in {55].

We again refer to [88] when replacing A by an interval matrix [A] dealing thus with
topic 4 of Section 1. In this case #, A can be thought to be approximations for an eigenpair
of the midpoint matrix A := mid([A]), e.g., C can be chosen as an approximate inverse
of A1, and A has to be replaced by [A] in (46). Then Theorem 17 remains valid, where
the assertions b) — g) hold for each matrix A € [A] with the eigenpair (z*, *) depending
on A, of course.

In a similar way, Theorem 23 remains true. Here, p has to be replaced by

pi=tic (P ) 1

and o has to be changed to

R A [T

If the normalization (41) is replaced by (42) then some of the previous results can again
be shown. The function f then has to be redefined by

f(x,A):=(A$‘“),

rr—o

(70)
whence ¢ from (49) now reads

9(Az,AN) = —C f(#,4) + {In+1 Sy ( %TAJ:(XA;)T “Eoh )} ( o~ ) S

with 7% = . Note that f,,1(z, ) now depends quadratically on z while it depended
only linearly on z in (40). This complicates matters when trying to transfer the proof
of Theorem 17 to the new situation. Lemmas 18 and 20 can be restated and proved (cf.
[88]), while the analogue of Lemma 21 and of Lemma 22 are still unproved. Therefore,
up to now, only the following statements can be guaranteed.

Theorem 24 Let A, C, %, X be defined as in Theorem 17 with & being normalized by
Ti=a#0. If

o(1Aal, [AX) € int([Az], [AN)? (72)
holds for g from (71), then the following assertions are true:

a) C s nonsingular.

b) There is an eigenpair (z*,\*) € (& + [Az], A + [AN]) satisfying (*)T2* = a.

¢) For sufficiently good approzimations (5,5\) of (z*,\*) from b), the eigenvalue X* is
algebraic simple. ’
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d) If (%, 5\) is any eigenpair of A satisfying T2 = o and & € F+[Az], then A € A+[AN].
e¢) If one starts the iteration

( [Ag)(k+D)
[A)\](k“)

) = g([Az]® [AN®) | E=0,1,... - (73)
with
(18], [AN©@) = ([Ad], [AX])
from (72) then the iterates converge satisfying
([Az)**), [aN®D) € ((Az]®, [ANP) | k=0,1,...
and
(a*,A") € (£,2) + ([Az]®,[AN®) | E=0,1,... .
Proof.
a) is proved analogously to Lemma 18.
b) follows from (72) and from Brouwer’s fixed point theorem.
c) is a consequence of Theorem 2a), and of the analogue of Lemma 18.
d) is proved by applying the analogue of Lemma 20.

e) follows from (72) and from the inclusion monotonicity of the interval arithmetic.

0
Theorem 25 With the notations of Theorem 17 and with 7% = o # 0 define
v [ A=A, -3
(At )
p=CfEMew, o0:=-CB"w, 7:= et @, .0 100 e - (74)
n being the number of the components of Ax. Assume
<1l and A:=(1-0)’—4pr>0. (75)

Then the numbers
B~ = (1-o—VA)/@2r),
Bt = (1—o+VA)/(27)
are nonnegative, and the condition (72) of Theorem 24 is fulfilled for ([Az]T,[AN)T =
[~8,Ble € Vay1(I(R)) with arbitrary B € (8~,6%). In particular, all the assertions of
this theorem hold. 5

If B is restricted to [, (8~ + B%)/2) then (7 + [Az], A + [AN]) contains ezactly one
eigenpair (z*,\*) of A satisfying (z*)Tz* = «, and the iterates of (73) converge to the

error

AN
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Proof.

Theorem 25 is proved analogously to Theorem 23 using S := I — CB"” and
Cij, ifje{l,...,n}andifk=n+1

tijk == § —Cint1, fj=k<n+1
0 otherwise

hence

= |T|le = ISIH'IS%L)S—I (; leij| + ; ICi,n+1|) =1C]-(1,...,1,2)7 |-

]
We close this subsection with two examples, starting with the Wilkinson matrix Wi ;.

Example 26 (Cf. [139])

Let Wit | = (w2 be defined by

i

n 1
1 n—-1 1 0]
1 n—2 1
WzJ;+1 = (wz(;nﬂ)) = 10 1
1 n-2 1
0 1 n-—1 1
1 n

with ones in the first superdiagonal and in the first subdiagonal, and with the diagonal
entries

wit = n+1—d|, i=1,...,2n41.

We want to verify the two largest eigenvalues A5, and )3, which are known to differ
only in the sixteenth significant digit. To this end we compute the approximations for the
eigenvalues and for the corresponding eigenvectors from EISPACK and C ~ B~! from the
software package distributed with PASCAL-XSC. The verification process (50) stopped
with

Ao € [10.74619418290333)
and
A5y € [10.74619418290349]

Instead of listing the components of the enclosures [z]?° and [z]® for the corresponding
eigenvectors {(z*)?°, (z*)*! we mention only bounds of the relative width ¢([z]) which we

defined for [z] € V,(I(R)) by
X w([z]:) . ‘ (76)
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In both cases [z] = [z]?° and [z] = [z]** we obtained ¢([z]) < 3.4E — 016 . This shows how
standard software packages and verification numerics can collaborate to verify eigenpairs

and to enclose them tightly.
a

Our second example illustrates the verification process for an unsymmetric matrix which
occurs in the connection with the Riemann hypothesis (cf. [104]).

Example 27
Let
1 -1 1 -1 1 -1 1 :
2 -1 -1 2 -1 -1 :
3 -1 -1 -1 3 :
4 -1 -1 -1 :
An = (ay) 1= 5 -1 -1 :
6 —1 :
-1 7 :
n—1
with

ai; 2= (¢ + 1)8(iq1) 41y — 1

s e 1 , if¢isa divisor of j
i 0 otherwise

Roesler showed in [104] that the Riemann hypothesis is valid if and only if the determinant
det(A,) of A, increases for any £ > 0 at most like

det(A,) =0 (n! n~1/2 + 5) , M — 00

where O(-) denotes the usual Landau symbol. Since det(A,) can be represented as the
product of the eigenvalues of A,, we get in this way a relationship to the subject of
our article. For n = 11, which means A, € My 0(R), we computed the following
enclosures [A]; for the eigenvalues A?. Instead of listing the enclosures for the corresponding
eigenvectors we again show only bounds ¢; for the relative widths.
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[n=11] i [\l | & |
1| —1.970214329754 72°F — 002 [ 2.1E — 016
2| 3.758517054844655E — 001 | 2.1E — 016
3| 2.71431514331193%E + 000 | 2.0E — 016
4 4.0+ [-1,1]- 10715 2.6E — 016
5 5.0 + [—1,1]-10"'® 4.4F — 016
6| 6.534132065892630F + 000 | 2.2E — 016
7| 7.314390058013418E + 000 | 2.1E — 016
8 | 8.655903539939005E + 000 | 2.0E — 016
9| 9.588680211084 148F +000 | 2.1E — 016

10 | 1.083642941957193F +001 | 2.1E — 016

As the theory shows, the exact values of \j and A% are 4 and 5, respectively.

5.2. Double or nearly double eigenvalues

While the method in the previous subsection is taylored to simple eigenvalues, we
address now to a double eigenvalue or to two different eigenvalues with clustering being
allowed. Le., we consider the following three cases

(i) Af # X% are two algebraic simple eigenvalues of A;
(ii) A} = A7 is a geometric and algebraic double eigenvalue of A;
(ii) A} = A} is an algebraic double but geometric simple eigenvalue of A.

All the three cases share the same property: The eigenvalues of A associated with AL AT,
and (in the case (iii)) the corresponding principal vectors span a two-dimensional subspace
V of V,(C) which is invariant with respect to the mapping represented by A;i.e,weV
implies Aw € V. Any pair u”,v* of linearly independent vectors from V are called
generators of V since each element w of V can be represented as linear combination
w = pu” + vv*, u,v € C, of u* and v*. For each pair of generators u*,v* there is a 2 x 2

matrix M such that
AU =U"M (77)
holds with U* := (u*,v*) € M, ,(C).

In the cases (i) and (ii), u*,v* can be chosen to be eigenvectors z*,y*, in the case (1ii)

it is possible to choose u* as eigenvector z* and v* as an associated principal vector y* of
degree two. Then M has the form

Ak
wese(% 1) -

with £ = 0 in the cases (i), (ii) and & = 1 for (iii). If u*,v* are linear combinations of
&7, y" one can obtain the underlying vectors z*,y* by essentially finding the eigenvalues
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of the 2 x 2 matrix M and by reducing it to the Jordan normal form (78). If M = S~'JS
holds with some 2 x 2 matrix S and with J from (78) then (77) is equivalent to

A(U*S) = (U*S)(S7IMS) = (U*S)J

where the columns of U*S are z* and y*, respectively.

Although our aim consists in computing enclosures of eigenvectors and principal vectors,
we will start with the general case (77) where u*,v* are any generators of V. First we
remark that it is always possible to find two components ¢;, 2 and two generators u*, v*

of V for which
uy =a, u,=f8, v =7, v,=§ (79)

«

ﬂ)’ (;/) are linearly independent.

This makes the generators unique. If u,v are generators which do not yet satisfy the
normalizations (79), we make the ansatz

holds with prescribed values o, 3,7, 6 € C provided (

u' =dnu+dyv, v* = dyu + dygv
requiring
ul = dnu; + digvy, = @
1
uf, = dnu;, + digvi, = 8 (80)
and
v}, = dynui, + daovi, =7 (81)
v, = dnug, +dpvi, =6
The two 2 x 2 systems (80), (81) have the same coeflicient matrix K := Z” Z” )
() 12

Therefore, both are uniquely solvable if and only if det K # 0, i.e., u;, vy, — u;,v;;, # 0.
This is possible by using the same strategy as in [15] and [35]: First define ¢; by

uiy #= Max [wi] - (82)

The value u;, certainly differs from zero because u,v are generators of V. In particular
they are linearly independent. With i, define 7; by

Uiy Uiz = UipViy = IDAX i, v; — ujvi, | (83)

If the lefthand side of (83) were zero, then v = &u, hence u, v are linearly dependent
uil

contradicting the generator property of uw,v. Therefore (79) is possible. Since <;>,

<z) are assumed to be linearly independent, the same holds for u*,v*. Hence they are

generators of V. For ease of notation we assume ¢; = n — 1 and i3 = n in the sequel.
We restrict now to real matrices A, real eigenvalues A*, and real generators u*, v*.
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Let f :{ ?"H(R) = Vina(R) be defined by

= f(2)
Au — myu — myv
Up_1 — O
T Up — B
2z = (U » M1, M2y, vTv mia, m22)T ) f(Z) = AU _ m112u — Mg
Up—1—7
Uy — &

It is obvious that the vectors u*, v* in the representation z* = ((u*)T, m3y, myy, (v)T, mi,, m;2)
for a zero 2* of f are the generators of V satisfying (79).
Assume now that we are given approximations 4, %, M of u*,v*, M, which are gathered

in the vector # := (ﬂT, My, Ma1, 97, rhlg,ﬁzgg) . Let %,7 be linearly independent. It
is described in [35] how to obtain @, &, M using the @ R-algorithm. We proceed now

as in Section 5.1, expanding the function z — 5 — Cf(z) in a Taylor series at %, where
C € Msni42n44(R) is some nonsingular preconditioning matrix. Introducing

T
Az = (AUT, Amu, Amgl, A’UT, Amlz, Am22) =z—Z

we get
f(2) =0 <= Az=g(A2):= ~C f(3) + (Iznrs — CB)Az + TAz (84)

with the (2n +4) x (2n + 4) matrices

A—rimnl, —& —%  —rngyl, 0 0
(=T g ¢ 0 0 0
) (e)T 0 0 0 0 0
B: —tad, 0 0 A—rhgpl, —i — (85)
0 0 0 (T o
0 0 0 (T 0 0
and
0 Au Av 0 0 0
00 0 0 0 0
. 00 0 0 0 0
T=Cly o 0 0 Au Av (86)
00 0 0 0 o0
00 0 0 0 0

which have the same block partitioning. Thus we again arrived at a quadratic function
g, for which Theorem 4 applies with

ri=-Cf(3), S:=1-CB, (87)
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and
cj , ifke{n+l,n+2}andje{l,...,n}
tijg =1 ¢c; , ifke{2n+3,2n+4}andje{n+3,...,2n+2}, (88)
0 otherwise,
1=1,...,2n+4 .
Hence
p=1Cf(E)leo, o:=|I-CBll, (89)
7= [Tl = [21C1(€7,0,0,67,0,07| < 2IC ]l

where é:=(1,...,1)T € V,(R).
We then get the following result in which we require the normalization (79) with

=0y 1, PBi=U,, Y:=0Vn_y, 6:=0,. (90)
Theorem 28 Let g,p,0,7 be defined as in (84), (89), and let (90) hold. Assume

g<l and  A:=(1-0)*—4pr >0, (91)
and let

B~ i=(1-0—-VA)/(2r),
Bt :=(1 —U+\/Z)/(2T) .

a) If B € [B7,B%] then g has in [—B,Ble € Vanra(R) at least one fized point Az*.
T

With U* = (u*,v*) and M from ((u*)T,m}‘l,mgl,(v*)T,m;‘Z,m;2) =z + Az,

the equation (77) holds. In particular, u*,v* are linearly independent vectors which

are normalized by (90) and which are generators of an invariant two dimensional
subspace of V,,(R).

The iteration
[Az]**D .= g([AZ]®) | k=0,1,... (92)

converges to some interval vector [Az]* with

Az e[Az]" C[Az]P C-.. C[AZ]@ |, k=0,1,.... (93)

b) 1fB € [B,(8+B8%)/2) then g has in [A2]©® := [ B, fle € Vinsa(R) a unique fised
point Az*, and (93) holds with [Az]* = Az*, i.e., (92) converges by contracting to
Az
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We remark that C~!, B~! exist since ¢ < 1. Choosing C := B~! leads to the block
form

Cu Cl2 013 Cl4
0...10 © 0 0 —n—1
0...01 O 0 0 —n
Ca Csy Casz  Ca
0 0 0...10 0O - 2n+1
0 0 0...01t 0 — 2n+2
Ca Cy Cas Cas

N e e
n 2 n 2

whence g;(Az) =0for: € {n —1,n,2n + 1,2n + 2} and for any Az € Vy,44(R). Thus,
as in the previous subsection, it makes sense to start with interval vectors [Az] for which
[Az]i = 0,7 € {n ~1,n,2n + 1,2r + 2} holds, shrinking the matrices and vectors in ¢
to get a new function g : V5, (R) — Vo,(R) with modifications analogously to those in
Section 5.1. Essentially in this form the method (92) has been presented in [15].

We want to consider another specialization of (92). To this end let g = 0 and
2 € {0,1}. Then M has Jordan normal form, hence 71,3, can be thought to
approximate eigenvalues A*, u*, and @, 9 can be considered to approximate corresponding

eigenvectors and/or principal vectors according to the cases (i) - (iii). The matrix B has
the block form

B= ( B B ) with B; = (e(n_l))T 0 0 s =12

()T 0 0

A-myl, —u -
By Bn

Hence B is nonsingular if and only if B;' exists for # = 1,2. This holds certainly if one
of the cases (i) — (iii) are handled and if the approximation # is sufficiently good, as can
be immediately seen from the subsequent result.

Theorem 29 Let

A-XT, —u —v*

B: = (e(n—l))T 0 0 S Mn+2,n+2(R)7 1= 1,2,
(ehT 0 0

with A}, A} being two eigenvalues of A (A} = A} being allowed) and with u*,v* being

two linearly independent vectors from the largest invariant subspace V belonging to A7, A}

which satisfy

U #F0, up vy —upvn #0. (94)
Let (77) hold with U* = (u*,v*). Then the following statements are equivalent.

*

a) Fither A}, Xy are two different algebraic simple eigenvalues of A or A} = X} is an
algebraic double eigenvalue of A.

b) By and B, are both nonsingular.
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Proof.

Let a) hold and let u* v* be generators of the invariant two-dimensional subspace V
associated with A7, \5. Assume that u*,v* satisfy (94) and that By is singular. (If Bj is
singular the proof proceeds analogously.) Then there is a vector w € Voi2(R)\{0} such
that

Biw=0. (95)

T
Decomposing w into w = ((w*)T, Wott, wn+2) with w* € V,(R) yields

(A—NL)w = wopt” + wnpv™, (96)
w, , = 0, (97)

w, = 0. (98)

K w* = 0 then wpyu* + wnyev* = 0. Since u*,v* are linearly independent we get

Wne1 = Wnyo = 0 contradicting w # 0. Therefore, w* # 0 with w}_, # 0 w.Lo.g., whence

by (94), (97), (98)

* *
Wy g Up_g VUna
* * * J— * * * — * ¥
det Wy Up—y VUn-a - wn—Z(un—lvn unvn—l) :Ié 0.
* * *
wy, 2 Up,

Hence u*,v*, w* are linearly independent.

If wpy41 = Wnyz = 0 then w* is an eigenvector associated with A}. Hence the dimension
dimV of the invariant subspace V exceeds two, contradicting a). If wn41 # 0 or wny2 # 0,
represent u*,v* as linear combinations of corresponding eigenvectors / principal vectors
contained in V. If A} # A}, multiply (96) by (A — AjI.) and commute both matrix
factors to see that (A — A3I,)w* is a principal vector associated with A}, although A}, A
are algebraic simple eigenvalues. If A} = A} is a geometric double eigenvalue then w”
is a corresponding principal vector of degree two. If A} = A} is a geometric simple but
algebraic double eigenvalue then w* is a corresponding principal vector of degree three.
Hence in all three cases we get dimV > 3 contradicting a). Therefore, Bf cannot be
singular, and b) is valid.

To prove the converse, let b) hold and assume a) to be false. Since (77) holds for U*
the subspace 1% spanned by u*,v* is invariant with respect to A. Due to this fact, u™,v"
can be written as linear combinations of two eigenvectors z*,y* of A or of an eigenvector
z* and a corresponding principal vector y* of degree 2. Since we assumed dimV > 3, the
Jordan normal form of A shows that there is a left eigenvector w* of A associated with
AT or A3 which is orthogonal to z* and y*. Therefore (w*)Tu* = (w*)Tv* = 0, whence
((w*)T,O, 0) Br =0 for i =1 or i = 2. This contradicts b).

u

We remark that an analogous theorem also holds in the modified case dealing with g.
This can be seen as in the proof of Theorem 2. For this modification, and with my; = 0,

B has the form

- Bn 0 )
B=B= «
( mal’ By ’
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where Bi,-, i=1,2,is A — I, with the columns n — 1 and n being replaced by —1, —7,
respectively, and where I’ := I, — e"=1 (e(*")T _ ¢(®) ((®)T Its inverse reads

B_lz R Bl_ll R AO
—-B}muI'Bi By )

Applying Theorem 28 with C having the block form

B a0
¢= ( —Cynl'Cy C ) (99)

yields expressions for p, o, 7 which are essentially identical with the corresponding quan-
tities in [15], (2.11) — (2.13).

For numerical examples we refer to [15], where among others the following one was
presented.

Example 30 [15]

Consider the 7 x 7 matrix

-6 00 -1 —4 —4 0
041 6 0 0 2

014 0 0 00
A=]1-100 -6 —4 -4 0
-4 00 -4 -6 -10

-4 00 4 -1 -6 0
06011 0 0 04

with the eigenvalues

/\1=6, )\2=)\3=3, A4=1, )\5:/\6:—5, )\7‘—‘—15

and with the corresponding eigenvectors / principal vectors

0 0 0 1 1
4 1 0 0 0
iE —1 -1 0 0
'==10 , 2= 0 , 2% = 0 , zt = 1 , 8 =] -1 ,
o 0 0 -1 -1
0 0 0 —1 1
3 0 1 0 0

o
|

O = e OO =
~
I

O = = O D
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Here z° is a principal vector associated with A, = A3 = 3 and z°,z° are two linearly

independent eigenvectors belonging to A\s = A\¢ = —5. The approximations M, %, v were
chosen to be

7 ( —4.99999999 1E-38 )
0 —5.00000001 / °
9.9999999 E — 1 1
1E -8 1E-8
-1E-38 ~-1E-8
= -1 ~z®, O=|-99999999FE —1 | ~a®.
—9.9999999 E — 1 9.9999999 E — 1
9.9999999 E — 1 —9.9999999 E — 1
1E-8 1E -8

The modified method with ¢; = 4, i = 5 (instead of 1y =n—1 =6, i3 = n = 7) and with
C = B! from (99) yields ’

-5 0, [~1,1]- 10" [—1,0.3]- 107
0 -5 [-2.6,2.6]-1020  [-1,1]-10"%2 >

[—-0.1,1]-1071 [-1.0001 — 0.9999} 1078
[-1,0.2] -1071° [2,1.2] 10~
[-0.2,1]-10-1 [0.3,1] 1071

z® + 0 ; 2%+ —0.999999 99

1.0-10°® 0.999999 99
[-1.0001 —0.0099] -1078 [0.9999,1.0001] -10°8

[-1,0.2] 1071 [~1,0.3] .10~

as verified enclosures for M = ( _g _g ) from (77) and for the generators u* = (1 —

0.5-1078) 2% + 0.5 - 1078 2% and v* = 0.999999 99 - z°, respectively.
0

6. SYMMETRIC MATRICES

To enclose eigenvalues A* and corresponding eigenvectors z* (at least if A* is simple)
for symmetric matrices A we present a method described in [79]. The basic idea is to
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transform A by a finite number of Jacobi rotations JL Ay =1 A" with

1
0
1
c 0 0 —s —p
01 0
Jpg 1= : : , c:=cosp, s:=sinp (100)
1
s 0 0 ¢ -9
1
0
1
T T
P q

nearly to diagonal form. Then an interval version of Gershgorin’s Theorem 15 is used to
enclose the eigenvalues of A, and Wilkinson’s results in Theorem 16 are applied to enclose
eigenvectors associated with simple eigenvalues. The angle ¢ in (100) is determined so
that a,, = 0 holds where (p, q) are chosen in a row cyclic way, i.e., (p,q) runs through
the scheme

(L2) - (1L3) - ... - (L,n)
(2,3) - ... > (2,n)
(n —.l,n)

rowwise from left to right starting with (1,2) and restarting with the same index pair if
one arrives at (n — 1,n). The method is known as the row cyclic Jacobi method. As in
(124], the entries of A’ are computed via the following procedure, provided a,, # 0.

Algorithm 31 (Jacobi method; one step)

g.— %p — %q (= cot(2¢))

2a,, )
{:= tango = 0+ (szgna) /02 +—1 lf0 74 0 _
1 if6=0
1 @ S
C::Tfﬁ s:=ct; T::tan(g) :1+c
G = gy + Lay,
Qgy i= Qgq — tay,
py 1= @y, =0
a;'j = a;p = ap; + s(ap; — Tay;) , J#4q
Qg 1= g 1= g5 — s(ap; + Tags) ,  j#P
a;’j = hg (2] ¢ {p7q}
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0

As is well-known, the explicit computation of ¢ is not necessary. Instead of assuming
apq # 0 for Algorithm 31, one often uses a threshold variant of the Jacobi method, skipping
the computational process for an index pair (P, q) if |ap,| < ek with g; > 0 being some
given small number acting as threshold. If lai;| < ek for all 7 < j, then e is replaced by
some e41 € (0,¢6) such that the sequence {€;}52, decreases strictly to zero. Taking into
account J, = J;! it is known ([37], [50]) that the (infinite) row cyclic Jacobi method
converges to the Jordan normal form of A, which, by the symmetry of A, is a diagonal
matrix with the eigenvalues of A as diagonal entries.

The method in [79] now transforms A by means of (100) into a diagonally dominant
matrix A with
€'lai] > Z la;] t=1,...,n, ¢ sufficiently small. (101)

pes

The transforming matrices J,, are multiplied together to form a single transformation
matrix S. Unfortunately, due to rounding errors, one only gets an approximation S of S
satisfying S=1 & §7 because of §~1 = ST. To get an enclosure for $~1AS one first forms
AS using interval arithmetic. Then one has essentially two possibilities.

(i) Solve the n interval systems

[AS][2]@ = @ 1

Then
Stels)t= ([z](l),...,[z](")) € M,.(I(R)) .2 (102)
~ —_ ~T G
(ii) Compute o := ||ST||o r%%%t . Then
Ste[s) =5+ [—a,a]ee” | provided ||I— ST < 1. (103)

(102) is trivial, (103) follows from the next lemma.

Lemma 32 Let
IH=CS|lw <1 for C,S€ M, (R). (104)

Then C, S are nonsingular, and

1 = CSlls

S—l _ T ) = o S
€C+[-a,alee” with a Il T = es)

! This equation has to be interpreted in the usual way; see [95], e. g.
2 [S]1 is used only symbolically; it is not an inverse in the algebraic sense.
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Proof.
The existence of C~1, §~! follows immediately from (104). By Neumann’s series, we
obtain

§1—C = (I-CS){I—-(I-CS))'C
(I-C8) (I -CS)kC,

k=0

hence

157! = Clloo < 1 = CSllow 3 I = CSlacliCllec = e -
k=0
y a
Having computed [B] := [§]7}(AS), Theorem 15 shows by a worst case analysis that
the eigenvalues of A are contained in the set

al:= U lo

with the Gershgorin intervals

—“ ZI 1J Eﬂ‘*_ZI[b]lJl] 2=1,,n

J#l JF

gkin U [g; = 0 (105)

then we call a Gershgorin interval [g]; isolated.

Such an isolated interval [g]; contains exactly one eigenvalue A* of A by Theorem 15b).
It is algebraic simple. This remark holds trivially for all eigenvalues of A if the intervals
[gliy 2 = 1,...,n, turn out to be pairwise disjoint. Such pairwise disjoint Gershgorin
intervals are expected when dealing with the inverse eigenvalue problem described in
Section 9. Clustering can also be verified by the method above by modifying Theorem
15b) in a straightforward way.

The bounds g,,g; can be improved if one intersects [g]; with additional enclosures based
on estimates like those of Theorem 11, or if one increases the precision which can be
done using particular features of modern programming languages like PASCAL - X5C,
combined with computations in staggered correction format described in [19], [81], [123].
In addition, the Gram-Schmidt procedure can be applied to re-orthogonalize S. For a
description of such computational details we refer to [79].

Let now A* be a simple eigenvalue which is enclosed by an isolated Gershgorin interval
[g):- In order to obtain an enclosure for a corresponding eigenvector * which is normalized
by (z*)Tz* = 1, apply Theorem 16b) with

ol )

Pl

&t

=mid([g}) . r=]A
m1n{m1n{|c|[c€ gl; —

— A&z,
-\ } (n any small number) .

u'
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Define € according to (34). If @ > r holds then z* € & + [—¢, €e.
Before we illustrate the foregoing results by an example we point out that in the con-
tribution [25] of this book another enclosure method is described for symmetric matrices.

Ct. also [21] - [23], [86], [89].
Example 33

We want to verify the eigenvalues of the modified 18 x 18 Hilbert matrix
A =(a;) with a;; :=144403552893600/(: +j — 1) .

This matrix is symmetric and positive definite having integer entries. Using the method
described above and improving the Gershgorin intervals by the Temple estimate from
Theorem 11 yields the following enclosures [A]; for selected eigenvalues A},

[ i] [Ai |
1.225612 62522207 3E — 011
4.765338 71153030 LE — 009
5 | 8.722494 8553915 2L E — 003
10 | 1.020114 001 053 09 2 E + 006
18 | 2.722 31855534766 L E + 014

Note that the smallest eigenvalue A; is particularly difficult to verify.

[ IS | B

a
7. THE GENERALIZED EIGENPROBLEM
As is well-known, the generalized eigenproblem
Az = ABzx , A, B € M,,(C), B nonsingular, (106)

can be reduced at once to the simple eigenproblem (1) by multiplying (106) with B™*. In
practice, because of rounding errors, B~! A normally cannot be computed exactly, but it
can be enclosed ‘solving’, e. g., the n linear systems

Bz =A.;, j=1,...,n, (A.;j-th column of A)

by the verification methods mentioned in Section 5.1. The resulting inclusions [2]7 of 2
then yield an enclosure for the columns of B!, and the eigenvalue / eigenvector methods
of Section 5 or 6 can be applied to the interval matrix ([z]',...,[2]") - A. There are also
other possibilities to attack (106). The first one can be used for simple eigenvalues A = A*
of (106), i.e., for simple eigenvalues of

B'Az =)z, (107)

although there is no need to require simplicity for A* from the beginning. But it will turn
out as in Section 5.1 that some matrix being involved is nonsingular if A* is simple. The

1 Cf. [45] for eigenpairs of smaller Hilbert matrices.
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method proceeds analogously to that in Section 5 for the standard eigenproblem. Start
with

Az — ABz

Ty —

f(z»/\)r=< ), a0,

precondition with —C ¢ Mo41,741(C), choose an approximation (55,;\) for an eigenpair
(z*,A*) of (106) and expand

s(z,A) = ( ﬁj ) —C f(z,))

in a Taylor series at

). Then the exact error < 2; ) = ( N :f ) is a fixed point

> 8

of the equation

( 2;6 > =g(Az, AN,

where g is defined by

oAz, A)) = —cm,m{znﬂ—c(A(;j)gfn —B(£0+Az))}(§§)
= s(z,)\).

Let now A, B, C be real and let T, =2 = a.
Checking the proofs for the Lemmas and Theorems in Section 5.1 shows that with
minor modifications the analogues of the Theorems 23 and 24 hold with

A% — AB% A—-)\B -Bj
p = ”C( 0 . ) o= In+l —_ C( (C(n))T 0 ) )
T = |lIC]-|Bllloo , and
(ICI'IBI)U"[—l,l] ifje{l,...,n} andif k=n+1
[tljx = , .
0 otherwise

The absolute values arise because of

<_o( ~Bladl )) AN (iicz-sbsj[Axb) (AN

s=1j=1

Il

n n

D cisbsj[~1, 1][Az];[AN]

s=1

i (i leis] - lbgs 1= 1, 1]) [Az];[AN].

7=1 \s=1

N

—

[

In practicular, the interval version of Theorem 4 has to be applied.
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Note that Theorem 2, which is needed for the proofs, still holds if its matrices are
adapted according to (106) The two modifications of ¢ in Section 5.1 also hold; replace
B in (68) by

Bi=((A~AB)as,...,(A = AB)unor,—Bi) € Mun(R)
and p, 7 in (69) by

=|¢GBz - 43)|_, ~=|1CI-1B]|_ .
respectively. The function f in (70) reads now

(2, ) = ( AIT— ABz ) .

rr—uo

We also remark that A and B can be replaced by interval matrices [A], [B], and that A, B
as well as [A], [B] can be complex.

Another procedure for (106) consists in generalizations of the results in Section 6 pro-
vided A and B are symmetric and B is positive definite.

Example 34 [15]

Let
0 2 31 1 12 1 -1 2 1
2 12 1 2 1 1 14 1 -1 1
A=| 3 1 111 -1|, B=|-1 116 -1 1
1 2 19 1 2 -1 -1 12 -1
1 1 -1 1 15 1 1 1 -1 11

be the matrices from {140}, p. 312. To enclose the smallest eigenvalue A* of the generalized
eigenproblem Az = ABz we chose

0.134 591
: —0.612947 F — 1
A =0.432 787 and z=| —0.157902562211
0.109 466
—0.414730 E—1

With the exception of &3 these values coincide with the first six significant digits of Table
3 in [140], p. 313. The digits of #3 are the same as in that table. Prescribing the third
component of z* by 23 = « := &; instead of the n-th one, and changing B accordingly
one gets, with €' := B! , for the modified method described above the verified enclosures

[ 0.134590573 96} ]

[ —0.612947224715 E—1 |
A €[0.43278721101¢]  and e | [ —0.15790256221} ]

[ 0.109465 787723 ]

[ 0414730117965 E— 1 ]

Another example and more details can be found in [7].
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8. THE SINGULAR VALUE PROBLEM

The singular value problem for rectangular matrices A € M,.»(C) consists in finding
two unitary matrices U € Mp,(C), V € My, (C) and a rectangular matrix ¥ € M, (C)
such that

A=VxuH (108)
holds where ¥ has the form
o1
0
o,
E =
On
0
0 :
0
in the case m > n, and
71
0
Y= o,
0
om 0 ... 0
in the case m < n, with oy > 0, > ... > 0, > 1 = 0 = ... = Ominfmm) and
r = rank(A). The numbers oy, i = 1,...,min{m,n} are called singular values of A,

the corresponding columns u(), v() of U and V are called right singular vectors and
left singular vectors, respectively. The task of computing the singular values o¢; is called
singular value problem. From theory one knows that the decomposition in (108) exists.
Since (108) yields

Aul) = g0 . .

AH'U(i) — O'iu(i) 1= 1, ey mln{m,n} (109)
the vectors u), v() are eigenvectors of the matrices ATA ¢ M,.(C) and AAF ¢
M. (C), respectively, associated with the eigenvalues o2, In this respect one could
use the methods in the Sections 5 and 6 to enclose u(?, v() and o?. Another way consists
of considering the function

[ Vatmt(R) — ntm+1 (R)
defined by

Au —ov
flu,v,0):= | Ay —ou (110)

“uMu—1
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of which the zeros (u*,v*,¢*), o* # 0, contain a pair of singular vectors u*,v* associated
with the singular value o*. The singular vectors are normalized according to

() u =1, (v =1 (111)
which follows from the definition of f and from

Au* = o™, Ay =o"u’

whence
1 1 H
*w\H | x «\H * H_* *
(v*) v (v)a*u a'*( v)u
= (u)¥u =1
For 0* = 0 the zeros (u*,v*,0*) of f do not necessarily fulfill (v)Hv* = 1, since

obviously f(u*,0,0) = 0 for each right singular vector u* of A which is associated with
o* = 0. To force v* to be normalized by (111) even in this case, one can start with the
function

Au —ov
Ay — o'y
f(uvvva-ao") = uHu——l (112)
vy =1

repeating the steps to follow. The zeros of (112) trivially fulfill (111), and they also satisfy
o = o'. This latter equality can be seen from (111) and from

Au=ov = v7Au=cvtv =0,
Ay =o'y = uf APy = c'ullu = o
H
= 0=vHAu=(uHAHv) =d'.
Cf. [5] for details.

We restrict ourselves now to the real case, i.e., we assume A € M,,.,(R). Then £, U, V
are real matrices. Introducing approximations @, %,d and the differences

yields the fixed point problem

Au Au B Au
Av | = g(Au,Av,Ac) := -Cf(4,0,6)+ (I - CB)| Av | +T| Av (113)
Ao Ao Ao
with the (m +n + 1) x (n + m + 1) matrices

A —ol, -0
B:=| -6, AT - (114)

24T 0 0
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and

y 0 0 Av
T:=C 0 0 Au |.
(

Av)f 0 0

Ao

). The

series terminates after the third summand of the expansion, hence g is a quadratic function

as defined in (10) with

r = —Cf(%,0,6),
S = I-CB,

Au
This follows analogously to Section 5.1 by preconditioning f with —C, adding ( Av )

on both sides of the equation

0=—-Cf(u,v,0)

Qr D 8

and evaluating the righthand side into a Taylor series at the approximation (

and with T = (¢,jx) given by

Cij ifje{l,...,m}andk=m+n+1
Ciym+j fje{l,...,n}andk=m+n+1
Ciminsr i =ke{l,...,n)

0 otherwise

bijk 1=

Therefore, Theorem 4 yields a method and at the same time a criterion for verifying
solutions (u*,v*,0*) of the singular value problem. With

p = IC(25,8)lws &= | = CBllwo," and 7= lIC]- (1,...,1,m)" |l
one gets at once the following result.
Theorem 35 With the notations above let
6 < 1, A:i=(1-6)—4pT >0,
B~ = (1-6-VA)/(2),

Bt = (1-é+VA)/@2r), ) (115)
[Au](o)
a) If B €[B7,B"] then g has in ( [Av]© ) =[5, 8le € Vigms1({(R)) at least one
[Ag](O)
Au*
fized point ( Av* ) € Vogmpr(R) with u* := 4 + Au* € V,(R), v* 1= 0+ Av™ €
Ac*

! To distinguish the quantity o of Theorem 4 from a singular value, we replaced the notation ¢ in
Theorem 4 by 4.
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Vi(R), 0* := 6+ Ac* € R forming for ¢* # 0 a triple of a right singular vector, a
left singular vector and a corresponding singular value such that the normalizations
(111) are satisfied. The iteration

[Au](k+1)
[Av)t+) | =g ([Au]®, [A0]®, [A0]®) , E=0,1,..., (116)
[Ag]tk+D)
[Au]*
converges to some interval vector ( [Av]* ) with
[Ac"
Au* [Au]* [Au]®) [Ay]*-1)
Av: e | [Av) | C| [Av® | C ( [Av]-D) )
Ac* [Ac]* [Ac]®) [Ag]k-D)
(117)
[Au)©
g-~-g([Au](°)), ke N .
[Ac]©@
[Aw]©
b) If B € [B7,(8~ + +)/2) then g has in ( [Av]ioz ) =[-8, Ble € Vaym1(I(R)) a
[Aa]®
Au* [Au]* Au*
unique fized point | Av* |, and (117) holds with | [Av]* | = | Av* |, i e, the
AN (Aol Ao
Au*
iteration (116) converges to | Av* |.
Aoc*
a

As in Section 5.1 one normally chooses C' ~ B~! so that & =~ 0. If the approximations
%,9,8 are sufficiently close to a solution u*,v*,o* # 0, the weighted residual r will be
small, hence the assumptions (115) of Theorem 35 will be fulfilled. Note that o # 0
certainly holds if 0 ¢ & + [Ac]® and that a similar Theorem holds if g is based on (112).

As we are going to see by the subsequent Theorem 36 and by continuity arguments,
the inverse B~! certainly exists if the approximations %, © of the singular values u*, v*
are not too bad and if the corresponding singular value ¢* is simple, i.e., if it is a simple
eigenvalue of the matrix ATA. Since this matrix is symmetric o* is then automatically

algebraic simple. We already remarked that the columns v, i = 1,...,min{m,n}, of
the matrix U from (108) fulfill
ATAWY = (67)2 0, (118)

with ¢* being the ¢-th singular value. Therefore, because U is nonsingular, a singular
value ¢* # 0 is simple if and only if it occurs only once in the matrix ¥ whence, by

AATY) = (67)2%0) v j-th column of U,
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a simple non-zero singular value is also an algebraic simple eigenvalue of AAT and vice
versa.
We are now ready to prove the following theorem on the simplicity of singular values.

Theorem 36 Let 0* # 0 be a singular value of A € My,(R). Then o* is simple if and
only if the matriz
A —o*l, —-v*
B = —O'*In AT —u* S Mm+n+l.m+n+1(R)
2(u)T 0 0
is nonsingular with u*, v* denoting a right and a left singular vector of B*, respectively,
associated with o* # 0.

Proof.

The idea of the proof is already contained in the proof of Theorem 2. Let ¢* # 0
1
z

be simple and assume B* to be singular. Then there is a vector z = | z? | with
ZI

2! € Vo(R), 2% € V,,(R) and 2’ € R such that z # 0 and B*z = 0. Hence

Az' — o2 = v, (119)

AT — g2 = (120)

W)z = 0. (121)

If 2/ = 0 then
ATAZI — O_*AT 2 _ (0'*)221
whence, by the simplicity of o*, we have 2! = au*. Therefore, (121) implies 2! = 0, and
(119) together with o* # 0 yields z2 = 0 contradicting z # 0.
If 2 # 0 then we get from (119), (120)
ATAZ' — (67)22 - Z'o*u* = 2 ATv" = Zo™u”
hence
(ATA — (0")1,)2" = 270" u".
Multiplying this equation with ATA — (*)%I,, and taking (118) into account shows that
2! is a principal vector of degree two for the symmetric matrix AT A which is impossible
since AT A is diagonalizable. Therefore, B* is nonsingular.

Assume now B* to be nonsingular and ¢* # 0 to be a multiple singular value. According
to the discussion preceding Theorem 36, 6* occurs multiply in ¥, whence there is a second
pair & € V,(R), © € V;,(R) of singular vectors, associated with o*. With (109) and by
the orthonormality of U, V this yields the contradiction

((f;*)T’ (ﬂ*)T’ 0) B* — (('lA)*)TA . U*(ﬁ*)T, ,a*)TAT _ a‘*(i}*)T7 _(a*)Tu* _ (QA)*)TU*) —0.

We finally remark that A can again be replaced by interval matrices [A] € M,..(I(R))
and that the complex case can be handled analogously.

The subsequent example which we borrowed from [5] illustrates the efficiency of the
method described in Theorem 35 .
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Example 37 [5]

We want to enclose the largest singular value o7 of the 5 x 3 matrix

1 6 11
2 7 12
A=1]3 8 13
4 9 14
5 10 15

with the approximations &; = 0.351272233F + 2,

0.354 557057

0.201 664 911 0.398696 370

= | 0.516830501 ) , o= 0.442835683
0.831996 092 0.486 974 996

0.531114 309

With C := B~! (cf. the paragraphs following the proof of Theorem 17 for a discussion of
this choice) we got

o1 €[0.35127223333; E + 2],

[0.354 557 057 037 |

[0.201 664911192 ] [0.398 696 369 992 |

u € ( [0.516 830501 392 ] ) ., andv'e | [0.4428356829%3]
[0.831 996091 591 | [0.486 974 995 921 |

[0.531 114308882

9. AN INVERSE EIGENVALUE PROBLEM

The inverse eigenvalue problem which we want to consider in this section, consists in
finding n real numbers ¢}, 1 =1,...,n, such that the matrix

Ac) = Ao+ Y A, c:=(a) € Vu(R), (122)
i=1

has for ¢ = ¢* = (¢}) prescribed eigenvalues

A <A < <AL (123)

Here, A;, i = 0,...,n, are given symmetric n X n matrices, so that A(c) = A(c)? holds.
The problem arises, e. g., if one wants to find the spring constants in a spring—mass-wall
device sketched in Fig. 1, where the eigenfrequencies of the system and one single spring
constant are given. The situation is made clearer in the following example.
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Example 38

Let n masses m; be coupled by springs on a straight line and by two rigid walls standing
in parallel as is indicated in Fig. 1.

/

Co 1 C

Fig. 1

By Hooke’s law and by Newton’s second law, the system is described by

Bi(t) = —Aa(t), a(t) = (ai(t)) € Va(R)
z(ty) = w0 (124)
J'(to) = .i()

with z;(¢) denoting the distance of the i~th mass from its equilibrium position at the time
t, with the mass matrix

B := diag(my,...,m,) € M,,(R)

and with the symmetric n x n matrix

ctea  —o
—C ¢+ ¢y —Cy 0]
—C Ctc¢c —c3
A=
) —Cp—2 Cn-2 + Cpo —Cn1

—Cp-1 Cn-1 + Cn

in which the ¢; mean the spring constants. The vectors zg and o are the initial values
for the displacement ¢ and for the velocity #. A fundamental system of (124) is given by

{z(t)]z(t) = v* cos(\//\_it) or z(t) = v sin(\/;it) ,i=1,...,n}
with
ABv' = Av'. (125)

As is well-known, /A; are the eigenfrequencies of the oscillating system. It is easy to
see that a matrix of the form (122) can be introduced in (125). To this end let Bz :=
diag(\/m1,. .., /my,), w' = B;'vi, and define the symmetric n x n matrices H®, [ =
1,...,n, by

’

B0 {co fi=j5=1

B 0" otherwise
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1 ifi=je€{l,i+1}
Y = =1 if(g) e {(L,I+1), (+1,D)} } 1=1,...,n—1,

0 otherwise

0 otherwise

. { 1 ifi=j=n
With B := (B%)_l, equation (125) can be written equivalently as

\w' = B FAB Hw' = (B—%H“’)B—% + ZC,B—%H“)B—%) w'
=1
which is (122) with the symmetric matrices A; := B tHWB-3 .
a

To find a verified solution ¢* € V,,(R) of the inverse eigenvalue problem we start with
the function

U s VB
£ { ¢ = Mc)—= M (126)
where A(c) := (A;i(c)) is the vector of which the components are the eigenvalues of A{c),
ordered increasingly like the components of A* = (A}) = A(c*); cf. (123). If we assume for
the moment that ¢* exists then, by Theorem 1b), there is certainly a neighbourhood U*
of ¢* such that for ¢ € U* the eigenvalues of A(c) are simple and can therefore be thought
to be ordered as required. This neighbourhood has been chosen in (126) to define f.
Trivially, the zeros of f are just the solutions of the inverse eigenvalue problem.

We want to apply Newton’s method to obtain an approximation of ¢*. To this end we
express the Jacobian f' of f by means of the given matrices A; and by the eigenvectors
(z*)(c) of A(c), associated with A;(¢) and normalized by

. T .
(@)(9) @")(e)=1. (127)
To avoid the ambiguity which we mentioned in Section 5, we think of sign((z*)} (c))
being fixed for some component (z*); (c) of (z*)(c) . Although Theorem 1b) was proved
assuming the normalization (2), it is easy to see that its assertion also holds in the present

situation. One only has to consider ——95~T—- with z7 . Multiplying
(z*)Tz~

A(e)(z")' () = Ai(e)(z") (e)

by ((x*)i(c))T from the left and taking into account (127) yields

(E(9)" 4" (@) = X0

Differentiating both sides with respect to ¢; results in

i (c z*)i(e)T . . .
519 Dy 0) (@) 0) + (@@ 0) " 4, (7Y (o)

Oc; dc;
T 2@ (e))
Ae) 3c;

+((z")(0)

= ((z*)'(c)) T a((z*)l(c)_)_ .

A; ((@(9) + 20 (@) =5,
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Differentiating (127) with respect to ¢; yields

2 (o))" 2V g

86]'
thus
Ai(e) *\i T *yi
e, = (@) 4@ (128)
Given ¢, the vectors A*(c) and (z*)'(¢), ¢ = 1,...,n, can be computed approximately

using any of the software packages mentioned in the beginning of this article. Therefore
the matrix and the righthand side of the Newton equation

((@(0) 45 )(@)) (7 = &) = =M = X7) (120)

are known at least approximately; hence c**! can be computed from (129). Stopping the
iteration and verifying ¢* can now be done following the lines of [8]. In the verification
step, f'(c) has to be enclosed by a tight interval vector, i.e., the eigenvalues of A(ck)
have to be enclosed by one of the methods described in Section 5.1 or 6. In addition, an
enclosure of f'(c) is needed with ¢ varying in an interval vector [c]. This means that the
normalized eigenvectors (z*)*(c), ¢ € [c] have to be enclosed. Again the methods in the

Sections 5.1 or 6 can be applied, this time on the interval matrix A([c]) = Ao+ Y _[cliA:
i=1

showing that enclosure methods are also needed for a whole set of point problems and
not only for a single one.

The numerical examples which follow are taken from [9]. They prove that the inverse
eigenvalue problem can have several solutions, a phenomenon which has already been
remarked in [38].

Example 39
The matrices A; € Ms5(R), ¢ =0,...,5, are given by

613 -2 0 2 1 0 -1 1
122 0 4 1 0 -4 -1 0
Ao=| 321 2 o, 4=| 0 -4 -2 1 3],
202 -2 0 -1 -1 1 0 5
040 0 -3 1 0 3 5 -1
1 2 -3 0 -1 2 -1 0 2 1
2 -1 =3 1 0 -1 2 1 0 -6
Ag=| -3 -3 0 —2 2|, 4= 0 1 -3 8 -3/,
0 1 -2 0 6 2 0 8 6 -3
-1 0 2 6 1 1 -6 -3 -3 4
-3 -2 2 04 -3 -1 -5 3 2
—2 1 2 —40 102 7 -1 =2
As=| 2 2 -2 -1 2], A4s=| -5 7 5 -3 0
0 -4 -1 =50 3 -1 -3 0 -2
4 0 2 01 2 -2 0 -2 4
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The eigenvalues AY are prescribed by
A = (-10,-5,-1,4,10)T .

As can be seen by a direct computation, the vector ¢* = (-3,4,1,2,-1)T is a so-
lution of the problem. It is verified when starting the Newton iteration with &0 =
(-2.9,4.1,0.9,2.01, —1.01)T . With this iterative process we got the enclosure

-3 [—2,1]

4 [-1,1]

[d] = 1 [4+107%- | [-1,1]
2 [-1,1]

~1 [-1,1]

Starting with ¢® = (10,10,10,10,10)7 yields

[ —3.87904956418373% |
[ 4.3053759374290% |
=11 0.729062953735382 |
[ 1.682982632583797 |
[ —1.092532116 503928 |

which means that

—3.8790495641837...
4.3053759374290...

= 0.7290629537353 ...
1.6829826325837...
—1.0925321165039...

is another solution of the problem.
]
Our second example originates from [39], where an approximation of ¢* has been derived.

Example 40
0 4 -1 1 1 5 —-11
4 0 -1 2 1 4 -1 2
-1 -1 0 3 1 3 -13

{1 2 3 0 1 2 -14 ONT s

AO— 1 1 1 1 0 1 -1 5 9 Az—e (e ) 7’_17 ,8,
5 4 3 2 1 0 -16
-1 -1 -1 -1 -1 -1 07
1 2 3 4 5 6 70

A" = (10,20, 30, 40, 50, 60, 70, 80)” .
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Starting with ¢ = (10, 20, 30,40, 50, 60, 70, 80)7 yields

1.190 787610 247272 E + 001
1.970552 150 808 693 E + 001
3.054 549818 697 703 F + 001

{ 11.907 876 102472....
[

[ 4.006 265 748 844 803E + 001

[

[

[

[

19.705521 508 086 . ..
30.545498 186 977 . ..
40.062657 488448 . ..
51.587140290725. ..
64.702131432179. ..
70.170675820891 ...
71.318499170219...

, hence ¢* =

5.158 714029 072 55L E + 001
6.470213 143217953 E + 001
7.017 067582089 118 E + 001
7131849917021 902 E + 001

— et ) e e e —

Starting with ¢® = (~10, ~10, —30, —30, —50, —50, —70, —70)7 results in

1.146 135429 773 863 F + 001 |
7.888082936 085432F + 001 |
6.835339 960285 135 E + 001 |
4.987833041 174665 E + 001 ]
5.916891 783339 23%F + 001 |
3.041047014 754 039E + 001 ]
2.483432401 438 62LE + 001 ]

]

[
[
[
[
[¢] [
[
[
[ 3.701237433149023E + 001

guaranteeing a different solution

11.461 354297738 ...
78.880829360854 . ..
68.353399602851 ...
- 49.878330411 746 . ..
59.168917833392. ..
30.410470147540. ..
24.834324014386.. ..
37.012374331490... 0

10. ADDITIONAL REMARKS

In this section we want to supplement our article by bibliographical notes and additional
topics appearing in verification numerics for eigenproblems.

The results of Section 3 on quadratic systems are due to Alefeld [6]. The systematic
application of Theorem 4 in the Sections 5 — 9 is new.

The contents of Section 4 are well-known, the unified treatment of the inequalities in
the Theorems 11 and 13 can be found in [94]. Unifying results on eigenvalues are also
derived in [3].

One of the first papers concerning enclosures for eigenproblems with interval methods
is certainly that of Krawczyk [70], in which he already uses the method of Section 5.1 to
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enclose eigenpairs. (Cf. also [71], [72].) This procedure of expanding the function f from
(40) in a Taylor series seems to go back to Unger [132] in the non-interval case. Later
on, Rump used in [114], [115], [116] the same access to state and prove Theorem 17. In
his computations he already used C in the form (66), and he exploited there (67); cf. also
Section 4 in [48]. Similarly to [127] Alefeld started in [4] from the beginning with the
modification of f which yields § of Section 5.1, and proved Theorem 23 for this case. In
[88] it is shown, among others, that the procedures of Alefeld and Rump are equivalent
and that therefore Theorem 17 holds for § and Theorem 23 is valid for g, too. (Cf. also
[87] and [89].) Note that the convergence results in [70] — [72] also fit in this theory
and that the Taylor expansion above was also used in [93] and [111]. The normalization
(z*)Tz* = 1 has been considered in [70].

In [72] the case of complez eigenpairs for real matrices was reduced to a real system
with n + 2 unknowns by splitting z = . + i%im € Vo(C), A = Ay + 1Ay € C into real
and imaginary part. This yields

{(A - A'reIn)2 + ()\im)zln}zre =0
(xre)io =1, (Axre)io —Ae=0

which is equivalent to
Az =)z, z,=1

1

via Ziym = (A ~ A\reln)zre , provided A, # 0. Again Taylor’s expansion is used to

end up with a method analogously to that in Section 5.1 .

Complex matrices in combination with a Taylor expansion are also considered in [48],
[86], [117], again with similar results as above.

Methods with higher order of convergence are derived in [13] using higher order divided
differences and the interval Gaussian algorithm.

The results in Section 5.2 for double or nearly double eigenvalues are due to Alefeld
and Spreuer [15] based on an idea of [35]. They already used the modified function g.
Enclosures for multiple eigenvalues and for a basis of the associated subspaces are also
considered in [73].

The particular case of symmetric matrices seems to be handled first by Alefeld and
Herzberger in [11], restricting themselves there to tridiagonal matrices A. The method
starts with the characteristic equation

n

pa(A) :=det(AL, — A) = [[(A=X5) =0 (130)
i=1
with A7, j = 1,...,n, being the real eigenvalues of A; A},..., A} are assumed to be

simple whereas the other eigenvalues A} can be simple or multiple. Solving (130) for the
t—th eigenvalue yields

Y W LG N
ITO-X)

S
J#e
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This forms the basis for the two iterative processes

-
P = A (A‘n) n® , (131)
—NEY TI G -9y
]];: Jj=n—-m+1
t=1,...n—m,
and
Tk
S S (- P (%) A
IOE - &) T 0P — @y T GP —)
=1 j=i+1 j=n—m+1
i=1,...n—m, (132)

respectively, with AY € [)\]5»0), j=1,...,n, :\Ek) € [/\]Sk), i=1,...,n—m, [)\],(-0) N [/\]5-0) =
0,i:<n—m, j=1,...,n, j #1i. The characteristic polynomial is evaluated via the usual
recursive formulae for symmetric tridiagonal matrices (cf. [124], e.g.). For convergence
results and modifications of (131), (132) we refer to [11] and [12].

The enclosure method described in Section 6 is due to Lohner. He gives a very detailed
description of the method in [79] using Gershgorin’s theorem. Applying the Temple
quotient was proposed in [86]. We also mention a paper of Yamamoto [143] for more
sophisticated bounds, and we want to address the attention to [31].

A similar approach as in [79] was used by Klug in [68] based on a result of Heindl [49]
to improve orthonormality of nearly othonormal sets of vectors.

A different method for verifying eigenvalues of symmetric matrices was derived by
Behnke [21] using results of [43]. Here, a smaller generalized eigenvalue problem is associ-
ated with the original one. From the eigenvalues of this smaller problem one can compute
bounds for those of the given one. We refer to the contribution [25] of this book for more
details, and also to [22], [23].

We finally mention the paper [36] in which guaranteed bounds for the eigenvalues of
Hermitian matrices were computed.

The generalized eigenproblem (100) was investigated in [7], [117] by the methods out-
lined in Section 7. There, the theoretical results can be found which were only indicated
in this section. The problem can also be handled by the method in [21]. An overview can
be found in [86].

The verification method in Section 8 for the singular value problem is again due to
Alefeld. Based on a paper of Dongarra [34], he uses in [5] the function f from (112}, and
he already states and proves Theorem 35. In [80] the singular value problem (108} was
reduced to the eigenvalue problem

B(i):;\(ﬁ), (133)
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AT

. 0
w1thB.—(A 0

i)

Each eigenvalue of (133) satisfies

) € Mpim min(R), and with the normalization

2
= lvllz + llullz =2 - (134)
2

Au = v, (135)
ATy = ), (136)
hence

ATAu = MMTv =)\,
AATy = Mu= ).

Thus, each positive eigenvalue of B is a non-zero singular value of A . By (136), (136)
the corresponding eigenvectors ( Z ), normalized by (134), satisfy

2 = (lATU)T cu= 20T = [[o]2
2= 3 =3 = livllz »
hence by (134) we obtain ||u]|2 = ||[v||2 = 1. Thus u, v are normalized right and left
singular vectors, respectively. In this way the procedure of Section 6 can be applied to B
to enclose all singular values and the corresponding singular vectors — at least theoretically.
For practical computations we mention the difficulties in deciding whether an eigenvalue
is zero, if it is enclosed in a tight zero containing interval, and we also merely point out
that it is nearly impossible in practice to determine the order of the eigenvalues in a
cluster and therefore to guarantee the dimension of the corresponding eigenspaces. As in
Section 5.2 one can only enclose a basis of the eigenspace which contains all eigenvectors
of the cluster.

We also mention the paper [33] of Deif in which singular values of interval matrices
are considered, and the thesis {56] of Hofflmann in which error bounds and verification
algorithms are presented for the generalized singular value decomposition.

Even when dealing with point matrices, topic 4 of Section 1 has to be considered when
executing the algorithms on a computer, since the verification steps always have to be done
in interval arithmetic. For the theoretical treatment of this topic we mention the papers
of [32], {86], [88] pointing out that enclosures for interval matrices [A] are certainly not
handled there for the first time. In this connection we also cite the paper [118] of Rump,
in which he shows a way how to obtain inner and outer enclosures for the eigenvalues of
all matrices contained in [A]. (Cf. [117] and [118] for the same question concerning the
generalized eigenvalue problem.) An inner enclosure [A\]i"* of the i-th eigenvalue of [A] is
an interval such that any A € [A]"™ is the i-th eigenvalue of some matrix A € [A] . In
contrast to this an outer enclosure [A\]?* is an enclosure [A]; as described in topic 4.

1
Enclosures for simple zeros of real A-matrices, i. e. of matrix polynomials

P(\) = Ag+ M, +...+ \"A,., AER, A€ Myu(R), i=0,...,m,
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are considered in [112]. A zero of P is a value A* for which there exists a vector z* €
V.(R)\{0} such that

POz =0 (137)
holds. Note that (137) is equivalent to the eigenproblem Bz = Az with
) I, 0
B = € an,mn(R) L]
0 I,
—A7lAy —AJMA, - —AD AL

provided A, is non-singular. In [112] Taylor’s expansion is again applied. This time the
starting function reads

(227)-

We also mention [113] for enclosures of zeros of non-real A-matrices and [24] for another
way to enclose eigenvalues of parameter dependent matrices.
In [105] enclosures for real eigenpairs of matrices

A€ (A== Ao+ [-1,1]gp", 0< g € Vo(R), 0 <p € Vo(R)

are considered. Theoretical results are given.

Stability results used in control theory are derived in {106], [107], [109]. There, an
interval matrix [A] € M, (I(R)) is called Hurwitz stable if each matrix A € [A] has only
eigenvalues A* with Re{\*} < 0. Similarly, [A] is called Schur stable if p(A) < 1 for each
matrix A € [A]. (In [109] only symmetric matrices A € [A] = [A]” are required to have
this latter property.) Stability is also studied in [17), [20], [26], [29], [30], [46], [47], [51] -
[54], 57, [59], [60], [62], 63], [69], [82] ~ [84], [92], [100], [102], [103], [119], {121], [122],
[141], [142], [144]. An overview is given in [41].

In [108] it is remarked that checking stability of [A] = [A]T is NP-hard.

In [107] the problem of describing and enclosing the set

A :={) € R| Az = Az for some A € [A], = # 0}

is considered. A condition for z € V,,(R) to be an eigenvector of some A € [A] was derived
there. In [110], the set

As :={) € V,(R)| Az = )z for some A € [A] and an z with Sz > 0}
is described with
S := diag(o1,...,0,), o:€{-1,41}, i=1,...,n,
being a signature matrix.
We conclude our contribution by listing the papers (58], [61], [77], [97], which also deal
with enclosures of eigenvalues.
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