STUDIES IN COMPUTATIONAL MATHEMATICS 5
editors: C. BREZINSKI and L. WUYTACK

TOPICS
IN VALIDATED
COMPUTATIONS

J. HERZBERGER
Editor

NORTH-HOLLAND




TOPICS IN
VALIDATED COMPUTATIONS

Proceedings of the IMACS-GAMM International Workshop on
Validated Computation, Oldenburg, Germany, 30 August-3 September 1993

edited by

Jurgen HERZBERGER
Fachbereich Mathematik
Universitdit Oldenburg
Germany

ST )
m%é

1994

ELSEVIER
Amsterdam — Lausanne — New York — Oxford — Shannon — Tokyo



ELSEVIER SCIENCE B.V.
Sara Burgerhartstraat 25
P.O. Box 211, 1000 AE Amsterdam, The Netherlands

Library of Congress Cataloging-in-Publication Data

IMACS-GAMM International Workshop on Validated Computations (1993
Oldenburg, Germany)

Topics in validated computations : proceedings of IMACS-GAMM
International Workshop on Validated Computations, Oldenburg,
Germany, 30 August - 3 Septmeber, 1993 / edited by Jurgen
Herzberger.

p. cm. -~ (Studies in computational mathematics ; 5)

Includes bibliographical references,

ISBN 0-444-81685-2

1. Interval analysis (Mathematics)--Congresses. 2. Numerical
calculations--Verification--Congresses. 3. Algorithms--Congresses.
I. Herzberger, Jurgen. II. Title. III. Series.

QA297.75.143 1993
512’ .5--dc20 94-36669
CIP

ISBN: 0 444 81685 2

© 1994 ELSEVIER SCIENCE B.V. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written
permission of the publisher, Elsevier Science B.V., Copyright & Permissions Department, P.O. Box 521,
1000 AM Amsterdam, The Netherlands.

Special regulations for readers in the U.S.A. - This publication has been registered with the Copyright
Clearance Center Inc. (CCC), Salem, Massachusetts. Information can be obtained from the CCC about
conditions under which photocopies of parts of this publication may be made in the U.S.A. All other
copyright questions, including photocopying outside of the U.S.A., should be referred to the copyright owner,
Elsevier Science B.V., unless otherwise specified.

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter
of products liability, negligence or otherwise, or front any use or operation of any methods. products.
instructions or ideas contained in the material herein.

This book is printed on acid-free paper.

Printed in the Netherlands



Topics in Validated Computations
J. Herzberger (Editor)
1994 Elsevier Science B.V. 323

Inclusion Methods for
Elliptic Boundary Value Problems

Michael Plum

Institut fiir Mathematik, Technische Universitat Clausthal,
Erzstrafle 1, 38678 Clausthal-Zellerfeld, Germany

1. INTRODUCTION

This article is concerned with inclusion methods for nonlinear second-order elliptic
boundary value problems of the form

—Au+ F(z,u,Vu)=0 on ,

Blu)=0 on 89, (L)

where 8 C JR" is a bounded domain. Its boundary 8 is assumed to be Lipschitz-
continuous (i. e., 9 is everywhere locally representable as the graph of a Lipschitz-
continuous function). Some additional smoothness properties of Q will be specified
later.

B is a mixed type boundary operator: There exists a closed subset 'y C 8§ such that
Blu] := v on Iy, and Blu] := 8u/dv := (Vu) - v on Ty := 00\ Ty, with v : Q@ —» IR
denoting the outer unit normal field at 92, and with the dot indicating the canonical
inner product in IR™.

We assume that the triple (,T,Ty) is regular in the following sense: Let
HE(Q):=cl{u e C5(Q): Blu]=0 on 80},

with ”¢l” indicating the closure in the Sobolev space H2(2). The regularity condition
requires that, for some o € IR, the boundary value problem

ve HB(Q), —-Au+ou=r onQ

is (uniquely) solvable for each r in the space Ly(f2) of square integrable functions. The
complete class of regular triples (2,T,'1) seems to be unknown. However, regularity
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can be shown for many relevant examples, several of which are listed in the appendix
of this article.

The nonlinearity F' in (1.1) is defined on  x IR x IR™ with values F(z,y,z) € IR. We
assume that F' and its derivatives Fyy := 0F/8y and F, := (0F/0z,...,0F/0z,)" are
continuous. If n > 2, we assume in addition that F' grows at most quadratically with
respect to z, i. e., for each a > 0, there exists some C > 0 such that

IF(x,y,z)l <01+ |z|2) for z € Qv YyER, |y|<a, z€ R, (1.2)
with | - | denoting both the modulus in IR and the Euclidean norm in IR".

We will discuss ezistence and inclusion methods for problem (1.1). These are methods

providing the existence of a solution of problem (1.1) within explicitly computable
bounds.

The search for bounds (resp. inclusions) for solutions of PDE and ODE problems has
a long history. In particular, methods based on monotonicity ideas and differential
inequalities have been extensively studied and applied to many examples. We will report
on these methods, particularly on L. Collatz’ and J. Schroder’s work, in Section 3.

However, there are drawbacks of the monotonicity methods with respect to application
to large classes of problems of the type (1.1): The monotonicity methods require all real
eigenvalues of the linearization L of the left-hand side of problem (1.1) (at some approx-
imate solution) to be positive. We will discuss the background and the consequences of
these restrictions in Section 2, in the frame of a general description of inclusion methods
via fixed-point formulations.

In Section 4, the author’s existence and inclusion method, which avoids all kinds of
monotonicity assumptions, will be presented. Its basis is closely related to the Newton-
Cantorovich Theorem. Due to the lack of sufficient differential inequalitites in non-
monotone situations, we propose to use normwise bounds for the terms entering the
fixed-point equation, in particular, for the inverse of the linearized operator L mentioned
above. For this purpose, we use bounds for eigenvalues of L or of L*L (which have to be
computed numerically), in combination with explicit Sobolev space imbeddings (which
have been determined by theoretical means).

Other existence and inclusion methods which are applicable to problem (1.1) and avoid
monotonicity assumptions, have been proposed by M. T. Nakao and by S. Oishi. Their
methods avoid the (direct) computation of bounds for the operator L™!. Instead, they
both have to deal with the inverse of some finite-dimensional projection of L, and bound
the infinite-dimensional "remainder” by other means. In Section 5, we will discuss
these methods, and try to make clear that this infinite-dimensional remainder causes
significant disadvantages.

For boundary value problems with ordinary differential equations (which are, as long
as they are scalar and of second order, of course contained in (1.1)), a large variety of
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existence and inclusion methods without monotonicity assumptions has been proposed.
Urabe [56] and Kedem {21} compute bounds for the Green function via initial value prob-
lems. Lehmann [26] uses differential operators with piecewise constant coefficients to
enclose the Green function. Kaucher and Miranker [20] simply invert the operator —u''
to obtain a fixed-point equation, which simplifies the numerics but implicitly requires a
very restrictive contraction property (see the discussion in Section 2). Lohner [27] ap-
plies shooting methods, treating initial value problems by interval-versions of one-step
methods based on local Taylor expansions. In [14], the given problem is transformed by
introduction of certain breakpoints (see also the short description in Section 3). This
approach by J. Schréder preserves the ideas of monotonicity methods, without however
requiring their restrictive assumptions.

The particular situation of ordinary differential equations seems to be obligatory for all
these methods (except for Kaucher’s approach, which however has other severe draw-
backs; see Section 2). Since the main emphasis of the present article is on elliptic
boundary value problems, we will not comment further on these methods here.

In Section 6, we give a brief description of the numerical procedures we used to compute
the terms needed for the practical application of our method; however, we will not
describe the computation of the eigenvalue bounds needed to estimate L~1, since such
methods are extensively described in the article [7] in the present volume. Section 7
contains some examples which illustrate our method.

In the appendix-section 8, we present the most important solvability and regularity re-
sults for linear elliptic boundary value problems needed throughout the article. In par-
ticular, we formulate Sobolev’s Imbedding Theorem (for bounded Lipschitz-domains),
which will be cited in many places of the article, without explicit reference to Section 8
or to other sources.

2. GENERAL CONCEPTS
2.1. Fixed-point formulation

The usual general way of proceeding in order to derive the desired existence and inclusion
statements is to transform problem (1.1) into some equivalent fixed-point equation

v€X, u=Tu, (2.1)
and to apply some fixed-point theorem. Under appropriate conditions on the space X
and the operator T : X — X (e. g., continuity, compactness), which usually have to be

verifled by theoretical means, the fixed-point theorem yields the existence of a solution u
of problem (2.1) (and thus, of problem (1.1)) in some suitable set U C X , provided that

TU C U. (2.2)
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The statement "u € U” constitutes the desired inclusion result. In order to compute
an explicit inclusion, one must therefore construct U ezplicitly. Moreover, U should
provide tight bounds, i. e., it should be “small in diameter” in an appropriate sense.
These requirements can usually be satisfied only by numerical means. For the numerical
verification of condition (2.2), one has to use interval-analysis on many levels between

basic interval arithmetic and functional analysis, as we will discuss in detail in later
sections.

The transformation of problem (1.1) into some fixed-point equation (2.1) can be carried
out in various ways. In the following, we will describe the most ”reasonable” transfor-
mations, which at the same time gives a brief overview of the most important existence
and inclusion methods for elliptic problems of the type considered here. To avoid an
overload of this brief description with too many technical details, we will not be very
precise with respect to spaces and norms in this (and in the next) subsection.

1) The simplest transformation is possibly the following: Provided that the ”Dirichlet-
part” T'o of 00 has positive measure in 99, so that the operator —A is invertible on
HE(Q), one may apply (—A)™! to the differential equation in (1.1) (regard Theorem A.2
of the Appendix) to obtain a fixed-point equation (2.1) with

Tu := (—A)"~F(-,u, Vu)], (2.3)

and with X D HP(Q) denoting some appropriate Banach space (for instance, X =
H, 5(2) for some suitable p, or X = C;(Q) in the case of an ODE problem (n = 1),

or X = C(Q) if n < 3 and F is independent of Vu; all these spaces will be discussed
later).

The choice (2.3) was proposed (in a slightly different, but equivalent formulation) by
Kaucher and Miranker [20] for the ODE case (n = 1), and in Nakao’s earlier papers [29]
for the elliptic PDE case.

In the next subsection, we will show that the choice (2.3) for the fixed-point formulation
is very restrictive in the sense that the condition (2.2), with a practically computable
set U, restricts the class of problems (1.1) which can be treated to a rather small one.

2) Instead of using the linear operator —A and its inverse to define T, one may use a
more general operator

Liu):=—Au+b-Vu + Eu, (2.4)

with suitable functions b € Loo(2)*, ¢ € Lp(2) (for some p > n, p > 2) such that L
is invertible on HP(). The differential equation in (1.1) may be rewritten as L[u] =
b-Vu+éu — F(-,u, Vu), and application of L~} (regard Theorem A.2 of the Appendix)
provides a fixed-point equation (2.1) with

Tu:=L7'b-Vu+ éu— F(-,u,Vu)), (2.5)

and with the same possibilities of choosing the space X as in 1).
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An important special choice in (24) is b=bé= ¢, L= L, where
bi=Fy(-,w,Vw), c¢:=Fy(,,w, Vw), Liu] := ~Au+b-Vu + cu, (2.6)

with w denoting some approzimate solution for problem (1.1) obtained, for instance,
from numerical (floating-point) computations. This choice provides that the lineariza-
tion of the operator T at w is zero, which has many pleasant consequences (see Section 4).

The choice (2.5), (2.6) was proposed in several of the author’s papers [33 - 37], and in
a recent paper by Oishi [32]. Oishi uses an interesting variant of the author’s method
which we will discuss in Section 5.

3) The oldest and most extensively studied method uses monotone operatorsT : X — X
in (2.1). These are operators satisfying

u<v=Tu<Tv forall u,velX, (2.7)

with ”<” denoting some suitable partial order relation in X. To explain the basic ideas
we assume, for simplicity of presentation, that the nonlinearity F in (1.1) depends only
linearly on Vu, i. e., that

F(z,y’z) = b(x)'z—i-ﬁ‘(x»y)v (28)
and that n < 3. Then, with L given by (2.4) and b := b, (2.5) takes the form
Tu:= L7 eu — F(-,u)], (2.9)

and ¢ is chosen such that T is monotone, with respect to the canonical order relation
usvie=u(z) <v(z) (z € Q) in X := C(Q), on some function interval

[vo, wo] := {u € X : vo(z) < u(z) < wo(z) (z € N)}.
This is achieved by choosing (a constant) & > 0, which provides that I is inverse-positive
on HZ(Q), i. e, _
Liu]>20=u >0 foralluec HF(Q) (2.10)

(see Corollary 3.2) and by requiring, moreover, that
" oF -
¢ > max %(z,y) :x €, vo(r) <y <wo(z)p,

which obviously yields the monotonicity of the mapping u ~ & — F(-,u) on [vo, wo)-
Since (2.10) implies the monotonicity of L1, T' given by (2.9) is therefore monotone on
['UO, wo] .

The monotonicity of T implies Tvy < Tu < Twy for all u € [vo, we] =: U, so that the
crucial condition (2.2) takes the simple form

vo < Tvo, Twe < wy. (2.11)
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Due to the monotonicity of L1, the inequalities L[vg] < L[T,], L{Twe) < L[wy) are
sufficient for (2.11), provided that vo,wo € HP(R). According to (2.9), (2.4) (with
b = b) and (2.8), these sufficient differential inequalities read

—Avo + F(-,vo,Vvo) S 0 S —Awo + F(',wo, V'on) (212)

The first who systematically investigated monotone operators with respect to applica-
tions to differential equations was L. Collatz [8]. J. Schréder continued and extended his
work [48 — 55]. Inequalities of the type (2.11) or (2.12) (together with vy < wg) played
a central role in their investigations; see Section 3 for more details. In Subsection 2.2,
we will also show that the "monotonicity method” has drawbacks, compared with the
choice (2.6) explained above, with respect to the class of problems it can be applied to.

4) Starting from some approximate solution w of problem (1.1), we can choose the
simplified Newton operator

Tu:=u— F'(w) ' F(u), (2.13)

with F(u) denoting the left-hand side of (1.1). The (Fréchet-) derivative F '(w) therefore
coincides with the operator L given by (2.6). Thus, (2.13) reads

Tu=u— L7 [~Au+ F(-,u, Vu)). (2.14)
Since —Au = L{u] — b+ Vu ~ cu, we obtain
Tu=L""b-Vu+ cu— F(-,u, Vu)],
i. e., T coincides with the operator given by (2.5), (2.6) proposed by the author.
In his recent papers (e. g., [30, 31]), M. T. Nakao uses a modification of this operator T',
in order to avoid the severe drawbacks of his earlier choice (2.3). Essentially, he replaces

L™ in (2.14) with the aid of some projection P onto some finite dimensional space §.
More precisely, he replaces L™! in (2.14) by

-1
{sI + [P(—A)‘IL’s] P} (—A), (2.15)
with € > 0 denoting some small number, so that T in (2.14) is replaced by
-1
Tu=u—{er+ [P-8)1) ] Phu+ A Fu vl (219

The term €I is needed to make T a condensing operator, a condition which is satisfied
if T is the sum of a contractive and a compact mapping, which allows the application
of Sadovskii’s Fixed-Point-Theorem.

If € is "small” and the finite dimensional space $ is "large” in an appropriate sense,
then the operator given by (2.15) is ”close” to L™, so that some pleasant properties
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of the operator 7T in (2.14) are preserved in (2.16). A more detailed comparison of this
new operator with the old choice (2.14) will be given in Section 5.

2.2. Construction of U, ?almost” necessary conditions

In this subsection, we will describe general concepts for the numerical construction of
some (closed, bounded) set U ¢ X satisfying (2.2). Besides the basic concept, our main
emphasis will here be on conditions which are an "almost” Decessary consequence of (2.2)
in the sense that they cannot be avoided in practical computations if U shall be "small
in diameter”. These ”almost” necessary conditions will provide a lot of information
about the quality of the different choices of the operator T' described in the previous
subsection. Sufficient conditions for (2.2) will be discussed in the following sections.

For many examples where monotone operators T can be constructed, it was shown
by Collatz (e. g., [8 - 10]), Schroder (e. g., [48 — 55]), Albrecht (e. g., [3, 4]), Walter
(e &, [57]) and others, that conditions (2.11) or (2.12) (which are equivalent to resp.
sufficient for (2.2) with U = [v0, wo]) can often be fulfilled by an ansatz for vy and w,.
In this way, verified enclosure results for many PDE problems and a vast variety of ODE
problems were obtained already several decades ago! Rounding errors were avoided by
calculation "by hand” in rational arithmetic, or they were neglected, which of course
violated the rigor of the results. However, this violation is not very severe since the
needed calculations are, in most cases, very stable.

In non-monotone situations, however, where conditions of the type (2.11) or (2.12) are
Dot available, it is difficult to construct a set U satisfying (2.2) by ansatz. Instead, it
has become a usual way of proceeding (not only for differential equation problems) to
start with an approzimate solution (approximate fixed-point) w, and then to transform
the fixed-point equation (2.1) into "midpoint-form”, which in our situation means to
introduce the operator 7" : X — X defined by

Tu := T(w+u)—w. (2.17)

Obviously, each fixed-point u of T provides w + u as a fixed-point of T, and vice versa.
Moreover, if one is interested in solutions of the given problem which are close to w
one now looks for fixed-points of 7' which are close to 0. Thus, one will try to construct
some ”small” (closed and bounded) neighborhood V ¢ X of 0 such that

TV cv, (2.18)

which is often much easier, from the mathematical and from the computational point
of view, than the direct construction of U satisfying (2.2). Oncea Vv satisfying (2.18)
has been found, (2.2) is fulfilled for U := V + w.

To construct V, we now assume that T is Fréchet-differentiable at w, and define

Y() = T(w+u) = Tw - T'(W)u] (u € X).
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Then, ~
Tu=(Tw - w) + T'(w)[u] + ¥(u) for u € X. (2.19)

Therefore, a sufficient condition for (2.18) is
(Tw —w)+ T (W) V] +9(V)C V. (2.20)

In general, (2.20) is not a necessary consequence of (2.18). However, it is "almost”
necessary if V' is ”small”, since ||4(u)|| = o(||u||) for v — O (this is just the definition
of the Fréchet-differentiability of T at w) and ¥(V) is therefore only a "very small”
perturbation of the "small” term (Tw—w)+T"(w)[V]. Moreover, it is almost unavoidable
in practice to compute a separate enclosure for the higher order terms ¥(V), i. e., to
verify, in reinforcement of (2.18), condition (2.20) or even a stronger condition containing
a practically computed enclosure W D (V) in place of (V) (for instance, a ball W
centered at 0):

(Tw—-w)+ T'(W[V]+W V. (2.21)

Such an enclosure W of (V') will usually satisfy

Oew, (2.22)

since 0 € V and $(0) = 0 which shows that (2.22) can only be avoided if rather special
properties of the higher order terms (V) can be exploited.

For the rest of this section, we will be concerned with consequences of the ”almost”
necessary conditions (2.21), (2.22). The sufficient condition (2.20) will be further inves-
tigated in the following sections, in particular in Section 4.

The following theorem was proved by S. M. Rump for matrices [46, Thm. 5, p. 38].
The proof can be carried over, without many changes, to bounded linear operators in
Banach spaces. However, some changes are necessary due to the lack of compactness
properties in our infinite dimensional situation.

Theorem 2.1. Let V be a closed, bounded, nonempty subset of the real Banach space X,

and let some W C X exist such that (2.21) and (2.22) hold. Then, all real eigenvalues
of T'(w) lie within (—1,1).

Remarks. a) In Rump’s original theorem, it is shown a fortiori that all complez eigen-
values lie within the open complex unit disc. The same result can be proved here,
based on the usual complex extension techniques for real Banach spaces and their linear
operators. We omit this stronger result here since we do not need it for later purposes.

b) If T"(w)[V] is compact (for instance, if X is finite-dimensional), the existence of some
W C X satisfying (2.21), (2.22) is equivalent to Rump’s original condition

(Tw-w)+ T'W)V]C V.
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Proof of Theorem 2.1. Let Y :=V —~V = {v; — vy : v1,v5 € V}. Then,
T'(WY|+WcCY (2.23)

since, for v1,v2 € V, y := v; — vy and w € W, (2.21) and (2.22) yield T'(w)[y] + w =
[(Tw - w) + T'(W)[v1] + w] = [(Tw ~ w) + T'(w)[v2] + 0] €V =V = Y.

Now let (A, u) € IR x X denote an eigenpair of 7'(w), and define
F'={yeR:vyueY)}.

I' is nonempty because 0 € T' (which holds since V is nonempty), and I’ is bounded
since v # 0 and V is bounded. Therefore, v* := sup[ is finite and nonnegative. Due
to (2.22), we can choose some 4 € T" and some ¢ > 0 such that

Al =) +eluew. (2.24)
Since yu € Y and T'(w)[yu] = Ayu, (2.24) and (2.23) imply
A" +eu=dyu+A[(y" - 1) +elueY.

The symmetry ¥ = Y therefore yields |\|(v* +¢)u € Y and thus, |A|(y* +¢) €T, so
that the definition of v* provides |A|(y* + ¢) < 4*. Consequently, [A] < 1. |

To derive further consequences of this theorem (resp., of (2.21), (2.22)), we now assume
more concretely that T is given in the form (2.5), with functions b € Loo(Q)%, & € L,(9)
(for some p > n, p > 2) such that L : HE () — Ly(Q) defined by (2.4) is one-to-one
(and thus, due to Theorem A.2 of the Appendix, also onto). Moreover, we assume that
the space X in (2.1) is_chosen such that HP(Q) C X (with continuous imbedding)
and that the operator F' defined by I:"(u) = F(-,u, Vu) is Fréchet-differentiable at w
as a mapping from X into Ly(Q), which is true for the spaces X in the corresponding
situations mentioned in 1) in Subsection 2.1. Then, T : X — X is Fréchet-differentiable
at w.

Investigating T of this form we cover all choices discussed in the previous subsection
except Nakao’s new choice (see 4) in Subsection 2.1) which will be analyzed separately
in Section 5.

Furthermore, let L : HZ(Q) — Ly(0) denote the linearization of the left-hand side of
the given problem at w € HP(Q), i. e., let L be given by (2.6). We assume that w is
such that b € Leo(Q)", ¢ € L,(R2) for some p > n, p > 2 (which is satisfied, for instance,
f w € Lo() and Vw € Loo(Q)™ and thus, for all usual finite element approximations
w). For A € [—1, 1], define

Lol : = (1= N)Lfu) + ALfu]

N (2.25)
= ~Au+[(1 = N)E+ b - Vi + [(1 — A\)é + Acu.
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Theorem 2.2. Let the assumptions of Theorem 2.1 hold, with T and X as described
above. Then,

a) Ly : HE () — L3(Q) is one-to-one for each A € [-1,1],

b) if L(a) is inverse-positive on HP(Q) for one A € [-1,1] (i. e., (2.10) holds for Ly,
with the canonical order relation u > v ;<= u(z) > v(z) for almost all z € Q), then
L») is inverse-positive on HP () for all X € [~1,1].

Proof. ad a): Let L(y)[u] = 0 for some A € [—1,1] and some u € HB(Q). Then,
Llu) = A[(5 - b) - Vu + (¢ — c)u].
Moreover, (2.5) and (2.6) provide
T'(w)lu] = L7(b = b) - Vu + (¢ — c)ul,
so that we obtain

u = AT"(w)[u]. (2.26)

Now suppose for contradiction that u # 0. Then, (2.26) shows that A # 0 and that A1
is an eigenvalue of T'(w). Thus, Theorem 2.1 provides |A] > 1 which contradicts our
assumption.

ad b): The proof of this part of the assertion is postponed to Section 3 (Theorem 3.3). m

Before discussing consequences of Theorem 2.1 with respect to the special choices of
L (resp., of b and &) described in the previous subsection, we formulate the following
theorem, the proof of which is again postponed to Section 3 (Theorem 3.4).

Theorem 2.3. For each ) € [-1,1], the inverse-positivity of L(xy on HP(Q) implies
that all its real eigenvalues are positive.

The following conclusions, which follow from Theorem 2.2 and are illuminated by The-
orem 2.3, constitute an important result of this subsection. The terms b,¢, L are given

by (2.6).

Conclusions:

i) For the choice (2.3) for T proposed by Kaucher and Miranker, and in Nakao’s earlier
papers, the "almost” necessary conditions (2.21), (2.22) imply:

Ly given by Ly[ul = —Au+ Ab- Vu + Acu

L . (2.27)
is inverse-positive on HP () for all A € [-1,1].



e s i

Sagigy syl

gt el T VR NP———

333

ii) For the "monotonicity” choice (2.9) proposed by Collatz, Schréder et al., with & as
described after (2.9), the "almost” necessary conditions (2.21), (2.22) imply:

L given by Lu] = —~Au+b-Vu+ cu (2.28)

is inverse-positive on HZ(Q).

iii) For the choice (2 4), (2.5), with b = b, & = ¢, L = L from (2.6), which was pro-
posed by the author, the ”almost” necessary conditions (2.21), (2.22) have no restrictive
consequernces.

Proof. Conclusions i) and ii) follow from Theorem 2.2 if we show that Lg) = L is inverse-
positive on H2(Q). For ii), this follows immediately from the choice ¢ > 0 implying
(2 10) (see Corollary 3.2). For i), where L = —A, it follows from Corollary 3.3.

In the situation considered in iii), we have T"(w) = 0 so that (2.21), (2.22) have no con-
sequences concerning T', without further conditions on V and W (such as the condition
$(V) C W, which makes these conditions sufficient for (2.18) and occurs, of course, for
all choices of T'). ]

In addition to conclusion ii), it should be noted that, for the choice (2.9), Theorem 2.2
does not imply more than (2.28) if vy and wo (see (2.11), (2.12)) are constructed such
that w € U = {vg, wo] (or equivalently, that 0 € V = U —w; compare the remarks before
and after (2.18)). This can be seen as follows. Since b = b here (see (2.8), (2.9)), (2.25)
shows that

Liyul = =Au+b-Vu+[(1 = Né+ Ac] = L{u] + (1 = A)(E - c)u

for A € [~1,1], and & — ¢ is nonnegative due to the condition required for & after (2.10).
Theorem 3.2 therefore implies that (2.28) is equivalent to the inverse-positivity of all
operators L(y) (A € [—1,1]) asserted in Theorem 2.2.

Condition (2.27), however, is much more restrictive than (2 28). It requires, for instance,
not only the negative part, but also the positive part of ¢ to be "not too large” (compare
Theorem 2.3), while large positive parts of ¢ are no problem for condition (2.28), and
are even pleasant for the monotonicity method.

Consequently, the class of problems (1.1) which can be treated by the choice (2 3) is
much smaller than the class of problems tractable by the monotonicity method.

However, also condition (2.28) is rather restrictive. Via Theorem 2.3, it requires all real
eigenvalues of L to be positive.

The choice (2.4), (2.5), with b = b and & = ¢ from (2.6), does not pose restrictions on the
sign of the (real) eigenvalues of L. It only requires all (real) eigenvalues to be nonzero,
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so that L is one-to-one. To show that this choice is in fact very powerful we consider
the following example resulting from semiconductor physics:

—u" —(u-sinz) + M’ +u—-1)=0 (0<z<2r), «(0)=u'(2r)=0. (2.29)

The following bifurcation diagram of approximate solutions w was obtained by a
Newton-collocation procedure. An additional branch is formed by the vertical line
at A = 0 where u(z) := pexp(cos z) is a solution for each p € IR.

On the branches (which were plotted after interpolating a computed ”grid” of approx-
imate solutions), we noted the respective number of negative eigenvalues of the oper-
ator L. Only two branches show a ”0”; so only on these two branches all eigerivalues
of L are positive, as required by condition (2.28) for the ”monotonicity” method.

The author’s choice (2.4), (2.5), with b = b and & = ¢ from (2.6) (with all details
explained in Sections 4 and 6), was successful on all branches, except in immediate

neighborhoods of the turning- and bifurcation points, where one eigenvalue of L is zero
so that L is not one-to-one.
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Figure 1: Bifurcation diagram for problem (2.29)



335

3. MONOTONICITY METHODS

In this section, we report on methods using certain inequalities in function spaces
(operator inequalities) as sufficient conditions for inclusion results for problems of the
form (1.1). Problems which allow application of such methods were entitled ?problems
of monotone kind” (” Aufgaben monotoner Art”) by L. Collatz (see [8]). For differential
equation problems, sufficient inequalities of the required form are typically differential
inequalities (compare (2.12)).

For simplicity of presentation, we assume here, as partly in the previous section, that
the nonlinearity F in (1.1) depends only linearly on Vu, i. e., that

F(z,y,2) = b(z) - z + F(z,y). (3.1)

3.1. A brief survey

From the author’s point of view, the most significant and extensive research work in
the field of monotonicity methods and their application to boundary value problems
has been done by L. Collatz and especially by J. Schroder (see the descriptions below).
Since the corresponding theory is closely related to the maximum principle, important
contributions to the subject have also been made by Hopf [17], and by Protter and
Weinberger [42]. A lot of guiding work in the field of differential inequalities has been
done by W. Walter [57], also together with R. Redheffer [43, 44]. Albrecht [3, 4] in
particular investigated iterative procedures based on monotonicity methods. For a much
more detailed discussion of the related literature, see [53].

In his famous paper [8], Collatz presented the first systematic formulation of ” problems
of monotone kind”. These are problems of the form

My =r, u € D, (3.2)

where D C R and r € S, with R and S denoting two ordered linear spaces, and
M : D — S is a (possibly nonlinear) operator satisfying

(Mu £ Mv = u < v) for all u,v € D. (38.3)

Such operators M were entitled "operators of monotone kind” by Collatz. Later,
Schroder called them ”inverse-monotone operators” which is perhaps more appropri-

ate since (3.3) obviously means that the inverse operator M~ : M (D) — R exists and
is monotone.

For problems (3.2) of monotone kind, a very simple inclusion method is at hand: Suppose
that elements vg, wo € D have been found such that

MUO S r S Mwo. (34)
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Then, (3.3) immediately shows that the solution u of problem (3.2) satisfies
vo < u < Wo, (35)
provided that this solution exists in D. The existence problem is not addressed in 8]

Collatz applies this general result, in particular, to problem (1.1), with F from (3.1),
with Mu denoting the left-hand side of (1.1), » = 0, and with

R:= {u €C{)NC(): % exists on Fl} , (3.6)
§$:=C(), D:={ueR: (z,u(z)) € K forz €, Bju]=0on o0y,

where K C Q x IR is a set which is convex with respect to its last variable, and which
contains the graph of the solution. The order relations in R and § are chosen canonically,
i. e.,

uSvi=>u(r)<v(z) forallzel (3.7

He proves that this problem is of monotone kind if

%g(z,y) 20 for (z,y) € K, (3.8)

essentially by showing (with the aid of the strong maximum principle) that, for non-
negative functions &, the operator [ given by

Llu]:= —Au+b- Vu + &u, (3.9)

is inverse-positive on R® := {u € R : B[u] = 0 on 00}, i. e., that (2.10) holds with the
"classical” function space R? in place of HE(Q).

In order to combine the enclosure result (8.5) with an ezistence statement, Collatz
proposes to write the given problem (if possible) as a fixed point equation (2.1) with
a monotone operator T (i. e., an operator satisfying (2.7)), and to apply Schauder’s
Fixed-Point Theorem (see, e. g., [10, Chapter II1]). In Subsection 2.1, we showed how

such a transformation may be carried out. Observe that the conditions (2.12) obtained
there coincide with (3.4)!

Of course, the application of Schauder’s Fixed-Point Theorem requires a precise setting
of spaces and a detailed analysis of mapping properties. In particular, one needs a
solvability and regularity theory for linear elliptic boundary value problems, in order
to deal with inverses of linear differential operators, such as =1 in (2.9). Thus, the
use of Sobolev spaces and/or Hélder spaces is at least very helpful, if not mandatory.
Collatz did not carry out these details in a systematic way. He restricted himself — as
far as elliptic boundary value problems are concerned — to more general remarks on the
application of Schauder’s Fixed-Point Theorem, and put his main research emphasis on
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applications of the inclusion result (3.4) = (3.5) to a large variety of (monotone-kind-)
problems taken from science and technology.

J. Schréder extended and generalized Collatz’ work into many directions. In particular,
he systematized many aspects of “monotonicity”: On one hand, he introduced abstract
functional analytical and operator theoretical settings, in order to point out the main
structures and to recognize further possible applications; on the other hand, he always
aimed at methods inducing automatic, computer-implementable procedures for various
classes of problems. Here, we give only a brief description of some selected results.

In [48] already, he proposes inclusion methods (for differential equation problems) which
are based on the computation of an approximate solution w and the investigation of the
equation for the error u — w; this equation involves the defect of w. Today, such a way
of proceeding has become usual in almost all existing inclusion methods (not only for
differential equation problems).

Schroder treats the error equation by differential inequalities, in order to obtain error
bounds (and thus, inclusions for the exact solution). Using such inequalities he presents,
in [50], an "automatic” procedure for computing inclusions for solutions of scalar initial
value problems with ordinary differential equations. Of course, rounding errors could not
be regarded automatically since the corresponding computer facilities were not available
30 years ago. In [28], Marcowitz carries Schréder’s method and procedure over to initial
value problems with systems of equations.

Later, Schréder put his main emphasis on boundary value problems. [51] contains a
programmed procedure for inclusions of the type (3.4) = (3.5) for weakly nonlinear
second-order elliptic boundary value problems of monotone kind. (14, 54] contain a
programmed algorithm producing inclusion and ezistence results for scalar nonlinear
second-order two-point boundary value problems which need not be of monotone kind.
To obtain such results, certain breakpoints &1,...,&m are introduced within the interval
of definition such that, very roughly speaking, the problem is of monotone kind on each
subinterval between two consecutive breakpoints. In this way, a coupled system of dif-
ferential inequalities on the subintervals and additional inequalities in the breakpoints is
obtained which is suitable for numerical solution and provides the desired existence and
inclusion result. Related work is also due to Kiipper [22] and to Adams and Spreuer [1].
However, no practicable generalization of the breakpoint approach to elliptic problems,
which are the main topic of the present article, has been found yet. For this reason, we
will not discuss the breakpoint method in more detail here.

Concerning Schréder’s various theoretical results (which, however, were always in inter-
action with applications), such as his general concepts of inverse-positive and inverse-
monotone operators and his useful ”Monotonicity Theorem”, we refer to his book [53]
which also contains a lot of references to related work. In this book, he applies his
theory of monotonicity to ordinary but not to partial differential equation problems.
However, the presented operator theoretical concepts are suited for ordinary as well as
for parabolic and elliptic problems (of monotone kind), which unfortunately has not
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been widely recognized, but which is shown in detail in [55]. Of course, one major
difference between ODE and PDE problems occurs when the inclusion results shall
be combined with ezistence statements, since the needed existence theories for linear
problems are much more complicated in the PDE case.

Schréder proposes the method of the "modified problem” to obtain such existence and
inclusion results for various kinds of differential equation problems. For elliptic bound-
ary value problems, the method is presented, e. g., in [52, 55]. Here, we give a brief
description of its application to problem (1.1) (with F from (3.1)) which is slightly more
general than Schrdder’s original and allows weaker assumptions on the smoothness of
the data of the problem.

Let R C C(f) denote some function space and let vy, wy € R satisfying vg < wp (in the
pointwise sense) be given. For u € R, define the cutoff function u# € C(Q) by

u#(z) = sup{vo(z), inf{u(z),wo(z)}} (z € Q),

and consider, for some arbitrarily chosen (constant) & > 0, the modified problem

(3.10)

~Au+b-Vu + éu = au? —-F‘(-,u#) on §)
Blu]=0 on dQ

Theorem 3.1. Suppose that

a) the modified problem has a solution u € R,
b) each solution u € R of the modified problem satisfies vy < u < wy.

Then, problem (1.1) (with F from (3.1)) has a solution u € R satisfying vy < u < wy.
Proof. The solution u € R of problem (3.10) provided by assumption a) satisfies vy <

u < wy according to assumption b), so that u = u# and u is therefore a solution of
problem (1.1). ]

In order to verify the assumptions a) and b) of Theorem 3.1, Schroder assumes the
boundary conditions to be of pure Dirichlet type (i. e., B[u] = u on %), and chooses

R:=C(Q)NC(Q) (3.11)

(or more precisely, R := {u € C(Q): u|Q € C3(2)}). Moreover, he makes the following
smoothness assumptions for some a € (0,1):

(51) 8 is a global Cy4 o-manifold
(52) be Cal), F(,u) € Cof) for each u € Cu(Q)
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(S3) vo,wg € Co(Q)

Lemma 3.1. With R from (3.11), and under the assumptions (S1) to (S3), assump-
tion a) of Theorem 3.1 holds true.

Proof (see [52, 55]). Let p > n, p > 2 be fixed. The linear operator L occurring on the
left-hand side of (3.10) is invertible on H, ,(2)N H? ,(Q) since & > 0 (see Corollary 3.2).
Due to known existence results for linear elliptic boundary value problems (see, e. g.,[12,
13, 24]), the inverse operator L= : L,(Q) — H; 5(Q) exists (on the whole of L,(Q2))
and is bounded. Moreover, the mapping ¢ : C(Q) — C(Q), ¢(u) = au# — F(-,u#)
is continuous, and the image set cp(C(Q)) is bounded. Finally, the imbedding E; :
C(2) — Ly(R) is bounded, and the imbedding E; : Hz ,(2) — C(£) is compact due to
Sobolev’s Imbedding Theorem. Consequently, T := E; 0 L™ 0 Ej 0 ¢ : C(Q) — C(Q)
is continuous, and the image set TC(Q) is relatively compact. Thus, according to
Schauder’s Fixed-Point Theorem, T has a fixed-point u € C(Q).

The fixed-point equation implies u € Hj (1), so that Sobolev’s Imbedding Theorem
provides u € Co({2). Using (S3) we obtain u# € C,(£2) and thus, ¢(u) € Co(Q) due to
(52). Together with (S1) and ($2), known regularity results (see, e. g., [13, 24)) imply
L7'¢(u) € Caya(f). Since u = L™1p(u), we obtain in particular that u € R and that
(3.10) holds for w. |

Lemma 3.2. With R from (3.11), assumption b) of Theorem 3.1 holds true tfvg,wp € R
and if the following inequalities are satisfied (compare (2.12), (3.4)):

—Avg + b Vg 4 F(-,09) <0 < —Awg + b - Vawg + F(-,wo) on Q, (3.12)
ve <0< wy on IN. ’

Proof (see [52, 55]). Let u € R denote a solution of problem (3.10) and assume that
u & wo. Then, u < wy + A for some A > 0 which may be assumed to be chosen
minimal. Thus, for uy := wo + A — u, we have uy > 0, ux(Z) = 0 for some Z € §, and
moreover, ux(z) > A > 0 for z € 8. Consequently, Z € Q, and therefore, (Vuy)(z) = 0
and (Au)(Z) > 0 which implies f}[u)\](i) < 0, with L again denoting the differential
operator occurring on the left-hand side of (3.10). On the other hand, u(Z) = wo(Z)+ A
and thus, u#(Z) = wo(Z), so that (3.10) and (3.12) imply Llwo](Z) > L[u](Z) which
provides f/[u Al(Z) > A& > 0. Due to this contradiction, we have u < wy. The inequality
vy < u follows analogously. |

The strong smoothness assumptions (S1), (§2), and the assumption that the boundary
condition is of pure Dirichlet type, are not quite satisfactory. In particular, assumption
(81) excludes all domains § with corners, such as rectangles. The necessity of those
assumptions in Schroder’s approach is generated by the ”classical” choice (3.11) for the
space R which makes it necessary to prove the existence of a classical solution u of
problem (3.10). This is achieved by application of the result I—! (Calf)) C Ca4a()
(requiring (S1), (S2)) in the proof of Lemma 3.1.
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Instead of (3.11) we propose, in the case n < 3, the choice
R := Hy(Q). (3.13)

Now, assumption a) of Theorem 3.1 can be verified under much weaker assumptions,
which do in fact not exceed our general assumptions made in the introduction.

Lemma 3.3. With R from (8.138), assumption a) of Theorem 8.1 holds true.

Proof. Let L and ¢ as in the proof of Lemma 3.1. Due to Theorem A.2 of the appendix
and to the Open Mapping Theorem, L= : Ly(Q) — HB(Q) (C H,(R)) exists and is
bounded, with HP(Q) defined in the introduction. Since the imbedding E; : C(Q) —
L>(2) is bounded, and the imbedding E : Hz(Q) — C({) is compact due to Sobolev’s
Imbedding Theorem (regard that now n < 3), we can conclude as in the proof of
Lemma 3.1 that the operator T defined there has a fixed-point u € C(Q). The fixed-

point equation provides u € HP(Q) C R, and that u is a solution of problem (3.10).
[ ]

While assumption a) of Theorem 3.1 can be proved, with R from (3.13), under weaker
assumptions than before, the verification of assumption b) is now harder. In fact, the
proof of Lemma 3.2 cannot be carried over to the present situation since the inequal-
ities for the single value 1~L[u A](Z) used there do not make sense for H,-functions u A
Nevertheless, the statement of Lemma 3.2 remains true:

Lemma 3.4. With R from ($.18), assumption b) of Theorem $.1 holds true ifvg,wp € R
and if

~Avg+b-Vuyy + F(~,vo) <0< —-Awy+b-Vwy + F(-,wo) a. e on Q, (3.14)
Blvo] <0 < Blwg] a. e. on 99, '

where “a. e.” means "almost everywhere” with respect to the canonical measures on
and on 0Q, respectively.

The proof of this Lemma is postponed to the next subsection (Corollary 3.1).

We wish to remark that the improvement obtained by the choice (3.13) only affects the
smoothness assumptions on the problem data. The disadvantages of the monotonicity
method concerning the required inverse-positivity of the linearized operator L, which
we discussed and illustrated at the end of Section 2, remain unchanged! (In fact, the
setting used in Section 2 was already based on the choice (3.13).)

3.2. Inverse-positivity on H,(Q)

In this subsection, we develop a brief theory of inverse-positivity on the Sobolev space
H>(Q). In the context of the present article, this is mainly to fill some gaps left in



e

I R N e 2 IV

et gl el g el

el

341

Subsections 2.2 and 3.1. However, we believe that the results are also of interest in
their own. A restriction on the dimension 7 is not needed here.

We wish to remark that many of the main ideas used here are already contained in
Schréder’s work (see, for instance, [53, Chapter III, Section 3]) but have never been
carried out in a way which is needed in our context.

Throughout this subsection, let L denote an operator of the form
Llu] = —Au+b-Vu + cu,

with given coefficient functions b € Loo(2)", ¢ € Ly(R2) (for some p > n, p > 2), which
here may be seen free of the definition (2.6).

We say that the pair (L, B) is inverse-positive on Hy(Q) if, for each u € Ha(Q2), the
following implication holds:

Liu]>0 a.e.on

= u>0 a. e onf
Blu]>0 a.e.on@Q} “=9 aeon

where again ”a. e.” means ”almost everywhere” with respect to the canonical measures
on ) and on 99, respectively, and the expression B [u] is to be understood in the trace
sense. Moreover, we say that L is inverse-positiwe on HP(Q) if, for each u € HE(Q),

Liu]>0 a.e.onQ=u>0 a. e.on (,
i.e., (2.10) holds for L. Since Blu]=0a.e.on 8 foru e HE(Q), we have the following

Lemma 3.5. If (L, B) 13 wnverse-positive on H>(Q), then L 13 inverse-positive on
HP(Q).

In the following, we will omit the expressions “a. e. on Q” and "a. e. on 99" if no
misinterpretation of the corresponding inequalities is possible.

The following lemma constitutes the basis of all results in this subsection.

Lemma 3.6. Let § > 0. Then, there exsts a constant C =C(p) such that, for all
functions b € Ly, (Q)", & € Ly(Q) (for some fized p > n) satisfying 18112, + lléll, < 8,
the following vmplication holds for each u € Hy(Q):

Blu] >0, u}0= {ze%sigl)f@} Liu) < Cllu™ |1,

where i[ul = —Au+B-Vu+Eu, u” :=max{0,—u} (% e., u” := —u on the measurable
set {z € Q:u(z) < 0}, and u= := 0 on the complement), and u } 0 means that the
statement "u > 0 a. e. on Q7 does not hold.
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To prove Lemma 3.6 we first need

Lemma 3.7. Let ¢ € (1,00) if n € {1,2}, and q € (1, :T"Z) if n > 3. Then, for each
6 >0, there ezists a constant Cy = C1(6) > 0 such that, for each u € Hyi(Q),

l[ullg < 8IVullz + Cillulla.

Proof. Let r := max{q,2}, and choose s € (r,00) if n € {1,2}, s € (r, E%) if n>3.

Due to Sobolev’s Imbedding Theorem, there exists a constant Cy > 0 such that, for
each u € H,(Q),

1
llulls < € [IIVull; + llullz]* < G2 [IIVull2 + lulle]

2! (3.15)
< Co||Vu||z + C2 meas(Q) 77 ||yl

Furthermore, Holder’s inequality provides, with A := (r~! — s~1)/(1 — s™1),
llle < Hlull;ull? (u € Lo(@)).

Using here, for some arbitrary ¢ > 0, the inequality

Ly vbv
ab§6%+5_F7 (a,b>0; p,v € (1,00), ﬂ_l_i_y—l:].)

k

we obtain

lull < e(1 = Vlfulls +e 5+ Mjully (u € (@)
Using here (3.15) on the right-hand side we obtain, for u € H,(Q),

[1 —e(1=X)C, meas(n)%—%] lullr < e(1 = N)Ca||Vullz + e~ 31 Ajulfx.

Since |lully < meas(Q)'lq'_%”u“r the assertion follows if ¢ is chosen sufficiently small,
depending on the given § > 0. ]

Proof of Lemma 3.6. ¢ := 2p/(p — 1) satisfies the assumptions of Lemma 3.7, so that
this Lemma provides some constant C; > 0 such that

1
flully < m”vu”z + Cillulls  for w e H (). ' (3.16)

Choose C := 28C%, and let b, satisfying %||Z|]§p + |&llp < B and u € Hy(Q) satisfying
Blu] > 0, u 2 0 be given. We define n := u~ and obtain from [13, Lemma 7.6] that
n € Hy(Q) and

(Vn)(z) = —(Vu)z) if u(z) <0, (V) z)=0 ifu(z)>0.
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Therefore, by partial integration,

/i[u]-ndz:—/g—:-nda—/]an2dx—/[(5~V17)7)+6172]dz.
Q 59 Q Q

Due to the assumption Blu] > 0, the boundary integral is nonnegative since = u~
vanishes on I'y and both 7 and du/dv are nonnegative on T';. Furthermore, |(5- Vinnl <
BlIValinl < 219n]2 + 13292, Consequently,

/i[u] ‘ndx < —%/Ianz dz +/ [%IZIZ + IEIJ 7’ dz. (3.17)
Q Q Q

Hélder’s inequality and (3.16) provide

L PR Y P
[aeesfres ] funa]

Q

e o]

Q

< Bl < 26 [ iwnlg + CEinlE| = 21l + o,

so that we obtain with (3.17):

[ Eed-nda < .
Q

On the other hand,

/ Eu)-de = / Il e > cos inf_ Eful- Il
Q {z€9 u(z)<0}

which provides the assertion since u # 0 and thus, mllx #o0. ]
Corollary 3.1. The assertion of Lemma 3.4 holds trye.

Proof. Let u ¢ H(Q2) denote a solution of problem (3.10). To prove that v < w, we
define, for \ > 0,

ux = wp + A —u,

and apply Lemma 3.6 to ux, with b := b and & from (3.10). For all z € such that
ux(z) < 0, we have u(z) > wo(z) + A and thus, u#(z) = wo(z). Consequently, (3.10)
and (3.14) provide, for these z,

L{ua)(z) = Lfwo)(z) + ¢ — Llu)(z) > Aé.
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Since Blu] > Blwo] — Blu] > 0 due to (3.10) and (3.14), Lemma 3.6 yields, for each
A > 0 such that uy 20,

A6 < Clluz . (3.18)
Since 0 < u; < (wo —u)~ and & > 0, (3.18) cannot hold for all A > 0. Consequently,

wx 2 0 for some A > 0. Let A* denote the infimum of these A. Using elementary measure
theory we obtain ux« > 0.

Assume that A* > 0. Since uy # 0 for A € (0, A*) and, for these A, u} = max{0, —ux} =
max{0, —uxs + (A* — A)} < A* — ), we obtain from (3.18) that

Aé < C -meas(2) - (A" = A) for A € (0,\")

which provides a contradiction for A sufficiently close to A*. Consequently, A* = 0 and
thus, wg —u = ug > 0. The inequality vy < u follows analogously. |

The following theorem characterizes inverse-positive operators (L, B) on H2(2) in the
same way which is proposed by Schréder for ”classical” function spaces.

Theorem 3.2. (L, B) is inverse-positive on Hy(Q) if and only if there exists some
z € Hy(Q) satisfying z > 0, Blz] > 0, essﬂinfL[z] > 0.

Proof. If (L, B) is inverse-positive on H2(2), L is invertible on HZ(Q). Due to The-
orem A.2 of the appendix, the problem z € HE(Q), L[z] = 1 on , has therefore
a solution. The inverse-positivity of (L, B) yields z > 0, so that z has all required
properties.

Now let z with these properties be given, as well as some u € Hy(Q) satisfying L{u] > 0,
Blu] > 0. Let ¢ := essﬂinfL[z].

Since, for all A > 0, Blu+Az] > 0 and L[u+ \z] > \e, Lemma 3.6 provides, with L := L
and with uy :=u + Az in place of u,

Ae < C- luzlh (3.19)
for all A > 0 such that uy %2 0.

The assumption z > 0 provides (v + Az)~ < u~ for A > 0, so that (3.19) cannot
hold for all A > 0. The assertion u = uy > 0 now follows analogously to the proof of
Corollary 3.1. ]

Corollary 3.2. Let essﬂinfc > 0. Then, (L, B) is inverse-positive on Hy(§2).

Proof. Apply Theorem 3.2 with z = 1. ]
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The following theorem is concerned with connected sets of inverse-positive operators
which were also considered by Schréder (see, e. g-[53]). We remark that this theorem
also provides the proof of Theorem 2.2 b) which was postponed to this section.

Theorem 3.3. For \ within some real interval I, let by € Lo ()", ¢y € L,(9) for
somep>n, p>2. Suppose that b and ¢ depend continuously on \, with respect to
the norms || - ||oo and Il lls, respectively. For X ¢ I, define

Liylu] := —~Au+ by -V + cu.

Suppose that L(») i3 invertible on HE(Q) for all ) € I, and that (L(xy, B) is inverse-
positive on Hy(Q) for at least one A€l Then (L(ry, B) s inverse-positive on H,(Q)
Jorall eI,

Proof. Due to the invertibility of the operators Lyy on HE(Q) and to Theorem A.2 of
the appendix, the problems

zx € HE (), Liylzal=1 on (3.20)

have solutions for all ) € I, and the Open Mapping Theorem provides the boundedness
of the operators L(_Al) According to Theorem 3.2, it suffices to show that zx 2 0 for all
A € I'in order to prove the assertion. Define

={reTl:zy >0}

Since, due to our assumption, (L ), B) is inverse-positive on H,(Q) for at least one
Ael, Ais nonempty. Consequently, it suffices to prove that A C I is closed and open
(with respect to the relative topology) in order to obtain the assertion A = I.

First we show that z, depends continuously on A € I, with respect to the norm || - ||,
in Hy(Q). (In fact, the norm Il s would be sufficient). Thus, let Ay € I be fixed, and
let ) := 1ba, — balloo + llea, — el for A e I (3.20) yields

A~ zy, = LC\I‘)) [(bx, — by)-Vzy + (erg — €x)za]

for A € 1, so that we obtain from the boundedness of L(_)‘lo) : L2(Q2) - Hy(Q) and from
Sobolev’s Imbedding Theorem with 7:=2p/(p~2) (=0 if p= 2),

llex = 230 llg, < C li(brg = 83) - V2p + (exo = ex)zall,
<O [llbrs = bl 1923l + fleny — el lzall,]
< Cey leall gy, < Cen llaller, < Cen [flza, e, + ll2x = 22,11, ]

which provides the desired continuous dependence since ¢ A= 0for A — ).

To prove that A is closed in I let (,) denote some sequence in A converging to some
A€ I. Since 2y, = 2x in Hy(R), there exists a subsequence (2,,) converging to z)
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almost everywhere in Q. Therefore, since 2y, (z) > 0 for all j € IN and almost all z € Q,
it follows that z)(z) > 0 for almost all z € Q, i. e., X € A.

To show that A is open in I let Ao € A be given. Since ||bxl2, and ||ca]l, depend
continuously on A, we can choose some neighborhood U of Ag in I and some 8 > 0 such
that 3[1Ball3, + lleall, < B for XA € U. Let C = C(f) denote the constant provided by
Lemma 3.6, and choose § > 0 such that

1
lzx = 2,0, < =

e for Ae U, [A— Aol <8 (3.21)

which is possible since [|ully < \/meas(Q) - ||u||, for u € Hz(Q). Now assume for
contradiction that zx Z 0 for some A € U satisfying |A — Ag| < 6. Then, (3.20) and
Lemma 3.6 imply 1 < C - ||z} ||1, so that (3.21) provides

llza = 23l < llzxlla- (3.22)
On the other hand, z, > 0 since Ag € A, and therefore,
0 < z3 = max{0,—zx} < max{0,zx, — 22} < |22, — 2a
which contradicts (3.22). ]

Corollary 3.3. Let ¢ > 0, and suppose that L is invertible on HB(Q). Then, (L,B) is
inverse-positive on Hy(Q).

Proof. Let by :=b, cx := c+Afor A € I :=[0,1], and define L, as in Theorem 3.3. Due
to Corollary 3.2, (L(a), B) is inverse-positive on Hy(Q) for any A € (0,1]. In particular,
Ly is invertible on HE(Q) for all A € (0,1]. Due to our assumption, this is also true
for A = 0. Thus, Theorem 3.3 provides the assertion. ]

Theorem 3.4. If (L, B) is inverse-positive on H,(Q), then all real eigenvalues of L on
HE(Q) are positive. If essﬂinfc > —o0, the converse 1s also true.

Proof. If (L, B) is inverse-positive on Hz(f2), Theorem 3.2 provides some z € H,(Q2)
satisfying z > 0, B[z] > 0, essginf L[z] > 0. Consequently, ess ninf(L — AD)[z] > 0 for all
A £ 0, so that Theorem 3.2 yields the inverse-positivity of (L — M, B) on H3() for

A <£0. In particular, L — I is invertible on HE(Q) for A <0, so that no non-positive
eigenvalue of L on HP(Q) exists.

Now suppose that essninf ¢ > —oo, and that all real eigenvalues of L on HZ(Q) are

positive. Let by := b, ¢y := c—Afor A € I := (—00,0], and define L, as in Theorem 3.3,
i. e, Ly = L~ AL Due to our assumption, Ly is invertible on HE(Q) for all
A € I. Moreover, (L), B) is inverse-positive for A < essﬂinf ¢ due to Corollary 3.2.
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Theorem 3.3 therefore provides the inverse-positivity of (L(xy, B) on Hy(2) for all A € I.
In particular, (L(oy, B) =(L,B) is inverse-positive on Hz(Q). ]

Theorem 3.5. Let some z ¢ Hy(Q) be grwen such that essﬂinfz > 0, and B[z] > 0.
Then, all real eygenvalues \ of L on HE(Q) satisfy

A Zessinf{E[—zl}.
Q z

Proof. Let v := essninf{L[z]/z}, so that L[z] —vz > 0. For 4 < v, we have Liz] -
pz =Lzl —vz+ (v - p)z > (v - #)z and thus, essninf(L[z] — pz) > 0. According to
Theorem 3.2, (L — ulI, B) is therefore inverse-positive on H,(2). Thus, Theorem 3.4
yields the positivity of all real eigenvalues of L — uI on HP (Q). Consequently, A > p

for all real eigenvalues ) of L on HE(Q). Since this is true for all 4 < v, the assertion
A 2 v follows. ]

Corollary 3.4. All real ergenvalues A of L on HP(Q) satrsfy

A > essinfe
Q
Proof. Apply Theorem 3.5 with z = 1. ]

4. "NON-MONOTONE” PROBLEMS

The "monotonicity” methods discussed in the previous section have proved, in a vast
variety of examples, to be a very powerful tool for computing enclosures for various types
of problems. The reason for their efficiency can be seen in the fact that, in monotone
situations, the set inclusion (2.2) is equivalent to two single inequalities (2.11), which
in turn are implied by differential inequalities (see (2.12), (3.4), (3.12), (3.14)).

However, as explained and illustrated at the end of Section 2, the applicability of mono-
tonicity methods to problem (1.1) is severely restricted by the ”almost” necessary con-
dition (2.28) that the operator L : HE(Q) — Ly(Q) given by

Llu] ;== —Au+b-Vu+cu,

(4.1)
b:=F.(,w,Vw), ¢:= Fy(w,Vw),

with w € HP(Q) denoting some approximate solution, shall be mverse-positive on
HE(Q), which requires, e.g., all its real eigenvalues to be positive.

For ODE boundary value problems, this restrictive requirement can be avoided under
preservation of the monotonicity ideas (see [14, 54], and the short description in Subsec-
tion 3.1). However, there seems to be no realistic possibility of carrying this approach
over to elliptic boundary value problems, so that new ideas are required here.
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4.1. The basic existence and inclusion theorem

We propose to use the fixed-point operator
Tu:=L7'b- Vu+ cu— F(-,u,Vu)], (4.2)

with L from (4.1),which we assume to be invertible on HF(Q); the invertibility will be
checked numerically (see Subsection 4.3.2). As discussed in Subsection 2.2, the "almost”
necessary conditions derived there have no restrictive consequences for the choice of T
in (4.2). T coincides with the simplified Newton operator (2.13), so that the basis of
our approach is closely related to the Newton-Cantorovich Theorem. In order to be
able to use the inverse operator L™ : L(Q) — HP(Q) in (4.2), we have to make sure,
according to Theorem A.2 of the appendix, that b € Loo(Q)" and c € L,(R2) for some
p > n, p > 2. For this purpose, it suffices to require that

Vw € Loo(Q)" (4.3)

which implies, after (repeated) application of Sobolev’s Imbedding Theorem, that
w € C(Q), so that the continuity of F, and F, provides the boundedness of b and
¢. Condition (4.3) on the approximate solution w is not very restrictive; it is satisfied
for almost all "usual” approximations (obtained, e.g., from conformal finite element
methods).

We now suppose that, for some Banach space X D HE(Q),

X - LyQ) . .
(X1) @ : {u o b Vutou— F(u,Vu) [ continuous, bounded on bounded

sets, and Fréchet-differentiable at w with ®'(w) =0
(X2) the imbedding H2(Q) — X is compact.

Together with the fact that L™! : Ly(Q) — HP(Q) is bounded (which follows from
Theorem A.2 of the appendix and the Open Mapping Theorem), we obtain that T :
X — X given by (4.2) is continuous, compact, and Fréchet-differentiable at w with
T'(w)=0. If TU C U for some closed, bounded, convex set U ¢ X , Schauder’s Fixed-
Point Theorem provides the existence of some fixed-point u € U of T, which is then a
solution of problem (1.1) due to (4.1) and (4.2).

In Subsection 2.2, it was shown that a sufficient condition for the inclusion TU C U is
given by (2.20), with V = U — w. Since T'(w) = 0, this condition now reads

L [=dio] + (V)] € V (4.4)
where

dw] := —Aw + F(-,w, Vw), (4.5)
e(v) =~ [F(",w + v,V + Vv) — F(-,w, Vw) — b- Vv — cv)] (4.6)
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The major problem now is to construct some (closed, bounded, convex) set V satisfying
(4.4) explicitly. No sufficient differential inequalities which provide a ”small” enclo-
sure set V' exist unless L is inverse-positive on HE(Q) (see Section 2), and an explicit
computation or a detailed enclosure of L~! is impossible unless Q, 5, and ¢ are very
”simple”.

We propose to bound the terms L™, dw], p(V) (entering (4.4)) normuwise. Suppose that
constants K > 0,6 > 0, and a monotonically nondecreasing function G : [0,00) — [0, 00)
can be computed such that

Il x < K||rllz for all r € Ly(Q), (4.7)
lldfw]ll2 < 6, (4.8)
lle(llz < Gllvllx)  for all v € X, (4.9)
. 3
where [lull; := m / u?dz| here and for the rest of this section. Since

Q
ez = o(||v]|x) for |jv]lx — 0 due to the assumption ®'(w) = 0 in (X1), we may
assume that G has been constructed such that

G(t) =o(t) fort— 0. (4.10)

We wish to remark that the concept of such a majorizing function G has first been
introduced by Schréder (see, e.g. (49)).

We specify V in (4.4) to be some closed ball
Vi={veX:|v|x <a},
with some a > 0. Then, (4.7), (4.8), (4.9) provide, for each v € vV,

127 [=dlw] + ¢(v)]|x < K|l - djw] + 9(v)]2
S K6+ |le(v)]2]
< K[+ G(J|v]|x))
< K[§ + G(a)),

so that (4.4) is satisfied if K[6 + G(a)] < a. We summarize the result in the following

Theorem 4.1 Suppose that, for some a >0,

6< = = Gla), (4.11)

Then, there ezists a solution u € HE(Q) of problem (1.1) satisfying

lu—wllx < e (4.12)
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Due to (4.10), the expression on the right-hand side of (4.11) is positive for small a.
Therefore, (4.11) is satisfied for some small o (providing a tight enclosure (4.12)) if &
is sufficiently small, which means, according to (4.5) and (4.8), that the approximate
solution w has been computed with sufficient accuracy.

Thus, Theorem 4.1 yields a satisfactory result. There is no inverse-positivity or similar
assumption on the linear operator L. We only need its inwvertibility. Expressed in
eigenvalues, this assumption requires all eigenvalues of L on HE(Q) to be non-zero,
while its inverse-positivity on H2 () requires all real eigenvalues to be positive (see
Theorem 3.4).

Of course, the application of Theorem 4.1 requires explicit knowledge of terms K, §, G
satisfying (4.7), (4.8), (4.9). For this purpose, additional theoretical considerations and
numerical computations are necessary, which we will describe later in this section and
in Section 6.

First we will be concerned with suitable choices of the Banach space X satisfying as-
sumptions (X1) and (X2), assuming from now on that

n<3. (4.13)

On one hand, X should be "broad” and its norm should be "weak”, so that (X2) and
(4.7) are easier to fulfill. On the other hand, a ”strong” norm in X facilitates conditions
(X1) and (4.9), and it provides a more accurate enclosure (4.12). Therefore, we choose
the Banach space X with the strongest norm which still satisfies (X2) and allows explicit
computation of a constant K satisfying (4.7). In this way, we obtain

X = Ci(9), llullx := max{|lulloc, 1lu'floc} ifn=1, (4.14)
X = Hia(®), |lullx = max{llulloo, 7[Vulls} ine{2,3),  (415)

1
1

1
where ||v|4 := | ——— / [v]*dz| , and the constant v > 0 will be specified later in
meas({2)
Q

(4.22). Observe that Sobolev’s Imbedding Theorem provides, due to (4.13), the bounded
imbedding H; 4(R2) — C(£), so that the norm given in (4.15) is in fact equivalent to the
usual Hy 4-norm (involving ||u||4 instead of ||u/|eo). Moreover, the Imbedding Theorem
verifies assumption (X2) for (4.14) and (4.15).

It should be noted that in the case where the nonlinearity F has the special form (3.1),
so that Vu does not actually occur in the operator & defined in (X1), one may also
choose

X:=C(@), |lullx = Jlulleo (4.16)

which facilitates some of the considerations below, but provides a weaker enclosure

(4.12).
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4.2. Verification of (X1), and computation of G

In order to verify assumption (X1), and to compute some function G satisfying (4.9) and
(4.10), we first calculate some function G : [0, 00) x [0, 00) — [0, 00) with the following
properties:

(G1) |F(z,w(z) +y, Vw(z) + z) — F(z,w(z), Vw(z)) ~ b(z) - 2 — c(z)y| < é(|y|, lz])
forzreQ, ye R, z € R*,
(G2) G(ut,t) = o(t) for t — 0 and each fixed p >0,

(G3) G is monotonically nondecreasing in both variables,

. 2
(G4) for each fixed a > 0, [G(a, t%)] is a continuous and concave function of t.

Here, (G4) may be omitted in the ODE case n = 1. The remaining assumptions (G1)
to (G3) can easily be satisfied with the aid of Taylor’s Theorem due to the continuity
of F\ Fy, and F,, and to (4.3). The same is true in the elliptic case n € {2,3}. Here,
however, one has to take the growth condition (1.2) into account in order to satisfy the
additional assumption (G4). The easiest way to do so is to look for ¢ in the form

. M
G(s,t) = 3 galsytes
k=1

with exponents i € [0,2] and monotonically nondecreasing functions gi satisfying
gk(s) = o(s'7#*) for s — 0 (50 that G has the properties (G2) to (G4)), and to arrange
the integer M, the exponents yz, and the functions gr appropriately in order to satisfy
property (G1), too. Obviously, the exponent restriction p& € [0,2], which is necessary
for condition (G4), requires the growth condition (1.2), via assumption (G1).

With such a function G, with ¢ from (4.6), and with the space X defined in (4.14) or
(4.15), respectively, we have the following

Lemma 4.1 For each u € X,

A

a) le(@)llz < Gllelloo, [u'lles) ifn=1,
) le()llz < Glllulloo, IVulla) ifn € {2,3).

Proof. ad a): Property (G1) provides |p(u)| < G(Jul, |u'f) pointwise, so that |jo(u)]|e <

G(llulloo » [[4']lco) due to (G3). Moreover, |p(u)||2 < lo(u)]loo (regard the weight factor
meas(Q)~2 in || - |j2).

~ 2
ad b): Define ¥(t) i= [G(|lulloo, t4 )] for t > 0, and v = |Vu|t € L;(f). Properties
(G1) and (G83) provide, for almost all z € Q,

()@l < [G(u@, IVu(@))] " < [G(lullooo(@)D)]” = B(o(a)),
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so that it suffices to prove that ¥ ov € L (Q2) and

1 1
meas(Q) Q/\Il(v(z))dz <¥ (mﬂ/v(:c)dx) , (4.17)

o 2
since the right-hand side equals |G(||u||co, ||Vu|l4)| . (4.17) is an immediate conse-
g

quence of Jensen’s inequality [5, Thm. 56.6, p. 310] since, due to (G4), ¥ is concave,
continuous, and nonnegative. =

With || - || x defined in (4.14), (4.15), we obtain from Lemma 4.1 and property (G3) that

" 1
le(@)llz < G(llullx, ;IIUIIx) forue X, (4.18)

so that (4.9) is satisfied for
G) = G, %t) (t € [0, 00)). (4.19)

Moreover, this G is monotonically nondecreasing due to (G3), and (4.10) holds according
to (G2).

Next we investigate assumption (X1). Since the operator & : X — Ly() defined there
satisfies $(w + u) — ®(w) = p(u) for all u € X, we obtain from (4.18) that @ is bounded
on bounded sets, and that & is Fréchet-differentiable at w with &(w) = 0 (observe
(G2)). The continuity of & follows, in the case n = 1, immediately from the uniform
continuity of F' on compact subsets of Q x IR x IR", and from the boundedness of the
coefficients b and ¢ (regard the norm in (4.14)). In the elliptic case n € {2,3}, the
proof of the continuity of & (resp., of ) can be found in {37, Lemma 2]. It is based on
inequalities similiar to that stated in Lemma 4.1 b), and on elementary measure theory.

4.3. Computation of K

In order to compute some constant K satisfying (4.7) we will derive the following in-
equalities:

lulloo < K||L[u]||z (for all u € HP(Q)) (4.20)
lu'lloo < K'|L[ulllz (for all w € HB(Q)), if n =1 } (4.21)
IVulls < K'||L[u]ll2 (for all u € HE(Q)), if n € {2,3}

with known constants K and K'. Then , (4.14) and (4.15) obviously provide ||u||x <
K||L{u]llz (for all u € HEZ(Q)), if we choose

K
7= (4.22)
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so that (4.7) holds since L : HZ(Q) — L2(Q) is one-to-one and onto.

We will provide the computation of such constants X and K’ in the following steps:
First we calculate constants Cy, Cy, C; such that

[[lloo < Collull2 + Cilju'||2 (for all v € H1(Q)), ifn =1, (4.23)
lulloo < Collullz + C1llVullz + Calluzsllz (for all u € Ho(R)), if n € {2,3},(4.24)

with ||uzs|j2 denoting the Ly-Frobenius-norm of the Hessian matrix u,, (weighted by

meas(Q)~ % )- The determination of such constants obviously provides an ezplicit version
of Sobolev’s Imbedding Theorem for the special imbeddings H; () — C() (if n = 1)
and Hy(Q) — C(Q) (if n € {2,3)}).

In a second step, we compute constants Ky, K, Ko, and & such that, for all u € HE(Q),
llellz < KollL[ulll2, [[Vullz < Kyl L{u]|l2, (4.25 a,b)
|Aullz < &l Lulll2, [lussllz < Kol L{u]ll2, (4.25 c,d)

where, of course, Vu = u’' and Au = uz; = v” if n = 1. Once constants satisfying

(4.23), (4.24), (4.25) are known, the following lemma shows how constants K and K’

satisfying (4.20), (4.21) can be calculated very easily.

Lemma 4.2. Let (4.23), (4.24), and (4.25) hold. Then, (4.20) and (4.21) are true for

K = C()Ko + ClKl 5 K’ = C()K] + C]K2 zfn = 1,

K :=CyK, +C1 K, + C2K, s K':= \/K(K +2K2) zfn (S {2,3}

Proof. (4.20) is an immediate consequence of (4.23), (4.25 a,b) (if n = 1), resp. of
(4.24),(4.25 a,b,d) (if n € {2,3}). In the case n = 1, (4.21) follows by inserting u'
in place of u in (4.23), and using (4.25 b,d). To prove (4.21) in the case n € {2,3},
let u € HP(Q) satisfying Vu # 0 be given. By partial integration we obtain, since
u-(Ou/dv) =0 on 89,

/|Vu|4 dz = /Vu' [IVu*Vu] dz
Q Q

= /u|Vu|2Z—1:da—/udiv [(Vu - Vu)Vuy] dz
a9 O

=_ /u [Vul?Au + 2(Vu)u,, Vu] dz
Q

< “u”oo/lvul2 [lAul + 2,uzz|Frobenius] dz
Q

< fluloo / |Vult de - /(Au)2dm+2~ / e Bropentus 42
Q Q Q
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1
H

Division by [meaS(Q) J |Vu|4dx] provides
Q

1
2

< llulloo [HAUz + 2lluszll2],

1 1
[meas(ﬂ) / [Vul|*dz
Q
so that (4.20) and (4.25 c,d) yield the assertion. ]

In the following three sub-subsections, we briefly describe how constants satisfying
(4.23), (4.24), (4.25) can be computed. We omit all proofs here, and refer to the papers
[33, 34] (for the ODE case n = 1) and [35, 37] (for the elliptic case).

We wish to make the important remark that major numerical work has to be done

only for the computation of K, satisfying (4.25 a). All other constants are obtained by
theoretical means.

4.3.1 Calculation of Cy,C; (and C;)

Lemma 4.3. ([33, Lemma 2]) Let n = 1 and, without loss of generality, @ = (0,1).
Then, (4.28) holds for

1
V3Co’

Co > 1 arbitrary, C, =

The result in [33] is a little bit more general. It shows how the constants Cy and C;
can be improved in the case of Dirichlet boundary conditions at one or both endpoints,
or in the case of periodic boundary conditions which are not considered in the present
article due to their low importance for elliptic problems.

Lemma 4.4. ([35, Corollary 1]) Let n € {2,3}, and let Q C IR™ denote some compact
convez set with nonempty interior such that, for each zo € §, there exists an affine-
orthogonal linear transformation ¢ : IR™ — IR" such that 2o € p(Q) C Q. Then, (4.24)
holds true with

Nl=

. meas(Q) . 1 3 N _
Coi= |:meas(Q) z0cd { meas(Q) Q/ |z — o|? dl’}jl (v=0,1,2),
where

v =1 y = 1.1548 vz = 0.22361 ifn=2
Yo = 1.0708 7 = 1.6549 yo = 0.41413 ifn=3.
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Example: Let Q be a rectangle with sidelengths L;,...,L,, n € {2,3}, and choose Q
to be a rectangle with sidelength I; € (0, L;] (i = 1,... sn). Then, (4.24) holds true with

W c, = [B+B(+E)
Vv I '12('13), ' \/5 hL '12('13) ’

0y = 22, I BEBPR + 40 + 13(+13)]
3 Iy - Ip(-13) :

Here, the sidelengths I; (0, L;] can be optimized in order to make the constant K
obtained from Lemma 4.2 as small as possible.

4.3.2 Computation of K,

In order to compute a constant K, o satisfying (4.25 a) we consider the eigenvalue problem
(in weak formulation)

u € HE(Q), (Llu], L{]) = Mu, ) for all o € HP(Q), (4.26)

with (-, -) denoting the canonical inner product in Ly(2). The variational characteriza-
tion of the smallest eigenvalue \; of problem (4.26) reads

M= i (I
weHB(@\{0)  (u,u)

so that L is invertible on HE(Q) (as required) if and only if A; > 0, and in that case
(4.25a) obviously holds with arbitrary

1
Ko > ——. 4.27
02 = (4.27)
Thus, we have to compute a positive lower bound for ),. Expressed slightly different,
we need a positive lower bound for the smallest singular value /A1 of L on HP(Q).

Methods for computing the required lower bound for A1 (or better, for computing lower
eigenvalue bounds in general) have been developed by Kato [19], Bazley and Fox 6],
Lehmann [25), and Goerisch [15], where the latter method is certainly the most general
and (together with Lehmann’s method) the most accurate one.

For many eigenvalue problems one needs, in addition to such methods, a homotopy
connecting the given eigenvalue problem to a "simple” one with known eigenvalues.
Such homotopy algorithms have been developed independently in [16] and in [38].

For all details concerning eigenvalue bounds for selfadjoint eigenvalue problems (like

(4.26)), we refer the reader to the article by Goerisch and Behnke [7] in the present
volume,



356

In the particular case where the coefficient function b satisfies b = V¢ for some Lipschitz-
continuous function ¢, one may use the following alternative to (4.27). The operator L
is now symmetric on HP(Q) with respect to the inner product (-, -),, weighted by e~#,
so that an (-,-), - orthonormal and complete system of eigenfunctions exists. Using
eigenfunction series expansions one easily derives that, with || - ||, := v/(:, )¢»

ILullle > allull,  for all u € HP (),

where ¢ is some real number such that
o < |\ for each eigenvalue A of L on HZ(Q). (4.28)

Consequently, with ¢ and @ denoting a lower and an upper bound for ¢, (4.25 a) hold
for ‘

Ky = —ll;exp [%@ - g)] , (4.29)

provided that a positive o satisfying (4.28) can be computed. Since the eigenvalue
problem

ue HE(Q), Llu] = Au (4.30)

is often easier to handle than problem (4.26) (in particular, with regard to the homo-
topy algorithms mentioned above), the computation of Ky via (4.28), (4.29) has some
advantages, compared with (4.27). However, (4.29) provides a less accurate Kj, due to

the rough estimates ¢ < ¢ < . Of course, this disadvantage does not occur if ¢ is
constant, i.e. ,if b =0.

The eigenvalue bounds for problem (4.30) needed for (4.28) can again be computed by

the general methods described above, combined with the Rayleigh-Ritz method provid-
ing upper eigenvalue bounds.

For the last time, we go back to the case where L is inverse-positive on HB(Q), and
where some z € H,() satisfying

essi%fz >0, ess igfL[z] >0, Blz] >0

(compare Theorem 3.2) is known. (We still assume that b = Vi.) Then, Theorem 3.5
shows that (4.28) holds true with

o= essi%f{@}'

The simplicity of this expression, compared with the eigenvalue estimation methods
mentioned above, reflects again the special possibilities for treating problems of mono-
tone kind, which are completely absent in ”non-monotone situations”.
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4.3.3 Calculation of K, x, and K,

While the computation of Ky described in the previous sub-subsection requires a good
deal of numerical work, constants K, x, and K, satisfying the remaining inequalities
in (4.25) can be calculated in a much more direct way, as shown in the following three
lemmata. More general versions of these lemmata, and their proofs, can be found in

[35, 37].

Lemma 4.5 [37, Lemma 5] Let ({.25 a) hold with some constant Ko, and let ¢ and b

denote a lower bound for ¢, and an upper bound for |b|, respectively. Then, (4.25 b)
holds with

=1 if >0 and (22~ b)- eKo 2 1

13Ky + /(15 — K2 + Ko, otheruise,

Kl =

Lemma 4.6 {37, Lemma 6] Let (4.25 a,b) hold with constants Ky and K, respectively.
Then, (4.25 ¢) is true for

k=14 [BloKs + lcllcaKo.

For the following lemma, we suppose that n > 2 and make the additional assumption
that the two boundary parts I'y and I'; both are piecewise Ca-hypersurfaces, i.e., that
some measure-zero subset Z C 0Q exists such that T\ Z and Iy \ Z both are (relatively)
open subsets of 92, and are C,-hypersurfaces of IR™. (Of course, one of them may be
empty.)

Consequently, the mean curvature H and the mazimal principal curvature P are defined
almost everywhere on 0%,

Lemma 4.7 (35, Section 4] and [37, Lemma 7] Let (4.25 a,b,c) hold with constants
Ky, K, and k. Suppose that a Lipschitz-continuous function g : Q@ — IR™ exists such
that

g-v2(n—1H ae onTy, —g-v>P ae onTy,

and that nonnegative constants Go, Gy are known such that
9]l < Go , —divg + dnax [J[y] + J[g]t] <G ae onQ,

with J[g] denoting the Jacobian matriz of g, and Ap .y indicating the mazimal eigenvalue.
Then, (4.25 d) holds with

K2 = [IG2 +2KGOI{1 + GlKlz]% .
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Corollary 4.1 If Q is convez and (4.25 c) holds for some constant «, then (4.25 d) is
true for

K; =&

Proof. For convex domains, the curvatures H and P are nonpositive a.e. on 9, so that
the conditions of Lemma 4.7 hold true with ¢ = 0,Go = G; = 0. [

5. NAKAO’S AND OISHI'S ALTERNATIVES

In this section, we will give an impression of the methods proposed by Nakao and
Oishi. We will not comment further on Nakao’s earlier results using the fixed-point
formulation (2.3), since this approach requires conditions which are even much more
restrictive than those needed for the application of the monotonicity method, as we
explained in Section 2. His new approach (2.16), however, is closely related to the
”simplified Newton” formulation (2.14) proposed by the author (see Subsection 2.1 and
Section 4), and is therefore applicable also in ”non-monotone” situations. The same is
true for Oishi’s method proposed recently, which uses the fixed-point operator (2.14)
directly. The approaches of both Nakao and Oishi have further in common that they
avoid the (direct) computation of bounds for the inverse operator L™, which is required
for the author’s method (see Section 4, in particular Subsection 4.3). Instead, they deal
with some finite-dimensional projection of L™! (see (2.15)), and bound the (infinite-
dimensional) "remainder” by other means. At first sight, the avoidance of bounding
L~ (directly) seems to be an important advantage. However, we will try to make clear
that this is not really the case, and furthermore, that the disadvantages caused by the
infinite-dimensional "remainder” are significant.

5.1. Nakao’s method (30, 31]

Nakao uses the fixed-point formulation (2.1) for Dirichlet probiems (1.1) (Ty = 89, T'; =
@), with T given by (2.16), and with X := HY(Q). In order to find some closed, bounded,
convex subset U C X satisfying (2.2) he introduces , for V C X, the "rounding” R(V)
and the "rounding error” RE(V') with respect to some finite-dimensional (finite element)
subspace S C H{(f), by defining (essentially)

R(V):=PV (5.1)

RE(V) = {¢ & 5% élug < sup 2~ ol | (52)

with P : H)(Q) — S denoting the H;-orthogonal projection onto S. (In practice, R(V)
and RE(V) are chosen a bit more refined, which however does not affect the main ideas
and results.) Since obviously V C R(V)@® RE(V), the crucial condition (2.2) is satisfied
if

R(TU)Y® RE(TU) C U. (5.3)
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With some approximate solution w € S, and with ¢1,..., ¢,» denoting some basis in 5,
Nakao looks for U satisfying (5.3) in the form

U=w+ la)é;+{d €5 : Illus < a} (5.4)
j=1

with interval coefficients {a;] (j = 1,...,m) and a "remainder” bound « to be deter-
mined numerically. With {3;] (j = 1,...,m) denoting interval coefficients satisfying

R(TU) Cw + i[bj]qu, (5.5)

=1

and with some 3 > 0 such that

RE(TU) c {$ € S*: 8l < B}, (5.6)
(5.3) is obviously satisfied if

(b1 Cla] (G=1,...,m) ,B<a (5.7)

In order to find [q;] ( = 1, ...,m) and « such that (5.7) holds under the side conditions
(5.4), (5.5), (5.6), Nakao proposes an iterative procedure based on the method of e-
inflation introduced by Rump [45].

In each iteration step, interval coefficients [b;] ( = 1,...,m) and a constant § satisfying
(5.5) and (5.6), with given [a;] (fj = 1,...,m) and « defining U by (5.4), have to
be determined. The computation of [b;] ( = 1,...,m) is essentially reduced to the
following tasks:

(A) Computation of werified enclosures for the solutions of certain linear algebraic
systems, with interval right-hand sides, and with system matrices

D:= ((_A¢ia¢j))i,j=1‘,,_,m , L= ((L[¢i]7 ¢j))i,j=1,...,m ’ (5'8)

where L is the differential operator given by (2.6), and {(-,-) indicates dual
pairing of H_;- and H{-elements, so that (—Ad;, ¢;) = (Voi,Vé;)r,)n, and
(Llgi], ¢5) = (Vi V5 Lyayn +(b- Vi + cdi, $5)L,0)5
(B) Computation of verified enclosures for
(Bl) {<F(’uavu) - F('awavw)a ¢i>L2(Q) tu € U} (7’ = 1’~ -- am)

(which of course requires growth conditions on F), and for the Lo-projection of
the defect of w into S

(B2) (Vw, V¢i>L2(Q)n + (F(-,w, Vw), ¢,‘>L2(Q) (Z =1,... ,m).



360

The computation of a constant B satisfying (5.6) is governed by the following estimate
from finite element theory:

I = Plullgg < Chl|Aullz (u € Hx(2) N H{(Q)), (5.9)

with h denoting the maximal diameter of the (Cy—) elements. (5.9) holds for convex
polygonal domains @ C IR?. Using (2.16), (5.4), (5.9) one finds, for u € U,

It = P)Tullgp = |1 —e)(I = P)u — &(I — P)(=A)T'F(-,u, Vu)| o
< Q= — Plullpp + eCR||F (-, u, Vu)lla
<(1-¢&a+ey,
v := Chsup ||F(-,u, Vu)|2, (5.10)
welU

so that, according to (5.2), condition (5.6) holds for 3 := (1—¢)a+e7, and the inequality
B < ain (5.7) is satisfied iff v < a. In addition to (A) and (B) above, one must therefore

(C) know the constant C in (5.9) ezplicitly,
(D) compute an upper bound for sup, ¢y || F (-, u, Vu)|2,

in order to be able to test condition (5.7).

Obviously, (A) to (D) can be carried out without explicitly computing a bound for the
inverse operator L. However, in (A), the verified solution of linear systems with the
matrix £, which constitutes a finite-dimensional projection of L, is required (in each
iteration step). Since the dimension m of £ is large (more than 6000 in nontrivial
examples), this task is at least comparable with (if not harder than) the computation
of a few eigenvalue bounds for L, which is the only major computation needed for
the required bound for L~! in the author’s method (see Subsection 4.3). Observe
that, with the aid of the methods by Rayleigh-Ritz and Lehmann-Goerisch (see [7]),
the computation of these eigenvalue bounds can be reduced to the verified solution of
matriz eigenvalue problems of small dimension, after a few approzimate eigenvectors of
a large system have been computed.

Up to now, Nakao neglected the problems connected with the verified solution of the
linear systems in (A), and solved them only approximately. He intends to use, in
the future, a method developed by Rump [47] for the verified solution of large linear
systems with band matrices. The application of this method requires, in particular,
the computation of a verified positive lower bound for the smallest singular value of £,
which is a nontrivial task consuming a good deal of computing time! Here, one observes
an interesting close connection to the author’s method, which requires a positive lower
bound for the smallest singular value of L (see Sub-subsection 4.3.2), as the final result
of the computation of the eigenvalue bounds mentioned above.

Due to the above considerations, we believe that the avoidance of bounding L~! in

Nakao’s method is not an advantage, at least not a significant one. Furthermore ,
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Nakao’s method has a clear disadvantage generated by the estimate (5.9), which is
needed to treat the infinite-dimensional remainder ("rounding error”). In (5.9) (and
thus in (5.10)), the "meshsize” h of the finite element mesh occurs only in first power.
Thus, a very small h is needed in order to make ~ in (5.10) sufficiently small, since the
term sup{||F(-,u,Vu)||2 : u € U} can be bounded only very roughly. This bound, as
well as the bounds required in (B1) above, is computed with the aid of explicit Sobolev
imbeddings and by use of the special polynomial form of the nonlinearity F which is
present in Nakao’s examples. Obviously, this can be carried out only roughly since the
nonlinearity does not preserve the splitting of U into "rounding” and ”rounding error”

(see (5.4)).

It should be noted that the estimate (5.9) cannot be improved, with respect to the
power of h, by use of higher order finite elements. The power of h only improves for
functions u with higher regularity, which is usually not present for the exact solution u.

The roughness of (5.10) is the main reason for the fact that, on the one hand, very
small meshsizes are needed, and on the other hand, the computed bounds are not very
sharp even for small h. For example, Nakao admits in [30] that a meshsize h ~ 10~3
(producing linear systems of dimension ~ 10°) would be needed to make his method
work for Emden’s equation (see also the second Example in Section 7). Thus, Nakao
searched for improvements of his method admitting larger meshsizes. In [30] he uses, for
Emden’s equation, the old idea (applied extensively, e.g., by the author) of considering
the boundary value problem for the error u —w, which involves the defect of w. In order
to obtain an approximate solution w € H2(2)NHY (), he applies Hermite-interpolation
techniques. In this way, the method works for h = 1/80 (which produces systems of
dimension larger than 6000), but the computed bounds are still not very precise. In [31],
similar techniques are developed for approximate solutions w which are only in H 2();
the defect of w is now bounded in the distributional H_;-norm. Emden’s equation can
now be treated with h = 1/60 (system dimension 3481), but the computed solution
bounds are rather coarse (see [31], p. 172).

Very recently, Nakao announced in personal communication an improvement of his
method by use of higher order finite elements.

5.2. Oishi’s method [32]

Oishi proposes an existence and inclusion method for operator equations of the form
Lo[u] + F(u) =0, wu € D(Ly), (5.11)

where, for some Banach spaces R and S , Lg : D(Lg) C R — S is linear and closed,
so that X := D(Lo) becomes a Banach space with respect to the graph norm |ju||x :=
lullr + [ Lolu]lls. F : X — S is assumed to be Fréchet-differentiable, with derivative
F'(u) : X — S extendable to a bounded linear operator from R to S, for each u € X.
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(We changed Oishi’s notation here, in order to facilitate the explanation of connections
to other parts of the present article.)

A similar functional analytical setting for existence and inclusions results has been
presented by the author on an international meeting [39], but the results are not yet

published.

In the following, we will always have the boundary value problem (1.1) in mind, as a
special case of (5.11). One can choose, for example,

Lofu] := —Au, F(u):= F(-,u,Vu),
X :=] HP(Q), R:= )Hl,p(Q) (p suitable), S := Ly(R) } (5.12)

or, if F has the the special form (3.1),

Lo[u] :== ~Au+b-Vu, F(u):=F(-,u), } (5.13)

X :=HP(Q), R=5:=LyN).

Oishi uses the fixed-point formulation (2.1), with T' defined by (2.14) (resp., (2.5), (2.6)),
which is exactly the setting of the author’s method. However, a few marginal and one
major difference occur in the details of the methods. The marginal differences, which
we will not comment further, are the following:

— Oishi uses, in (2.1), the space X = D(Ly), in place of the spaces X proposed
by the author (see (4.14), (4.15), (4.16)); this difference has almost no practical
consequences.

— In place of a function G satisfying (4.9), (4.10), Oishi requires a local Lipschitz
condition for F' (as in the original Newton-Cantorovich Theorem), which may
provide slightly worse bounds.

— Oishi uses Banach’s in place of Schauder’s Fixed-Point Theorem, which again has
no important practical consequences.

The main difference between Oishi’s and the author’s method consists in the avoidance
of directly bounding L~!. Instead, he has to bound L1, with £ denoting some finite-
dimensional projection of L. Here, a strong connection to Nakao’s method can be
observed: the computation of a positive lower bound for the smallest singular value
of £, which will be needed if Nakao uses Rump’s method for verified solution of large

linear systems, is obviously equivalent to the computation of a bound for £~ in the
spectral norm.

In order to avoid the direct computation of a bound for L1, Oishi makes the following
assumptions, which we will further analyze after Lemma 5.1.

Let U C X and V C § denote finite-dimensional subspaces of equal dimension, and let

P:X - UandQ:S— V be projection operators onto U and V, respectively. Assume
that
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(A1) |£7Y|s—r € M, where L := QLIU, with L given by (2.6), i.e., L = Lo+ F'(w);
(A2) QLou = QLoPu forall u € X;
(A3) I(I = Plu|lr < €||Loju]||s for all u € X, where the constant ¢ can be made

arbitrarily small if the dimension of U and V is chosen sufficiently large;
(Ad) || F(@)llr—s S N 5
(A5) [|Qlls~s < 1.

The following Lemma provides the needed bound for L~!.

Lemma 5.1 [32, Thm.2.1] Let (A1) to (A5) hold, and suppose that ¢ in (A3) is such
that eN(1+ MN) < 1. Then,

(1+e)1+MN)+ M
1—-eN(1+ MN)

lullx < IL[ulls for allu € X. (5.14)

Proof. For u € X one finds, using (A1) to (A5),
1Pullz = L7} LPulln < MIILPulls = MIQLPuls
< M[IQLoPu+ QF (w)ulls + |QF (w)(Pu —u)s]
= M[IQLullls + |QF (w)(Pu — w)lls]
< M||[Z{ullls + Nel|Lofu]lls]

so that we obtain, using (A3) again,
lullr < llu — Pullr + | Pullr < M||L{u]l|s + (1 + MN)||Lo[ullls  (5.15)
(5.15) and (A4) imply
I Lolullls < IL[u]lls + | F' (w)ulls < (1 + MN)||Llullls + eN(1 + MN)| Lo[ull|s

which yields
1+ MN

w1 3l

In the identity ||u||x = {ullr + ||Lo[u]||s, we first estimate |ju||r by (5.15), and then
||Lo[u]||s by (5.16). The assertion follows. ]

Zafullls < § (516)

Concerning assumption (A1), the same remarks as in the discussion of Nakao’s method
hold. For ”large” matrices £ (occuring in PDE problems), the computation of M in
(A1) is at least comparable with (if not harder than) the computation of a few eigenvalue
bounds for the differential operator L.



364

Assumption (A3) is of course very closely related to Nakao’s condition (5.9). Again, it
represents the needed bound for the infinite-dimensional ”remainder”. However, Qishi’s
method has the advantage, compared with Nakao’s approach, that the constant ¢ in
(A3) enters the final solution bounds only via the bound (5.14) for L71, and not as
a factor, as in Nakao’s method (see (5.10)). Thus, the disadvantages of (5.9), (5.10)
explained above are not present in Oishi’s method; it suffices to choose the dimension
of U and V such that, e.g., eN(1+ M N) < 1/2. The solution bounds become small via
the defect bound (see (4.5), (4.8) and the remarks after Theorem 4.1).

However, Oishi has to pay for this advantage by the necessity of requiring assumption
(A2), which severely restricts the applicability of the method, at least under the follow-

ing additional assumption, as we show in the next lemma and the discussion following
it.

(A6) R and S are Hilbert spaces; the projection P : X — U is bounded as a mapping
from R to R; its bounded extension P : R — U ¢ Riand Q: 5 -V C S are
orthogonal projections.

Assumption (A6) does not seem to be too artificial, with regard to the settings (5.12)
(with p := 2) and (5.13), and to applications. It remains an open question how restrictive
assumption (A2) is if (A6) is not satisfied.

Lemma 5.2 Let (A2) and (A6) hold, and let L} : D(LY) C S — R denote the adjoint
of Lo : D(Ly) C R — S. Then,

V CD(LoLy) = {u € D(L}) : Llu) € D(Lo)}, and L(V) C U.

Proof. Let 1 € V be fixed. Using the orthogonality of the projection @ and assumption
(A2) we obtain, for each u € X,

(¥, Lo[ul)s = (Q%, Lo[ul)s = (¥, QLo[u])s = (3, QLo Pu)s. (5.17)

The linear mapping QLOIU : U — V is bounded with respect to all norms in U/ and V.
since these spaces are finite-dimensional. In particular, it is bounded with respect to
Il -llz and || - ||s. Since P: R — R is bounded we conclude that, for each u € X,

1QLo Pulls = I(QLo|,)Pulls < Cllul|r,

so that (5.17) yields the boundedness of the linear functional £ : D(Ly) CR — S, by :=

(¥, Lo[u])s. Consequently, Riesz’ Representation Lemma provides some x € R such
that

(¥, Lo[u])s = {x,u)p forall ue D(L,),

so that ¢ € D(Lj) (and L[] = x). Furthermore, (5.17) and the orthogonality of Q
imply, for u € X,

(¥, Lo[ul)s = (¢, QLo Pu)s = (Q4, Lo Pu)s = (3, Lo Pu)s
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and thus, (¢, Lo[u — Pu])s = 0. Consequently, since ¢ € D(L}) and I — P is orthogonal,
0 = (Lg[],(I — P)uys = ((I — P)L}[+),u)g for all u € X.

Since X is dense in R we conclude that L§[4] is in the nullspace of I — P which

equals the image space of P because P is an orthogonal projection. Consequently,
Lily] € U € X = D(Ly). n

The result of Lemma 5.2 requires that bases {¢1,...,¢m} of U and {¢1,...,¢n} of V
have to be found such that

¥i € D(L3), Lg[v:] = @i (€ D(Lo)). (5.18)

This is a severe restriction. One must be able to choose ¢1,...,om € U C D(Lg)
such that the equations (5.18) can be solved explicitly for t1,...,%,. This seems
to be impossible for finite-element bases. It is possible if the eigenfunctions ; of
Lo L§ are known explicitly (so that one can choose ; := L[1);]), but this restricts the
applicability, for instance in the setting (5.13), to simple domains Q and to constant b.
Moreover, the matrix £, the inverse of which has to be bounded according to assumption
(A1), is now full since the support of the eigenfunctions is the whole of .

Up to now, Oishi applied his method to an ODE problem (sece [32]), with Lo[u] =
—u'+bu' and constant b, so that in fact the eigenfunctions of Ly L} are known. Moreover,
the matrix £ is not ”large” since the problem is an ODE. Therefore, the bound for £~!
required in (A1) can be computed by explicitly inverting £ in rational arithmetic, and
evaluating the Frobenius norm of £7!. Assumption (A3) is fulfilled by use of Fourier
series expansions, with the mentioned eigenfunctions as basis.

6. Numerical procedures for the Computation of w and §

In the present section, we return to the context of Section 4 and give a brief description
of the numerical procedures which were used, in our examples (with two-dimensional
rectangular domains {2), to compute an approximate solution w of problem (1.1) and a
defect bound § satisfying (4.8), with d[w] given by (4.5).

6.1. Computation of an approximate solution w

w is calculated by a Newton-iteration: Starting with some initial approximation w(® €

HE(Q), we compute iteratively approximate solutions u(*) of the linear boundary value
problems

—Au + Fz("w(k)7 Vw(k)) -Vu + Fy(.’w(k)’ Vw(k))u
= Aw® — F(0® vu®) ue BB(Q),

and define w(¥*+1) .= ,(F) 4 4 ()

(6.1)
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To determine u = u(¥) we use a finite-element procedure with rectangular elements for
problem (6.1). On each element, u is put up as a bi-quintic polynomial. The local
basis functions are chosen such that the 36 coefficients determining u coincide with the
values of u, Ou/dzy, Ou/dz,, and 8%u /82,09 in 9 knots of the element, namely the
corners, the midpoints of the sides, and the midpoint of the element. Simple results
from Hermite-interpolation theory show that the corresponding global representation

N
u(z1,z2) = Za;go,'(xl,mz) (6.2)

provides a global Cj-function. (More precisely, the global basis functions ¢; are Ci-
functions.) In particular, u € H,(Q). To ensure that u € HE(Q), i. e., that u satisfies
the boundary condition in (1.1), one has to set to zero several of the coefficients a; in
(6.2). The remaining coefficients are determined by the usual Ritz-Galerkin method for
problem (6.1). The occurring integrals are approximated by a composite trapezoidal
or Simpson quadrature (product-) formula, applied on each element. The resulting

linear algebraic system is solved (approximately) by a band-Gauss-algorithm with scaled
partial pivoting.

It should be noted that a global C;-function u could also be obtained by bi-cubic (local)
basis functions. However, the bi-quintic functions described above proved to be more
efficient in our context. Other alternatives are, e. g., triangular Argyris or Bell elements.

The Newton-iteration is terminated when, for some k € IV, the coefficients ask) of u(k)
are (in modulus) below some tolerance. Then, the approximate solution w := w(*+1) ig
given in the form (6.2), provided that the starting approximation w(®) has that form.
To find such a function w(® we use a homotopy method, in our examples.

6.2. Computation of a defect bound §

To compute a constant § satisfying (4.8) we have to bound J ®(z)dz (k=1,..., K),
Q

k
with ©,...,Qk denoting the rectangular finite elements described above, and & :=

[—Aw + F(-,w, Vw)] ? In our examples, we used the following way of proceeding which
is applicable for sufficiently smooth nonlinearities F.

Let Q[®] denote some quadrature formula (applicable on the rectangular elements Q)
such that a remainder term bound

[o@de - Q[@][ < R(3] (6.3)

(973
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is explicitly available. For instance, one may choose some composite Newton-Cotes

product formula
mip mo

Q[®] = h1hy Z Z Petto® (zgg)’ Iga)) (64)

=0 0=0

(with stepsizes k) in z,- and h; in z2-direction), e. g., the trapezoidal rule, where

1 . || %@ . ||8%@
R[q)] = EmeaS(Qk) [hl 6—2,‘% o + h2 a—z% ot y (65)
or the Simpson formula, where
1 oo oo
=-—— Q) | AT || == = . 6.6
R[Q] 180 meaS( k) [hl 61‘11 00, * h2 61:3 oo,ijl ( )

In order to enclose [ ®(z)dz we are therefore left to compute
Q

i) an enclosure for Q[®],

ii) rough bounds for some higher derivaties of & on Q.

For both i) and ii) we use interval arithmetical subroutines (see [18, 23]), in order to
take rounding errors into account.

ad i): For each quadrature point (zgg), xga)), we use the representation (6.2) (and the
polynomial form of the basis functions ®i on ) to compute enclosures for w, Vw,
and Aw at (zﬁ"),xg")). Supposing that an interval-evaluator for F is available in the

program, we can now easily calculate an enclosure for ® (zgg) s zga)) . Finally, an enclosure
for Q(®) is computed according to (6.4).

ad ii): We describe how to compute a bound for 10#®/0z} || co,0, - Since the factor h*
in (6.5) or (6.8), resp., can be made arbitrarily small by the choice of sufficiently many
quadrature points, a very rough bound is sufficient.

First we compute upper and lower bounds for the ¢1-derivatives (up to the p-th order)
of w, Vw and Aw on 4, using a two-dimensional version of a theorem by Ehlich and
Zeller [11] which reduces the calculation of bounds for a polynomial (on a compact set)
to its evaluation at finitely many points.

In the next step, we calculate (by hand or by automatic differentiation) all derivatives
of F(z,y,z) up to the u-th order, and compute rough bounds for them on §; x ly, 7] x
(21,%1] x [25, 72], with y, 7, 21,%1,%, %2 denoting the bounds for w, 8w /dz,, and Ow [0z,
calculated before. -
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Now it is easy to compute rough bounds for 16¥d/0zY ||co, (¥ = O0,... , i), where
d:=—-Aw+ F(-,w,Vw). Finally, the inequality

I
00,82 v=0 v

is used to obtain the desired bound.

ord

M
Oz}

ovd
aw’l’

=d

p—v
Oz}

00,Q% 00,

7. NUMERICAL EXAMPLES

Several examples with ordinary and elliptic differential equations have been treated to
test our existence and inclusion method described in Section 4. In the present section,
we report on some of the results obtained for elliptic boundary value problems. One
ODE example was already presented at the end of Section 2.

Our first example is the well known parameter-dependent problem
—Au = Xe" on Q:=(0,1)>, wu=0o0n N (7.1)

arising from combustion theory. The exponential nonlinearity is essentially generated
by Arrhenius’ law. We used the finite element method described in Subsection 6.1,
with 8 x 8 square elements, to compute approximate solutions w for several values
A > 0 (which is the relevant and ”difficult” sign). However, a direct application of the
Newton-finite element method to problem (7.1) is disadvantageous due to the corner-
singularities which the exact solutions have and which cannot be represented by a finite
element approximation. Therefore, we first transformed the problem to remove (or at
least, weaken) these singularities; see [36] for the details of this transformation. The
following bifurcation diagram results from several selected approximate solutions, and
interpolation in between.
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Figure 2: Bifurcation diagram for problem (7.1)
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Our existence and inclusion method was successful on the "lower” branch (up to the
turning point), and partly on the "upper” branch. In the further course of this branch,
the method failed due to insufficient accuracy of the approximate solutions obtained
with 8 x 8 elements; here, a smaller meshsize and/or some further reduction of the
corner singularities would certainly extend the range of applicability. Furthermore, the
method failed in some neighborhood of the turning-point, the reason for this being the
non-invertibility of L in the turning-point, so that (4.7) resp. (4.20), (4.21) resp. (4.27),
(4.28) could not be satisfied. In [40, 41], we extend our method by change-of-parameter
techniques in order to overcome these difficulties with turning-points.

In our second example, we look for a nontrivial solution of Emden’s equation
—Au=u?on Q:=(0,) x (0,£7'), u=0o0ndN (7.2)

for several positive values of £. The solution u represents the stationary temperature
distribution in a plate with an internal heat source proportional to u?. The problem of
finding an appropriate starting approximation w(®) for the Newton-iteration (described
in Subsection 6.1) was solved as follows. Consider the auxiliary parameter-dependent
problem

—Au =u? + Az;(1 — 21)z2(1 — 22) on Q :=(0,1)?, u =0 on IN. (7.3)

Starting at the trivial solution « = 0 for A = 0, changing A in small steps, and us-
ing the approximate solution of the previous step as starting approximation for the
Newton-iteration, we found the bifurcation diagram for problem (7.3) (with approzi-
mate solutions w) plotted in Figure 3 below.

©(0.5,0.5)
60 1
40 1 \
20 A
0
-20 \
-8000 -6000 -4000 -2000 0 2000

Figure 3: Bifurcation diagram for problem (7.3)

In particular, we obtained a nontrivial approximate solution for A = 0, i. e., for problem
(7.2) (with £ = 1). To compute approximate solutions for other values of £, we used a
(stepwise) homotopy in ¢, starting with £ = 1.
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We only looked for solutions which are symmetric with respect to reflection at the
two symmetry axes of the rectangle ©, which we realized by replacing Q by Q :=
(0, %Z) X (0, %f‘l), and requiring Neumann boundary conditions on 80 N Q. This way
of proceeding has two consequences. First, the numerical effort is considerably reduced,
and second, several eigenvalues of the linearization L of the original problem are absent
in the reduced problem, which may provide a smaller constant K, o (see Subsection 4.3.2).
In fact, the latter effect is dramatic for problem (7.2) with £ = 2 or £ = 2.5, where the
second eigenvalue of L for the original problem is very close to zero, but this eigenvalue
is absent in the reduced problem. We wish to remark that the first eigenvalue of L

is (in any case) negative, so that monotonicity methods cannot be applied due to the
considerations at the end of Section 2.
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40 2 71.52 0.8183E-1 0.3820 0.3167FE-1
2 2.5 2.5 111.73 0.2231 0.3147 0.7188E-1
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Figure 4 and Table 1: Emden’s equation

We used the finite-element procedure described in Subsection 6.1 with 64 rectangular el-
ements (on (2). For the three values £ =1, ¢ = 2, and £ = 2.5, our existence and inclusion
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algorithm was applied to problem (7.2). Figure 4 shows plots of the three approximate
solutions w, and Table 1 contains the approximate sizes of ||wl|eo = w(%é, %6_1), the
defect bounds § (see (4.8)), the constants K (see (4.7), (4.20)), and the error bounds «
(see Theorem 4.1) for ||u—w]jco. A constant K' needed not be computed here since prop-
erties G1 to G4 (see Subsection 4.2) are satisfied for G(s,t) := s% which is independent
of t.

Our third example is the parameter-dependent boundary value problem
—Au=uy (/\ - %|Vu|2) on :=(0,1)%, u=0on 89 (7.4)

which has an infinite number of potential bifurcation points at the eigenvalues \x, =
(k* + €%)m? of the problem obtained by linearization at the trivial solution u = 0.

For several values of A, we computed approximate solutions w on the first two nontrivial
branches bifurcating from the trivial branch at A1,1 = 272 and A21 = A2 = 572,
respectively. In fact, there are two branches bifurcating from 57% passing into each
other by exchange of z; and z;. In the diagram plotted in Figure 5 below, these two
branches coincide due to the chosen projection wpyay = max{w(z): z € Q}.

wmax

3 4

: / /

1 -

0 A

0 10 20 30 40 50 60 70 80
Figure 5: Bifurcation diagram for problem (7.4)
As a starting approximation for the Newton iteration we used, at A = 2.17% and

A = 5.17?, respectively, appropriate multiples of eigenfunctions corresponding to the
eigenvalues 272 and 572 of the linearized problem. To obtain approximate solutions for
other values of A, we followed the branches by a (stepwise) homotopy in ).

As in the second example, we exploited the symmetry of the expected solutions by
treating the problem on  := (0, 3) x (o, %) (first branch) or Q := (0 1) x (0,%)

' 4
(second branch), respectively, and requiring Neumann boundary conditions on 8 N Q.
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The finite-element procedure was used with 9 x 9 elements on the first, and with 7 x 14

elements on the second branch.

Our existence and inclusion method was successful for A up to 3.772 on the first, and for
X up to 7.872 on the second branch. On the latter, the method failed for A = 5.0001x2
since, due to the immediate neighborhood of the singular point 572, the constants K
and K' are very large. Table 2 below contains the approximate sizes of ||w||oo, the
defect bounds § (see (4.8)), the constants K and K’ (see (4.20), (4.21)), and the error
bounds a and (K'/K)a (see Theorem 4.1 and (4.12), (4.15), (4.22)) for |Ju — w|eo and

|Vu — Vwlly, respectively.

We wish to remark that, on the second branch, the linearized operator L is not inverse-

positive, so that monotonicity methods cannot be applied there.

Afn? flwlloo é K K' «a (K'/K) «
First Branch
2.0001 0.02309 0.3059E-7 2030. 7844, 0.6615E-4 0.2557E-3
2.001 0.07303 0.9676E-7 201.5 779.4 0.1963E-4 0.7591E-4
2.01 0.2309 0.3235E-6 20.51 79.9 0.6644E-5 0.2591E-4
2.1 0.7277 0.3475E-5 2.441 10.15 0.8490E-5 0.3530E-4
2.5 1.611 0.5503E-4 0.9232 4.472 0.5095E-4 0.2468E-3
3.0 2.264 0.2774E-3 0.9377 5.009 0.2646E-3 0.1414E-2
3.5 2.767 0.8215E-3 1.273 7.278 0.1204E-2 0.6887E-2
3.7 2.945 0.1159E-2 1.500 8.786 0.3047E-2 0.1786E-1
3.8 3.030 0.1354E-2 1.639 9.713 — —
Second Branch

5.0001 0.01461 0.1500E-6 2438, 13950. — —
5.001 0.04619 0.4743E-6 230.9 1321. 0.1173E-3 0.6709E-3
5.01 0.1460 0.1525E-5 23.14 133.0 0.3553E-4 0.2043E-3
5.1 0.4608 0.9968E-5 2.488 14.90 0.2486E-4 0.1489E-3
5.5 1.021 0.1130E-3 0.6649 4.444 0.7542E-4 0.5041E-3
6.0 1.427 0.4424E-3 0.4628 3.394 0.2069E-3 0.1517E-2
6.5 1.728 0.1145E-2 0.4184 3.292 0.4923E-3 0.3872E-2
7.0 1.974 0.2406E-2 0.4184 3.485 0.1084E-2 0.9023E-2
7.5 2.184 0.4375E-2 0.4406 3.852 0.2382E-2 (.2082E-1
7.8 2.297 0.5915E-2 0.4615 4.141 0.4959E-2 0.4449E-1
7.9 2.333 0.6484E-2 1.4696 4.248 — —

Table 2: Existence and inclusion results for problem (7.4)
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8. APPENDIX: SOLVABILITY AND REGULARITY RESULTS

In this final section, we briefly refer to some results concerned with the theory of elliptic
boundary value problems and with Sobolev spaces, which are needed in the course of
this article. In particular, we will mention solvability results for linear problems in the

space HE(Q).

8.1. Sobolev’s Imbedding Theorem

In various places of this article, Sobolev’s Imbedding Theorem (providing bounded
imbeddings) and its extension by Rellich and Kondrachov (which yields compact imbed-
dings) is needed. Here, we will give a formulation for bounded domains © with Lipschitz-
continuous boundary 89, which is sufficient for our present purposes. A general formu-
lation can be found in [2, Thm. 5.4 and Thm. 6.2].

Theorem A.1. (Sobole'u-Rellich-Kondrachov): Let Q@ C IR™ denote a bounded domain
with Lipschitz-continuous boundary 0Q, and let j,k € IN, j > k, and p.q € (1,00),
a€|0,1).

e) If
1

q

then H; ,(Q) C Hi 4(), and the identity map H;p(Q) — Hyi () is bounded. (These
two statements together are usually abbreviated by saying that the imbedding H; ,(Q) —
Hi o () is bounded.)

2

S|

3 |

, (A.1)

W=

If j > k, and if the inequality in (A.1) is strict, then the imbedding H; p(2) — Hy 4(Q)
18 compact.

b) If (A.1) holds with q = oo, with k replaced by k + a, and with strict inequality if
a = 0, then the imbedding H;,(Q) & Cx1a(Q) is bounded. The same imbedding is
compact if the inequality is strict.

8.2. Solvability in HP(Q)

In this subsection, we will prove a simple solvability result for the boundary value
problem

u€ HP(Q), Llul=-Au+b-Vutcu=r onQ, (A.2)

under the assumption that the tripel (Q,T¢,T'1) is regular, which means that, for some
o € IR, the boundary value problem

u€ H2(Q), —Aut+ou=r on (A.3)
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is (uniquely) solvable for each r € L,(Q) (see Section 1).

Theorem A.2. Let (Q,T¢,T,) be regular, and let b € Loo(2)™, ¢ € Ly(Q) for some
p>mn, p > 2 Suppose that L is invertible on HPZ(Q), i. e., that the homogeneous
problem (A.2) (r = 0) has only the trivial solution. Then, problem (A.2) has a unique
solution for each r € Lo(Q).

Proof. Due to the regularity assumption, the operator —A + o : HB(Q) - Ly(Q) is
one-to-one and onto. Moreover, it is obviously bounded. Thus, the Open Mapping
Theorem provides the boundedness of (—A + o)~ : Ly(Q) — Ha().

Furthermore, the mapping ¢ : Hy() — Ly(Q), ¢(u) := b- Vu + cu, is bounded since
Hélder’s inequality and Sobolev’s Imbedding Theorem provide, with ¢ := 2p/(p — 2)
(:= oo if p = 2), that

leC)llz < Nlblloo I Vullz + llellpliully < Cllulla, for u € Hy(S).

Finally, the imbedding H,(?) — H,(Q) is compact due to Sobolev’s Imbedding Theo-
rem. Altogether, the operator K : Hi(Q) — H(Q), Ku := (—A + o) ou — p(u))], is
(linear and) compact, so that Fredholm’s alternative holds for the problem

u€ Hi(Q), u=Ku+(-A+o)1r,

which is obviously equivalent to problem (A.2). Since the homogeneous problem has
only the trivial solution, the assertion follows. |

8.3. Regular triples (Q,T,T)

The solvability result of the previous subsection relies on the fact that (2,T6,T) is
regular. As already mentioned in Section 1, the complete class of regular triples seems
to be unknown. After Lemma A.1, we will list some general examples of regular triples
which show that this concept has sufficient generality.

Lemma A.1. Suppose that 'y and Ty are piecewise Co-hypersurfaces, with principal
curvatures bounded from above, and that, for some o > 0, problem (A.3) is solvable for
a set of functions r which is dense in Ly(Q2). Then, (R,T9,Ty) is reqular.

Proof. Integration by parts shows that || — Au + oull3 > o?||ul)? for u € HE(Q), so
that (4.25 a) holds for Ky := 0™!, with L := —A + 0. Lemmata 4.5, 4.6, 4.7 show
that also (4.25 b, c, d) hold for suitable constants. Consequently, (—A +¢)" ! : D C
Ly(Q) - HE(Q) is bounded, with D denoting the dense subset of L,(2) provided by
our assumption. (—A + ¢)! can therefore be continuously extended to a bounded
linear operator T' : Ly(Q) — HP(Q). Since (—A + o)T : Ly(2) — Lo(Q) is bounded
and (—A + o)7T|p = idp, it follows that (-A+a)T = idg,(q). Thus, for r € Ly(9),
Tr € HP () solves problem (A.3). ]
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Examples of regular triples

1) (2,T4,T4) is regular if 8Q is a global Cy-hypersurface and, moreover, Q = I’y or
02 =T'. See [12], Lemma 18.2 (and Lemma 19.1 in connection with problem (6) after
Theorem 19.4) for the case dQ = Iy, and Theorem 19.3 for both cases 9 = I'y and
o =Ty

2) The results just mentioned may be carried over to “regular” mixed boundary value
problems where each connected component C of 99 satisfies C C 'y or C C T'y, and
to domains with a Cq ;-boundary (which may locally be parametrized by a C;-function
with Lipschitz-continuous first derivatives).

3) Let Q,To, Ty have the property that the eigenvalue problem ¢ € HP(Q), —Ap = Ap
on , has a complete system (p;)jenv of orthonormal eigenfunctions ¢; € HE(9Q),
and that I'y,I'; are piecewise Co-hypersurfaces with principal curvatures bounded from
above. Then, (Q,T¢,I'1) is regular due to Lemma A.1 since the set of all functions
r o= Eﬁ__l ajp; (with N € IN, a; € IR) is dense in L;(Q2), and the boundary value

problem (A.3) is solved, for such r, by u := E 1(Aj+0) Y ajpj, with (A;)jen denoting

the sequence of correspondmg elgenvalues and o # —)j for all j. (Compare [24, Chap.
3, Sec. 9].)

In particular, this assumption holds for many domains with known eigenfunctions, such
as rectangles (in arbitrary dimension) with each side belonging completely either to I'
or to ['y, circular disks, balls and shells, circular sectors (in two dimensions) and circular
cones (in higher dimensions) with each “side” (including the spherical part) belonging
completely either to Tp or to T'; and with interior angle 9 € (0,7]. If n = 2 and [y and
T; “meet” at the angular point, 9 must further be restricted to (0, 7). Moreover, each
cylinder © := Q x (0,T) C R™, with Qc R*! denoting a domain of one of the types

considered above (for instance, a domain with Cp-smooth boundary), has the desired
properties.

4) Suppose that 9Q = Ty and that Q@ may be mapped by a Cy ;-diffeomorphism ¢
(i.e., a C;-diffeomorphism with Lipschitz-continuous first derivatives) onto Qq, with Qg
denoting a domain such that (Qo, 80, #) is regular. Moreover, let 8Q be a piecewise Co-
hypersurface, with maximal principal curvature bounded from above. Then, (£2,89,0)
is regular. This can be seen as follows: The boundary value problem (A.3) is equivalent
to the following problem for v :=uo0¢™!, s :=ro ¢!

ve HE(Q)

n

Lo[v]:z—z ”8 8:01 Zb -+ov=s on

i,5=1

(A.4)

where A = (a;;) 1= (J[¢] - J[¢]*) 0 ¢71, b = (bi) := (A¢) 0 $~!. Without going into
details we state that estimates of the type (4.25) may also be derived with L(") :=
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“A+o+7(Le+A-0) (0 £7 <1)and Q in place of L and 2, with uniform
constants for 7 € [0,1]. Using this a priori estimate and the regularity of (2,80, 0),
and applying the usual continuation process along 7 € [0,1)] (compare [24, p. 111 f.])
we obtain that problem (A.4) has a unique solution and thus, (2,89, 9) is regular.

For example, (2, 98, 0) is therefore regular for parallelepipeds (in arbitrary dimension),
triangles (in two dimensions) and cones, which may be mapped Cj ;-diffeomorphically
onto rectangles, circular sectors and spherical cones, respectively.

5) Let Q ¢ IR? denote a convez polygonal domain, and let Ty, I’y € 99 be such that
each "side” of O belongs completely (with possible exception of its endpoints) either
to Iy or to I';. Suppose further that, in angular points where I’y and I'; “meet”, the
interior angle is not larger than 7/2. Then, (Q, [y, T1) is regular, which can be seen as
follows.

According to Lemma A.1, it suffices to prove that problem (A.3), with ¢ := 1, has a
solution for each r € Coo(§2). Let

ue HB(Q):={we Hi(Q): w|r

denote the (weak) solution of the problem

/[Vu -V +uplde = /rcp dz for all p € HE(Q). {A.5)
Q Q

Let &),...,én € OQ denote the corners of Q, and choose circular sectors ..., Qn C Q,
with vertices {1,...,&n, with sides being parts of the sides of Q which are adjacent to
the respective corner of Q, and with radii such (small) that Q; N Q; = @ for i # j.
Moreover, choose some subdomain ¢ C  such that £, D Q\ Ufil Q, & ¢ Q for
t =1,...,N, and that 8% \ 8§ has positive distance from the circular parts of 9%;
(:=1,...,N).

Due to well known regularity results (see, e. g., [13, 24)), uln € COO(QO) and u satisfies
the differential equation —Au + u = r on § and the boundary condition Blu] = 0 on
00 N 8 in the classical sense. Since o may be chosen arbitrarily ”close” to 2, the
differential equation holds on €, and we are left to show that u € HZ(Q).

Fori € {1,...,N}, let ¢; € Coo(Q:) be chosen such that d; /v = 0 on 3 NTy, ¢; =0
in some nexghborhood of the vertex point £;, and ¢; = 1 on the circular boundary
part of Q;. Let To,; denote the union of I'y N 882; and the circular part of 99Q;, and
Iy,i = 0% \ To,i. The boundary operator B; for 9Q; is defined accordmg to this
subd1v151on of 09 The boundary value problem

vi € HP (D), (—A+1wi=r—(=A+1)(shu) on Q, (A.6)
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has a solution due to example 3) above. Consequently, since d(v; + 9;u)/0v = 0 on
I‘\l,ia

/[V(v,' + viu) - Vo + (vi + Yiu)pldz = /r(p dz (A7)
Q; Qi

for all ¢ € H1(£2;) vanishing on I'p ;. Since each such ¢ may be extended (by zero) to 2,
so that a function ¢ € HE(Q) arises, (A.5) shows that (A.7) also holds with u in place
of v; + th;u. Since u — (v; + v;u) vanishes on I'g; (regard that 1); = 1 on the circular
part of 0€;), it follows that

u = v; + ¥;u on £;. (A.8)

A.6) implies, via the definition of HZ/(£);), the existence of a sequence 0P in
2 H keIN

C2(Q_i) such that Bi[v,(k)] = 0 on 99;, and (vgk)) converges to v; in H2(€;). Since ;u €
Coo(€;) and Bly;u] = 0 on 9Q; N 9N (observe that 1; vanishes in some neighborhood
of the vertex &;), the sequence

ugk) = vgk) + Yiu
in C3(Q;) satisfies B[ugk)] = 0 on 9Q;N0Q, and converges to u|Q' in Hy(€;) due to (A.8).

Now let (®g,...,®n) denote a Coo-partition of unity subordinate to the covering
(Q0,...,9n) of Q, such that 0%;/0v =0on T, for : = 0,...,N. Then,

N
u® = ®qu + Z @iugk)

i=1

defines a sequence in C»(§) satisfying B[u(¥)] = 0 on 9%, and converging to u in Hy(Q).
Thus, u € HE(Q).
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