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PREFACE

This volume is the result of the IMACS-GAMM International Workshop on Validated
Computations held at the University of Oldenburg (Germany) from August 30 to Septem-
ber 3, 1993. The intention of this workshop, in which 29 scientists from 10 countries took
part, was to bring together experts in some selected areas of the application of interval
arithmetic in the development of algorithms with result verification. Most of the talks
delivered during this meeting were supposed to be survey talks or expository contributions
on the fields represented by selected speakers. Among them were presented applications
in numerical linear algebra, solving nonlinear equations, eigenvalue problems, ODE’s and
PDE’s, and optimization. Since it is now 20 years ago that the monograph of G. Alefeld
and J. Herzberger “Einfihrung in die Intervallrechnung” appeared, the choice covered
by this volume was according to the following idea: some of the papers should give an
updated survey of how things have developed during the years after the appearance of the
book — for example, the chapters on interval Newton methods and iterative methods of
including the inverse of a matrix — but the main portion of the contributions should deal
with areas of applications which were not included in the monograph, mainly because
of lack of convincing results at that early stage of interval arithmetic. Just to mention
a few of them: optimization, applications in PDE’s and eigenvalue problems. In this
sense, this volume is thought to be a kind of continuation of the old monograph. In
order to make this volume easily readable, the notations are unified and introduced in
a first introductory chapter with some basic facts about interval arithmetic. Here, the
main ideas and properties of the interval operations are summarized with some notations
differing from those chosen in the old monograph taking into account the development of
the last two decades in interval arithmetic literature. Again in this volume, there exists
a kind of appendix, although not explicitly announced as such. Firstly, there is a chapter
with instructions how to implement the algorithms nowadays described in this volume
by reviewing the enormous progress having been made in the design and creation of pro-
gramming environments for this purpose (compared with the old-fashioned ALGOL 60
procedures in the monograph mentioned). Secondly, there is a short critical report on the
complexity of some common problems in interval analysis where we want to calculate op-
timal solutions. Last, but not least, as a reference to the numerous practical applications
of interval arithmetic, we want to mention the chapter on selected examples for solving
nontrivial problems in engineering.

The purpose of this volume is to provide the interval analysis community with surveys of
some important recent developments in the creation of validated numerical algorithms in
the form of a book with non-overlapping chapters written by several experts in their fields.
At the same time we want to inform the numerical analysts and the appliers of numerical
software about the enormous variety of problem-solving algorithms now available, even
for sophisticated problems which were out of reach at the beginning of research in this
direction some two decades ago. This volume is self-contained and offers the interested
reader applications in nearly all main branches of numerical analysis, and i1t can be used
as an up-to-minute textbook for studying advanced interval algorithms.

We want to express our sincere gratitude to the spounsors ol the international workshop,
Volkswagen-Stiftung, Ministerium fir Wissenschaft und Kultur des Landes Niedersachsen
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and the Universitatsgesellschaft Oldenburg e.V., and to all participants for their encour-
aging discussions during the presentation of these papers.

Oldenburg, May 1994 J. Herzberger
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Inclusions for Eigenvalues of Selfadjoint Problems

H. Behnke® and F. Goerisch?

sTU Clausthal, Institut fiir Mathematik, Erzstraie 1
38678 Clausthal-Zellerfeld, Germany

¥TU Braunschweig, Institut fiir Angewandte Mathematik, Pockelsstrae 14
38106 Braunschweig, Germany

1. Introduction

Numerous problems from both the natural and engineering sciences, as well as some
important questions within mathematics, lead to eigenvalue problems. The class of self-
adjoint eigenvalue problems is arguably the most important class of eigenvalue problems,
because numerous problems that occur in practice belong to this class, and happily, far-
reaching results can be obtained for selfadjoint eigenvalue problems as a consequence of
the theory of selfadjoint operators.

A selfadjoint eigenvalue problem is an eigenvalue problem of the form

“Find pairs (A, ®) € I x D such that ® #0 and (1)
M(f,®) = IN(f,®) forall fe D",
here M and N are Hermitian sesquilinear forms. If M is positive definite, (1) is called
left definite; if M is positive definite, (1) is called right definite.

We begin with the properties assumed for the left definite case, which we will need
below:

L1: D is a vector space over IK (JK = R or JK = C); M is a Hermitian sesquilinear
form on D. M(f,f) > 0 holds for all f € D, f #0.

L2: N is a Hermitian sesquilinear form on D.

For the corresponding properties that are assumed in the right definite case, see section 3.

It is a lamentable truth that eigenvalue problems that are important in practice can
rarely be solved in closed form; one must generally rely on numerical methods. Most
numerical methods simply provide approximations for the eigenvalues, but they do not
make it possible to state how far away the computed value is from the true eigenvalue.
Since selfadjoint eigenvalue problems that are either right or left definite can only have
real eigenvalues, the problem of obtaining approximations and corresponding error bounds
is equivalent to the determination of upper and lower bounds for the eigenvalues.

The large interest shown in eigenvalue bounds, not only by mathematicians, but also
by physicists, chemists, and engineers has many reasons. We name three of them here:

1. Bounds for eigenvalues {as opposed to approximate values) can be used to prove
certain mathematical theorems; for example, existence and inclusion statements for
solutions to nonlinear boundary value problems by means of M. Plum’s method [34].
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2. Lower bounds for eigenvalues are necessary in order to compare predictions of phys-
ical theories with experimental results; for example, fine structure corrections in
quantum mechanical problems.

3. The knowledge of bounds for eigenvalues makes it possible in many cases to deter-
mine the reliability of approximation procedures.

For a large class of problems, good upper bounds for the positive eigenvalues can be
determined relatively easily by means of the Rayleigh-Ritz procedure (see Theorems 11
and 14). Basically, there are three classes of methods for computing lower bounds for
eigenvalues (disregarding methods with a very limited scope of application):

1. methods based on inclusion theorems,
2. the method of intermediate problems, and
3. the method of orthogonal invariants.

The methods depending on inclusion theorems go back to G. Temple [41], L. Collatz
(12), and N. J. Lehmann [28, 29]. For these methods we need rough @ priori information
on the location of one of the eigenvalues and furthermore require pairs (v,w) of trial
functions (see Example 1 for further explanation). The method of intermediate problems
was discovered by A. Weinstein [44] and has been refined by N. W. Bazley, D. W. Fox
[4] (cf. [16]) and C. Beattie [5, 6]. For this method, one needs the eigenvectors of a
neighbouring eigenvalue problem in closed form. The underlying idea for the method of
orthogonal invariants can be found for a special example as early as 1933 by E. Trefftz [42].
It was later developed to a widely applicable method by G. Fichera [15]. For the method
of orthogonal invariants, an eigenvalue problem with a compact operator is considered (an
integral operator in most cases), then detailed information on this operator is required.

Until 1989 no one paid attention to the possible influence of rounding errors in the
calculation of bounds using these methods. As a consequence, some published results are
not correct. Only through the use of computational tools developed by U. Kulisch (25, 26]
and his students G. Alefeld, J. Herzberger (3], and S. M. Rump [36] (cf. [23, 24]), has the
control of rounding errors become possible.

In our opinion, the methods which are most suitable for use in conjunction with inter-
val arithmetic methods belong to class 1 mentioned above. Hence, we will restrict our
discussion to methods from this class.

Before we describe the theory for the procedures of class 1 systematically, we will
illustrate the most important points by means of a simple example.

Example 1

“Find A€ R, ® € C?[0,7], ® #0 such that
—-®"(z) = A(l +sin(z))®(z) forz € (0,7) (2)
®(0) = ®(r)=0"

This problem can be found in [12, page 176] (“buckling of a simply supported bar”), where
there -are also upper and lower bounds for the smallest eigenvalue given. Problem (2) is
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equivalent to (1), if we define I = IR,

D := {fECz[O,ﬂ'] : f(0)=f(7l')=0},
Mf,9) = [ 1(@)g(2)da,
N(f,9) = [(1+sin(@) f(z) o(z) do.

The equivalence can be shown by means of integration by parts. Ifv € D, v # 0, the
Ragyleigh quotient ﬁ((;)’:;)) yields an upper bound for the smallest eigenvalue A; of (2).

Using v(z) := sin(z), we obtain

M < 3

<0. .
_37r+8_0540884

Since problem (2) is right definite as well as left definite, Temple’s theorem both for right
definite and for left definite problems can each be used to compute a lower bound for \,.

If we use the fact that N is positive definite, then we can proceed as follows: first, we
choose v € D, v # 0 and determine a w € C[0, 7] such that

M(f,v) = N(f,w) fordll f € D.

Secondly, we obtain a (rough) lower bound p for the second smallest eigenvalue, for in-

M(v,v)
N(o,0)’ then the

will be a lower bound for A\y. Now, for v(z) =

stance by means of a comparison theorem (see Theorem 10). If p >
M(w,w) — pN(v,v)
N(v,5) — pM(v,0)
sin(z)
1+ sin(z)’

Temple quotient

sin(z), we obtain w(z) = Since 1 +sin(z) < 2 holds true, the eigenvalues of

the problem

~8"(z)
3(0)

A2®(z) forz €(0,7)
o(r)=0

(which can be solved in closed form), are lower bounds for the corresponding eigenvalues
of (2). Hence, we can choose p = 2, and we obtain as a lower bound for Ay,

127 — 24
L
3r+16 — '

Were we instead making use of the fact that M is positive definite, we would proceed
as follows: Choose v and p as in the right definite case and determine w so that

M(f,w)y=N(f,v) foradl fEeD. 3)

0.538809 <

Hence, the function w must be the exact solution of the boundary value problem

—-w"(z) (1 +sin{z))v(z) forz € (0,n)
w(0) w(r) =0.
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M(v,v)

Now if p > N(v,v)’ the Temple quotient M(v,v) = pN (v, v)

N(v,v) - PM(wvw)
M. Using v(z) = sin(z), we find w(z) = § (sin*(z) + 4 sin(z) — z? + 7 z), and we obtain
an improved lower bound for Ay:

8(3 7 + 16)
0.540184 < 273 +397 +192 —

The procedure for left definite problems yields better lower bounds for problem (2) than
the procedure for right definite problems. It has been shown in [18], that this is the case
for a large class of problems independent of the choice of trial functions. For this reason,
the procedure for left definite problems has attracted exceptional interest. We will deal
first with such problems where M is positive definite in the next three sections.

For eigenvalue problems more complicated than Example 1, it is frequently far more
involved or perhaps even impossible to find a w which satisfies equation (3) exactly. If w
cannot be computed exactly, but a good lower bound —B for —M(w, w) is known, then
we obtain the inequality

M(v,v) — pN(v,v) _ M(v,v) — pN(v,v)
N =pB < Nio,0) — pM(w,w) = “

We will turn to the question of how to determine such a B in section 2.

If upper bounds are to be computed by means of the Rayleigh-Ritz procedure not
only for A, but also for eigenvalues with higher indices, eigenvalues of symmetric matrix
eigenvalue problems have to be determined. Similar computational tasks are also involved
for the determination of lower bounds. We will explain this in sections 3 and 4. A
corresponding theory for right definite problems will be outlined in section 5.

By the theorems of sections 3, 4, and 5, the problem of determining bounds for the
eigenvalues of (1) will be reduced to the problem of determining bounds for eigenvalues of
matrix eigenvalue problems with high and guaranteed precision. We address this problem
in section 6. In section 7 we illustrate the power of the methods by means of numerical
examples.

Though the main purpose of this paper is to survey an important class of existing
procedures, this paper also contains numerous new results, particularly in sections 2

and 7.

will be a lower bound for

2. Construction of Complementary Variational Principles
If we define
F(f) :=N(f,v) forall feD

(with v as in (3)), then F is a linear functional on D and (3) has the form of a linear
equation with bilinear forms:

“Find u € D such that 5)
M(f,u)=F(f) forall feD".

For the solution u, the following variational principle is well known:

— M(u,u) = min{M(f, f) = F(f) = F(f) = feD} (6)
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Unfortunately, this variational principle does not provide a mechanism to construct the
constant B which is necessary in (4). For this purpose, we need instead a variational
principle complementary to (6). We will proceed to formulate an abstract complementary
variational principle, which appears to include all such principles that are important in
practice, as special cases. Toward this end we need to introduce a further assumption:

L3: X is a vector space over IK; B is a Hermitian sesquilinear formon X;and T : D — X
is a linear operator. B(f, f) > 0 holds for all f € X and M(f,q) = B(T f,T g) for
all f,ge D.

From this assumption, we obtain the following general complementary variational prin-
ciple:

Theorem 1

If L1 and L3 are satisfied, if F is a linear functional on D, and if u is a solution of (5),
we have ’

— M(u,u) = max{-B(g,9) : g€V} ' (M

where
Vi={geX : B(Tf,g9)=F(f) foral feD}. (8)

Proof: Let g € V. Then we have 0 £ B(Tu—g¢,Tu —g) = M(u,u) — F(u) — F(u) +
B(g,9) = B(g,9) — M(u,u). Because of T u € V, this yields the assertion. O

In Theorem 1, the assumption L3 can be replaced by the somewhat more geometric
condition

L3*: (X,B(.,.)) is a pre-Hilbert space over JK. T is an isometric linear mapping from

the pre-Hilbert space (D, M(.,.)) to (X, B(.,.))-

In applications, the weaker assumption L3 is often easier to use, however.

Whether the variational principle (7) is useful in practice or not depends on how labo-
rious it is to find elements in V. In the following we will give a general procedure which
shows how X, B, and T can be constructed so that elements from V are easy to find. But
first, we will show two possible choices of X, B, and T for a particular problem, namely
the Neumann boundary value problem of potential theory. (For a definition of Sobolev
spaces, which we use in our examples, see [13, 43].)

Example 2
Let 2 C IR? be a bounded, conver domain with a polygonal boundary 3Q and let h € Lo(Q2).
The quantities from L1 are defined as follows:

K:=R, D:={feH(Q) : /nfdzdyzo},

095, 0/

Eaz ayay)dxdy fOT f7g€D7

M(f,9):= [ (
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Additionally, define
F(f) :=/ﬂfhdzdy for feD.

Now, problem (5) is the weak form of the boundary value problem —Au = h in Q, 2 0 =0
on 09, fnuda:dy =0. Let v; € R with v, > 0 and

/(( )d:cdy > 71/ fldxdy forall feD

(Poincaré’s znequality). Then the quantities X, B, and T defined by

X:=DxLy®), Tf:= (;) for feED, ©)

((ﬁ) (g°>) = /‘](%_f_:;g%gf_*_ 8foago)d dy+’71/(f191 fogo)dz dy
B 2) .
satisfy assumption LS. If we define

. f . of _
%'_{(f+7f‘(h+Af)) €X : feHAMND, 57=0 on 50}, (1)

Vo C V holds true (referring to the V defined in (8)). Hence, elements from V can be
found relatively easy.

There is a second possibility for choosing X, B, and T. Let v, € IR with 42 > 0 and
/(( )’ +( )dzdyZ’yz/anf’ds forall feD

(Poincaré’s mequality and trace theorem). The quantities X, B, and T are defined by

f

(5. (2 L33 o s

X:=Dx L(09), Tf:= (f) for feD,

for (‘jf{)) , (z‘:) € X, thus the assumption L3 is satisfied. If we define

vo:={(f_ 2fl(_,:))ex : feHXQ)ND, ~Af =h in Q},

then Vo C V holds true and again elements of V can be found relatively easily.
With these two different choices for X, B, and T, elements from V can be constructed
either by satisfying the boundary condition or by satisfying the differential equation.
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Now, the procedure for constructing X, B, and T and obtaining elements from V, as
illustrated by means of Example 2, shall now be formulated in a general way. For this
purpose, we need to consider additional assumptions beyond L1.

V1: D is a vector space over JK which contains D as a subspace. 'ﬁ‘;t is a Hermitian
sesquilinear form on D. M(f, f) > 0 holds for all f € D and M(f,g) = M(f,9)
for all f,g € D.

V2: Y is a subspace of DJ and r € IN. Fori =1,...,r we denote by (H;,{(.,.);) Hilbert
spaces over IK, T; : D — H; and M; : Y — H; are linear operators so that

M(f,g) = Y (T:f, Mig); holdsforall fe D,geY. (12)
=1

V3: F is a linear functional on D. Let h; € H; for : = 1,...,r be such that

P

F(f) =3 (T:f k)i forall feD. (13)

=1
V4: There are real constants ¢; > 0 and «; € {0,1} (: =1,...,r) such that
M(f, ) 2 3 mg(Tf, Tef i forall f e D. (14)
=1

Following Definition 2 below, we will explain how to choose the quantities appearing
in V1, V2, V3, and V4, such that we obtain the results of Example 2 as a special case
of the procedure given in the next two theorems. An example with a partial differential
equation of fourth order is discussed in 7.3.

Theorem 2
If assumptions L1, V1, V2, and V4 hold true, the quantities X, B, and T defined by

X = DXHH.‘,

=1
go fo 9o
2D = Mog0) + S miaslli gk — o Tagok) for | [, |%] € %,
=1 . .
f
Tf = TI:f for feD
T.f

satisfy L3.
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Proof: The proof is elementary. O

In order to construct elements from V' (see (8)), we need to introduce further notation.

Definition 1
If assumptions L1, V1, V2, V8, and V{ are satisfied, we define

. Tof — 7'My f gi'thy
G:Y-][[H:, Gf:= : for fEY, and z:= :
= T.f - ¢ 'M.f g 'hs

With this definition, we obtain

Theorem 3

Let assumptions L1, V1, V2, V8, and V/ be satisfied and let X, B, and T be defined as
in Theorem 2. Ifg€ Y and

(l—lc.')(M;g—h;):O for i=1,...,1‘, (15)
9 =

then we have B(T f, (G’g 4 z)) = F(f) for all f € D.

Proof: For all f € D the following holds true:

B(T f, (Ggg+ Z)) B(f,9) + 32 Ki(Tef, 4(Tig — g7 Mig + g7 ko)) — (T, aTig)y)

=1

D AT, Mig)i + 3 kil Tif  hi — Mig)s = 3 (Tif, hi)i = F(f). B
i=1 =1 =1
If the assumptions L1, V1, V2, V3, and V4 are satisfied, then by combining Theorem 1
with Theorem 2, we obtain a variational principle which is complementary to (6). Theorem
3 then supplies elements which are admissible for this variational principle. The numbers
k; from V4 play an important role here; these constants provide the coupling between
inequality (14), which is used for constructing the variational principle, and condition
(15), which has to be satisfied for the construction of admissible elements. Frequently,
the determination of admissible elements can be simplified considerably at the price of
using a more complicated inequality in (14); this can be of great importance in practice.

Definition 2
Assuming that L1, V1, V2, V3, and V{ are satisfied, we define V4 by

V0:={(Ggg+z)€X :g€Y, (1-k)(Mig—hi)=0 for i=1,...,r}.

If X, B, T are defined as in Theorem 2 and V as in Theorem 1, we have V, C V
due to Theorem 3. Thus, Vj, contains those elements admissible for the complementary
variational principle (7), which can be constructed by means of Theorem 3. The question
whether the set V even may be replaced by V; in the variational principle (7), will be
answered further down by Theorem 4.
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Now we show how the particular choices for X, B, T, and V4, that we gave in Example 2
(which presented itself intuitively) can be obtained systematically by the general procedure
just described. Recalling the assumptions and notations already given for Example 2
above, we define the quantities appearing in V1, V2, V3, and V4 as follows:

D:D’ M:M, Y=H2(Q)ﬂD, 7'=2,

Hy = Lo(Q), ()= [ fgdady for f,g€ Hi,

Hy = Ly(09), (f,9)2 :=/mfgds for f,g € H,,
Tuf:=f for feD, Tof :=f for feD,
Mif = —Af for feY, sz:=%{- for feY,

hyi=h, k1:=1, qu:=m, ha:=0, k3:=0, g :=1.

Now we construct X, B, T, and V; according to Theorem 2 and Definition 2, and obtain
the following equations:

f
X =D x Ly(R) x Ly(8Q), T f:= (f) for feD,
f

Jo
B((f) ( ) /(%ﬁ)%‘f 3f0390)d dy+71/(f1g1 fogo)dz dy

for {fil.{e1| € X, and
fa g2

f
V0:={(f+7;1(h+Af)) €X : feH%Q)nD,Z—i:O on 90},
f

which are the same as (9) - (11), if the unnecessary third component is omitted.
If we define hy := h, &k, :=0, q1:=1, hy:=0, k2 :=1, ¢ := 72 (and the other
quantities as above), we obtain the second possibility of our Example 2:

f
X :=D x Ly(Q) x Lo(89), T f:= (f) for feD,
f

B(( ) ( ) '/(%J:?%g; %a—g)d dy +72/ (f2g2 — fogo)ds
f2
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for | fil,|on]€X,and
fa 92
f

Vb::{( f )EX:fGHz(Q)ﬂD, —~Af="h in Q}.
f-w'§L

This is again the same result as in Example 2, if the unnecessary second component is
omitted.

By the considerations described above, the problem of establishing a variational prin-
ciple complementary to (6) has been reduced to the problem of determining quantities
with the properties mentioned in V1, V2, V3, V4. What we still need are rules of how
to construct these quantities. For a variety of different classes of linear equations, we
can establish such rules; we will demonstrate this below for a class of boundary value
problems with ordinary differential equations.

Example 3
Assumptions and notations: Let m € IN, a, b€ R, a <b;

let p; € C'[a,b] such that pi(z) >0 forz € [a,b],i=0,...,m;h € Cla,b];

let 0i(a) € R,0i(b) € R, such that o;(a) > 0,0i(b) >0, for i=0,...,m—1;

let i(a) € R,ni(b) € R, for i=0,...,m—1;
a €{0,1},8 € {0,1} for i=0,....m—1.
Lif := f:(—1)’=-‘(pkf<'=>)<’=-‘) for f€C™a,b],i=0,...,m.

k=i

Boundary value problem under consideration:

u € C*[a,b], Lou=#h,

(1 - a))ut(a) + ai(oi(a)ul)(a) — Liyiu(a)) = aymi(a) for i=0,...,m~1, (16)
(1 = B;)ul)(b) + Bi(o:(B)ut(b) + Lipu(b)) = Bimi(b) for ¢ =0,...,m—1.

If a; = 0, then the corresponding boundary condition at a is essential (stable), otherwise
it is natural (unstable). (The same holds true for fB; and b.)

Weak form of (16): In order to formulate the boundary value problem (16) in terms of
sesquilinear forms, we define IK = R;

D:={f€C™a,b] : (1-0))fVa)=(1~B)fDb) =0 for i=0,...,m—1},
M(f,9) = TLo L pifVgWdz + £ 0y(a) fD(a)g)(a)

+ TG o)) fO(b)g(b) for fgeD,
F)i= [ Fhds 4 S [O@na) + S £O0m(e) for feD.

=0
Obviously, assumption L1 is satisfied.
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For all f € C™[a,b), g € C?*™[a,b] we have

m m—1
S [ 5Oz = [ fLogds + 3 (1) Liarg(h) ~ (@) Eanola) (1
i—ove a :

=0
(integration by parts); this implies that (16) and (5) are equivalent.

Definition of the quantities appearing in V1, V2, V3: We construct D by “omitting”
some of the boundary conditions occuring in the definiton of D. Which of the boundary
conditions will be omitted, is controlled by the choice of certain numbers &;, B;.

Precisely, we assume £ € {0,1}, &;,0; € {0,1} for i = 0,...,m — 1 and define the

quantities appearing in VI, V2, V3 by

D:={feCma,b : (1-&)(1 - ) fa)=0 for i=0,...,m—1,
(1=8)1=B)fB)=0 for i=0,...,m— 1},

M(f,9) =T R pifO9Vde + T75 0i(a)f9(a)g®)(a)

+ TEG ai() fO(b)g)(b) for f,ge D.
Y := DN C*™[a,b],
ri=2m+1,

H: = Lz(a’b) for i=1,
TR for 1=2 ... ,r,

(f,q); = 2 fgde for f,ge Hy,i=1,
TR fe for fig€ Hi,i=2,...,r,

f for i=1,
T:f :={ f6Ma)  for t=2...,m+1,
FEm=2(b) for i=m+2,...,r,
for f € D,

Lof for i=1,
M f = { ai_2(0i2(a) fC~D(a) — L~ f(a)) for i=2,....m+1,
ﬂi—m-—z(ai—m—-2(b)f(i_m—2)(b) + Li—m—lf(b)) f01‘ 1= m+ 2, ceey T,
for fevy,

h for i=1,
h; = { o-2Ti—z(a) for i=2... m+1,
Bi-m-2Ti—m—2(b) for i=m+ 2,...,r.
Using (17) we can easily show that V1, V2, V3 are satisfied.
Definition of the quantities appearing in V4: First of all we determine positive real num-

bers v1,...,4: such that

- m-1 . m~1 . .
M(f, f) > én /: fidz + E &vir2(fNa)? + Y Biviemsa(fO(b))? (18)

=0 =0

holds true for all f € D. The quantities appearing in V4 are defined by
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¢ for 1=1,
n,-::{c:tg_g fori=2,...,m+1,

Bi—m—a for i=m+2,.
and g; := ;. Then obviously assumptzon V4 is satisfied.
Choice of ¢, &, fi: All quantities appearing in V1, V2, V3, V{ are determined by the
definitions we have just given; however, the question how the numbers €, &;, B: used in the
process shall be fized, is not yet answered. In order to establish a rule for the choice of ¢,
&, B; we consider the following: If we want to determine elements according to Theorem
3, which are admissible for the complementary variational principle (7), we need functions
g with the property g € Y, (1 — x;)(Mig — b)) = 0 for i = 1,...,r. This condition is
equivalent to

gec2m[a’b], L09=h lf €=0

(1 — )9 (a) + ai(oi(a) g (a) — Lis19(a)) = ciri(a)
forall ie NU{0},i<m—1 and & =0, (19)

(1 = B:)g® (b) + Bi(i(8) g(8) + Liy1g(b)) = Bimi(b) )
forall te NU{0},i<m—1 and B;=0.

In order to guarantee that the complementary variational principle (7) can be easily ap-
plied, we have to choose £ € {0,1}, & € {0,1}, B; € {0, 1} fori =0,. — 1 such that
we can find functions g satisfying (19) without any trouble. Obviously such a choice of €,
&;, P; is always possible.

For boundary value problems with partial differential equations, we can determine the
quantities appearing in V1, V2, V3, and V4 in a way which is analogous to the way just
described for boundary value problems with ordinary differential equations; a generalized
Green’s Formula (see [47, p. 229], [43, p. 31]) replaces (17).

Since we will use the complementary variational principle (7) for error estimation for
the solution of the linear equation (5) and for the calculation of bounds to eigenvalues of
equation (1), we need not only some elements g admissible for this variational principle,
but especially such elements, for which B(g, g) is a good approximation for M(u,u) (for
notation see Theorem 1). Now we will show, that we actually can obtain such elements
according to the construction procedure given in Theorem 3.

Theorem 4

Assume that L1, V1, V2, V8, and V4 are satisfied. Suppose X, B, T are defined as in
Theorem 2. For all f €Y let

A1l = (AL )+ 3 g (S, M

Letue DNY, Miu=h; fori =1,...,r. Then u is a solution of equation (5), and we
have

— M(u,u) = max{-B(g,9) : g € V}. (20)
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Furthermore, for all f € Y, which satisfy the conditions (1 — &:)(Mif — hi) =0 for
i=1,...,r, we have the inequality

57y 2) (6 /s o))~ M 2l A1

Proof: u solves (5) as a consequence of (12) and (13). Since Vo C V according to Theorem
3 (referring to (8) for V') , we obtain with (7) the inequality —M(u,u) 2 max{—B{g,9) :
g € Vp}. In view of

(o) s (o) (o =

this yields equation (20). — Now we consider an f € Y such that (1 - &) (Mif —hi) =0
- U f—u _ .
for i = 1,...,r. Because of (12) we have B((Gu+z> , (G(f—u))) = 0, using (21)
Ti(f —v)

and defining d := : , we obtain

T(f - )

B((G ff+ z) ’ (G ff+ Z>) - M
- oo /)~ (ot MEAE (u's2)
= B((fﬁu) B (d—G?f—u)> ’(f;u) B (d—G?f‘“)))

< 23((f;“) , (f;u))”B((d-G?f—u)) ’ (d—G?f—u)))
= 2||f —ul?

This completes the proof. O

Most of the well known complementary variational principles (see [10, 30, 43]) can be
stated in the form (20), where X, B, and T are defined as in Theorem 2 and Vb as in
Definition 2.

3. The Inclusion of Eigenvalues of Left Definite Problems by means of Com-
plementary Variational Principles

The results on complementary variational principles obtained in the preceding sec-
tion shall be tailored to finding inclusion intervals for eigenvalues. The basis for this is
Theorem 5. In order to formulate it we need in addition to L1, L2, and L3 a further
assumption:
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L4: There exist a sequence ();)ienv of eigenvalues of problem (1) and a sequence (®;)ien
of corresponding eigenelements such that

M(f,8:) = M N(f,9:) forall feD, i€ NN,

M(®;,®;) = bix forall i,ke IV,
N ) =S M IN(f, @) forall feD.

An approach to verifying the conditions of L4 will be discussed subsequent to the proof
of Theorem 3.

Theorem 5 (see [20])
Let assumptzons L1, L2, L8, L4 be satisfied. Furthermore, letne N, v; € D, w; € X for
i=1,...,n and p € R, p > 0. Suppose that

B(T fyw;) = N(f,vi) forall f€D,1=1,...,n. (22)
We define matrices Ao, A1, Az by
Ao 1= (M(vi, v&))ik=t,m » A1 1= (N (93, 0%))ik=t1,m » A21= (B(wi, W) )i k=1,.n

Let Ao—2p Ay + p*A; be positive definite; p; denotes for eachi=1,...,n thei-th smallest
eigenvalue of the eigenvalue problem

(Ao—pAl):E = [I.(Ao—2pA1 +p2A2).’E.

Then the interval [p — ,p) contains for all j € IN with j <n and p; <0 at least j

eigenvalues of the etgenvalue problem (1).

In order to prove the theorem we need the following lemma:

Lemma 1
Let assumptions L1, L2, L3, and L{ be satisfied. Furthermore, we assume

() pe RneR,0<n<pveD weX, BTv-pwTv-qu) <0
(ii) B(T f,w) = N(f,v) for all f € D;

(i) N(v,8) =0 for all i € IN with ); € [n, p)-

Then B(Tv — pw,T v — pw) = 0.

Proof of the lemma: Since B(T ®;,T &) = bix for i,k € IN due to L3 and L4, the numbers
o and B defined by

a:=B(Tv,Tv)— i |B(Tv,T ®)|*, B:=B(w,w) - iQ:IB(w,T@.-)I'2
=1

=1
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are non-negative because of the Bessel inequality. Using L3, L4, and (ii) we obtain
B(Tv—pw,Tv—nuw)
=at L5 M@, Q) = (p+m)N(v,0) +pn S+ o0 T2, IV (0, 8)F (23
=a+pnf+3Z (A~ p)(h — )V (v, ).

In an analogous way we obtain

B(Tv—pw,Tv—pw)=a+p B+ (A —p)2 N (v, 8)°. (24)
i=1

Since (A; — p)(A\; —n) > 0 for all i € IV with ); ¢ [n, p) and using (iii) we get that the
numbers @, py B, and (X; — p)(Ai — )|V (v, ®;)|? for all i € IV are non-negative. Using (i)
and (23), this implies @ = 0, pn 8 = 0, and (\; — p)(\; — MIN(v,8)|>=0for all i € IV.
Combined with (24), this yields the assertion of our lemma. O

Proof of Theorem 5: Suppose there is a j € IV with § < n and g; < 0 such that the
number of eigenvalues of the eigenvalue problem (1) contained in the interval [p — 1—_%, )
is strictly smaller than j. For i = 1,...,n let z; € K™ be an eigenvector of the problem
(Ao—pAr)z=p(Ao—20 A + p2Az)z corresponding to the eigenvalue p;; we assume
zF (Ao — 2p A + PPAg)z = 6y for 4,k = 1,...,n; (z:)r denotes the k-th component of
z;. The homogenous linear system

j n
2D N(®m,vi)(zi)iei=0 forall me IV, Am € [n,p)

=1 k=1

has a non-trivial solution (cy, ..., ¢;) € K7, since the number of equations is smaller than
the number of unknowns. We define

j n n
Y=Y (z)kci for k= Looon, vi=(1,..., )7, vi= 27‘-1),-, w:= Ei,-w;.

i=1 =1 i=1
It follows that 7 # 0 since (cy, ..., ¢;) # (0,...,0) and z,...,z; are linearly independent.
Using for each i = 1,...,7, the inequality n — (y — p)u; < 0, we obtain after a short
computation

PB(Tv—pw,Tv —nw) =5 (n(Ao — 2p A1 + p*Az) — (p — 7)(Ao — p A1)y < 0.

Hence, p, 1, v, w satisfy the assumptions of Lemma 1 and BTv—pw,Tv—puw) =
(Ao —2p Ay + p*Az2)y = 0. This contradicts the requirement that Ag — 2p A; + p?A,
is positive definite. Thus, the hypothesis beginning our proof is wrong and therefore,
Theorem 5 is valid. O

If we define
X:=D, B(f,9) := M(f,g) forall f,ge D, Tf:=f forall fe D,

assumption L3 is obviously satisfied and Theorem 5 reduces to Lehmann’s theorem (28,
29]. Unfortunately then the trial functions w; are quite often hard to construct. This
reduces the applicability of Lehmann’s theorem in the left definite case.

The following lemma makes in many cases the verification of L4 possible, which is
required in order to use Theorem 5.
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Lemma 2
Let L1 and L2 be satisfied. Assume that (D, M(.,.)) is a Hilbert space, and N is a

compact sesquilinear form on D. If there exists an infinite dimensional subspace Dy of

D such that N(f,f) > 0 for all f € Dy, f #0, then L{ is satisfied.

Proof: Since N is compact, there exists a compact linear operator S : D — D with the
property N(f,g) = M(S f,g) for all f,g € D. Obviously S is symmetric. According to
the spectral theorem for compact symmetric operators we have an index set J C IV and
families (A,’),’GJ, (@,’),’EJ such that

X;ER, :\;#0, (i),'ED, S‘i’;::\;‘i),' for i€ J,

M(®;, ;) =6y for i ke J,

Sf=Sics i M(f,8:)&; forall feD.
This immediately yields

M(f, &) =AW (f, ;) forall feD,iel,
N, f) = Tics TN (f, 8:)* forall feD.

Were J a finite set, there would exist an f € Dy, f # 0 and N(f, :;5‘) =0forall: e J;
this would imply NV'(f; f) = 0 contrary to the prerequisite on D,. Hence, there is a one to
one mapping ¥ : IN — J. If we define ); := :\Eh)’ ®; .= <i>q.(,~) for ¢ € IV, the sequences
(Ai)ien,s (9.)ien have the properties required in L4. O

Theorem 5 connects inclusion intervals for eigenvalues to the quantities X, B, T used for
establishing complementary variational principles. Now we will state the basic idea of
Theorem 5 in a form which while looking a bit more complicated, is more favorable for
numerical application. We need the following assumptions and notations:

L5: mne N,v;, € D,w! € Xfori=1,...,n,and w? € X fori =1,...,m. We
require that B(T f,w}) = N(f,v) forall f € D, i =1,...,n and B(T f,w?) = 0
forall fe D,i=1,...,m holds true.

Definition 3

If assumptions L1, L2, L3, and L5 are satisfied, we define matrices Ao, A1, A2, B, F by
Ag := (M(vi,v))i k=1,..m » Ap := (M (i, 08))ik=1,...m »

Az i= (B(w], wE))ik=1,m »

B = (B(w?» wg))i,k:l....,m y F:= (B(w‘:) wg))i=1,...,n; k=1,..,m *
We obtain

Theorem 6
Let assumptions L1, L2, L3, L{, and L5 be satisfied. Let p € R, p > 0. Suppose
C € IK™™ such that the matriz Ao ~ 2p A, + p*(A2 + CF' +FC' +C BﬁT) is positive
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definite. Let p; denote for i = 1,...,n the i-th smallest eigenvalue of the eigenvalue
problem

(Ao—pAi)z = p(Ao—2p A1+ p*(As + CF' + FC' + CBC"))z.
Then the interval [p — 1—p~ﬂ——,p) contains for all j € IN with j < n and p; < 0 at least §
K

eigenvalues of the eigenvalue problem (1).

Proof: Let C = (cit)ict,...n; ket,..m; if we define

wii=w + Y. cupw) for i=1,...,n, (25)
k=1

(22) is satisfied, and we obtain

(B(wi, wi))ip=1,..n = A+ CF" + FC' +C BT .

The assertion is now a consequence of Theorem 5. O

The following theorem shows that a good approximation for —F B~! is a reasonable choice
for C in Theorem 6, provided B is regular.

Theorem 7
Let the assumptions of Theorem 6 be satisfied. Let B be regular and Ag—2p Ay + p*(Az —

FB“FT) be positive definite. Let y; for each i = 1,...,n be the i-th smallest eigenvalue
of the eigenvalue problem

(Ao—p A1)z = (Ao~ 2p A1 + p*(A2 + CF' + FCT + CBC")) =
and let fi; be the i-th smallest eigenvalue of the eigenvalue problem
(Ao~ pAr)z = p (Ao — 2p Ay + p*(A; — F B'F7)) .

Then we have for all j € IN, j < n and ji; < 0 the inequality

Proof: For all z € IK™ we have
(A + CF + FC' +C BT )«
= 77 (A, - FB'F' +(C+ FBY)B(" + B 'F"))z
> z7(A,— FB'F)z.
According to the comparison theorem, we obtain for all j € IV with j < n and p; < 0,
the inequality fi; < p;. From this the assertion follows immediately. O

We will give a procedure for the construction of the elements w? and w? occuring in
assumption L3; for that we need in addition to L1, L2, V1, V2, and V4 the following
assumptiqns:
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V5: N; : D — H; are linear operators for ¢ = 1,...,r such that

r

N(fag)=2(ﬂf1th)t for f’geD

i=1

V6: myn € IN,v; € D, w} € Y fori =1,...,n, 4,...,%° are linearly independent

elements from Y such that (1 — s)(Mydf — Npv;) =0fori=1,...,n,k=1,...,r
and (1 — k)M =0fori=1,...,m, k=1,...,r, and

€Y : MU, J) = X madTh, T} () span{is... 8} =0.

Since the requirements on w} and w? in L5 are analogous to those satisfied by the elements
(see (8)) admissible for the complementary variational principle (7), we can use Theorem 3
for the construction of w} and wf. We obtain

Theorem 8

Let the assumptions L1, L2, V1, V2, V4, V5, V6 be satisfied; X, B, T are defined as in
Theorem 2. We define

i My, 5 30

zi = : Wi 1= (G‘li)?.-f-Z‘) fori=1,...,n, v?:= (Gu:)‘?) fori=1,...,m,
g7 Nyw; ' '

then L5 is satisfied and B is regular.

Proof: First of all we will show that w}? has the properties required in L5. Let j € IV,
J < n be arbitrarily chosen. If we define F(f) := N(f,v;) for all f € D, hy := Nyv; for
k=1,...,r, then since V3 is satisfied, according to Theorem 3 we obtain B(T f,w}) =
N(f,vj) for all f € D.

We have not yet proved that w{ satisfies the requirements in L5. Let j € IV be
arbitrarily chosen. If we define F(f) = 0 for all f € D, hy = 0 for k = 1,...,r, since
V3 is satisfied, according to Theorem 3, we obtain B(T f, w?) =0 for all f € D. - Let
me€N,c,...,cn €K, (c1,...,6m) #(0,...,0). Then we have

TrL il €Y, T il £0, and
M(ETy e, Ty oxd]) > Tiy wigi(Ti Thy e, Ti SPy cad)s
From this we obtain
0< B(i crwy, i crwy) = i ciB(w?, wi)e;
k=1 k=1 ik=1
hence, the matrix (B(w{, w?)); k=1,..m is regular. This completes the proof. O

These results — especially Theorem 6 - are the basis for the following procedure that
calculates inclusion intervals for eigenvalues of problem (1):
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Step 1: Verify that the given eigenvalue problem satisfies assumptions L1, L2, L4.
Step 2: Construct quantities X, B, T with the properties L3.
Step 3: Determine v;, w!, w? such that L5 is satisfied.

Step 4: Choose p € R, p > 0 and C € JK"*™ as a good approximation to —F B~1.
Then calculate the matrices Ag — p A1, Ao —2p A1 + p?(Az + CF +FCT+C BﬁT)
according to Definition 3.

Step 5: Verify (numerically, see below) that Ag—2p A; + p?(Az + CF +FC" +C BUT)
is positive definite and compute (with guaranteed bounds, see below) the negative
eigenvalues of the eigenvalue problem

(Ao—pA)z =p(Ao—2p Ay + p*(Ay+ CF + FC' + CBC))z.

The corresponding inclusion intervals are obtained from Theorem 6.

Frequently it is advisable to perform steps 2 and 3 in the following special way (“Procedure
of special choice for X, B, T”):

Step 2: Obtain quantities D, M, Y, r, H;, T;, M;, ¢;, ki, N; with the properties required
in V1, V2, V4, V5 and define X, B, T as in Theorem 2.

Step 3: Determine v;, @}, @9 such that V6 is satisfied and define w} and w? as in
Theorem 8.

4. Variational Characterization of Eigenvalues and the Rayleigh—Ritz Proce-
dure

The methods we described in section 3 make it possible to determine intervals which
contain a certain number of eigenvalues of the eigenvalue problem under consideration.
With many engineering applications, there arise left definite eigenvalue problems, for
which the positive eigenvalues can be indexed consecutively, starting with the smallest
one. In practice it is frequently important to determine accurate upper and lower bounds
for some positive eigenvalues according to their index. For the calculation of accurate
upper bounds the procedure of Rayleigh and Ritz has proved to be an excellent approach;
in general, sharp lower bounds can be obtained by a combination of the inclusion theorems
from section 3 with the comparison theorem.

Below we will prove a well known variational characterization for the positive eigen-
values; from this characterization the comparison theorem and the procedure of Rayleigh
and Ritz can be derived. First of all we formulate an assumption, which guarantees that
the eigenvalues can be numbered consecutively.
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L4* : There exist sequences (A} )ies+, (A} )ies- of eigenvalues of problem (1) and sequences
(B} )ics+, (7 )ics- of corresponding eigenelements such that

M(f,®F) = M N(f, ) forall feD,ieJ*,
M(f,®7) = A7 N(£,9;]) forall feD,:ieJ,
M(3},8}) = 6 for all i,k e Jt,
M(D7,9;) = bk forall i,ke J-,
M(®F, ;) =0 forall ieJ*, ke J-,

N(£f) = Zies X IN(f, @0
+Xies- AT IN(f,®7)2 forall feD,
0< A} < forall i,keJt, i<k,
0> >\ forall i,keJ-, i<k,
where Jt={ie IV : i<n*}, J-={ie N : i<n"}, nt,n" € INoU {oo}.

Remark 1 If L{* is satisfied, then we call A} the i-th smallest positive eigenvalue of the
eigenvalue problem

“M(f,®) = AN(f,®) foral f€D” (ieJ*).

Now we can formulate

Theorem 9 (Variational characterization of eigenvalues)
Let L1, L2, and L{* be satisfied. Then

i M(/, f) .
'\;‘= inf sup forjeJt.
U subspace of D fueU N(f, f)
dimU =j f#0
N(f,f)>0

forall feU,f#0

Proof: We give a proof in three steps.
Step 1: For f € D with N(f, f) > 0 and M(f,®}) =0for k € J*, k < j we have

M, 1) 2 "ZIM(f,¢t)|’+§|M(f,o;)l’

k=j

= SO DR+ g(A;)’IN(f, 5P

k=j

nt

PIRRMER Jolk

k=j

ATN( 1),

v

v
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hence,
M(f?f) A+
N =T

Step 2: Let U C D be such that dimU = j and N(f, f) > 0 for all f € U with f # 0.
Then there exists f € U, f # 0 such that M(f,®F) =0for all k € J*, k < j. Using
step 1 we obtain

wp  MED S MU
Feu NUS Z NG
f#0

Step 8: Let U be the span of {®%, ... ,®7}. Forall f € U, f # 0, we have f = ) IEX 74
with v« € K for k =1,...,j. From this we obtain

> At

Mf,f) = X
k=1
J j 1 1 j
NS = 2NN =3 2 5 1%
k=1 k=1 "k 1 k=1
and therefore
M(fa f) /\+
N(f, ) =4
and
(fa f) +
sup <AT.
2y MU
f#0

From step 2 and step 3 we easily obtain the assertion. O

As an obvious consequence, we have

Theorem 10 (Comparison Theorem)

Let L1, L2, and L{" be satisfied, and furthermore let L1, L2, and L4" be satisfied with
D,M, N replaced by D, M, N'. Let \f and A} be the i-th smallest eigenvalue of the prob-
lem “M(f,®) = AN(f, ®) forall f€ D” and “M(f,<I>) = AN(f,®) foral feD”

respectively. If D C D, N(f, f) < N({, f) and %((f, f)) < /j\\//‘((}f':;)) holds for all f € D
with N(f, f) > 0, then

A<

for all i for which A} is well defined.

Another consequence of the variational characterization (Theorem 9) is the following
theorem, which forms the basis for the Rayleigh-Ritz procedure.
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Theorem 11 (Rayleigh—Ritz)

Let L1, L2, and L4* be satisfied, and let vy,...,v, € D be linearly independent (nelN).
We define matrices Ay, A; by

Ag := (M(vi, k)i k=1,n » A1 1= (N(03,0%) )i k=1,m -
Let N* be the number of positive eigenvalues of the problem
Ao r=A Al T

and denote by Af the i-th smallest positive eigenvalue of this problem.
Then N* <nt, and A} < A} fori=1,...,N* (forn* and )} see L4*).

Proof Let z € K", Aozi = A} A2y, T; T Agzi = Siky Tk = (Thpy. ., Thp)T for j b =
.wN*,and hj =35 T;pvp for j = 1,..., N*. Then we have
M(hj, hk) = E fj,lM(v,,vm)zk,,,. = f}‘Ao zr = 8jx ,
{m=1

1
./V(hj, hk) = E?Al Tp = A—'-*'&jk .

3
Let U be the span of {hy,...,k;}, then dimU = i. Now, for all f € U, f #0, f=
Y1 Yehi, we have

Mmﬂ=§ﬁ,
N f) = Z':“riAl—+>0,
N(fvf) 2 A+Z7I: A+ (f’f)

t k=1

This implies

M(f’f) A+
N s
and
MU p+
A]
fey MAH =N
f#0
Suppose i > n*. Then there exists f € U such that M(f,®) =0for k =1,...,n*

f # 0. This implies N(f,®}) =0 for k € J* and thus by L4* N(f, f) < 0, whlch is a
contradiction to N'(f, f) > 0 for all f € U, f # 0. Hence, i < n*. Now Theorem 9 gives
the assertion. O

The theorems of this section serve as a basis for the following procedure to compute
bounds for eigenvalues:
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Step 1: Compute upper bounds A} for A} using the Rayleigh-Ritz procedure.
Step 2: Determine (rough) lower bounds p; for A} by means of the Comparison Theorem.
Step 3: Choose an r € IV such that A} < pry,.

Step 4: Compute an interval [, p,41), which contains at least j eigenvalues (Theorem 6).

Result: Bounds for A}_;,,:

+ +
TSN SALn

If all quantities are chosen appropriately, we obtain very accurate bounds for A} j+1- We

discuss the construction of comparison problems in the first example in section 7.

5. The Inclusion of Eigenvalues of Right Definite Problems by means of Com-
plementary Variational Principles

In this section, we give an inclusion theorem for problems associated with a positive
definite sesquilinear form on the right hand side (cf. [19]). We will be brief since the
main result is very similar to Theorem 5. In particular the construction principle for
the complementary variational principle can be applied analogously. We first need some
assumptions.

R1: Dy is a vector space over IK; N is a Hermitian sesquilinear form on Dy. N(f, f) > 0
holds for all f € Dy with f # 0.

R2: Dy is a subspace of Dy. M is a Hermitian sesquilinear form on D).

The eigenvalue problem reads as follows:

“Find pairs (), ®) € IK x Dy such that & #0 and
M(f,®) = AN(f,®) forall f€ Dun".

Further assumptions are

(26)

R3: X is a vector space over IK; B is a Hermitian sesquilinear form on X; T : Dy — X
is a linear operator. B(f,f) > 0 for all f € X and N(f,g) = B(T f,T g) for all
fvg € DM

R4: There exist a sequence (););es of eigenvalues of problem (26) and a sequence (®;)ies
of corresponding eigenelements! such that

J={ieN : i<dim Dy}

M(f, ®;) = NN(f,®:) forall f€ Dy, 1€ J,
N(®;, ®:) = bur for all i,ke J,

N, f) = Ties IN(f,@:)? forall fe Dy,

for p € R the interval (—o0o,p) contains no limit point of (Ai)ieJ-

1We use in our notation an index set J, since will we want to apply the results both to finite dimensional
and to infinite dimensional problems.
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With these assumptions we can formulate

Theorem 12

Let assumptions R1, R2, R3, and R{ hold. Furthermore, let p € R, and for ann € N,
let v; € Dy and w; € X for each i = 1,...,n and besides, assume

B(T f,w;) = M(f,v;) forall f€ Dy and each i=1,...,n. 27
We define matrices Ao, A, As, A, B by '

Ao := (N (93, 08))ik=1,.ms A1 1= (M(vi, 0))iskmt,n s Az 3= (B(wi, Wh))i k=t m »
A=A —pAs, B:i=Ay—2pA;+ p*Ao.

Assume that B is positive definite and let p; denote for i = 1,...,n the i-th smallest
eigenvalue of the eigenvalue problem

Az=uBz.

Then the interval [p + “ij,p) contains for all j € J with j < n and p; < 0 at least j
eigenvalues of eigenvalue problem (26).

We provide two lemmas before proving Theorem 12.

Lemma 3

Let assumptions R1, R2, RS, and R{ be satisfied. Suppose that i € IR, p € IR with
) < p. Ifv € Dy and w € X are selected so that:

() Bw =T v,u—iTv) <0;

(it) B(T f,w) = M(f,v) for all f & Dy ; and
(i) N(v,8;) =0 foreach i€ J with <A\ <p.
Then v=0.

Proof: Since B(T®;, T®;) = §;i for j,k € J, it follows from Bessel’s inequality that
1, . 1, . 2
B(w—§(p+n)Tv,w—§(p+n)Tv)ZE .

ieJ

B(w - %(,6 +§ T, T<I>.')|
Hence, by R4,

0 > Blw—pTv,w—1Tv)

B (w - -;—(ﬁ+ﬁ)Tv,w— %(ﬁ+r'))Tv) - ’i‘(ﬁ—fl)zB(T”’ Tv)

)»

t€J

v

B(w - %(,; +#)Tv, T®;) r - i(ﬁ ~ 7)Y N (v, @)

ieJ

Since B(T®;,w) =M

0 > z;(x.-—g(;n
= Z;I(/\i—ﬁ)('\i-

Because of (iii), (A —

for all ¢ € J. From thj

Lemma 4
Let assumptions R1, |
with n < p. Suppose t

(i) B(w—pTv,w-
(ii) B(T f,1) = M(
(iii) N(v,8) =0 fo
Then B(w — pTv,w -

Proof (indirect proof).
0 > Blw—pTov,w
= (p— (B, T
which implies 0 > B(s
o B(w,w) - ¢

h(&) = B(w, Tv)—-¢
_ B(w—

Then h(p) = Blw, T

Because of R4, there .
Hence, there exists a 1
h(p) > . Now let 7 :=

B(w—pTv,
B(w1 T’U) —/3

i-p=
the inequality v < 4
with 7 < A; < 5. By
0> B(w, Tv) - pB(T

Proof of Theorem 12
#i < 0, the interval [p

Since A = ZT, B=T

with z¢ = (zky,..., I
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“Since B(T'®;, w) = M(®;,v) = AN (®;,v) for all i € J,

0 2 X (h-3G+D) W) - 26— i) S, a1
i€J ) i€J
= L= - DV, 2.
1€

Because of (iii), (A — §)(Ai — )V (v, ®;)|> > 0 for all i € J, which implies A'(v, ®;) =0
for all ¢ € J. From this, it follows by R4 that A'(v,v) =0, and hence v = 0. O

Lemma 4

Let assumptions R1, R2, R3, and R4 of Theorem 12 be satisfied. Letn € R and p€ R
with n < p. Suppose that v € Dy and w € X are selected so that:

(i) B(w—pTv,w—nTv) <0;

(i) B(T f,w) = M(f,v) for all f € Dp;

(iii) N(v,8;) =0 for each i € J with n< X < p.
Then B(w — pTv,w — pTv) = 0.

Proof (indirect proof): Suppose that B(w — pT v,w — pT v) > 0. Then

0 > Blw—pTv,w—nTv)-Bw—pTv,w—pTv)
= (p—n)(B(w, Tv) - pB(Tv, Tv)),
which implies 0 > B(w, T v) — pB(T v, T v). Define
h(E) = B(w,w) — éB(w, Tv)
" B(w, Tv) - €&B(Tv, Tv)
Bw—pTv,w—nTwv)
>n.
B(w,Tv)—pB(Tv,Tv)+"f1’ )
Because of R4, there exists some v € IR with ¥ < 5 such that X; € [y,n) for all s € J.
Hence, there exists a real number j with g < p such that B(w, T v) < gB(T v, Tv), and
k(p) > ~. Now let 7j := k(5). Then, B(w — T v,w — T v) = 0. From
Bw—pTv,w—pTv) <0
B(w, Tv) — pB(Tv, Tv) =
the inequality ¥ < 7 < § < p is obtained. Hence, M(v,®;) = 0 holds for all : € J

with 7 < A; € p. By Lemma 3, it follows that v = 0, which contradicts the inequality
0> B(w, Tv) — pB(T v, Tv). Thus, B(w — pTv,w — pT v) = 0 is proved. O

for all £ € R with B(w, Tv) #¢B(Tv, Tv).

Then h(p) =

i-p=

Proof of Theorem 12 (indirect proof): Assume that, for some [ € IV with | < n and
w1 < 0, the interval [p + “L‘, p) contains strictly less than { eigenvalues of problem (26).

Since A = ZT, B = ET, and B is positive definite, there exist vectors zi,...,z, in K"
with 4 = (Tk1y- - -2 Tha)T such that Az; = p;Bz;, and ZF Bay = by for i,k =1,...,n.
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We define 9; and @; fori = 1,...,n by
b; 1= Zn: z;xvr and ;= Xn: T; Wk .
k=1 k=1
A simple calculation shows that
M(0i,04) ~ pN (3:,5%) = 2T ATk = pibyy (28)
B(w;, W) — 20 M (%, %) + p*N (95, 8%) = 27 BT = 6 (29)
fori,k=1,...,n.

Now let L be the subspace of Dys spanned by those eigenvectors of problem (26) which are
associated with an eigenvalue contained in the interval P+ i, pz. From the assumption
made at the beginning of the proof, it follows that dim L < ! and there must exist numbers,

B1,..., 01 € IK, such that (Bry...,B1) #(0,...,0) and Zf-=l,3.-N(ﬁ.-,g) =0forallge L.
Define

l i
. . 1
V= E Bit;, w:= E Biw;, andgp:=p+ ; .
i=1 =1 1

Then 7 < p,v € Dy, w € X, B(T f,w) = M(f,v) for all f € Dy, and N(v,®;,) =0 for
all 2 € J with < A; < p. Furthermore, we can deduce from (28) and (29) that

B(w—pTv,w—nTv)
B(w, w) ~ 20M(v,v) + pN' (v, v) — i(M(v, v) = pN (v,0))

Sl (h%) <0

=1

I

and

!
Bw—pTv,w—pTv)= S8 > 0.

i=1

But this contradicts the assertion B(w—pTv,w— pTv) =0, which is a consequence of
Lemma 4. Thus, Theorem 12 is proved. O

As in the left definite case, Theorem 12 is a generalization of a theorem due to Lehmann.
Since we later will present numerical examples where we use this theorem, we will formu-
late it here:

Theorem 13
Let assumptions R1, R2, and R{ be satisfied. Furthermore, for somen € IN, let v; € Dy,
w; € Dy for eachi=1,... ,n and let p € R. Assume that

N(f,wi) = M(f,v) forall f€ Dp and each i= 1,...,n. (30)
We define matrices Ao, A1, A;, A, B by
Ao = (N(’U,', vk))i,k:l,...,n [} Al = (M(U;’, vk))i,k:l.....n b A2 = (N(wi,lUk))i,k:-l,“.,n ’
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A:=A; —pAo, B:=A2—2pA1+p2Ao.

Assume that B is positive definite and that y; denotes for i = 1,...,n the i-th smallest
eigenvalue of the eigenvalue problem ’

Az=uBzx.

Then the interval [p + “l’,,p) contains for all j € J with j < n and p; < 0, at least §
eigenvalues of eigenvalue problem (26).

Proof: The theorem is a consequence of Theorem 12, defining X := Dy; T : Dy — Dy
by T f := f; and B(f,9) := N(f,g) forall f,ge Dy.D

Analogous to the theorems of section 4, a variational characterization for the eigenvalues
can also be derived for right definite eigenvalue problems; from this characterization
one obtains the Rayleigh-Ritz method (Theorem 14) as well as a comparison theorem
analogous to Theorem 11.

Theorem 14 (Rayleigh-Ritz)

Let assumptions R1, R2, and R4 be satisfied. Furthermore, for somen € IN, let vy,...,v,
€ Dy be linearly independent. Denote the i-th smallest eigenvalue of (26) by X;, for
i1=1,...,n. We define matrices Ay, A, by

Ao = (N (i, v&))ik=1,m » A1 := (M(vi, 0))ik=1,0m 5
and denote the i-th smallest eigenvalue of the problem
Arz=AApz

by A;. Then X\; < A; for eachi=1,...,n.

6. Application to Generalized Matrix Eigenvalue Problems

For the calculation of bounds to eigenvalues of eigenvalue problems with differential
equations, the method of Lehmann (Theorem 13) has been proved to be very powerful.
Therefore, it seems to be reasonable to use Lehmann’s method for the calculation of
bounds to eigenvalues of the matrix eigenvalue problem

Az =ABz, A= AT, B= BT, B positive definite (31)

with real m x m matrices A and B, as well®. If the method is combined with interval arith-
metic, we obtain guaranteed bounds, that is, bounds which are secured against rounding
errors. For this purpose, we have to solve linear systems Bw = f, and the elements of B
and f are intervals in the general case. This results in an overestimation of the solutions,
as has been shown in [8]. By appropriate use of Theorem 12, we can avoid this weakness,
since then the exact solution of the linear systems involved is not necessary.

Theorem 15
Let the following assumptions hold:

2The method can be formulated for complex Hermitian eigenvalue problems as well.
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2.

A and B are real m x m matrices, with A= AT, B = BT, and B positive definite.

Forann € IN, let vy,v,...,v, be linearly independent vectors of R™; let w; € IR™
fori=1,...,n3

. Let c € R so that 0 < ¢ < Anin(B), and let 0 € R. Define the matrices Ao, A,

Az, A, and B by
Ay := (v,-TBv,,)

Al = (‘U?Avk)

ik=1,..,n "’

ik=1,..,n’
Ag:= (v,? Ay — v] (B, — Av) + %(B W; — Av;)T (B by — Avk))
A=Ay —0 Ay, and B:= Ay —20 A, + %A,

ik=1,..n'

Assume that B is posttive definite. 4

The eigenvalues y; of the matriz eigenvalue problem Az =y1§m are ordered by
magnitude: 1y S pa < ... < pp <0< ... < fhye

Assertion: Forl=1,...,p the interval

1
0’+l"—‘,0')

contains at least | eigenvalues of the problem Az = ABx.

Proof: The theorem is reduced to Theorem 12. Let JK := IR, Dy := R™, Dy := R™.
We define M(z,y) := 27 Ay and N(z,y) := zTBy for z,y € R™. Thus, assumptions
R1, R2, and R4 are satisfied. Furthermore,

X = R™ x R™,

X
B( (z:) , (;:)) := ] By, — czly1 + czly; for z1,22,31,12 € R™,

T:R"— R™xR™, Tz:=(i).

Since 0 < ¢ < Anin(B), B(.,.) is positive semidefinite. For all z,y € IR™ we have

B(Tz,Ty)=2"By - caTy+ cz¥y = zTBy.
If we define

W;

w; 1= (u':;—%(Bu';,-—Av,-)) fori=1,...,n,

3When we use the theorem in practice, we will choose t; as an approximation for B~'Av; (i =1,...,n).
4If o is not an eigenvalue of the problem Az = A B z, then B is positive definite.

this results in

B(Ty,w;) = yTBw
= yTAy,

and

B(w;,wg) = 12'),~TB1IJ
= vTAw®

Now the assertion is

If in assumption 3 of

Azp = (v'T Aﬁ)").‘,k:x,
where ; is the ezac
Theorem 15 reduces
case.) But for a comg
of w;. Since we are i1
but also in problems
clear in subsection 6.

6.1. Development
Consider the gener
m X m matrices A an
counted in accordanc
We implement the
7) in three steps:

1. Calculation of a

/\,_1</~\,N...
(1sr<j<s:
) VRS W

(If either r =1

Calculation of a

(The notation i
the eigenvalue a
i,-_l and X!'H d
Aryee.y A, form
A; (well separat
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this results in

B(Ty,w:) = y"Bw; —cy i+ cyT(w; — —IC-(B W — Av))
= yTAv; fori=1,...,n, y€ R™,
and
Bwiwy) = 7By — ci¥ by + (i %(B s — Awe))T (e — %(B By — Avy))

= v?Aﬁ;k - @?(B’lf)k - Avk) + -i-(BU‘.'), - Av;)T(Bu"J;, —A‘Uk)

fori,k=1,...,n.
Now the assertion is a consequence of Theorem 12. O

If in assumption 3 of Theorem 15, the definition of A, is replaced by

Ag_L = (viTA'lf)k) = (N(ﬁ),,‘wk))

ik=1,..n ik=1,..,n’

where 1; is the ezact solution of the linear system B#; = Av; (i = 1,...,n), then
Theorem 15 reduces to Lehmann’s theorem. (The constant c is not necessary in this
case.) But for a computer realization, we have to replace ; by an interval inclusion {i]
of ;. Since we are interested not only in eigenvalue problems for real (point) matrices,
but also in problems with interval matrices, the disadvantage of this variant will become
clear in subsection 6.2.

6.1. Development of an algorithm

Consider the generalized symmetric definite matrix eigenvalue problem (31) with real
m X m matrices A and B. Let the eigenvalues be ordered by magnitude and let them be
counted in accordance with their multiplicity: A\; < A2 < ... < A,

We implement the calculation of bounds to an eigenvalue \; (with the prescribed index
7) in three steps:

1. Calculation of approximate eigenvalues

/\,_1<5\,z...z:\,~z...z:\,<5\,+l (32)
(1 £r £j < 8 <m) as well as approximate eigenvectors Z,,. .., Z, associated with
Aryevny Ay

(If either r = 1 or s = m, then A,_; or A,41, respectively, is dropped.)
Calculation of an approximation im;n(B) t0 Amin(B)

(The notation in (32) expresses the fact that r and s have to be chosen such that
the eigenvalue approximations Xr,. .., A, differ only a little (less than 1 %), whereas
Xr—1 and A,y differ clearly from these values. Thus, we expect that the eigenvalues
Ary...y A form a cluster, and that A; belongs to this cluster. For a simple eigenvalue
A; (well separated from other eigenvalues), we have, of course, r = j = 3.)
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2. Determination of a rough upper bound p to A,_; with A,_; < p < A, (not necessary,
if r = 1) and a rough lower bound o for \,4; with A, < o < A,41 (not necessary, if
8 = m), as well as a constant ¢ with 0 < ¢ < Apin(B) , with the use of the eigenvalue
approximations and LDLT decompositions

3. Calculation of accurate bounds for ); with a slight modification of Theorem 15 and
with the use of Z,,...,%,, p, 0, and ¢

In this context, Theorem 15 is of considerable importance since it allows for the calcu-
lation of bounds to eigenvalues of a matrix eigenvalue problem of dimension m by solving
matrix eigenvalue problems of much smaller dimensions n. In the most favourable and
common case, n will be equal to 1.

In an algorithmic implementation (see (7, 8]), it is better to use a slight modification
of Theorem 15;

Theorem 16
Let assumptions 1 and 2 of Theorem 15 be valid, and let o, ¢, Ao, A1, and A, be defined

as in assumption 3 of Theorem 15. Suppose o is not an eigenvalue of the problem Az =
ABz. Let the eigenvalues 7; of the eigenvalue problem

(Ag—O'Al)a:=‘r(A1—0'Ao)a:, (33)

be ordered by magnitude: 1 <1, < ...< T, If p is the number of eigenvalues 7; smaller

than o, then the interval [r;,0) contains at least p+ 1 — i eigenvalues of the problem
Az =Bz (i=1,...,p).

Proof: For a real number g, p # 0, the following is valid:
4 is an eigenvalue of the problem

(Ay —oAg)z=7(A; — 20 A4, +0%4g)z

% is an eigenvalue of the problem

(A2 =0 A1)~ 0 (A1 — 0 Ag))z =7 (A1 — 0 Ag)z

o+ % is an eigenvalue of the problem

(A2—0A))z=71(A1 -0 Ag)z.

Hence, the assertion follows from Theorem 15, since B is positive definite. O

Since Theorems 15 and 16 result only in intervals containing a certain number of eigenval-
ues, additional information on the parameter o is necessary, in order to make a statement
about the indices of the enclosed eigenvalues. If o is a rough lower bound to Asy1 With
As <0 < Agy1, and if p is the number of eigenvalues 7; of problem (33) which are smaller
than o, then 7 is in general a very precise lower bound to Asticp (1 £ 17 < p). This
information on ¢ is calculated in the second step of the procedure and is not derived from
a comparison problem, as is done when we deal with differential equations.

Two aspects play a part in the choice of o: on the one hand, s — j should be as small
as possible, in order to be able to select a small n, because the inclusion theorems again
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result in a matrix eigenvalue problem of order n. On the other hand, experience shows
that o should not belong to the same cluster of eigenvalues to which \; possibly belongs.
Thus, the following requirement arises: As must be the largest eigenvalue of the cluster to
which A; belongs. In the case s = J we can achieve n = 1; in this special case (33) reduces
to a Temple quotient. If s = m, Theorem 16 simplifies to the theorem of Rayleigh-Ritz
by passage to the limit o — oo, (The matrix eigenvalue problem A; 2 = 7 Ay z then has
to be considered.)

In order to get upper bounds, we consider the matrix eigenvalue problem —Az =

(=) Bz instead of problem (31). Lower bounds for —A, that is, upper bounds for A, are
then calculated with the use of Theorem 16. This results in

Theorem 17

Let assumptions 1 and 2 of Theorem 15 be valid, let P € R and let c, Ay, A,, and A, be

defined as in assumption 3 of Theorem 15. Suppose p is not an eigenvalue of the problem
Az = ABz. Let the eigenvalues 7; of the eigenvalue problem

(A2—~pAr)z=1(A4 ~pAg)z,

be arranged in descending order: m 27T 2 ...> 1, Ifpis the number of eigenvalues

T; greater than p, then the interval (p, 7] contains at least P+ 1 — i eigenvalues of the
problem Az = ABz (i = L...,p)

If A, denotes the smallest eigenvalue of the cluster to which A; belongs, and if p and & are
chosen such that p < ), C...8M<...€8 0, < o, then n is defined by n := s — r 4 1.
Thus, the same elements v; and hence, the same matrices Ag, Ay, and A, can be used in
Theorems 16 and 17. If n > 1, this yields not only bounds for A;, but also bounds for
Aryeei, As.

For the application of the theorems, we must explain the choice of the elements v;.
The approximate eigenvectors %,,.. ., #, (approximately B-orthonormalized) are used for
V1,...,Un. If necessary, these approximations can be improved, for example, with a New-
ton method [14] (using extended precision). Our numerical example in subsection 6.2 illus-
trates the influence of the quality of the approximations on the precision of the bounds.
The vectors w; are defined as approximate solutions of the linear systems Bw; = Aw;
(= L,...,n). If the matrix B is ill-conditioned (with respect to inversion), we rec-
ommend an improvement of the approximations by means of iterative defect correction
{40).

Our choice of the elements v; offers several advantages: On the one hand, very good
bounds can be expected on the basis of convergence theorems [49]; on the other hand,
the matrices Ag, A4,, and A; have a nearly diagonal structure. Furthermore, the matrices
—(A1 - 0 Ao) and (A, — PAo) are in general positive definite, at least in cases where p is
clearly smaller than Ar and o is clearly greater than A, (fory € R, y # 0, the Rayleigh

. Ay . . .
quotient yTAl Yis approximately equal to );). Because of the structure of the matrices,
Y Aoy

the positive definiteness can easily be proved numerically (for example, through the use
of Gerschgorin discs).
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The next lemma [38, p. 255] plays a part in the determination of p, o, and ¢, as well
as (combined with a bisection method) in the calculation of bounds to eigenvalues for
matrices of small dimensions (Theorems 16 and 17, n > 1).

Lemma 5

Let A, B be real q x q matrices, A = AT, B = BT; let B be positive definite; and let
4 € R. The number of eigenvalues \; ofAz = /\B:c which are smaller than, equal to,
or greater than 7 is equal to the number of negative, zero, or positive eigenvalues of the
matriz A — + B, respectively.

Now we can easily determine the number of negative, zero, and positive eigenvalues (the
inertia) of a real symmetric matrix A with the help of a decomposition A = LDLT [11].
Here, L is a regular lower triangular matrix, and D is a block diagonal matrix with
blocks of order 1 or 2. For the imp]ementation of the LDLT decomposition with interval
arithmetic, the same pivot strategy as in [11] can be used. This results in an interval
matrix [D] with a structure corresponding to D. If an interval with zero included should
occur during the determination of the inertia for [D] — that is, if zero is included in a
block of order 1 or in the determinant of a block of order 2 —, it is impossible to decide
whether this block corresponds to negative, zero, or positive eigenvalues. Then we alter
the shift parameter + slightly, and the decomposition is repeated (see [33, p. 46 — 49]).

6.2. Numerical Example
We consider a matrix eigenvalue problem® with 8 x 8 matrices given by :

A= (Gik)ik=1,.8, @ik =i

and

= (Ib:]). L — 1 _4n-13 1 -13
[B] = ([bik])i k=1,..8, [bix] = [i e 10 YRS + 10713,

The problem is
Az =)[B]=z

The matrix on the right hand side is an interval matrix, and if we define mid([B]) :=
1(B + B), we have a condition number of

Ag(mid([B]))

m%l.s'lo H

thus, a comparison of the results computed by means of Lehmann’s theorem (Az replaced
by [A;] = ([:]T Avi), [i] interval inclusion of the solution of the system [B]d; = Av;)
and by means of Theorem 15 should reflect the superiority of Theorem 15. Table 1 shows
the diameters of the inclusions for the smallest 6 eigenvalues.

The entries iteration and no iteration mean that the eigenvalue and eigenvector ap-
proximations have been (or have not been) improved iteratively. The inclusions of the

5The numerical examples have been calculated with TPX, a Turbo Pascal extension of S.M. Rump and
D. Husung, with double precision, that is, approximately 15.6 decimal figures as basic precision.
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| Procedure || diam([A4]) | diam([Ao]) | diam([A]) | diam([As]) | diam([rs]) [ diam([q]) |
spectral shift (shift = ;)
1) Lehmann,
Rump, 2.26E-9 1.96E-8 5.90E—8 7.84E-7 3.36E—4 6.84E-1
no iteration
2) Lehmann,
Jansson, 2.26E~9 1.96E-8 5.90E-8 7.84E-7 3.36E~4 6.84E-1

no iteration

3) Theorem 15,

no iteration, 1.27E-11 | 2.10E-11 1.82E-9 5.5TE—7 3.36E-4 6.85E-1
w; & Ay

4) Theorem 15,

no itegation, 331E-2 | 3.55E-2 246E-3 | 131E—4 345E-4 | 6.85E-1
Wy = Ar_14iv;

5) Lehmann,

Rump, 412E-13 | 1.56E-11 | 1.82E-9 5.56E—~7 3.35E-4 6.84E~1
iteration

6) Lehmann,

Jansson, 4.12E-13 1.56E~-11 1.82E-9 5.56E—7 3.35E—4 6.84E—1
iteration

7) Theorem 15,

iteration 412E-13 | 1.57E-11 1.82E-9 5.57TE~T 3.36E~4 6.85E-1
Wi R AYg

8) Theorem 15,

iteration, 412B-13 | 157E-11 | 182E-9 | 557E-7 | 3.36E-4 | 685E—1
Wi = Aro14it

no spectral shift (shift = 0)

9) Lehmann,
Rump, | 2.46E-4 1.38E-2 1.02E-1 1.42E40 4.41E+1 2.43E+3
no iteration

10) Lehmann,
Jansson, 242E-4 1.07E-2 8.75E-2 1.24E+0 3.83E+1 1.97E+3
no iteration

11) Theorem 15,

no jteration, 127E-11 | 285E-11 | 210E-9 | 6.12E-7 | 357E-4 | 7.11E-1
wy A~ A v

12) Theorem 15,

no iteration, 3.31E-2 3.58E-2 2.46E-3 1.31E-4 3.66E-4 7.11E-1

Wi = Ap_14i¥
13) Lehmann,

Rump, 2.19E-4 1.36E-2 1.02E-1 1.42E40 4.41E+1 | 243E43
iteration

14) Lehmann,

Jansson, 1.90E—-4 1.07E-2 8.75E-2 1.24E+0 3.83E+1 1.97E+3
iteration

15) Theorem 15,
iteration 5.02E-13 2.05E-11 2.10E-9 6.12E-7 3.57E-4 7.11E-1
B Wi & Vg

16) Theorem 15,

iteration, 5.02E-13 | 2.05E-11 | 2.10E-9 | 6.12E-7 | 3.57E-4 | 7.11E-1
Wi = Apo144i

Table 1
Comparison of the different procedures (taken from [8])
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solutions of the linear systems — necessary for the application of Lehmann’s theorem —
have been calculated either by Rump’s [37] method or by Jansson’s [22] method. For the
entries Bw; ~ Av; and %; = A,_14iv;, two possibilities for calculating the vectors ; are
considered: Either the linear system is solved approximately or the vectors are derived
from the equation Av; =~ ;\,_1.,..-3 v;, so that, @; ~ :\,_H;v;. This yields 8 variants, and
in each case one can calculate with or without spectral shift (that is, we consider the
problem (A — shift B)z = ABz, \; = shift + Aj or Az = ABz, the original one).
We have carried out the calculation without spectral shift only to emphasize the effects;
this version is not recommended. If n = 1 (r = 8), then A is of magnitude 1, A, is of
magnitude A; — shift and A; is of magnitude (A; — shift)?. Thus, A; has only a slight
influence if shift ~ A;.

To give an idea of the quality of the approximations used for the calculation, we mention
the approximations for the first eigenvalue: The initial approximation is

A1 = 5.896 460 471 522 22F — 1 ,

while the improved approximation is

A1 = 5.896 438 502 888 09E — 1,

and the inclusion for the first eigenvalue is
[M] = [5.896 438 502 8302 — 1],

that is, the initial approximation has 5 correct figures, while the improved approximation
has about 12 correct figures.

The interpretation of the results in Table 1 is as follows: A comparison of rows 1,2,3, and
4 shows the predicted weakness of Lehmann’s theorem in this context (in the context of
differential equations, however, Lehmann’s method provides excellent results, see subsec-
tions 7.1, 7.2), since the four versions use the same approximations and the same matrices
[Ao] and [A4]. The bad results in row 4 can be explained by the bad quality of the vectors
v;. The superiority of Theorem 15 — applied with the good approximations v; for the
solutions of the linear systems — becomes clear. It should be stressed, that even with the
bad (not iteratively improved) eigenvalue/eigenvector approximations, Theorem 15 (row
3) produces rather good inclusions (compare with row 5,6,7, or 8). Since the calculation
has been carried out with spectral shift, the influence of the matrix [Aj] is small; this
explains why the results in rows 1 and 2 are identical.

Rows 5,6,7, and 8 demonstrate that every procedure yields excellent results if high
quality approximations are used. This is no surprise, since in this case the matrix [Aj)
has only a slight influence on the results. Rows 9,10,11, and 12 demonstrate even more
emphatically the same effect as rows 1, 2, 3, and 4. (The advantage of Jansson’s method
as compared with the method of Rump can be seen in rows 9 and 10.) A comparison
of the last four rows makes clear that — without a spectral shift — Lehmann’s theorem
cannot take advantage of the high quality approximations; the results in rows 13 and 14

are nearly the same as in rows 9 and 10 (and considerably worse than those in rows 11
and 15).
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7. Numerical Examples for Eigenvalue Problems with Differential Equations

In this section, we illustrate the application of the right and of the left definite theory to
eigenvalue problems with differential equations by means of four numerical examples. (We
always assume JK = IR.) The examples show that very accurate bounds to eigenvalues
can be computed with the methods discussed above.

7.1. The Mathieu Equation
Our first example is the well known Mathieu equation. This equation has been consid-
ered by several authors, bounds for eigenvalues of the Mathieu equation can be found in
Albrecht [1], Neher [31] and Bazley [45], Weinstein [46]. The eigenvalue problem reads as
follows
—®"(z) + s cos?®(z) ®(z) = A ®(z) for z €[0,7],
(0) = @(r)=0,
®(F-2) = &(5+z), z€[0,3],
where s € IR is a parameter.

(34)

We use the right definite theory to treat this problem.

Dn {rec(o,) : f(%—$)=f(-12£+m),z€[0,%]},

Dum Dy n{f € C([0,x]) : f'(0) = f'(r)=0}.

Bilinear forms M,(.,.) and N(.,.) are defined by

M(f,9) = J5 (f'(z)g'(z) + scos?(z) f(z)g(x))dz for all f,g € Dy and
N(f,g9) = [J f(z)g(z)dz for all f,g€ Dy.

Then the eigenvalue problem

“Find pairs (A(s),®,) € R x Dp such that ® #0 and (36)
Mo(f,®,) = A(s)N(f,®,) forall fe Dy

is equivalent to (34). We define trial functions vy € Dys by

I

(35)

vi{z) = % and  wv(z) == \/g cos(2{(k—-1)z) forz € (0,n), k=2,...,n.

With these trial functions we can compute the Rayleigh-Ritz upper bounds A;(s) (see

section 5). In order to obtain (rough) lower bounds, we apply a right definite comparison
theorem®. This results in

Ai(s) L A(8) for 5,5€ R, s<3,i€e IN.

For s = 0, problem (36) can be solved in closed form and has the eigenvalues X;(0) =
4(i — 1)%. These values can be chosen for p;, that is, if we define p; := X;(0) and r = 25,
we have

/\25(3) _<__ Ags(s) S Pr6 = 2500 S /\26(5) (37)

SFor s > 0 our eigenvalue problem (36) is left definite as well. Hence, Theorem 10 can be applied with

M=M, M=M; N =N as defined in (35) and D= D = Dy.
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Figure 1. Rayleigh-Ritz upper bounds for eigenvalues of (36) dependent on s

for s > 0, s sufficiently small. From Figure 1 (an approximate Rayleigh-Ritz computation)
we can expect that (37) is valid at least for s < s, := 340. A verified Rayleigh-Ritz compu-
tation (verified by means of interval arithmetic) immediately yields Ags(s;) € [2475.5693],
and hence, (37) is valid at least for s € [0,5,]. Thus, we can compute lower bounds for
the eigenvalues A;(s),..., As5(s), s € [0,340} by means of Theorem 13.

Allowed values of p for s > s, say for s = 1000, can be computed by means of a
homotopy method (see Goerisch [17] and Plum [35]). For s = s; we compute a (verified)
lower bound for As(s;),

Due to the monotonicity of the eigenvalues, this is also a lower bound for A,5(s) for s > s,
and a glance at Figure | followed by a verified Rayleigh-Ritz computations gives us the
inequality

A24(3) S A24(S) S 2475.5692 S /\25(3) for S S S S 8 1= 680.
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$=2 s = 1000
Ay | [8.782 344 550 52 E — 1] [3.137 075 158 9833 E + 1]
Az | [5.100 900 595 58 E + 0] [1.547 904 841 487152 E + 2]
As | [1.700 836 462 2734 E + 1] [2.739 415 967 99232 E + 2]
A+ | [3.700 357 169 591 E + 1] [3.885 640 377 45353 E + 2]

As | [6.500 198 416 95573 E + 1] [4.983 373 174 46472 E + 2]
Ae | [1.010 012 626 368938 E +2] | [6.028 531 304 11327 E + 2]
Az | [1.450 008 741 293428 E +2] | [7.015 668 560 27432 E + 2]
As | [1.970 006 410 269932 E + 2] | [7.937 004 756 0333 E + 2]
Ae | [2.570 004 901 9665 E + 2] [8.779 832 679 5533 E + 2]
Ao | [3.250 003 869 9719875 E + 2] | [9.509 847 221 3844 E + 2
A | [4.010 003 132 833632 E +2] | [1.002 491 676 06827 E + 3]
A1z | [4.850 002 587 9925%¢ E + 2] | [1.057 178 409 62272 E + 3]
Az | [5.770 002 173 913583 E + 2] | [1.134 382 857 966038 E + 3]
M4 | [6.770 001 851 852173 E +2] | [1.224 608 486 379635 E + 3
A5 | [7.850 001 596 42432 E + 2] [1.325 329 650 33952 E + 3]
A1e | [9.010 001 390 4333 E + 2] [1.435 672 605 01957, E + 3]
A1z | [1.025 000 122 189632 E + 3] | [1.555 154 451 9689873 E + 3]
Ms | [1.157 000 108 22512 E + 3] [1.683 472 366 2003}3 E + 3)
Ao | [1.297 000 096 5251033 E + 3] | [1.820 423 551 77934 E + 3]
Azo | [1.445 000 086 6253 E + 3] [1.965 865 955 723 E + 3|
Az1 | [1.601 000 078 173833 £ +3] | [2.119 696 6953 E + 3]

A2z | [1.765 000 070 901831 £ + 3] | [2.281 839 283 E + 3]

A2z | [1.937 000 064 5994857 E + 3] | [2.452 23§ E + 3]

Azq | [2.117 000 059 1016522 E 43} | —

Azs | [2.305 000 054 27703032 E + 3] | —

Table 2

Bounds for eigenvalues of the Mathieu equation
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The (verified) Lehmann lower bound for Ay(s;) (computed with p = 2475.5692) is
2462.8454 < X4(33), this is an admissible spectral parameter p for s = 1000.

In Table 2 we give numerical results for s = 2 and for s = 1000 (computed with n = 30
trial functions), which can be compared with those of Bazley [45] and Weinstein [46].
Unfortunately not any of their bounds is correct. The reason for the fact that some of
their lower bounds is indeed an upper bound and vice versa is that they used standard
floating point arithmetic and not interval arithmetic.

7.2. Vibrations of Turbine Blades

In this subsection we consider the natural bending vibrations of a free standing blade
of a turbine disc. The mathematical model describing this problem [21] results in an
eigenvalue problem with a system of ordinary differential equations of fourth order:

(v.2) +v,.92)" - 02 (08, = 2%,

" \ (38)
(9.0 +,87)" - 0? (09.) — 0?8, = )9,

and
2,(0) = &,(0) = 8,(0) = %0) =0, (39)
o(1) = 2y(1) = @7(1) = ®;’(1) = o.

Where ¥, and ¥, are real numbers and

0 = O(z)=05(1—-z)(z+2e+1),
Uy = ¥y(z) = ¥y,cos’(yz) + Y¢sin’(yz),
¥, = ¥,(z)=¥,sin’*(yz) + ¥, cos’(y z),
Ve = W,(z) = (¥ - ¥,)sin(y2) cos(y z).

The most important parameters (see Figure 2) are
cartesian coordinate of the blade

v(z) first component of the eigenfunction: displacement in y-direction
:(z) second component of the eigenfunction: displacement in z-direction
x angle of twist
v» ¥z, ¥y squares of the radii of gyration
29(z) normal force in the blade

angular velocity

eigenvalue (square of the eigenfrequency, dimensionless )

We assume ¥, = 1, U, = 87.11, ¢ = 0.457, y = 155 (values suggested by Professor Irretier,
Institut fiir Mechanik, Gesamthochschule Kassel), and we are interested in computing
bounds for the smaller eigenvalues for § close to 9 (see Figure 3).

In order to apply the right definite theory (theorems 13 and 14), we define
DN Lz(o, 1) X Lz(o, 1)

Du = (= (%) + e C0UIO = 10 = 0 = 1) = 0,6 =1,2)
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Figure 2. Notations

1508

1800

2.5 s 7.5 19 12.5 15 17.%

Figure 3. Eigenvalue curves

and

Nit9) = [t s tor = (f).9= (%) € D
1

M(f,9) = [{Flol + O fiol + 2OLig,

+0,. flgy + O, fr95 + Q*O flgh — W2 faga}dz for f = (ﬁ) 9= (Z;) € Du
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The trial functions are constructed by means of polynomials

- 3 2
Bie) = o (5—”%)

z3 2_2_3:.{_3_2
3 3 5

(-1+ :7;)43:'.'1 for 1> 3.

El
~~
8
A
i

S
—~
8
S
il

Obviously, the p; fulfill the boundary conditions 5;(0) = #i(0) = /(1) = #"(1) = 0.
To avoid the well known numerical problems with ill conditioned matrices, we con-
struct an orthogonal basis from the p; (orthogonal with respect to the L, inner product

(f,9) = [ fgdz) using the Gram-Schmidt process and the computer algebra program
Mathematica (see [48]). We obtain

132
p(z) = ?(6 — 4z + 2%)
2
pa(z) = ’”—( —~ 326 + 824z — 6612 + 1827°)
ps(z) := 595(37490 181120z + 30581522 — 2189662° + 573762%)
2
palz) = 17335( 2548170 + 19398020z — 5414641522 + 708397562° — 441463362* +
10620480z°)
2
Ps(2) = p37e5(40512210 — 437785780z + 179027923507 — 36258626042° +
3896636744z* — 2131724400z° + 4680877502°)
2
pe(z) := 8;85( — 4034766 + 58114976z — 32356764922 + 923419434> —

1482348280z" + 13543769282° — 6580618742° + 132109516z7)

Now we choose ny,n; € IV, n :=n; + ny and define
v = (13) fori=1,...,n
0 .
v; = fori=ny+1,...,n1+n,=n
Di-n,y

as trial functions.
Our numerical results (with n, = n, = 10) are given in Table 3.



Q = 8.80 Q= 8.90
A | [ 76.709680259) A | [ 78.106 306 532
A2 | [1197.598903 §] A2 | [1209.059 506 7]
As | [1236.2998237) A | [1244.584 0552
Ay | [5955.927 2858 A4 | [6004.260 6434

Q = 9.00 Q=9.10
M [ 79.516862853 A [ [ 80.941335425
Az | [1218.3174288) A2 | [1225.541 882§]
As | [1255.287 2853 As | [1268.240 1523
A4 | [6053.108 3518 Aq | [6102.469 6333

Table 3

Bounds for eigenvalues of the problem of turbine blade vibrations

7.3. A Stekloff Eigenvalue Problem
Our next example is a Stekloff eigenvalue problem of fourth order; bounds for the

smallest eigenvalue of this problem have been computed by Kuttler [27].

A% = 0 in 2,

%% = 0 on 90,
—aaA:’ = M on 99,

(I)(.'l',y) = q)(—-.‘l,‘,y) = "(I)(I’_y) for (:c,y)EQ,

with

Q:={(z,y) e R? : |z| <1, |y| < 1}.
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(40)

If one denotes the smallest nonzero eigenvalue of this problem by £; (cf. Kuttler), then
&2 is one of the optimal constants in the a priori inequality

1 1 1 1 dv 1
([ v*dody)t < (7 f(@vrdsdnt + (- [ (577ds)!

for v € HY(Q), [qvdzdy = J, Avdz dy = 0, where p, is the smallest nonzero membrane

eigenvalue for Q.

The above inequality is useful for obtaining error bounds for the boundary value problem

Av=fin Q,
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v
an

/nvd:zdy=0

=0 on 0,

We want to apply the left definite theory to problem (40), so we begin by giving the
domain and the bilinear forms

= FeH @) : 9L =0 on 90, f(e,) = f(=2,9) = —f(a,—y) for (2,3) € 0},

M(fg) = [ AfAgdady

for f,ge D.
Nifg) = [ fgds

In order to construct X, B, and T for Theorem 6, we use integration by parts:

aAv
/nAuAvdzdy = /uAAvdxdy / d5+/ —AvdS
dAv
= /ﬂuAAvdzdy—-/anu an , ().
We define
r=2, M f:=A%f, T f:=f,

Mgf::—-%—A;l—[, T f = f.

Using the a priori inequalities
/(Af)’d:cd > ff/ frdzd
Q V=16 Jo’ %>

4
2 s -1 2
/Q(Af) dody > T(rvZ +1) /mf ds,
for f € D — the first one follows from

< b f(=0f)dzdy
~  Jqfidzdy

forall fe€ D, f #0, and

([ /-Afdedy < [(Affdedy [ 1 dody

n?
4

for all f € D, the second one can be found in [27] — we obtain

/Q(Af)’dwdy 2 3 /fzdzdy+ (m/"+1) /f’ds
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Thus, we can define
Q=5 k1:=1,

@=5EV2+1), Kpi=1,
and the construction procedure for X, B, T (see section 2) yields
X = Dx L)(Q) X Lg(aﬂ) s

i
fl for feD,
f

[ Afogodudy —a [ fogodedy +ar [, frgr dady

Tf :

fo 9o
B( fl » | 91 )
fa 92
[£)-:)
for | il,|on | €X.
fa g2

We choose the trial functions (see Theorem 8) as

—%/anfogods‘*'(h/anfzgzds

v = X(ik)er, CiikVik
W = 0 (41)
9 = Taaper, it

for j € IN, where
vie(z,y) = (2622 —(2i —2)z?)((2k + Dy?*1 — (2k — 1)y2k+1)

Wa,y) = (220 — (20 = 2)a?)((2k + Dy — 2k - Dy #2)

for¢,k € IN.

Here T, and T',, are index sets and the real numbers ¢jix and djix can be obtained easily

from an approximate solution of a matrix eigenvalue problem. For more details see {39].
An inclusion with |I',| = 7 and |T'y| = 16 is

AL = & € [1.99585297).

Kuttler obtains by his method of a posteriori - a priori inequalities with 10 trial functions
and standard floating point arithmetic

M = & € [1.9955:22),

that is, Kuttler’s interval is wider than our interval in spite of his having used more trial
functions.

Our result with || = 25 and |T| = 110 is
A =& € [1.995812883257],

Thus, Kuttler’s upper bound is wrong due to rounding errors.
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7.4. Buckling of a Rectangular Clamped Plate under Pressure
Our next example plays a part in the determination of the buckling load of a rectangular
clamped plate under pressure:

A® = —)A® in Q,
® =0 on 99,
28 (43)
n = 0 on 69,
&(z,y) = ®(-z,y) = O(z,~y) for (z,9) €N,
with

Q:={(z,9) e R? : |z| < - ,lyl< }

One typically is interested in the smallest eigenvalue of (43).
We define the domain and the bilinear forms (see [20]) by

{f € Hg(n) : f(mvy) = f(—:c,y) = f('z'a _'y) for (.’l:, y) € Q}

and
M(f.g) = [ AfAgdsdy

Of 8 9 fOI‘f,geD.
N(o) = [(GEFE4 5l 3D dnay

The quantities X, B, and T for the left definite theory can be defined by
X = Ly Q)
Tf Af forall feD

B(f,g) := /ﬂfgdzdy-

We choose the trial functions:
(1)(

9i(2) 9e(v) + gx(z) 9:(y),
hi(z) hi(y) + he(z) hi(y),
9i(z) hi(y) + hi(z) 9:(y),

z,y)
(2)(

z,y)

v.‘,k (z »Y)
with

gi(t) :

sin(z(¢ + g)) i 2 sin((Z + 2)(¢t + ))

h(t) += cos((i = 1)(t +3) = cos((i + 1)(t + 3))

fori,k e IV.
Our result with 41 trial functions (cf. [32)) is

A € [5.3036282).
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Further numerical examples, for which the discussed methods have been applied success-
fully (without the use of interval arithmetic) can be found in {2, 9].

The authors are grateful to the referees for valuable hints and suggestions, which helped
to make this paper more readable.
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