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University of Wuppertal, Germany

filib++ is an extension of the interval library filib originally developed at the University of
Karlsruhe. The most important aim of filib is the fast computation of guaranteed bounds for
interval versions of a comprehensive set of elementary functions. filib++ extends this library
in two aspects. First, it adds a second mode, the extended mode, that extends the exception-free
computation mode (using special values to represent infinities and NaNs known from the IEEE
floating-point standard 754) to intervals. In this mode, the so-called containment sets are com-
puted to enclose the topological closure of a range of a function over an interval. Second, our new
design uses templates and traits classes to obtain an efficient, easily extendable, and portable C++
library.
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1. INTRODUCTION AND MOTIVATION

Let us first give some illustrative examples of why validated numerics (based on
interval computations) may be needed. Then, in the following two sections, we
introduce the two modes of the library using interval evaluation or containment
evaluation of a function, respectively. Section 4 describes the design of filib++
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Fig. 1.

as a template library and provides its interface. In Section 5, an application is
given, while Section 6 gives some performance figures and compares filib++
with other interval libraries.

The following figures show some graphical results produced with Maple’s
implicitplot command. The first two plots in Figure 1 show Maple results
when plotting the curve defined by (x2 + y2)3 − 27x2 y2 = 0, the second two
plots in Figure 2 show (x2 + y2 − 6x)2 − x2 − y2 = 0, and the plots in Figure 3
show x4 + y4 − 8x2 − 10 y2 + 16 = 0. In the plots in the right column, the
parameter numpoints of the implicitplot command is set explicitly, whereas
in the left column Maple’s default setting is used.

The difficulty in plotting these implicitly defined simple curves is not the
lack of precision in the computations. The erroneous results come from the
interpolation process. At least near intersection points or near singularities,
this process is difficult to control automatically.

Using interval tools, as, for example, provided by our new library filib++,
the results in Figures 4 to 6 are obtained without any intervention by the user.
These results are verified to be correct.

filib++ also provides containment computations to handle infinite intervals.
Thus, we can, for example, compute enclosures of all zeros of a one-dimensional
function over the complete real line.

For the following, we assume that the reader is familiar with the basic ideas
of interval arithmetic (for a good introduction and references see Hammer
et al. [1995]). We use bold face for continuous intervals, represented by two
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Fig. 2.

Fig. 3.
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Fig. 4.

Fig. 5.
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Fig. 6.

real bounds. That is,

x = [x, x] = {x ∈ R | x ≤ x ≤ x}.
IR denotes the space of all finite closed intervals, and f (x) = { f (x) | x ∈ x}
denotes the range of values of the function f : D f ⊆ R → R over the interval
x ⊆ D f . In this article, we restrict our consideration to the one-dimensional
case. Extensions to more dimensions are straightforward.

For those who are interested in recent developments in the fields of interval
mathematics and applications of it, refer to Krämer and Wolff von Gudenberg
[2001] and Kulisch et al. [2001].

2. INTERVAL EVALUATION

We consider the enclosure of the range of a function, one of the main topics of
interval arithmetic.

Definition 1. The interval evaluation f : IR → IR of f is defined as the func-
tion that is obtained by replacing every occurrence of a variable x by an interval
variable x, by replacing every operator by its interval arithmetic counterpart
and by replacing every elementary function by its range under the assumption
that all operations are executable without exceptions.

The following theorem is known as the fundamental theorem of interval
arithmetic [Alefeld and Herzberger 1983].
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THEOREM 2.1. If the interval evaluation is defined, we have

f (x) ⊆ f(x).

The first (normal) mode of the library uses interval evaluation. The interval
evaluation is not defined if x contains a point y /∈ D f . Division by an interval
containing 0, for example, is forbidden. Note that, even if x ⊆ D f , f may not
be defined. The result depends on the syntactic formulation of the expression
for f . For the function f1(x) = 1/(x · x + 2), the call f1([−2, 2]) is not defined
because [−2, 2] ·[−2, 2] = [−4, 4], whereas f2(x) = 1/(x2 +2) yields f2([−2, 2]) =
[1/6, 1/2]. Of course, for real arguments x, f1(x) = f2(x).

The result of an elementary function call over an interval is defined as
the interval of all function values. Such function calls are not defined if the
argument interval contains a point outside the domain of the correspond-
ing function. For elementary functions f ∈{ sin, cos, exp . . .}, it holds that
f(x) := f (x) = { f (x) | x ∈ x ⊆ D f }. That is, the result of an interval eval-
uation of such a function is by definition equal to the range of the function over
the argument interval.

3. CONTAINMENT EVALUATION

To overcome the difficulties with partially defined functions throwing excep-
tions, we introduce a second mode, the extended mode. Here, no exceptions are
raised, but the domains of interval functions and ranges of interval results are
consistently extended. In the extended mode, interval arithmetic operations
and mathematical functions form a closed mathematical system. This means
that valid results are produced for any possible operator-operand combination,
including division by zero and other undetermined forms involving zero and
infinities.

Let R
∗ = R ∪ {−∞} ∪ {∞}. Following G.W. Walster [Chiriaev and Walster

1999; Walster et al. 2000b], we define the containment set:

Definition 2. Let f : D f ⊆ R → R. Then the containment set f ∗ : ℘R
∗ →

℘R
∗ defined by

f ∗(x) := { f (x) | x ∈ x ∩ D f } ∪ { lim
D f �x→x∗

f (x) | x∗ ∈ x} ⊆ R
∗ (1)

contains the extended range of f .

Hence, the containment set of a function encloses the range of the function
as well as all limits and accumulation points.

Our goal is now to define an analogue to the interval evaluation which en-
closes the containment set and is easy to compute.

Let IR
∗ denote the set of all extended intervals with endpoints in R

∗, supple-
mented by the empty set (empty interval).

Definition 3. The containment evaluation f∗ : IR
∗ → IR

∗ of f is defined as
the function that is obtained by replacing every occurrence of the variable x
by the interval variable x and by replacing every operator or function by its
extended interval arithmetic counterpart.

We then have Walster et al. [2000]
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Table I. Extended Addition and Subtraction

+ −∞ y +∞
−∞ −∞ − ∞ R

∗
x −∞ x + y +∞

+∞ R
∗ + ∞ +∞

− −∞ y +∞
−∞ R

∗ − ∞ −∞
x +∞ x − y −∞

+∞ +∞ + ∞ R
∗

Table II. Extended Multiplication

∗ −∞ y < 0 0 y > 0 +∞
−∞ +∞ +∞ R

∗ −∞ −∞
x < 0 +∞ x ∗ y 0 x ∗ y −∞
0 R

∗ 0 0 0 R
∗

x > 0 −∞ x ∗ y 0 x ∗ y +∞
+∞ −∞ −∞ R

∗ +∞ +∞

Table III. Extended Division

/ −∞ y < 0 0 y > 0 +∞
−∞ [0, +∞] +∞ {−∞, +∞} −∞ [−∞, 0]
x < 0 0 x/ y {−∞, +∞} x/ y 0
0 0 0 R

∗ 0 0
x > 0 0 x/ y {−∞, +∞} x/ y 0
+∞ [−∞, 0] −∞ {−∞, +∞} +∞ [0, +∞]

Table IV. Extended Interval Division

A = [a; a] B = [b; b] Range Containment Set
0 ∈ A 0 ∈ B R

∗
R

∗
0 ∈ A B = [0; 0] {−∞; +∞} R

∗
a < 0 b < b = 0 [a/b, ∞) [a/b, ∞]
a < 0 b < 0 < b (−∞, a/b] ∪ [a/b, +∞) R

∗
a < 0 0 = b < b (−∞, a/b] [−∞, a/b]
a > 0 b < b = 0 (−∞, a/b] [−∞, a/b]
a > 0 b < 0 = b (−∞, a/b] ∪ [a/b, +∞) R

∗
a > 0 0 = b < b [a/b, +∞) [a/b, +∞]

THEOREM 3.1. The containment evaluation of f is always defined1, and

f ∗(x) ⊆ f∗(x)

For the proof of this theorem, all arithmetic operators and elementary func-
tions are extended to the closure of their domains. This can be done in a straight-
forward manner, see Chiriaev and Walster [1999]. We apply the well known
rules to compute with infinities. If we encounter an undefined operation like
0 ·∞, we deliver the set of all limits, which is R

∗. Note that negative values are
also possible since 0 can be approached from both sides.

Tables I to IV show the containment sets for the basic arithmetic operations.
From these tables, the definition of extended interval arithmetic can easily be
deduced. For addition, subtraction, and multiplication, infinite intervals can be
returned if a corresponding operation is encountered. Some typical computa-
tions are [2, ∞] + [3, ∞] = [5, ∞], [2, ∞] − [3, ∞] = R

∗, [2, ∞] ∗ [−3, 3] = R
∗.

1This is in contrast to the interval evaluation.
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Table V. Extended Domains and Ranges for the Elementary Functions

Name Domain Range Special Values
sqr R

∗ [0, ∞]
power R

∗ × Z R
∗ power([0,0],0) = [1,1]

pow [0, ∞] × R
∗ [0, ∞] pow([0,0],[0,0]) =[0, ∞]

sqrt [0, ∞] [0, ∞]
exp, exp10, exp2 R

∗ [0, ∞]
expm1 R

∗ [−1, ∞]
log, log10, log2 [0, ∞] R

∗ log ([0, 0]) = [−∞]
log1p [−1, ∞] R

∗ log1p ([−1, −1]) = [−∞]
sin R

∗ [−1, 1]
cos R

∗ [−1, 1]
tan R

∗
R

∗ tan(x) = R
∗, if

π/2 + kπ ∈ x, k ∈ Z

cot R
∗

R
∗ cot(x) = R

∗, if
kπ ∈ x, k ∈ Z

asin [−1, 1] [−π/2, π/2]
acos [−1, 1] [0, π ]
atan R

∗ [−π/2, π/2]
acot R

∗ [0, π ]
sinh R

∗
R

∗
cosh R

∗ [1, ∞]
tanh R

∗ [−1, 1]
coth R

∗ [−∞, −1] ∪ [1, ∞] coth([0,0]) =R
∗

asinh R
∗

R
∗

acosh [1, ∞] [0, ∞]
atanh [−1, 1] R

∗
acoth [−∞, −1] ∪ [1, ∞] R

∗ acoth([−1, −1]) = [−∞]
acoth([1, 1]) = [∞]

Division is more subtle. Table IV shows the cases when the denominator
contains 0.

For the elementary functions, Table V shows the extended domains and ex-
tended ranges. The containment set for an elementary function is computed
by directly applying the definition of a containment set. If the argument lies
strictly outside the domain of the function, we obtain the empty set as the
result. If the argument x contains a singularity, the corresponding values for
±∞ are produced. The functions in containment mode never produce an over-
flow or illegal argument error. Their realizations on a computer never throw
an exception. Some typical examples are log[−1, 1] = [−∞, 0], log[−2, −1] = ∅,
coth[−1, 1] = R

∗. Note that ordinary intervals may be obtained, even if the
interval evaluation is not defined,

√
[−1, 1] = [0, 1], for example.

The special values column shows the results of the interval version at points
on the border of the open domain. In all cases, the lim construction in (1) is ap-
plied and containment is guaranteed. Note that, for the power function xk , only
limx→0 x0 is considered, whereas x y is calculated as e y ln x in the pow function.
We intentionally chose 2 different names, since power(x, k) ⊆ pow(x, [k, k]) does
not hold for negative x.

It has been shown in Walster et al. [2000a, 2000b] that, using extended
operations, the containment evaluation can be computed without exceptions.
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4. FILIB++ AS A TEMPLATE LIBRARY

4.1 Traits and Templates

To describe the up-to-date design of filib++, we assume that the reader has
some knowledge of C++ templates.

Analogous to the basic string template of the C++ standard, we use a con-
cept called a traits class [Myers 1995] for our implementation. A traits class
is a template class that allows access to data fields and the operations of its
template parameter(s). In the example case of the basic string template, a
character traits class is used. This traits class can be invoked on several char-
acter types, as the well-known char primitive type, but often also for some
kind of a wide character type. The traits class brings functions like assigning
characters (an operation on characters) and functions that return some special
value of the parameter type like the eos symbol (end of string, a special feature
value of the parameter type). The methods of the basic string template can
work exclusively with the functions of the traits class without directly using
any special properties of the template parameter and thus, without need for a
specialization for template arguments.

In our case, we use a traits class fp traits for the basic number type on
which we build interval arithmetic. The fp traits class provides all the func-
tions we need for basic interval operations like directed addition, subtrac-
tion, multiplication, and division as well as some functions returning spe-
cial values like the maximum finite value of the type. It also has functions
for testing properties of the number type such as testing for infinity, for
example.

Our traits class has two template parameters. The first selects the basic num-
ber type, for example, float or double, and the second selects the implementa-
tion of the directed rounding, for example, hardware-based or software-based
by computing the predecessor or successor of a number.

The following rounding methods are supported.

—native switched. Operations are based on hardware support. After using
directed operations, we switch the rounding mode back to the default (round
to nearest).

—native directed. It is like native switched but without switching back to
the default mode. This changes the floating-point semantics of the rest of the
program since usually the default floating-point rounding mode is rounded
to the nearest. Because on most processors switching the rounding mode is a
very expensive operation, this may speed up the computation if only interval
arithmetic is used or the traits class is called to reset the rounding mode to
the default explicitly, when needed.

—multiplicative. Rounding is implemented by multiplication with the pre-
decessor or successor of 1. This relies on the hardware implementation to
produce results that are rounded with rounding to the nearest.

—no rounding. It uses the default rounding, hence not useable for applications.
We used it for performance tests.
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Table VI. Currently Existing fp traits

Implementations

First Param Second Param

double native switched

double native directed

double multiplicative

double no rounding

double native onesided switched

double native onesided global

double pred succ rounding

float native switched

float native directed

float multiplicative

float no rounding

float native onesided switched

float native onesided global

—native onesided switched. Use only rounding in one direction, and compute
the other side by factoring out −1 and then using negation. On machines
where switching the rounding mode is expensive, it may be faster than
native switched though as only one switch to a directed rounding mode is
used.

—native onesided global. It is like native onesided switched but there is
no switching back to the default rounding mode after interval operations.
As the rounding mode only needs to be set at the beginning of the pro-
grams, this mode will bring the fastest computation on machines where
switching the rounding mode is expensive. However, it has the problems
described in native directed, and it is necessary to set the rounding mode
to downward again if we want to continue using this mode after having gone
back to the default rounding.

—pred succ rounding. Do rounding by computing the predecessor or successor
after performing a computation. The machine may not compute results that
are off by more then one unit in the last place (ulp) for this mode to be able
to work correctly.

These seven rounding modes are provided since the degree of conforming to or
exploiting the IEEE arithmetic differs from machine to machine and compiler
to compiler. Therefore, we suggest testing the performance for any rounding
mode on the target machine.

The availability of various rounding modes further enhances the portability
of the library. Whereas the native modes need assembler statements to access
the directed roundings, the multiplicative rounding always works on IEEE ar-
chitectures. Specializations of this traits class for double and float are provided
in the library, as listed in Table VI.

The specializations for rounding modes that rely on machine-specific round-
ing control methods inherit these methods from an instantiation of the template
class rounding control. This is illustrated in Figure 7 which shows part of the
inheritance hierarchy used in the library (note that this is a simplified diagram).
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Fig. 7. Part of the inheritance hierarchy.

Our implementation can be easily extended for new number types by pro-
ducing new specializations of the fp traits template. At the current stage of
this library, this is not true for the standard functions as they are derived from
filib and for speed and complexity reasons have not been converted to using
the traits concept.

Examples showing how to call the fp traits functions directly can be found
in the interval example code shown in the following.

The filib++ interval class is realized as a template class. Currently there are
three template parameters: the underlying basic (floating-point) number type
N, the method of implementing the directed roundings rounding control, and
the computation mode interval mode. Here, the basic number type N may be
float or double, and rounding control K may be one of the rounding modes
listed in Table VI. The parameter interval mode may be one of

—i mode normal: computation is performed by interval evaluation of expres-
sions, floating-point exceptions are not masked;

—i mode extended: floating point exceptions are masked and evaluation is per-
formed in containment mode;

—i mode extended flag: as i mode extended, but a global flag is set, if an ex-
ception would have occurred in normal mode.
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The interval<> class implements its operations relying on functions for di-
rected floating-point arithmetic operations and on a function to reset the round-
ing mode. For example, a simplified version of the += operator looks like:

interval<N,K,E> & interval<N,K,E>::operator +=
(interval<N,K,E> const & o)

{
INF=fp_traits<N,K>::downward_plus(INF,o.INF);
SUP=fp_traits<N,K>::upward_plus(SUP,o.SUP);
fp_traits<N,K>::reset();
return *this;

}

Of course the interval class is compatible with the STL (standard template
library). This means that we can easily use the data structures provided there
for vectors, lists, queues, etc., as they are often needed in applications. As the
STL is part of the C++ standard, it is portable and efficient.

4.2 Template Instantiation

Some examples of declaring an interval may help in using the library.

interval<double> A;
This is the default instantiation of an interval. A is an interval over the
floating-point type double, the second and third template parameters are set
to their default native switched or i mode normal implicitly.

interval<double,multiplicative,i mode extended> A;
A is an interval over double. Multiplicative rounding is used. The hardware
need not support directed roundings. The extended mode is used.

interval<double,native onesided global> A;
This is probably the fastest mode for most of the currently available ma-
chines, but it changes the floating-point semantics of the program since di-
rected rounding is used for floating-point operations.

Another example can be found in the examples directory of the distribution.

4.3 Utility Functions from the fp traits<> Class

The following static member functions are mandatory for all implementations
of the fp traits<> class (N denotes the first template parameter).

bool IsNaN(N const & a): tests if a is not a number
bool IsInf(N const & a): tests if a is infinite
N const & infinity(): returns positive infinity
N const & ninfinity(): returns negative infinity
N const & quiet NaN(): returns a quiet (nonsignaling) NaN
N const & max(): returns the maximum finite value for N
N const & min(): returns the minimum finite positive nondenormalized
value for N
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N const & l pi(): returns a value that is as close as possible but no bigger
than π

N const & u pi(): returns a value that is as close as possible but no smaller
than π

int const & precision(): returns the current output precision
N abs(N const & a): returns the absolute value of a
N upward plus(N const & a, N const & b): returns a value of type N. It
shall be as close to a + b as possible and no smaller than a + b.
N downward plus(N const & a, N const & b): returns a value as close to
a + b as possible and no bigger than a + b.
N upward minus(N const & a, N const & b):
N downward minus(N const & a, N const & b):
N upward multiplies(N const & a, N const & b):
N downward multiplies(N const & a, N const & b):
N upward divides(N const & a, N const & b):
N downward divides(N const & a, N const & b):
Correspondingly for −, ·, /

void reset(): resets the rounding mode

4.4 The interval<> Class

Denote by x and x the infimum and supremum of the interval X. The interval
*this is written as T = [t , t]. N denotes the underlying basic number type,
that is, the type of the bounds. Furthermore M is the largest representable
number of type N and ± INFTY denotes an internal constant for ±∞. [NaN, NaN]
represents the empty interval, where NaN denotes an internal representation
for “Not a Number”.

The typename value type is defined for the basic number type, and the type
of traits used by the interval class is introduced as traits type.

The following constructors are provided for the interval class:

interval(): the interval [0, 0] is constructed.
interval(N const & a): the interval [a, a] is constructed.The point intervals
for +∞ and −∞ are given by [M , + INFTY] or [− INFTY, −M ], respectively.
interval(N const & a, N const & b): if a ≤ b, the interval [a, b] is con-
structed, otherwise the empty interval.
interval(std::string const & infs, std::string const & sups)
throw(interval io exception): constructs an interval using the strings infs
and sups. The bounds are first transformed to the primitive double type
by the standard function strtod and then the infimum is decreased to its
predecessor, and the supremum is increased to its successor. If the strings
cannot be parsed by strtod, an exception of type interval io exception is
thrown.
interval(interval<> const & o): copy constructor, an interval equal to the
interval o is constructed.
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The assignment operator is

interval<> & operator=(interval<> const & o): the interval o is as-
signed.

The following arithmetic methods are provided for updating arithmetic opera-
tions. Note that the usual operators are available as global functions (see V).

The special cases of the extended mode are not explicitly mentioned here,
see Tables I, II, III for details.

interval<> const & operator+() const (unary plus):
The unchanged interval is returned.
interval<> operator-() const (unary minus):
[−t, −t] is returned.
interval<> & operator+=(interval<> const & A) (updating addition):

t := t + a, t := t + a

interval<> & operator+=(N const & a) (updating addition):

t := t + a, t := t + a

interval<> & operator-=(interval<> const & A) (updating subtraction):

t := t − a, t := t − a

interval<> & operator-=(N const & a) (updating subtraction):

t := t − a, t := t − a

interval<> & operator*=(interval<> const & A) (updating multiplica-
tion):

t := min{t ∗ a, t ∗ a, t ∗ a, t ∗ a}, t := max{t ∗ a, t ∗ a, t ∗ a, t ∗ a}
interval<> & operator*=(N const & a) (updating multiplication):

t := min{t ∗ a, t ∗ a}, t := max{t ∗ a, t ∗ a}
interval<> & operator/=(interval<> const & A) (updating division):

t := min{t/a, t/a, t/a, t/a}, t := max{t/a, t/a, t/a, t/a}
The case 0 ∈ A throws an error in normal mode. R

∗ = [− INFTY, + INFTY]
is returned in extended mode.
interval<> & operator/=(N const & a) (updating division):

t := min{t/a, t/a}, t := max{t/a, t/a}
The case a = 0 throws an error in normal mode. R

∗ = [− INFTY, + INFTY]
is returned in extended mode.

The following access and information methods are provided. Methods only avail-
able in extended mode are marked with the specific item marker ∗.

N const & inf() const: returns the lower bound of T.
N const & sup() const: returns the upper bound of T.

∗ bool isEmpty() const: returns true iff T is the empty interval.
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∗ bool isInfinite() const: returns true iff T has at least one infinite bound.
∗ static interval<> EMPTY(): returns the empty interval.
∗ static interval<> ENTIRE(): returns R

∗.
∗ static interval<> NEG INFTY(): returns the point interval −∞ =

[− INFTY, −M ].
∗ static interval<> POS INFTY() returns the point interval +∞ =

[M , + INFTY].
static interval<> ZERO(): returns the point interval 0 = [0.0, 0.0]
static interval<> ONE() : returns the point interval 1 = [1.0, 1.0]
static interval<> PI(): returns an enclosure of π .
bool isPoint() const: returns true if and only if T is a point interval.
bool hasUlpAcc(unsigned int const & n) const: returns true if and only
if the distance of the bounds t − t ≤ n ulp, that is, a the interval contains at
most n + 1 machine representable numbers.
N mid() const: returns an approximation of the midpoint of T that is con-
tained in T.
In the extended mode, the following cases are distinguished:

T.mid() =

⎧⎪⎪⎨
⎪⎪⎩

NaN for T == ∅
0.0 for T == R

∗

+ INFTY for T == [a, + INFTY]
− INFTY for T == [− INFTY, a]

N mig() const: returns the mignitude, that is,

T.mig() == min{abs(t) t ∈ T}
In the extended mode, the following cases are considered:

T.mig() = NaN if T == ∅
N mag() const: returns the magnitude, the absolute value of T. That is,

T.mag() == max({abs(t) t ∈ T}).

In the extended mode, the following cases are considered:

T.mag() =
{

NaN if T == ∅
+ INFTY if T.isInfinite()

interval<> abs() const:
returns the interval of all absolute values (moduli) of T:

T.abs() = [ T.mig(), T.mag()]

In the extended mode, the following cases are considered:

T.abs() =

⎧⎪⎪⎨
⎪⎪⎩

∅ for T == ∅
[ T.mig(), + INFTY] if T.isInfinite() and one bound

is finite
[M , + INFTY] if both bounds are infinite
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N rad() const: returns the radius of T (upwardly rounded) In the extended
mode, the following cases are considered:

T.rad() =
{

NaN if T == ∅
+ INFTY if T.isInfinite()

N diam() const: returns the diameter or width of an interval (upwardly
rounded). The method is also available under the alias width. In the extended
mode, the following cases are distinguished:

T.diam() =
{

NaN if T == ∅
+ INFTY if T.isInfinite()

N relDiam() const: returns an upper bound for the relative diameter of T:
T.relDiam() == T.diam() if T.mig() is less than the smallest positive nor-
malized floating-point number,
T.relDiam() == T.diam()/T.mig() otherwise.

In the extended mode, the following cases are distinguished:

T.relDiam() =
{

NaN if T == ∅
+ INFTY if T.isInfinite()

The set theoretic methods are

interval<> imin(interval<> const & X): returns an enclosure of the inter-
val of all minima of T and X, that is,

T.imin(X) == { z: z == min(a,b): a ∈ T, b ∈ X }
In the extended mode, it returns

T.imin() = ∅ for T == ∅ or X == ∅
interval<> imax(interval<> const & X): returns an enclosure of the inter-
val of all maxima of T and X, i.e.

T.imax(X) == { z: z == max(a,b): a ∈ T, b ∈ X }
In the extended mode, this function returns

T.imax() = ∅ for T == ∅ or X == ∅.

N dist(interval<> const & X): returns an upper bound of the Hausdorff-
distance of T and X, that is,

T.dist(X) == max { abs(T.inf()-X.inf()), abs(T.sup()-X.sup()) }
In the extended mode, this function returns

T.dist(X) = NaN for T == ∅ or X == ∅.

interval<> blow(N const & eps) const: returns the ε-inflation:

T.blow(eps) == (1+eps)·T - eps·T
interval<> intersect(interval<> const & X) const: returns the intersec-
tion of the intervals T and X. If T and X are disjoint, it returns ∅ in the extended
mode, and an error in the normal mode.
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interval<> hull(interval<> const & X) const: the interval hull.
In the extended mode, it returns

T.hull() = ∅ if T == X == ∅
This function is also available under the interval hull() alias.
interval<> hull(N const & X) const: the interval hull.
In the extended mode, it returns

T.hull() = ∅ if T == ∅ and X == NaN

This function is also available under the interval hull() alias.
bool disjoint(interval<> const & X) const: returns true iff T and X are
disjoint, that is, T.intersect(X) == ∅.
bool contains(N x) const: returns true if and only if x ∈ T

bool interior(interval<> const & X) const: returns true if and only if T is
contained in the interior of X.
In the extended mode, it returns true if T == ∅
bool proper subset(interval<> const & X) const: returns true if and
only if T is a proper subset of X.
bool subset(interval<> const & X) const: returns true if and only if T is
a subset of X.
bool proper superset(interval<> const & X) const: returns true if and
only if T is a proper superset of X.
bool superset(interval<> const & X) const:returns true if and only if T
is a superset of X.

Three kinds of interval relational methods are provided: set relations, cer-
tainly relations, and possibly relations. The first character of the name of such
a method is s for set relations, c for certainly relations, and p for possibly
relations.

Set Relations

Set relational functions are true if the interval operands satisfy the underlying
relation in the ordinary set theoretic sense.

bool seq(interval<> const & X) const:returns true if and only if T and X
are equal sets.
bool sne(interval<> const & X) const: returns true if and only if T and X
are not equal sets.
bool sge(interval<> const & X) const: returns true, if and only if the ≥
relation holds for the bounds

T.sge(X) == T.inf() ≥ X.inf() && T.sup() ≥ X.sup()

In the extended mode, return true if T == ∅ and X == ∅.
bool sgt(interval<> const & X) const: returns true if and only if the >

relation holds for the bounds

T.sgt(X) == T.inf() > X.inf() && T.sup() > X.sup().
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In the extended mode, it returns false if T == ∅ and X == ∅.
bool sle(interval<> const & X) const: returns true if and only if the ≤
relation holds for the bounds

T.sle(X) == T.inf() ≤ X.inf() && T.sup() ≤ X.sup().

In the extended mode, it returns true if T == ∅ and X == ∅.
bool slt(interval<> const & X) const: returns true if and only if the < re-
lation holds for the bounds

T.slt(X) == T.inf() < X.inf() && T.sup() < X.sup().

In the extended mode, it returns false if T == ∅ and X == ∅.

Certainly Relations

Certainly relational functions are true if the underlying relation (e. g., less
than) is true for every element of the operand intervals.

bool ceq(interval<> const & X) const: returns true if and only if the =
relation holds for all individual points from T and X, that is, ∀t ∈ T, ∀x ∈ X :
t = x
That implies that T and X are point intervals.
In the extended mode, it returns false if T == ∅ or X == ∅.
bool cne(interval<> const & X) const: returns true if and only if the �=
relation holds for all individual points from T and X, that is, ∀t ∈ T, ∀x ∈ X :
t �= x
That implies that T and X are disjoint.
In the extended mode, it returns true if T == ∅ or X == ∅.
bool cge(interval<> const & X) const: returns true if and only if the ≥
relation holds for all individual points from T and X, that is, ∀t ∈ T, ∀x ∈ X :
t ≥ x
In the extended mode, it returns false if T == ∅ or X == ∅.
bool cgt(interval<> const & X) const: returns true if and only if the >

relation holds for all individual points from T and X, that is, ∀t ∈ T, ∀x ∈ X :
t > x
That implies that T and X are disjoint.
In the extended mode, it returns false if T == ∅ or X == ∅.
bool cle(interval<> const & X) const: returns true if and only if the ≤
relation holds for all individual points from T and X, that is, ∀t ∈ T, ∀x ∈ X :
t ≤ x
In the extended mode, it returns false if T == ∅ or X == ∅.
bool clt(interval<> const & X) const: returns true if and only if the <

relation holds for all individual points from T and X, that is, ∀t ∈ T, ∀x ∈ X :
t < x
That implies that T and X are disjoint.
In the extended mode, it returns false if T == ∅ or X == ∅.

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.



FILIB++, A Fast Interval Library Supporting Containment Computations • 317

Possibly Relations

Possibly relational functions are true if any element of the operand intervals
satisfy the underlying relation.

bool peq(interval<> const & X) const: returns true, if and only if there
exist points that the = relation holds, that is, ∃t ∈ T, ∃x ∈ X : t = x
In the extended mode, it returns false if T == ∅ or X == ∅.
bool pne(interval<> const & X) const: returns true if and only if there
exist points that the �= relation holds, that is, ∃t ∈ T, ∃x ∈ X : t �= x
In the extended mode, it returns true if T == ∅ or X == ∅.
bool pge(interval<> const & X) const: returns true if and only if there
exist points that the ≥ relation holds, that is, ∃t ∈ T, ∃x ∈ X : t ≥ x
In the extended mode, it returns false if T == ∅ or X == ∅.
bool pgt(interval<> const & X) const: returns true if and only if there
exist points that the > relation holds, that is, ∃t ∈ T, ∃x ∈ X : t > x
In the extended mode, it returns false if T == ∅ or X == ∅.
bool ple(interval<> const & X) const: returns true if and only if there
exist points that the ≤ relation holds, that is, ∃t ∈ T, ∃x ∈ X : t ≤ x
In the extended mode, it returns false if T == ∅ or X == ∅.
bool plt(interval<> const & X) const: returns true if and only if there
exist points that the < relation holds, that is, ∃t ∈ T, ∃x ∈ X : t < x
In the extended mode, it returns false if T == ∅ or X == ∅.

Input and Output routines are

std::ostream & bitImage(std::ostream & out) const: output the bitwise
internal representation.
std::ostream & hexImage(std::ostream & out) const: output a hexadec-
imal representation.
static interval<N,K,E> readBitImage(std::istream & in)
throw(interval io exception): read a bit representation of an interval from
in and return it. If the input cannot be parsed as a bit image, an exception of
type interval io exception is thrown.
static interval<N,K,E> readHexImage(std::istream & in)
throw(interval io exception): read a hex representation of an interval from
in and return it. If the input cannot be parsed as a hex image, an exception
of type interval io exception is thrown.
static int const & precision(): returns the output precision that is used
by the output operator <<.
static int precision(int const & p): set the output precision to p. The
default value is 3.

The methods of the class interval<> are available as global functions as
well. This interface to the operations is not only more familiar and convenient
for the user (mathematical notation of expressions), but also more efficient.
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The class interval<double> also provides the elementary mathematical
functions sin, cos, acos, acosh, acot, acoth, asin, asinh, atan, atanh, acoth, exp,
exp 10, exp 2, expm1, log, log 10, log 1p, log 2, pow, sinh, sqr, sqrt, tan, tanh in
both the normal and the extended interval mode. The typical interface for such
a function with one argument is

interval<> sin(interval<> const & A):
sine function with resulting set {sin(a) : a ∈ A}.
For functions with two arguments, we typically have
interval<> pow(interval<> const & A, interval<> const & B):
general power function with resulting set {ab : a ∈ A, b ∈ B}.

5. APPLICATION

The following program code demonstrates the use of the filib++ library in
connection with the standard template library (STL) of C++ to obtain veri-
fied graphics of implicitly defined curves as shown in the first chapter of this
article.

//Verified computation of level curvesusing filib++ and routines from the STL

#include <fstream>

#include <list>

#include <interval/interval.hpp> //filib++

//...

using namespace filib;

//Simplify instantiation of intervals

typedef interval<double> I;

//...

//Data type for two dimensional boxes

typedef pair<I,I> rectangle;

void levelCurve(

ofstream& out, //output file

I(*f)(rectangle), //function

rectangle x,

I level,

double epsilon

)

{

list<rectangle> toDo;

toDo.push_back(x);

while( !toDo.empty() )

{

rectangle box= toDo.front();

toDo.pop_front();

I fRange= f(box);

if (!disjoint(level, fRange)) //box may contain points of level curve

{
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if ( diam(box) < epsilon )

plotBox(out, box); //write data to plot box using gnuplot

else

{

if( diam(box.first) > diam(box.second) )

{

pair<I,I> p = bisect(box.first);

toDo.push_back(make_pair(p.first, box.second));

toDo.push_back(make_pair(p.second, box.second));

}

else

{

pair<I,I> p = bisect(box.second);

toDo.push_back(make_pair(box.first, p.first));

toDo.push_back(make_pair(box.first, p.second));

}

}

}

}

}

I f(rectangle box) //two dimensional (interval) function

{

I x(box.first), y(box.second);

I h= sqr(x) + sqr(y); //x^2+y^2

return sqr(h-I(6)*x) - h; //(x^2+y^2-6x)^2 - (x^2+y^2)

}

With the data and function calls

double epsilon=0.01;

I level(0,0);

rectangle x(make_pair(I(-8, 8), I(-8, 8)));

levelCurve(out, f, x, level, epsilon); //fine

levelCurve(out, f, x, level, 60*epsilon); //coarse

we obtain the verified graphic in Figure 8.
The boxes are a coarse coverage of the curve. Note, that the variable level is
of type interval. This allows plotting level curves simultaneously for a given
range of levels. Figure 9 is produced using level(-1,20) and epsilon = 0.05.

Containment computations also allow the treatment of functions over infinite
domains, functions with singularities, or functions that are defined partially.
For example, a coverage of the graph of f (x) := x +arctan(log(sin(10x)/(x +1)))
may be computed using the previous program with a function g (x, y) :=
f (x) − y without any modification. The result is shown in Figure 10
(left part).

The corresponding (unreliable) Maple plot, using numpoints=10000, is also
shown (right figure). Here, the part of the graph of f close to x = −1 is missing.
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Fig. 8.

Fig. 9.
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Fig. 10. f (x) := x + arctan(log(sin(10x)/(x + 1))): verified (left)/Maple (right).

Note that the natural domain of definition D f is the union of infinitely many
disjoint open intervals. The interval plot routine never loses points of the graph.

Using the bisection algorithm described in Lerch et al. [2001] verified enclo-
sures for all zeros of f over the entire real line (stored in a list named zeros)
may be computed using

list<interval> zeros= findAllZeros(f<interval>, interval::ENTIRE(), epsilon);

For epsilon=0.0001, we compute the enclosures

There may be zeros in the interval(s):

1 [-1.00006103515624978, -0.99999999999999988]

2 [-0.95947265624999989, -0.95941162109374988]

3 [-0.52752685546874989, -0.52740478515624988]

4 [-0.42694091796874995, -0.42681884765624995]

5 [0.142700195312499972, 0.14282226562499998]

6 [0.174560546874999972, 0.17468261718749998]

7 [0.709289550781249889, 0.70941162109374989]

8 [0.883361816406249889, 0.88342285156249989]

9 [1.26605224609374978, 1.26611328124999978]

10 [1.57073974609374978, 1.57080078124999978]

Note that f (−1) is not defined (division by zero) and limx→ π
2

f (x) = 0.

6. PERFORMANCE

6.1 Internal Comparison

Instantiations of the interval<> class with different rounding strategies or
evaluation modes perform differently. The performance heavily depends on the
hardware architecture and the compiler version.

We tested the arithmetic operations in a loop, the numbers (double) were
randomly generated into vectors of different lengths. The processor was a
2GHz Pentium 4 running under Linux. We used the gcc 3.2.1 compiler with
optimization level O3. Tables VII and VIII show the performance in MIOPs
(million interval operations per second) for the normal and the extended mode.
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Table VII. Performance for Normal Interval Mode

Rounding Mode + - * /
native 22.4 22.2 11.4 8.8

native-switch 3.9 3.9 3.5 3.0
native-onesided 20.9 21.2 13.9 8.2

native-onesided-switch 19.2 19.3 8.9 6.3
no-switch 24.7 24.6 16.4 9.2

multiplicative 8.8 8.9 6.1 6.2
pred-succ 7.5 7.8 1.5 1.7

Table VIII. Performance for Extended Interval Mode

Rounding Mode + - * /
native 18.7 18.9 4.5 8.5

native-switch 3.6 3.6 2.5 2.8
native-onesided-switch 11.9 11.9 7.9 6.3
native-onesided-switch 10.5 10.6 4.5 5.0

no-switch 22.0 22.1 10.6 9.1
multiplicative 8.5 8.5 4.6 5.6

pred-succ 6.8 7.0 0.5 0.9

6.2 External Comparison

The same test scenario has been applied to compare filib++ with Profil/BIAS
[Knüppel 1994]. Note that the latter could only be compiled using the gnu 2.95.2
compiler.

We further compared our portable open source library filib++ on a Sun Solaris
workstation with the native interval support in the nonportable commercial
Sun Forte environment [Sun Microsystems 2001] (so the comparison is not
really fair for filib++). Nevertheless, the results are interesting.

Note, that the results depend significantly on the optimization level chosen
for the compilation. In all cases, we use optimization level O3.

The expression we use for the time measurement of basic interval operations
is (x ∗ (x + y) − (x ∗ y − z) − x)/(z ∗ y). This expression is evaluated within a
loop (1000000 repetitions). filib++ on a Sun Solaris compiled with the Gnu C++
compiler 2.95.2 takes 3130 milliseconds. Using the native interval operations
of the Sun Forte compiler on the same machine takes 3370 milliseconds.

For the time measurement of elementary interval function calls, we compute
the expression log(exp(arctan(sin( y) ∗ cos(x)))). Again 1000000 repetitions are
performed. Here, filib++ on a Sun Solaris compiled with the Gnu 2.95.2 compiler
takes 8470 milliseconds, whereas the native interval functions of the Sun Forte
compiler take 5240 milliseconds.

7. CONCLUSION

filib++ is an efficient, powerful, portable, publicly available C++ interval li-
brary supporting containment computations. Its design, using template classes
in combination with traits classes, is flexible and up to date. The library
can be used with any C++ compiler conforming to the C++ standard from
1998.
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Table IX. Comparison with Profil/BIAS

Library + - * /
filib++ 22.4267 22.1937 11.3699 8.85632
profil 11.6108 11.274 7.63891 9.76969

In this article, we payed little attention to the use of the library. Only some
small applications have been discussed to show the quality of mathematical
results that can be achieved using filib++. The numerical results are guar-
anteed to be correct in a mathematical sense. The library is designed to be
of maximum value in the field of Validated Computing. Containment compu-
tations allow writing robust code with only little programming effort. Some
additional applications (e.g., the verified computation of all solutions of a non-
linear equation) may be found in Lerch et al. [2001]. The complete source codes
are available in the examples directory of the filib++ installation.

The third template parameter interval mode enables the user to do compu-
tations using containment sets as well as computations using ordinary interval
operations. This may be helpful for the verified computation of roots and fixed-
points of systems of equations using Brouwer’s fixed-point theorem [Hammer
et al. 1995].

There are a number of public domain and commercial interval libraries
[Hofschuster et al. 2001; Hofschuster and Krämer 2004; Knüppel 1994; Kear-
fott et al. 1994; Kearfott 1996; Rump 1998; Sun Microsystems 2001]. Be-
side Sun Forte C++ with interval support [Sun Microsystems 2001], which
is not portable and only commercially available, the new library filib++ is
the only one providing extended interval arithmetic based on containment
sets. filib++ sources are available from http://www.math.uni-wuppertal.de/
wrswt/software/filib.html.
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